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CRITICAL PARAMETER OF RANDOM LOOP MODEL ON TREES
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University of Warwick‡

We give estimates of the critical parameter for random loop models that
are related to quantum spin systems. A special case of the model that we
consider is the interchange- or random-stirring process. We consider here the
model defined on regular trees of large degrees, which are expected to ap-
proximate high spatial dimensions. We find a critical parameter that indeed
shares similarity with existing numerical results for the cubic lattice. In the
case of the interchange process, our results improve on earlier work by Angel
and by Hammond, in that we determine the second-order term of the critical
parameter.

1. Introduction. We consider random loop models that are motivated by
quantum spin systems. A special case is the random interchange model that was
first introduced by Harris [12]. Tóth showed that a variant of this model, where per-
mutations receive the weight 2# cycles, is closely related to the quantum Heisenberg
ferromagnet [17]. Another loop model was introduced by Aizenman and Nachter-
gaele to describe the quantum Heisenberg antiferromagnet [1]. These loop models
were combined in order to describe a family of quantum systems that interpo-
late between the two Heisenberg models, and which contains the quantum XY
model [18].

Let G = (V ,E) be an arbitrary finite graph with vertex set V and edge set
E, and β > 0, u ∈ [0,1] be two parameters. To each edge e ∈ E is assigned a
time interval [0, β], and an independent Poisson point process with two kinds of
outcomes: “crosses” occur with intensity u and “double bars” occur with intensity
1 − u. We let �(G) denote the set of realizations of the combined Poisson point
process on E × [0, β].

Given a realization ω ∈ �(G), we consider the loop passing through a point
(x, t) ∈ V × [0, β] that is defined in a natural way, as follows (see Figure 1). The
loop is a closed trajectory with support on V ×[0, β]per where [0, β]per is the inter-
val [0, β] with periodic boundary conditions, that is, the torus of length β . Starting
at (x, t), move “up” until meeting the first cross or double bar with endpoint x;
then jump onto the other endpoint, and continue in the same direction if a cross, in
the opposite direction if a double bar; repeat until the trajectory returns to (x, t).
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FIG. 1. Graphs and realizations of Poisson point processes, