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EXCEPTIONAL TIMES OF THE CRITICAL DYNAMICAL
ERDŐS–RÉNYI GRAPH1

BY MATTHEW I. ROBERTS AND BATI ŞENGÜL

University of Bath and Bank of America Merrill Lynch

In this paper, we introduce a network model which evolves in time,
and study its largest connected component. We consider a process of graphs
(Gt : t ∈ [0,1]), where initially we start with a critical Erdős–Rényi graph
ER(n,1/n), and then evolve forward in time by resampling each edge inde-
pendently at rate 1. We show that the size of the largest connected component
that appears during the time interval [0,1] is of order n2/3 log1/3 n with high
probability. This is in contrast to the largest component in the static critical
Erdős–Rényi graph, which is of order n2/3.

1. Introduction and main result. An Erdős–Rényi graph ER(n,p) is a ran-
dom graph on n vertices {1, . . . , n}, where each pair of vertices is connected by
an edge with probability p, independently of all other pairs of vertices. Erdős and
Rényi [8] introduced this graph (or rather a very closely related graph) and exam-
ined the structure of its connected components. Since then, Erdős–Rényi graphs
have been intensively studied and have become a cornerstone of probability and
combinatorics; see, for example, [5, 7, 16] and references therein.

Let Ln denote the largest connected component of an Erdős–Rényi graph
ER(n,p) with p = μ/n. We write |Ln| for the number of vertices in Ln. This
quantity exhibits a phase transition as μ passes 1:

(i) if μ < 1, then (logn)−1|Ln| converges in probability to 1/α(μ) where
α(μ) = μ − 1 − logμ ∈ (0,∞) (see [5], Corollaries 5.8 and 5.11);

(ii) if μ = 1, then n−2/3|Ln| converges in distribution to some nontrivial ran-
dom variable as n → ∞ (see [2]);

(iii) if μ > 1, then n−1|Ln| converges in probability to θ(μ) where θ(μ) ∈
(0,1) is the unique solution to θ(μ) = 1 − e−μθ(μ) (see [16], Theorem 5.4).

The model ER(n,1/n) is therefore referred to as the critical Erdős–Rényi graph.
In this paper, we study a dynamical version of the critical Erdős–Rényi graph, a

process of random graphs (Gt : t ∈ [0,1]) on the vertex set {1, . . . , n}, constructed
as follows. Initially, G0 is distributed as ER(n,1/n). Then the presence of each
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edge vw between vertices v �= w is resampled at rate 1, independently of all other
edges. That is, at the times of a rate 1 Poisson process, we remove the edge vw

if it exists, and then place an edge with probability 1/n, independently of every-
thing else. Clearly, ER(n,1/n) is invariant for this process, so for each t ≥ 0, Gt

is a realisation of ER(n,1/n). Let Ln(t) denote the largest connected component
of Gt . Then for each fixed t ∈ [0,1], |Ln(t)| is of order n2/3 with high proba-
bility as n → ∞. Our main result gives a contrasting statement about the size of
supt∈[0,1] |Ln(t)|, showing that with high probability there are (rare) times when
|Ln(t)| is of order n2/3 log1/3 n [where we write logα n to mean (logn)α].

THEOREM 1.1. As n → ∞,

P

(supt∈[0,1] |Ln(t)|
n2/3 log1/3 n

> β

)
−→

{
1 if β < 2/32/3,

0 if β > 2/31/3.

We will also give a result on the noise sensitivity of component sizes in Propo-
sition 2.2, once we have developed the required notation.

1.1. Further discussion around Theorem 1.1. It is not difficult to deduce from
known results (see, e.g., [5]) together with a first moment method (see Section 5)
that for Erdős–Rényi graphs away from criticality, the size of the biggest compo-
nent in the dynamical model is of the same order as in the static model. That is,
for ER(n,μ/n) with μ < 1, supt∈[0,1] |Ln(t)| is of order logn with high proba-
bility; and for ER(n,μ/n) with μ > 1, supt∈[0,1] |Ln(t)| is of order n with high
probability. The critical graph ER(n,1/n) is therefore the most interesting case.

Returning to ER(n,1/n), the obvious open questions posed by Theorem 1.1
are:

• Does supt∈[0,1] |Ln(t)|/(n2/3 log1/3 n) converge in probability as n → ∞? If so,
what is its limit?

• What does the set of exceptional times, that is, {t ∈ [0,1] : |Ln(t)| ≥ βn2/3 ×
log1/3 n}, look like?

• What does the largest component look like at exceptional times?
• How does inft∈[0,1] |Ln(t)| behave?
• What if we resample each edge at rate nγ for γ �= 0?

For the first question, we conjecture that supt∈[0,1] |Ln(t)|/(n2/3 log1/3 n) →
2/31/3 in probability as n → ∞. We hope to address this in future work, but sub-
stantial further technical estimates are required.

We can say a limited amount about the second question. On the one hand, it
is easy to check that the Lebesgue measure of the set of times at which there
is a component of size at least Ann

2/3 converges in probability to zero when-
ever An → ∞, so certainly the Lebesgue measure of the set of exceptional times
converges in probability to zero for any β > 0. On the other hand, let Xβ(t)
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be 1 when the largest component is larger than βn2/3 log1/3 n, and 0 at other
times. For δ > 0, let Nβ(δ) be the number of times in the interval [0, δ] at which
Xβ(t) changes its value. Jonasson and Steif [17], Corollary 1.6, showed that if
P(|Ln| ≥ βn2/3 log1/3 n) → 0 but P(Nβ(1) ≥ 1) → 1, then Nβ(δ) → ∞ in distri-
bution as n → ∞ for any fixed δ > 0. Theorem 1.1 tells us that these conditions
hold for β < 2/32/3.

Going further than this, one might like to know whether the set of exceptional
times {t ∈ [0,1] : |Ln(t)| ≥ βn2/3 log1/3 n} converges in distribution as n → ∞,
and if so, what the Hausdorff dimension of this limiting set is. We conjecture that
the Hausdorff dimension is (1 − 3β3/8) ∨ 0. This conjecture follows naturally
from a simple box counting argument using the sets Ei from our upper bound in
Section 5. Again, we hope to investigate this in future work.

For the third question, it is natural to guess—in analogy with work on dynam-
ical planar lattice percolation by Hammond, Pete and Schramm [14]—that the
largest component at “typical” exceptional times looks like a static component
conditioned to have size at least βn2/3 log1/3 n. Unfortunately, our combinatorial
method for estimating the probability that such a component exists (using results
from [21]) gives little insight into its structure. Analysis using Brownian excur-
sions, after Aldous [2] and Addario-Berry, Broutin and Goldschmidt [1], might
shed more light on this problem.

The fourth question appears to be substantially different from Theorem 1.1 and
would require a different approach.

For the fifth question, the most interesting case is γ = −1/3. If we rescale
component sizes by n2/3 then, based on Aldous’ multiplicative coalescent [2], we
expect to see something like a multiplicative fragmentation-coalescent process.
Rossignol [22] has shown that this is indeed the case.

1.2. Background. Dynamical percolation was introduced by Häggström,
Peres and Steif [13]. Take a graph G = (V ,E) and create a dynamical random
graph (Gt , t ≥ 0) as follows. Each edge e ∈ E is present at time 0 with probability
p ∈ [0,1], independently of all others. Each edge is then rerandomized indepen-
dently at the times of a rate 1 Poisson process. This model is known as dynamical
bond percolation on G with parameter p. (Alternatively, we may say that each
vertex is present with probability p and rerandomized at rate 1; this is known as
dynamical site percolation.) The model that we investigate in this paper is then
simply a dynamical bond percolation when G is the complete graph on n vertices
and p = 1/n.

A question of particular interest for infinite graphs is whether there exists a
time at which an infinite component appears. Schramm and Steif [23] were able to
show that for critical (p = 1/2) dynamical site percolation on the triangular lattice,
almost surely, there are times in [0,∞) when an infinite component is present,
even though at any fixed time t there is almost surely no infinite component. The
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times at which an infinite component exists are then known as exceptional times.
Their proof relied on tools from Fourier analysis, randomized algorithms and the
theory of noise sensitivity of Boolean functions as introduced by Benjamini, Kalai
and Schramm [4]. We will see similar methods appearing in our proof, although in
each case there will be a nonstandard approach required.

Since its introduction roughly 20 years ago, dynamical percolation has been
studied intensively [3, 6, 10, 12, 14, 19] in various settings (see also [9, 11, 24] and
references within). Most of the study has so far been restricted to infinite graphs
and the question of existence of an infinite component. Of the very few results on
finite graphs, Lubetzky and Steif [18] studied the noise sensitivity properties of
various Boolean functions related to Erdős–Rényi graphs; and Jonasson and Steif
[17] gained results about dynamical percolation on infinite spherically symmetric
trees restricted to the first n levels, in the context of what they call the volatility of
Boolean functions (which we mentioned using different notation in Section 1.1 in
the discussion around the second open question).

The critical Erdős–Rényi graph is one of the simplest models of random net-
works. Several more complex random graph models, such as preferential attach-
ment graphs, have since been introduced in an attempt to more realistically model
the features seen in real-world networks such as the world-wide web; see [26] for
an overview. The model we consider in this paper is known within the network
science literature as a temporal network. The report [15] gives a good introduction
to the subject. There is interest in comparing real networks with random models,
and in order to do this for networks that change with time (temporal networks),
[15] details several ways of constructing dynamical random graphs loosely based
around the configuration model. Our dynamical Erdős–Rényi model is simpler,
and we hope that it will lead to further progress in the probabilistic community in
investigating other temporal network models.

1.3. Proof ideas for Theorem 1.1. The proof that if β > 2/31/3 then there are
no exceptional times (i.e., with high probability there are no times in [0,1] when
there is a component of size bigger than βn2/3 log1/3 n) uses a standard first mo-
ment method. We split [0,1] into many smaller intervals, use known asymptotics
for the probability of seeing a large component for p slightly bigger than 1/n to
bound the probability of seeing an exceptional time on one of these small intervals
and then take a union bound. The main interest of this paper is therefore the result
that there are exceptional times for β < 2/32/3.

As discussed in [23], in order to see such times, the configuration must “change
rapidly” so that it has “many chances” to have a large component. By “change
rapidly,” we mean that the configurations must have small correlations over short
time intervals. To quantify this, we use a second moment method, and the key will
be to estimate ∫ 1

0

∫ 1

0
P

(∣∣Cu(s)
∣∣ > An2/3,

∣∣Cv(t)
∣∣ > An2/3)

dt ds,
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where A = β log1/3 n and Cv(t) is the connected component containing vertex v at
time t .

We will need different methods for estimating P(Cu(0) > An2/3, |Cv(t)| >

An2/3), roughly depending on whether |t − s| is less than or greater than n−2/9.
For small values of |t − s|, we will use a counting argument. For larger values of
|t − s|, the correlations become harder to control and we will need to use tools
from discrete Fourier analysis. A very interesting theory of noise sensitivity has
been developed around this concept when P is a uniform product measure, that
is, when the probability that each edge (or vertex) is present is 1/2; see [11]. Since
our measure P is highly nonsymmetric, we must redevelop some of the noise sen-
sitivity tools in our nonstandard setting. Even then there are complications and
some twists on the theory are needed, which may be of interest in their own right.

The basic idea is to use the notion of randomized algorithms. We aim to design
an algorithm which examines some of the edges e ∈ E (i.e., looks at whether they
are present or not), and decides whether or not there is a large component. If for
any fixed e, the probability that the algorithm checks e is small, then the Fourier
coefficients that we are interested in must also be small. This result is known in
the uniform case [23], and the proof carries over to nonuniform P. The major
complication here is that we are not able to construct an algorithm with the de-
sired properties, essentially because of the lack of geometry in the graph. To check
whether a particular vertex v is in a large component, we need to examine almost
all the edges emanating from v. For each v, we are therefore forced to consider
two classes of edges. For those edges e that do not have an endpoint at v, we can
use a well-known exploration algorithm and use the lack of geometry to our ad-
vantage to bound the probability that e is examined. For the edges that do have
an endpoint at v, we use a completely different method inspired by the spectral
sample introduced in [4]. We bound the relevant Fourier coefficients by looking at
the probability that the edge e is pivotal, that is, there is a large component when e

is present and not if e is absent.

2. Fourier analysis of Boolean functions. In this section, we give general re-
sults on the Fourier analysis of Boolean functions. Several of the results presented
here are known in the case when P is a uniform product measure; see, for exam-
ple, [11]. We also note that Talagrand [25] developed hypercontractivity results in
the case we are considering, where P is a homogeneous but nonuniform product
measure. We repeat some of his definitions below.

2.1. Definitions and first results. Let E be a finite set and define � := {0,1}E .
Let P = Pp be a measure on � defined by

P(ω) = p#{e:ω(e)=1}(1 − p)#{i:ω(e)=0}.
All of our results in this section apply to any finite set E and any p ∈ [0,1]. We
refer to the elements of E as bits. Of course, we have in our minds the application
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where E is the edge set of the complete graph Kn and p = 1/n; and where for
ω ∈ � we say that edge e is present if and only if ω(e) = 1.

For ω ∈ � and e ∈ E, let

re(ω) :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

√
1 − p

p
if ω(e) = 1,

−
√

p

1 − p
if ω(e) = 0.

For S ⊂ E, let

χS(ω) = ∏
e∈S

re(ω),

where we set χ∅ ≡ 1. Then for any function f : � →R and S ⊂ E we define

f̂ (S) = E[f χS],
and call f̂ (S), for S ⊂ E, the Fourier coefficients of f .

It is easy to check that {χS : S ⊂ E} forms an orthonormal basis for L2(P) and,
therefore—just as in continuous Fourier analysis—the function f̂ encodes all of
the information about f , in that f (ω) = ∑

S⊂E f̂ (S)χS(ω).
One simple consequence of the definition is that E[f ] = f̂ (∅). Another useful

result is Plancherel’s identity, which states that for two functions f , g : � →R,

(1)
∑
S

f̂ (S)ĝ(S) = E[fg].

This is easy to prove simply by writing out f = ∑
S f̂ (S)χS and g = ∑

S′ ĝ(S′)χS′
and using orthonormality.

Recall from the Introduction that we will be interested in bounding probabilities
like P(|Cu(s)| > An2/3, |Cv(t)| > An2/3), where Cv(t) is the component containing
v at time t in the dynamical Erdős–Rényi graph. We will therefore be applying
our Fourier analysis to functions of the form 1{Cv(t)>An2/3}. The following lemma,
which is already known (see [11], (4.2), and [4], (2.2)), will be very useful for
this purpose. Given ω ∈ � and ε ∈ [0,1], let ωε be the configuration obtained by
rerandomizing each of the bits in ω independently with probability ε. That is, for
each e ∈ E,

ωε(e) = ω(e)1{Ue>ε} + 1{Ve<p}1{Ue≤ε},
where Ue and Ve are independent uniform random variables on (0,1).

LEMMA 2.1. For any ε ∈ [0,1] and any f,g : � →R,

E
[
f (ω)g(ωε)

] = ∑
S

f̂ (S)ĝ(S)(1 − ε)|S|

(where the expectation E averages both over ω ∈ � and also over the randomness
in the resampling required to create ωε).
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PROOF. Note that

E
[
f (ω)g(ωε)

] = E

[∑
S

f̂ (S)χS(ω)
∑
S′

ĝ
(
S′)χS′(ωε)

]
= ∑

S,S′
f̂ (S)ĝ

(
S′)

E
[
χS(ω)χS′(ωε)

]
.

It is easy to check that if S �= S′ then E[χS(ω)χS′(ωε)] = 0, and on the other hand
that

E
[
χS(ω)χS(ωε)

] = ∏
e∈S

E
[
re(ω)re(ωε)

] = (1 − ε)|S|.
�

2.2. Noise sensitivity. At this point, we veer from our main path for a while
to state a result about the noise sensitivity of component sizes in Erdős–Rényi
graphs. Following the notation from Section 2.1, suppose that we have a sequence
of functions Fn : �n →R, n ≥ 1, where �n = {0,1}En . Recall that for ω ∈ �n and
ε ∈ [0,1], we let ωε be the configuration obtained by rerandomizing each of the
bits in ω independently with probability ε.

We say that the sequence (Fn)n≥1 is noise sensitive if

E
[
Fn(ω)Fn(ωε)

] −E
[
Fn(ω)

]2 → 0 as n → ∞.

For a sequence (εn)n≥1, we say that Fn is quantitatively noise sensitive with scal-
ing εn if

E
[
Fn(ω)Fn(ωεn)

] −E
[
Fn(ω)

]2 → 0 as n → ∞.

PROPOSITION 2.2. For any fixed a ∈ (0,∞) and any (εn)n≥1 such that
limn→∞ n1/6εn = ∞, the sequence of functions Fn = 1{|Ln|≥an2/3} is quantitatively
noise sensitive with scaling εn.

Of course, if Fn → 0 with high probability (or if Fn → 1 with high probabil-
ity), then Fn is trivially noise sensitive. It is well known (see [2]) that Fn as in
Proposition 2.2 is nontrivial in that sense, that is, limn→∞ P(Fn = 0) ∈ (0,1).

We believe that in fact the given sequence Fn is quantitatively noise sensitive
with scaling εn whenever n1/3εn → ∞, and that this is the best possible such
scaling. A simple argument, similar to the union bound in Section 5, shows that the
functions Fn(ω) and Fn(ωεn) defined in Proposition 2.2 do not decorrelate when
εn is of order n−1/3−δ for any δ > 0. More precisely, in ω, the total number of
vertices in components of size at least an2/3/2 is O(n2/3) with high probability, so
there are O(n4/3) edges that would create a new component of size n2/3 simply by
being switched on, and the probability that any of these edges is switched on under
ωn−1/3−δ is bounded away from 1. Similarly, the total number of edges that would
break a component of size at least an2/3 into two pieces of size < an2/3 if switched
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off is O(n1/3) with high probability, and the probability that any of these edges is
switched off under ωn−1/3−δ is again bounded away from 1. This argument provides
a lower bound for the noise sensitivity threshold, but it also makes a persuasive
case for n−1/3 being the correct threshold, since rerandomising significantly more
edges would change the status of a large number of pivotal edges (see Section 2.4).

Lubetzky and Steif [18] showed that n−1/3 is the correct noise sensitivity thresh-
old when Fn is instead the indicator that the critical Erdős–Rényi graph contains a
cycle whose size is of order n1/3. Roughly speaking, a cycle of order n1/3 entails
a component of order n2/3, though it is possible to have components of order n2/3

without having cycles of order n1/3. Further, Rossignol [22] shows that the system
of large components has a well-behaved scaling limit when edges are resampled
at rate n−1/3, which again suggests that faster rerandomization would break the
correlation structure. Finally, this sensitivity threshold would also coincide with
our conjecture for the existence of exceptional times for any β < 2/31/3.

A proof of Proposition 2.2 will follow almost as a byproduct of our proof of
Theorem 1.1. We carry out the details in Section 6.

2.3. Randomized algorithms and revealment. Evaluating Fourier coefficients
directly is often quite difficult and instead we concentrate on bounding sums such
as the one on the right-hand side of Lemma 2.1. One approach that has proven
fruitful in the past is to introduce a randomized revealment algorithm that attempts
to decide the value of the function f by revealing ω(e) only for relatively few of
the possible bits e ∈ E. If for any fixed e, the probability that the algorithm reveals
ω(e) is small, then it turns out that the sum of the Fourier coefficients must be
small [23], Theorem 1.8. Our main result in this section is a generalization of [23],
Theorem 1.8.

Let f : � = {0,1}E →R. A revealment algorithm, A, for f is a sequence of bits
e1, e2, . . . , eT ∈ E, chosen one by one, with the choice of ek possibly depending on
the values of ω(e1), . . . ,ω(ek−1), and such that knowledge of ω(e1), . . . ,ω(eT )

determines the value of f (w). A randomized revealment algorithm is a reveal-
ment algorithm that is also allowed to use auxiliary randomness in making choices.
Given such an algorithm A, let J be the set of bits revealed by A.

For U ⊂ E, define the revealment of the algorithm A on U by

RU = RU(f,A) := max
e∈Uc

P(e ∈ J ).

Our main result in this section is the following generalization of [23], Theorem 1.8.

THEOREM 2.3. Let A be an algorithm determining f : � → R and let U ⊂
E. Then for any k ∈ N, ∑

|S|=k,

S∩U=∅

f̂ (S)2 ≤ RU(f,A)E
[
f (ω)2]

k.
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The result in [23], besides being stated for the uniform measure (i.e., p = 1/2),
only included the case U = ∅. The reason that we need a generalization involves
the geometry of the Erdős–Rényi graph. As far as we can tell, any algorithm to
check whether there is an unusually large component must reveal almost all of
the edges emanating from many of the vertices; similarly, any algorithm to check
whether a particular vertex v is in an unusually large component must reveal almost
all of the edges with an endpoint at v.

To get around this problem, we fix a vertex v and separate subsets S of edges
into those which contain an edge with an endpoint at v, and those which do not.
We then use Theorem 2.3 to bound the Fourier coefficients of the latter sets, and
take a different approach to the former. This different approach was inspired by
the spectral sample introduced in [4], and will be carried out in Section 2.4.

Schramm and Steif [23] noted that it may be possible to improve their Theo-
rem 1.8 for large k, and we believe similarly that our Theorem 2.3 may not be op-
timal. They suggest that the sum over |S| = k might be changed to a sum over |S| ≤
k with no change on the right-hand side, and such an improvement would allow
us to give improved versions of Theorem 1.1 and Proposition 2.2 that are essen-
tially best possible: convergence in probability of supt∈[0,1] |Ln(t)|/(n2/3 log1/3 n)

to 2/31/3, and quantitative noise sensitivity for any εn  n−1/3.
For now, we aim to prove Theorem 2.3. Our strategy is very much based on the

proof in [23].
Let τ ∈ T represent the auxiliary randomness used by the algorithm, and let P̃

be the canonical probability measure on the extended space � × T . Let A be the
smallest σ -algebra such that J and {ω(e) : e ∈ J } are measurable. Note that since
A determines the value of f , and A contains all the information revealed by A, f

is A-measurable.
For a configuration ω′ ∈ �, define the configuration ω′

J (ω,τ) by setting

ω′
J (ω,τ)(e) :=

{
ω(e) if e ∈ J (ω, τ),

ω′(e) if e /∈ J (ω, τ).

Next, for any function h : � →R and (ω, τ ) ∈ � × T , define hJ (ω,τ ) by

hJ (ω,τ ) : � →R,

ω′ �→ h
(
ω′
J (ω,τ )

)
.

We now want to be able to take expectations over ω′ ∈ �, using our usual prob-
ability measure under which each bit of ω′ is 1 with probability p and 0 with
probability 1 −p, while keeping ω and τ fixed. We write Pω,τ to emphasise that ω

and τ are fixed. The notation ĥJ (S) will mean the Fourier coefficient with respect
to P

ω,τ , that is, Eω,τ [hJ (ω,τ )(ω
′)χS(ω′)]. The set J will always be a function of

ω and τ , J = J (ω, τ) (and not ω′), though we will omit this from the notation for
the sake of readability.
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We start with a general lemma about any such function h, before choosing a
particular h. We stress that these proofs are almost identical to those in [23], but
fleshed out and adapted to our more general situation.

LEMMA 2.4. For any S ⊂ E and any function h : � →R,

Ẽ
[
h(ω)|A] = ĥJ (∅).

PROOF. Setting ωS to be 1 on S and 0 off S, we have

ĥJ (∅) = E
ω,τ [

hJ

(
ω′)]

= ∑
S⊂E

hJ

(
ωS)

p|S|(1 − p)|E\S|

= ∑
S⊂E

h
(
ωS

J

)
p|S|(1 − p)|E\S|

= ∑
S⊂J c

h
(
ωS∪J ′)

p|S|(1 − p)|J c\S|,

where J ′ = J ′(ω, τ ) = {e ∈ J (ω, τ) : ω(e) = 1}. But this last quantity is exactly
Ẽ[h(ω)|A]. �

We now fix a function h by setting

(2) h(ω) = ∑
|S|=k,

S∩U=∅

f̂ (S)χS(ω).

LEMMA 2.5. Suppose h is as defined in (2). Then for any S ⊂ E with |S| = k,

ĥJ (S) =
{

0 if S ∩ J �= ∅,

ĥ(S) if S ∩ J = ∅.

PROOF. Note that hJ (ω′) = h(ω′
J ) = ∑

S ĥ(S)χS(ω′
J ). Therefore,

ĥJ (S) = E
ω,τ [

hJ

(
ω′)χS

(
ω′)] = ∑

|S′|=k

ĥ
(
S′)

E
ω,τ [

χS′
(
ω′

J

)
χS

(
ω′)].

If S′ �= S, then (since S′ and S have the same size) we may take e ∈ S \S′; changing
the value of the bit e changes χS but not χS′ , so an easy calculation shows that in
this case E

ω,τ [χS′(ω′
J )χS(ω′)] = 0. Thus

ĥJ (S) = E
ω,τ [

hJ

(
ω′)χS

(
ω′)] = ĥ(S)Eω,τ [

χS

(
ω′

J

)
χS

(
ω′)].

Now if S ∩ J �= ∅, then we may take e ∈ S ∩ J ; since e ∈ J , the value of ω′
J

remains constant when we change ω′(e). On the other hand, since e ∈ S, the value
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of χS(ω′) changes when we change ω′(e). Therefore, another easy calculation
gives that in this case also E

ω,τ [χS(ω′
J )χS(ω′)] = 0, and thus ĥJ (S) = 0 when

S ∩ J �=∅.
Finally, if S ∩ J = ∅, then χS(ω′

J ) = χS(ω′), so in this case by orthonormality
we have E

ω,τ [χS(ω′
J )χS(ω′)] = 1 and ĥJ (S) = ĥ(S). This completes the proof.

�

LEMMA 2.6. For h defined in (2), we have that

Ẽ
[
ĥJ (∅)2] ≤ ∑

|S|=k

S∩U=∅

ĥ(S)2
P̃(J ∩ S �= ∅).

PROOF. Using Plancherel’s identity on the function hJ , we have

E
ω,τ [

hJ

(
ω′)2] = ∑

S

ĥJ (S)2

and, therefore,

(3) ĥJ (∅)2 = E
ω,τ [

hJ

(
ω′)2] − ∑

|S|>0

ĥJ (S)2.

If we let g = h2, then applying Lemma 2.4 to g and using Plancherel’s identity we
see that

Ẽ
[
E

ω,τ [
hJ

(
ω′)2]] = Ẽ

[
ĝJ (∅)

] = Ẽ
[
Ẽ

[
g(ω)|A]]

= Ẽ
[
g(ω)

] = Ẽ
[
h(ω)2] = ∑

S

ĥ(S)2.

Therefore, taking expectations in (3), we get

Ẽ
[
ĥJ (∅)2] = ∑

S

ĥ(S)2 − ∑
|S|>0

Ẽ
[
ĥJ (S)2]

.

By Lemma 2.5, ĥJ (S)2 = ĥ(S)21{J∩S=∅} when |S| = k; and the same quantity is
obviously nonnegative when |S| �= k, so

Ẽ
[
ĥJ (∅)2] ≤ ∑

S

ĥ(S)2 − ∑
|S|=k

ĥ(S)2
P̃(J ∩ S = ∅).

Since ĥ(S) = 0 unless |S| = k and S ∩ U =∅, the result follows. �

We can now prove Theorem 2.3.

PROOF OF THEOREM 2.3. Suppose that h is as in (2). We claim first that

(4) Ẽ
[
h(ω)2]2 ≤ Ẽ

[
f (ω)2]

Ẽ
[
ĥJ (∅)2]

.
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To show this, note that by orthogonality,

Ẽ
[
h(ω)f (ω)

] = Ẽ

[ ∑
|S|=k;

S∩U=∅

f̂ (S)χS(ω)
∑

S′⊂E

f̂
(
S′)χS′(ω)

]

= Ẽ

[ ∑
|S|=k;

S∩U=∅

f̂ (S)χS(ω)
∑

|S′|=k;
S′∩U=∅

f̂
(
S′)χS′(ω)

]
= Ẽ

[
h(ω)2]

.

On the other hand,

Ẽ
[
h(ω)f (ω)

] = Ẽ
[
Ẽ

[
h(ω)f (ω)|A]]

= Ẽ
[
f (ω)Ẽ

[
h(ω)|A]]

≤ Ẽ
[
f (ω)2]1/2

Ẽ
[
Ẽ

[
h(ω)|A]2]1/2

,

where the second equality uses the fact that f is A-measurable, and the last in-
equality uses Cauchy–Schwarz. Putting these two expressions for Ẽ[h(ω)f (ω)]
together, and recalling from Lemma 2.4 that Ẽ[h(ω)|A] = ĥJ (∅), we get (4).

Now, combining (4) with Lemma 2.6,

Ẽ
[
h(ω)2]2 ≤ Ẽ

[
f (ω)2] ∑

|S|=k,

S∩U=∅

ĥ(S)2
P̃(J ∩ S �= ∅).

Taking a union bound, for any S with |S| = k and S ∩ U = ∅ we have P̃(J ∩ S �=
∅) ≤ kRU , so

Ẽ
[
h(ω)2]2 ≤ Ẽ

[
f (ω)2] ∑

|S|=k;
S∩U=∅

ĥ(S)2kRU .

By Plancherel’s identity and the definition of h,

(5)
∑

|S|=k;
S∩U=∅

ĥ(S)2 = ∑
S

ĥ(S)2 = Ẽ
[
h(ω)2]

,

so

Ẽ
[
h(ω)2]2 ≤ Ẽ

[
f (ω)2]

Ẽ
[
h(ω)2]

kRU

and, therefore, Ẽ[h(ω)2] ≤ Ẽ[f (ω)2]kRU . Since ĥ(S) = f̂ (S) for all S with |S| =
k and S ∩ U =∅, using (5) again we have∑

|S|=k;
S∩U=∅

f̂ (S)2 = Ẽ
[
h(ω)2] ≤ Ẽ

[
f (ω)2]

kRU .

�
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2.4. Pivotality. In Section 2.3, we gave a method for bounding∑
|S|=k,

S∩U=∅

f̂ (S)2,

which we will apply by fixing a vertex v and letting U be the set of edges that
do not have an endpoint at v. In this section, we will give a bound on the Fourier
coefficients of sets that do contain a particular edge, using the notion of pivotality.

An edge e ∈ E is said to be pivotal for f and ω ∈ � if f (σe(ω)) �= f (ω), where
σe(ω) is the configuration obtained from ω by switching the value of ω(e). Let
Pf = Pf (ω) denote the set of pivotal edges. The next lemma allows us to control
the Fourier coefficients by estimating the probability of being pivotal. Similar re-
sults are known in the case when P is a uniform measure; see [11], Proposition 4.4
and Chapter 9. The nonuniform case is somewhat more delicate.

We say that two functions f,g : � →R are jointly monotone if(
f (ω) − f

(
σe(ω)

))(
g(ω) − g

(
σe(ω)

)) ≥ 0 ∀e ∈ E.

In particular, if f and g are both monotone increasing (or both monotone decreas-
ing) then f and g are jointly monotone.

LEMMA 2.7. Suppose that f,g : � → {0,1} are jointly monotone. Then for
any e ∈ E, ∑

S:e∈S

f̂ (S)ĝ(S) = p(1 − p)P(e ∈Pf ∩Pg).

PROOF. Fix e ∈ E and define an operator ∇e by setting

∇ef (ω) = ∣∣re(ω)
∣∣(f (ω) − f

(
σe(ω)

))
.

Since f (ω) = ∑
S f̂ (S)χS(ω), from the definition of χS we have that

∇ef (ω) = ∣∣re(ω)
∣∣(re(ω) − re

(
σe(ω)

)) ∑
S:e∈S

f̂ (S)χS\{e}(ω).

Now, if ω(e) = 1, then re(ω) = ((1 − p)/p)1/2 and re(σe(ω)) = −(p/(1 − p))1/2

and so∣∣re(ω)
∣∣(re(ω) − re

(
σe(ω)

)) =
(

1 − p

p

)1/2((
1 − p

p

)1/2
+

(
p

1 − p

)1/2)
= 1/p

= re(ω)

p1/2(1 − p)1/2 .
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On the other hand, if ω(e) = 0, then re(ω) = −(p/(1 − p))1/2 and re(σe(ω)) =
((1 − p)/p)1/2 so that∣∣re(ω)

∣∣(re(ω) − re
(
σe(ω)

)) =
(

p

1 − p

)1/2(
−

(
p

1 − p

)1/2
−

(
1 − p

p

)1/2)
= −1/(1 − p)

= re(ω)

p1/2(1 − p)1/2 .

Thus either way, we see that

∇ef (ω) = 1

p1/2(1 − p)1/2

∑
S:e∈S

f̂ (S)χS(ω).

It follows that

∇̂ef (S) =
{
p−1/2(1 − p)−1/2f̂ (S) if e ∈ S,

0 if e /∈ S

and by Plancherel’s identity (1),

(6) E
[
(∇ef )(∇eg)

] = ∑
S

∇̂ef (S)∇̂eg(S) = 1

p(1 − p)

∑
S:e∈S

f̂ (S)ĝ(S).

Next, we compute E[(∇ef )(∇eg)] directly. Notice that since f and g are jointly
monotone,

∇ef (ω)∇eg(ω) =

⎧⎪⎪⎨⎪⎪⎩
(1 − p)/p if e ∈ Pf (ω) ∩Pg(ω) and ω(e) = 1,

p/(1 − p) if e ∈ Pf (ω) ∩Pg(ω) and ω(e) = 0,

0 otherwise.

Since the event {e ∈ Pf ∩Pg} is independent of ω(e), we see that

E
[
(∇ef )(∇eg)

] = p
1 − p

p
P(e ∈Pf ∩Pg) + (1 − p)

p

1 − p
P(e ∈ Pf ∩Pg)

= P(e ∈ Pf ∩Pg).

The lemma now follows by combining this with (6). �

3. Component sizes of Erdős–Rényi graphs. In this section, we collect
some preliminary results about component sizes for Erdős–Rényi graphs, which
will be useful later on. We let Pn,p be the law of ER(n,p), Cv the connected com-
ponent containing vertex v, and Ln the size of the largest connected component.

We begin by presenting a result that gives the tail behavior of the size of compo-
nents. For a proof of Proposition 3.1, see [21]. Pittel ([20], Proposition 2) proved
part (b) when λ is fixed and k = an2/3 where a is large but does not depend on n.
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PROPOSITION 3.1. Let G be an ER(n,1/n + λnn
−4/3) random graph. Write

p = 1/n+λnn
−4/3. Suppose that (3λn ∧ 1) ≤ An � n1/12 and |λn| � n1/12. Then

as n → ∞,

(a) For any vertex v,

Pn,p

(|Cv| ≥ Ann
2/3) = A

3/2
n

(8π)1/2n1/3G′
λn

(An)
e−Gλn(An)

(
1 + O

(
1

An

)
+ o(1)

)
;

(b)

Pn,p

(
Ln ≥ Ann

2/3) = A
1/2
n

(8π)1/2G′
λn

(An)
e−Gλn(An)

(
1 + O

(
1

An

)
+ o(1)

)
,

where Gλ(x) = x3/8 − λx2/2 + λ2x/2.

We will also need bounds on Pn,p(|Cv| = k). Again we refer to [21] for a proof.

LEMMA 3.2. Let G = (V ,E) be an ER(n,1/n + λnn
−4/3) random graph.

Let p = 1/n+λnn
−4/3 and fix M ∈ (0,∞). Suppose that |λn| ≤ n1/12. There exist

constants 0 < c1 ≤ c2 < ∞ such that:

(a) if k ≤ Mn2/3, then for any vertex v,
c1

k3/2 e−Fλn(k/n2/3) ≤ Pn,p

(|Cv| = k
) ≤ c2

k3/2 e−Fλn(k/n2/3),

where Fλ(x) = x3/6 − λx2/2 + λ2x/2;
(b) if n2/3 ≤ k ≤ n3/4, then for any vertex v,

c1k
3/2

n2 e−Gλn(k/n2/3) ≤ Pn,p

(|Cv| = k
) ≤ c2k

3/2

n2 e−Gλn(k/n2/3),

where Gλ(x) = x3/8 − λx2/2 + λ2x/2.

Adapting these bounds for our particular purposes, we get the following.

LEMMA 3.3. There exists a finite constant c such that whenever 0 ≤ k � n3/4,
for any vertex v:

(a) for any j ≥ 1,

Pn−k,1/n

(|Cv| ≥ j
) ≤ c

j1/2 exp
(
−(k + j)3

8n2 + k3

8n2

)
;

(b) if (n − k)2/3 ≤ j � (n − k)3/4 then

Pn−k,1/n

(|Cv| = j
) ≤ cj3/2

n2 exp
(
−(k + j)3

8n2 + k3

8n2

)
.
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PROOF. Note that

1

n
= 1

n − k
− 1

(n − k)4/3

(
(n − k)1/3k

n

)
.

Therefore, setting λ = − (n−k)1/3k
n

and p = 1/(n− k)−λ(n− k)−4/3 and applying
Lemma 3.2(b), for j ≥ (n − k)2/3 we get

Pn−k,1/n

(|Cv| = j
) = Pn−k,p

(|Cv| = j
)

≤ cj3/2

(n − k)2 e−Gλ(j/(n−k)2/3).

Similarly, noting that for λ ≤ 0 we have G′
λ(x) ≥ 3x2/8, by Proposition 3.1(a), if

j ≥ (n − k)2/3 then

Pn−k,1/n

(|Cv| ≥ j
) ≤ c′

j1/2 e−Gλ(j/(n−k)2/3).

Third, since Fλ(x) ≥ Gλ(x) for all x ≥ 0 and Fλ is increasing in x, by
Lemma 3.2(b), if j ≤ (n − k)2/3 then

(n−k)2/3∑
i=j

Pn−k,1/n

(|Cv| = j
) ≤ c′′

j1/2 e−Fλ(j/(n−k)2/3) ≤ c′′

j1/2 e−Gλ(j/(n−k)2/3).

It therefore remains to show that

Gλ

(
j

(n − k)2/3

)
≥ (k + j)3

8n2 − k3

8n2 .

But indeed

k3

8n2 + Gλ

(
j

(n − k)2/3

)
= k3

8n2 + j3

8(n − k)2 + j2k

2n(n − k)
+ jk2

2n2

≥ k3

8n2 + j3

8n2 + j2k

2n2 + jk2

2n2

≥ (k + j)3

8n2

and the result follows. �

We give two more lemmas, which follow fairly easily from those above, but are
less obviously useful. We will see later that they are exactly the bounds we need
to estimate the probability that two vertices have unusually large components at
different times.
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LEMMA 3.4. Fix M > 0. There exists a finite constant c such that if 2n2/3 ≤
N � n3/4 then

Pn,1/n

(|Cu ∪ Cv| ≥ N, |Cu| < N, |Cv| < N,Cu ∩ Cv = ∅
) ≤ c

N2

n2 e−N3/(8n2).

PROOF. Clearly,

Pn,1/n

(|Cu ∪ Cv| ≥ N, |Cu| < N, |Cv| < N,Cu ∩ Cv = ∅
)

≤ 2Pn,1/n

(|Cu ∪ Cv| ≥ N, |Cv| ≤ |Cu| < N,Cu ∩ Cv = ∅
)

≤ 2
N−1∑

k=�N/2�
Pn,1/n

(|Cu| = k
)
Pn,1/n

(|Cv| ≥ N − k,Cu ∩ Cv = ∅ | |Cu| = k
)

= 2
N−1∑

k=�N/2�
Pn,1/n

(|Cu| = k
)
Pn−k,1/n

(|Cv| ≥ N − k
)
.

Applying Lemmas 3.2(b) and 3.3(a), for 2n2/3 ≤ N � n3/4

Pn,1/n

(|Cu ∪ Cv| ≥ N, |Cu| < N, |Cv| < N,Cu ∩ Cv =∅
)

≤ 2
N−1∑

k=�N/2�

ck3/2

n2 e−k3/(8n2) c′

(N − k)1/2 e−N3/(8n2)+k3/(8n2)

≤ c′′ N2

n2 e−N3/(8n2).

This completes the proof. �

LEMMA 3.5. There exists a finite constant c such that for any distinct vertices
u, v and w, if N � n3/4,

Pn,1/n

(|Cu ∪ Cv| ≥ N, |Cu| < N,Cu ∩ Cv = ∅,w ∈ Cu

)
≤ c

(
1

n2/3N1/2 + N3

n3

)
e−N3/(8n2).

PROOF. We begin by summing over the possible sizes for Cu:

Pn,1/n

(|Cu ∪ Cv| ≥ N, |Cu| < N,Cu ∩ Cv =∅,w ∈ Cu

)
=

N−1∑
j=2

Pn,1/n

(|Cu| = j, |Cv| ≥ N − j,Cu ∩ Cv = ∅,w ∈ Cu

)

≤
N−1∑
j=2

j

n
Pn,1/n

(|Cu| = j
)
Pn−j,1/n

(|Cv| ≥ N − j
)
.
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Write K = �n2/3�∧ (N − 1). For those values of j less than K , by Lemmas 3.2(a)
and 3.3(a),

K∑
j=2

j

n
Pn,1/n

(|Cu| = j
)
Pn−j,1/n

(|Cv| ≥ N − j
)

≤ c

K∑
j=2

j

n

1

j3/2

1

(N − j)1/2 e−N3/(8n2)+j3/(8n2)

≤ c′ 1

n2/3N1/2 e−N3/(8n2).

On the other hand, for those values of j between K and N − 1, by Lemmas 3.2(b)
and 3.3(a),

N−1∑
j=K+1

j

n
Pn,1/n

(|Cu| = j
)
Pn−j,1/n

(|Cv| ≥ N − j
)

≤ c

N−1∑
j=K+1

j5/2

n3 e−j3/(8n2) 1

(N − j)1/2 e−N3/(8n2)+j3/(8n2)

≤ c′ N3

n3 e−N3/(8n2)

as required. �

4. Exceptional times exist for β < 2/3. In this section, we aim to show that
if β < 2/3, then with high probability there exist times t ∈ [0,1] when |Ln(t)| >

βn2/3 log1/3 n. Let I = [βn2/3 log1/3 n,2βn2/3 log1/3 n]∩N and for v ∈ {1, . . . , n}
let

Zv :=
∫ 1

0
1{|Cv(t)|∈I } dt.

Then by Cauchy–Schwarz and symmetry we have that

P

(
sup

t∈[0,1]
∣∣Ln(t)

∣∣ ≥ βn2/3 log1/3 n
)

≥ P

(
n∑

v=1

Zv > 0

)

≥ E[∑n
v=1 Zv]2

E[(∑n
v=1 Zv)2]

= n2
E[Z1]2

nE[Z2
1] + n(n − 1)E[Z1Z2]

.

(7)

We begin with a lemma which ensures that the term nE[Z2
1] in the denominator

of (7) does not contribute substantially when β is small.
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LEMMA 4.1. If β3 < 16/3, then

lim
n→∞

E[Z2
1]

nE[Z1]2 = 0.

PROOF. By Fubini’s theorem, the stationarity in distribution of C1(t), and
Proposition 3.1(a) with λ = 0,

(8) E[Z1] =
∫ 1

0
P

(∣∣C1(t)
∣∣ ∈ I

)
dt = P

(∣∣C1(0)
∣∣ ∈ I

) = (1 + o(1))n−β3/8−1/3

((9π/8)β logn)1/2 .

Clearly Z1 ≤ 1 so E[Z2
1] ≤ E[Z1], so by (8),

E[Z2
1]

nE[Z1]2 ≤ 1

nE[Z1] ≤ Cnβ3/8−2/3β1/2 log1/2 n

for some constant C. The lemma follows. �

Now using Lemma 4.1 with (7), it remains to show that

lim sup
n→∞

E[Z1Z2]
E[Z1]2 ≤ 1.

Notice that by Fubini’s theorem,

(9) E[Z1Z2] =
∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)

dt ds.

We will estimate the double integral on the right-hand side of (9) by splitting it
into two pieces. We begin with an estimate for when |t − s| is small.

4.1. Small |t − s|: A combinatorial method.

LEMMA 4.2. Let P = P(|Cv| ≥ βn2/3 log1/3 n). Then for any δ > 0,∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)
1{|t−s|≤δ} dt ds

≤ 2δP 2 + 4β log1/3 n

n1/3 δP + 2δ2P.

PROOF. First note that, by stationarity,∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)
1{|t−s|≤δ} dt ds

≤ 2
∫ δ

0
P

(∣∣C1(0)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)

dt.

(10)
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Now fix δ ∈ [0,1] and let t ∈ [0, δ]. We partition P(|C1(0)| ∈ I ; |C2(t)| ∈ I ) into
three cases and analyse each case separately. Recall that Pn,p denotes the law of
an Erdős–Rényi graph ER(n,p).

First, consider the case when |C1(0) ∩ C2(t)| = 0. Then

P
(∣∣C1(0)

∣∣ ∈ I ; ∣∣C2(t)
∣∣ ∈ I ; ∣∣C1(0) ∩ C2(t)

∣∣ = 0
)

= ∑
k∈I

(
P

(∣∣C1(0)
∣∣ = k; ∣∣C1(0) ∩ C2(t)

∣∣ = 0
)

× P
(∣∣C2(t)

∣∣ ∈ I | ∣∣C1(0)
∣∣ = k; ∣∣C1(0) ∩ C2(t)

∣∣ = 0
))

≤ ∑
k∈I

Pn,1/n

(|C1| = k
)
Pn−k,1/n

(|C2| ∈ I
)

≤ ∑
k≥n2/3 logβ n

Pn,1/n

(|C1| = k
)
Pn−k,1/n

(|C2| ≥ βn2/3 log1/3 n
)

≤ P 2,

(11)

where in the final inequality we have used the monotonicity of the event {|C2| ≥
βn2/3 log1/3 n} in the number of vertices of the graph.

The second case that we look at is when 2 ∈ C1(0). In this case,

P
(∣∣C1(0)

∣∣ ∈ I ; ∣∣C2(t)
∣∣ ∈ I ;2 ∈ C1(0)

)
≤ P

(∣∣C1(0)
∣∣ ∈ I

)
P

(
2 ∈ C1(0) | ∣∣C1(0)

∣∣ ∈ I
)

≤ P
2βn2/3 log1/3 n

n
.

(12)

Finally, we are left to estimate the probability of the event

E := {∣∣C1(0)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I ; ∣∣C1(0) ∩ C2(t)
∣∣ > 0;2 /∈ C1(0)

}
.

Take A ⊂ {1, . . . , n} such that |A| ∈ I , and condition on C1(0) = A. On the event
E , there exists at least one open path at time t between A and the vertex 2. Let π

be the shortest such path (chosen arbitrarily in the case of a tie). Then on E :

(i) π starts at a vertex v ∈ A and ends at the vertex 2,
(ii) π first crosses an edge connecting A to Ac, and otherwise only uses edges

with both end points in Ac,
(iii) all of the edges in π are open at time t .

We now estimate the probability of a path satisfying (i), (ii) and (iii) existing.
There are at most 2βn2/3 log1/3 n vertices in A, and at most n − βn2/3 log1/3 n

vertices in Ac, so the number of paths of length k satisfying (i) and (ii) is at most
(2βn2/3 log1/3 n)(n−βn2/3 log1/3 n)k−1. Under the conditioning C1(0) = A, every
edge e with both end points lying in Ac is open at time t with probability 1/n.
Moreover, any edge e′ with one end point in A and the other in Ac is open at time
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t with probability (1 − e−t )/n: we know that at time 0 the edge e′ is closed (since
A is not connected to Ac), and thus in order for it to be open at time t we must first
resample the edge, and then open the edge at the resampling. Thus in conclusion
we see that the probability there exists a path π of length k satisfying (i), (ii) and
(iii) is at most

(
2βn2/3 log1/3 n

)(
n − βn2/3 log1/3 n

)k−1 · 1

nk−1 · 1 − e−t

n

≤ 2t
(
1 − βn−1/3 log1/3 n

)k−1
βn−1/3 log1/3 n,

where for the inequality we have used the fact that 1 − e−t ≤ t . Summing over k,
we see that the probability there exists a path π satisfying (i), (ii) and (iii) is at
most

2tβn−1/3 log1/3 n

∞∑
k=1

(
1 − βn−1/3 log1/3 n

)k−1 = 2t.

Hence we obtain

(13) P
(∣∣C1(0)

∣∣ ∈ I ; ∣∣C2(t)
∣∣ ∈ I ; ∣∣C1(0) ∩ C2(t)

∣∣ > 0;2 /∈ C1(0)
) ≤ 2t.

Putting together (11), (12) and (13), we get

P
(∣∣C1(0)

∣∣ ∈ I ; ∣∣C2(t)
∣∣ ∈ I

) ≤ P 2 + P
2βn2/3 log1/3 n

n
+ 2t.

Integrating over t ∈ [0, δ] and using (10) gives the desired result. �

4.2. Large |t − s|: Applying Fourier analysis. Fix δ > 0. Our next aim is to
estimate the integral∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)
1{|t−s|>δ} dt ds.

To do this, we will use the Fourier analysis introduced in Section 2.
Fix N ∈ N. For a vertex v ∈ {1, . . . , n}, let fv : � → {0,1} be the function given

by

fv(ω) =
{

1 if the connected component of v in ω has size at least N,

0 otherwise.

We recall some notation from Section 2. For ω ∈ � and ε ∈ [0,1], let ωε be
the random configuration obtained from ω by resampling each edge in ω with
probability ε. Lemma 2.1 told us that

(14) E
[
f1(ω)f2(ωε)

] = ∑
S

f̂1(S)f̂2(S)(1 − ε)|S|.
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In our setting of the dynamical Erdős–Rényi graph, the configuration at time t > s

can be obtained from the configuration at time s by resampling each edge with
probability ε = 1 − e−(t−s). Hence for any δ ∈ (0,1), if N = �βn2/3 log1/3 n�,∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)
1{|t−s|>δ} dt ds

≤
∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ≥ N; ∣∣C2(t)

∣∣ ≥ N
)
1{|t−s|>δ} dt ds

=
∫ 1

0

∫ 1

0
E

[
f1(ω)f2(ω1−e−|t−s|)

]
1{|t−s|>δ} dt ds

= ∑
S

f̂1(S)f̂2(S)

∫ 1

0

∫ 1

0
e−|t−s||S|1{|t−s|>δ} dt ds

≤ f̂1(∅)f̂2(∅) + ∑
|S|>0

f̂1(S)f̂2(S) · 2
∫ 1

δ
e−t |S| dt

≤ f̂1(∅)2 + 2
∑

|S|>0

e−δ|S|

|S| f̂1(S)f̂2(S).

(15)

Let Uv be the set of edges that have an end point at v. We will study the Fourier
coefficients f̂1(S)f̂2(S) by separating into cases when S ∩ (U1 ∪ U2) �= ∅ and
when S ∩ (U1 ∪ U2) = ∅. For the former case, we will apply Lemma 2.7, and for
the latter we will use Theorem 2.3. We begin by studying the former.

LEMMA 4.3. Let N = �βn2/3 log1/3 n�. Then there exists a finite constant C

such that ∑
S:S∩(U1∪U2) �=∅

f̂1(S)f̂2(S) ≤ C
(
β2 + β−1/2)

n−1−β3/8 logn.

PROOF. The two functions f1 and f2 are both increasing and, therefore,
jointly monotone (see the definition before Lemma 2.7). Therefore, by Lemma 2.7,
we have ∑

S:S∩(U1∪U2) �=∅

f̂1(S)f̂2(S)

≤ ∑
S:(1,2)∈S

f̂1(S)f̂2(S) +
n∑

v=3

∑
S:(1,v)∈S

f̂1(S)f̂2(S)

+
n∑

v=3

∑
S:(2,v)∈S

f̂1(S)f̂2(S)(16)
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≤ 1

n

(
1 − 1

n

)
P

(
(1,2) ∈ Pf1 ∩Pf2

)
+ 2(n − 2) · 1

n

(
1 − 1

n

)
max

u∈{1,2},v �=1,2
P

(
(u, v) ∈Pf1 ∩Pf2

)
≤ 1

n
P

(
(1,2) ∈ Pf1 ∩Pf2

) + 2P
(
(1,3) ∈ Pf1 ∩Pf2

)
.

We first bound P((1,2) ∈ Pf1 ∩Pf2). Since the event that (1,2) is closed is inde-
pendent of the event that (1,2) is pivotal for f1 and f2, without loss of generality
we can assume that (1,2) is closed. Then for (1,2) to be pivotal for both f1 and
f2, the connected components C1 and C2 must satisfy:

(a) C1 ∩ C2 = ∅,
(b) |C1| < N and |C2| < N ,
(c) |C1 ∪ C2| ≥ N .

That is,

P
(
(1,2) ∈ Pf1 ∩Pf2

) ≤ P
(|C1 ∪ C2| ≥ N, |C1| < N, |C2| < N,C1 ∩ C2 =∅

)
.

By Lemma 3.4, this is at most a constant times N2e−N3/(8n2)/n2.
We now move on to estimating P((1,3) ∈ Pf1 ∩Pf2). Note that

P
(
(1,3) ∈ Pf1 ∩Pf2

)
= P

(
2 ∈ C1, (1,3) ∈ Pf1 ∩Pf2

) + P
(
2 ∈ C3, (1,3) ∈ Pf1 ∩Pf2

)
.

(17)

Of course,

(18) P
(
2 ∈ C1, (1,3) ∈ Pf1 ∩Pf2

) = P
(
2 ∈ C1, (1,3) ∈ Pf1

)
.

Also

P
(
2 ∈ C3, (1,3) ∈ Pf1 ∩Pf2

) = P
(
2 ∈ C3, (1,3) ∈ Pf1 ∩Pf3

);
by symmetry, we can permute the roles of 1 and 3, so that

P
(
2 ∈ C3, (1,3) ∈ Pf1 ∩Pf2

) = P
(
2 ∈ C1, (1,3) ∈ Pf1 ∩Pf3

)
≤ P

(
2 ∈ C1, (1,3) ∈ Pf1

)
and, therefore, combining with (17) and (18),

P
(
(1,3) ∈ Pf1 ∩Pf2

) ≤ 2P
(
2 ∈ C1, (1,3) ∈ Pf1

)
.

Just as above, we may assume that (1,3) is closed; and then for (1,3) to be
pivotal for f1, the components must satisfy:

(i) C1 ∩ C3 = ∅,
(ii) |C1| < N ,

(iii) |C1 ∪ C3| ≥ N .
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Thus

P
(
(1,3) ∈ Pf1 ∩Pf2

) ≤ 2P
(|C1 ∪ C3| ≥ N, |C1| < N,C1 ∩ C3 = ∅,2 ∈ C1

)
.

Applying Lemma 3.5, we get

P
(
(1,3) ∈ Pf1 ∩Pf2

) ≤ c

(
1

n2/3N1/2 + N3

n3

)
e−N3/(8n2)

for some finite constant c.
Plugging these bounds back into (16), we have

∑
S:S∩(U1∪U2) �=∅

f̂1(S)f̂2(S) ≤ c

(
N2

n3 + 1

N1/2n2/3 + N3

n3

)
e−N3/(8n2).

Recalling that N = �βn2/3 log1/3 n� and simplifying, we get∑
S:S∩(U1∪U2) �=∅

f̂1(S)f̂2(S) ≤ c′(β2 + β−1/2)
n−1−β3/8 logn,

and the result follows. �

Now we deal with the Fourier coefficients f̂1(S)f̂2(S) where S ∩(U1 ∪U2) = ∅.
Notice that by symmetry we have that if S ∩ (U1 ∪ U2) = ∅, then f̂1(S) = f̂2(S)

and so

(19)
∑

|S|>0;S∩(U1∪U2)=∅

e−δ|S|

|S| f̂1(S)f̂2(S) ≤ ∑
|S|>0;S∩U1=∅

e−δ|S|

|S| f̂1(S)2.

To estimate the sum on the right-hand side, we use a revealment algorithm, im-
plementing Theorem 2.3. Any sensible algorithm will do; we can reveal all of the
edges emanating from vertex 1 without concern, and thereafter the lack of geome-
try in the graph simplifies the problem.

The algorithm A that we choose to use is the breadth first search and is described
as follows. At each step i ≥ 0, we have an ordered list of vertices Si , which is the
list of vertices that the algorithm already knows are in C1. We begin from S0 = {1}.
At each step i, if |Si | ≥ N then we terminate and declare that f1(ω) = 1; or if
|Si | < i then we terminate the algorithm and declare that f1(ω) = 0. Otherwise, we
take the ith element vi of Si , and reveal ω((vi,w)) for all w /∈ Si . If ω((vi,w)) =
1, then we add w to the end of the list, and once we have revealed all such edges
(in some arbitrary order), the resulting list is then Si+1.

Clearly, the algorithm must terminate by step N . Recall that

RU1 = max
e/∈U1

P
(
A reveals ω(e)

)
.
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LEMMA 4.4. Let A be the breadth first search described above, and let N =
�βn2/3 log1/3 n�. There exists a finite constant C such that

RU1 ≤ Cβ7/2n−2/3 log7/6 n.

PROOF. Let τ be the step at which the algorithm A terminates. For any edge
e = (v,w) /∈ U1, the probability that we reveal ω(e) is at most the probability that
either v or w appears in Sτ−1. For any v,w �= 1, we have P(v ∈ Sτ−1) = P(w ∈
Sτ−1), and thus

P
(
A reveals ω(e)

) ≤ 2P(v ∈ Sτ−1)

= 2

n − 1
E

[∑
u�=1

1{u∈Sτ−1}
]

= 2(E[|Sτ−1|] − 1)

n − 1

≤ 2

n
E

[|Sτ−1|].
(20)

It is easy to see from the description of the algorithm that we always have
Sτ−1 ⊂ C1 and |Sτ−1| ≤ N . Combining this observation with (20), then applying
Proposition 3.1(a) and Lemma 3.2 (both with λ = 0), we get that

P
(
A reveals ω(e)

)
≤

N∑
k=1

2k

n
P

(|C1| = k
) + 2N

n
P

(|C1| ≥ N
)

≤ c

�n2/3�∑
k=1

k

n
k−3/2 + c

N∑
k=�n2/3�+1

k

n

k3/2

n2 + c
N

n

n−β3/8

n1/3 log1/6 n

≤ c′n−2/3 + c′ N7/2

n3 + c′n−β3/8−2/3 log1/6 n

for some finite constants c, c′. For large n, this is at most a constant times
β7/2n−2/3 log7/6 n. �

Now we apply Theorem 2.3 and Lemma 4.4 to estimate the Fourier coefficients
f̂1(S)f̂2(S) when S ∩ (U1 ∪ U2) = ∅.

LEMMA 4.5. Let N = �βn2/3 log1/3 n�. There exists a finite constant C such
that for any δ > 0,∑

|S|>0;
S∩(U1∪U2)=∅

e−δ|S|

|S| f̂1(S)f̂2(S) ≤ Cδ−1
E[f1]β7/2n−2/3 log7/6 n.
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PROOF. First, recall that by (19) we have

(21)

∑
|S|>0;

S∩(U1∪U2)=∅

e−δ|S|

|S| f̂1(S)f̂2(S) ≤ ∑
|S|>0;

S∩U1=∅

e−δ|S|

|S| f̂1(S)2

=
(n

2)∑
k=1

1

k
e−δk

∑
|S|=k;

S∩U1=∅

f̂1(S)2.

By Theorem 2.3, this is at most

(n
2)∑

k=1

e−δkRU1E
[
f 2

1
]
.

Since f1 takes values in {0,1}, E[f 2
1 ] = E[f1], and by Lemma 4.4, RU1 ≤

Cβ7/2n−2/3 log7/6 n. Finally, note that
∞∑

k=1

e−δk = e−δ

1 − e−δ
≤ δ−1.

Combining these three observations gives the desired result. �

4.3. Completing the proof of Theorem 1.1 for small β . We begin by re-
calling our argument from the start of Section 4. We began by defining Zv =∫ 1

0 1{|Cv(t)|∈I } dt where I = [βn2/3 log1/3 n,2βn2/3 log1/3 n] ∩ N. From (7), we
know that

P

(
sup

t∈[0,1]
∣∣Ln(t)

∣∣ > βn2/3 log1/3 n
)

≥ n2
E[Z1]2

nE[Z2
1] + n(n − 1)E[Z1Z2]

.

Lemma 4.1 told us that if β3 < 16/3 then
E[Z2

1 ]
nE[Z1]2 → 0 as n → ∞, in which case

we get that

(22) lim inf
n→∞ P

(
sup

t∈[0,1]
∣∣Ln(t)

∣∣ > n2/3 logβ n
)

≥ lim inf
n→∞

E[Z1]2

E[Z1Z2] .
We saw in (9) that

E[Z1Z2] =
∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)

dt ds.

Let P = P(|C1| ≥ βn2/3 log1/3 n). Lemma 4.2 gives∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)
1{|t−s|≤δ} dt ds

≤ 2δP 2 + 4β log1/3 n

n1/3 δP + 2δ2P.
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By Proposition 3.1(a) with λ = 0, we have P ≤ n−1/3−β3/8 for large n, so (for
large n)∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)
1{|t−s|≤δ} dt ds

≤ 2δn−2/3−β3/4 + 4βδ
(
log1/3 n

)
n−2/3−β3/8 + 2δ2n−1/3−β3/8

≤ 5βδ
(
log1/3 n

)
n−2/3−β3/8 + 2δ2n−1/3−β3/8.

(23)

To estimate the integral when |t − s| > δ, we begin with (15), which says that∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)
1{|t−s|>δ} dt ds

≤ E[Z1]2 + 2
∑

|S|>0

e−δ|S|

|S| f̂1(S)f̂2(S).

We now apply Lemmas 4.3 and 4.5, which tell us respectively that for large n,∑
S:S∩(U1∪U2) �=∅

f̂1(S)f̂2(S) ≤ C
(
β2 + β−1/2)

n−1−β3/8 logn

and ∑
S:|S|>0;

S∩(U1∪U2)=∅

e−δ|S|

|S| f̂1(S)f̂2(S) ≤ Cδ−1
E[f1]β7/2n−2/3 log7/6 n

for some finite constant C. Combining these three equations and noting that [by
Proposition 3.1(a) with λ = 0] E[f1] ≤ n−1/3−β3/8, we get∫ 1

0

∫ 1

0
P

(∣∣C1(s)
∣∣ ∈ I ; ∣∣C2(t)

∣∣ ∈ I
)
1{|t−s|>δ} dt ds

≤ E[Z1]2 + 2C
(
β2 + β−1/2)

n−1−β3/8 logn

+ 2Cδ−1β7/2n−1−β3/8 log7/6 n.

(24)

Combining (23) with (24) and plugging back into (9), we get

E[Z1Z2] ≤ E[Z1]2 + 5βδ
(
log1/3 n

)
n−2/3−β3/8 + 2δ2n−1/3−β3/8

+ 2C
(
β2 + β−1/2)

n−1−β3/8 logn

+ 2Cδ−1β7/2n−1−β3/8 log7/6 n.

Choosing δ = n−2/9, the biggest term above when n is large is the last one. Thus
in this case there exists a finite constant C′ depending on β such that

E[Z1Z2] ≤ E[Z1]2 + C′n−7/9−β3/8 log7/6 n.
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By Proposition 3.1(a) (with λ = 0), we know that E[Z1] ≥ cn−β3/8−1/3 log−1/6 n

for some constant c > 0, so we get

E[Z1Z2]
E[Z1]2 ≤ 1 + c′n−1/9+β3/8 log3/2 n

for some finite constant c′ (depending on β). For β < 2/32/3, the above quantity
tends to 1 as n → ∞, giving

lim inf
n→∞

E[Z1]2

E[Z1Z2] ≥ 1.

Therefore by (22), for any β < 2/32/3,

lim inf
n→∞ P

(
sup

t∈[0,1]
∣∣Ln(t)

∣∣ > βn2/3 log1/3 n
)

= 1.

We have shown that exceptional times exist with high probability for any β <

2/32/3, and to complete the proof of Theorem 1.1 it remains to show that with
high probability there are no such times for any β > 2/31/3.

5. No exceptional times when β > 2/31/3. Fix β > 0. For i ∈ {0, . . . ,

�n1/3�}, consider the event

Ei := {∃t ∈ [in−1/3, (i + 1)n1/3) : ∣∣Ln(t)
∣∣ > βn2/3 log1/3 n

}
.

The probability that an edge e is turned on at any time in [in−1/3, (i + 1)n1/3) is
at most 1/n + (1 − e−n−1/3

)/n ≤ (1 + n−1/3)/n. Therefore, for each i,

P(Ei ) ≤ Pn,n−1+n−4/3
(|Ln| > βn2/3 log1/3 n

)
,

where we recall that Pn,p is the law of an ER(n,p). Applying Proposition 3.1(b)
with λ = 1, we get that for large n,

P(Ei ) ≤ β−3/2n−β3/8e
1
2 β2 log2/3 n log−1/2 n,

so by a union bound,

P
(∃t ∈ [0,1] : ∣∣Ln(t)

∣∣ > βn2/3 log1/3 n
) ≤ β−3/2n1/3−β3/8e

1
2 β2 log2/3 n log− 1

2 n.

This tends to zero as n → ∞ if β > 2/31/3, which shows that with high proba-
bility there are no exceptional times in this regime. This completes the proof of
Theorem 1.1.
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6. Proving noise sensitivity. In this section, we prove Proposition 2.2.
Throughout, let {εn}n∈N be a sequence such that limn→∞ n1/6εn = ∞, fix a ∈
(0,∞) and let Fn = 1{|Ln|≥an2/3}. We will show that Fn is quantitatively noise sen-
sitive with scaling εn. Our path will be similar to (but in some ways simpler than)
the proof that exceptional times exist for small β . There is one complication: when
An → ∞, the probability that there is a component of size larger than Ann

2/3 is
approximately the expected number of vertices in such components divided by
Ann

2/3; but this is not true for An = a fixed. To get around this small problem, we
will use the following lemma which is a consequence of the FKG inequality. We
use the notation of Section 2. We recall that a function f : � → R is increasing if
turning bits on can only increase the value of f .

LEMMA 6.1. Suppose that f,g : � → R are functions such that E[f 2] < ∞,
E[g2] < ∞, and both f and g − f are increasing. Then for any ε ∈ [0,1],

E
[
g(ω)g(ωε)

] −E
[
g(ω)

]2 ≥ E
[
f (ω)f (ωε)

] −E
[
f (ω)

]2
.

PROOF. Let h = g − f . By applying Lemma 2.1 to h,

E
[
h(ω)h(ωε)

] ≥ E
[
h(ω)

]2
.

Expanding in terms of f and g, and rearranging, we get

E
[
g(ω)g(ωε)

] −E
[
g(ω)

]2 −E
[
f (ω)f (ωε)

] +E
[
f (ω)

]2

≥ E
[
f (ω)g(ωε)

] +E
[
f (ωε)g(ω)

]
− 2E

[
f (ω)

]
E

[
g(ω)

] − 2E
[
f (ω)f (ωε)

] + 2E
[
f (ω)

]2

= 2
(
E

[
f (ω)

(
g(ωε) − f (ωε)

)] −E
[
f (ω)

]
E

[
g(ω) − f (ω)

])
= 2

(
E

[
f (ω)h(ωε)

] −E
[
f (ω)

]
E

[
h(ωε)

])
.

Now applying the FKG inequality to the two increasing random variables
(ω,ωε) �→ f (ω) and (ω,ωε) �→ h(ωε) shows that the last line is nonnegative,
and the result follows. �

We now follow the same strategy as in Section 4.2. We also use much of
the same notation, just with a different value of N . Recall that for a vertex
v ∈ {1, . . . , n},

fv = 1{|Cv |≥N}
and Uv is the set of edges with an endpoint at v. (Of course, these objects also
depend on n, but we omit this from the notation.) Lemma 6.1 will allow us to
relate the noise sensitivity of Fn to quantities involving the Fourier coefficients of
f1 and f2, so we turn our attention to bounding those.

Our first lemma is the equivalent of Lemma 4.3, using pivotality estimates to
bound the Fourier coefficients of f1 and f2 on sets that intersect U1 ∪ U2.
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LEMMA 6.2. Let N = �an2/3�. Then there exists a finite constant C such that

∑
S:S∩(U1∪U2) �=∅

f̂1(S)f̂2(S) ≤ C

n
.

PROOF. Just as in the proof of Lemma 4.3, we have

(25)

∑
S:S∩(U1∪U2) �=∅

f̂1(S)f̂2(S)

≤ 1

n
P

(
(1,2) ∈ Pf1 ∩Pf2

) + 2P
(
(1,3) ∈ Pf1 ∩Pf2

)
.

The first term on the right-hand side is at most 1/n, so we can concentrate on the
second term. Again following the argument to prove Lemma 4.3,

P
(
(1,3) ∈ Pf1 ∩Pf2

) ≤ 2P
(|C1 ∪ C3| ≥ N, |C1| < N,C1 ∩ C3 = ∅,2 ∈ C1

)
.

Applying Lemma 3.5, we get

P
(
(1,3) ∈ Pf1 ∩Pf2

) ≤ c

n

for some finite constant c. Plugging this back into (25), we have

∑
S:S∩(U1∪U2) �=∅

f̂1(S)f̂2(S) ≤ C

n

for some finite constant C. �

Next, we bound the revealment of the breadth first search algorithm seen in
Section 4.2, similar to Lemma 4.4.

LEMMA 6.3. Let A be the breadth first search described above Lemma 4.4,
and let N = �an2/3�. Then there exists a finite constant C such that

RU1 ≤ Cn−2/3.

PROOF. Just as in the proof of Lemma 4.4, for any edge e = (v,w) with
v,w �= 1 we have

(26) P
(
A reveals ω(e)

) ≤ 2

n
E

[|Sτ−1|]
and also Sτ−1 ⊂ C1 and |Sτ−1| ≤ N . Combining these facts, then applying Propo-
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sition 3.1 and Lemma 3.2, we get that

P
(
A reveals ω(e)

) ≤
N∑

k=1

2k

n
P

(|C1| = k
) + 2N

n
P

(|C1| ≥ N
)

≤
N∨n2/3∑

k=1

2k

n

c

k3/2 + 2N

n

c

n1/3

≤ c′n−2/3

for some finite constants c, c′, as required. �

Lemma 6.3 allows us to give a bound on the Fourier coefficients of f1 and f2
on sets that do not intersect U1 or U2.

LEMMA 6.4. Let N = �an2/3�. There exists a finite constant C such that for
any ε ∈ (0,1), ∑

|S|>0;
S∩(U1∪U2)=∅

(1 − ε)|S|f̂1(S)f̂2(S) ≤ Cε−2
E[f1]n−2/3.

PROOF. Following the proof of Lemma 4.5, we have

∑
|S|>0;

S∩(U1∪U2)=∅

(1 − ε)|S|f̂1(S)f̂2(S) ≤
(n

2)∑
k=1

k(1 − ε)kRU1E
[
f 2

1
]
.

Since f1 takes values in {0,1}, E[f 2
1 ] = E[f1], and by Lemma 6.3, RU1 ≤ Cn−2/3.

Finally, note that

∞∑
k=1

k(1 − ε)k = 1 − ε

ε2 ≤ ε−2.

Combining these three observations gives the desired result. �

We now have the tools to prove our noise sensitivity result.

PROOF OF PROPOSITION 2.2. Recall that Fn = 1{|Ln|≥an2/3} and suppose that
limn→∞ n1/6εn = ∞. Define

Gn = 1

an2/3

n∑
v=1

1{|Cv |≥an2/3}.
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Then Fn ≤ Gn and both Fn and Gn − Fn are increasing, so by Lemma 6.1 it
suffices to show that

E
[
Gn(ω)Gn(ωεn)

] −E
[
Gn(ω)

]2 → 0.

We know from Lemma 2.1 that this quantity is nonnegative, so it suffices to give
an upper bound. But if we set N = �an2/3� then

Gn = 1

an2/3

∑
v

fv,

so

E
[
Gn(ω)Gn(ωεn)

] −E
[
Gn(ω)

]2

= 1

a2n4/3

∑
u,v

(
E

[
fu(ω)fv(ωεn)

] −E
[
fu(ω)

]
E

[
fv(ω)

])
= n

a2n4/3

(
E

[
f1(ω)f1(ωεn)

] −E
[
f1(ω)

]2)
+ n(n − 1)

a2n4/3

(
E

[
f1(ω)f2(ωεn)

] −E
[
f1(ω)

]
E

[
f2(ω)

])
≤ 1

a2n1/3 + n2/3

a2

∑
S �=∅

f̂1(S)f̂2(S)(1 − εn)
|S|,

(27)

where we used Lemma 2.1 to get the last line.
By Lemma 6.2, we have ∑

S:S∩(U1∪U2) �=∅

f̂1(S)f̂2(S) ≤ C

n
,

and by Lemma 6.4 we have∑
|S|>0;

S∩(U1∪U2)=∅

(1 − εn)
|S|f̂1(S)f̂2(S) ≤ Cε−2

n E[f1]n−2/3,

for some finite constant C. By Proposition 3.1 and Lemma 3.2,

E[f1] ≤ cn−1/3

for some finite constant c, and so putting the above estimates together we get∑
S �=∅

(1 − εn)
|S|f̂1(S)f̂2(S) ≤ C

n
+ C · c

ε2
nn

.

Substituting this back into (27) gives

E
[
Gn(ω)Gn(ωεn)

] −E
[
Gn(ω)

]2 ≤ 1

a2n1/3 + n2/3

a2

(
C

n
+ C · c

ε2
nn

)
which tends to 0 since n1/3ε2

n → ∞. �



EXCEPTIONAL TIMES 2307

Acknowledgments. M. I. Roberts and B. Şengül thank an anonymous referee
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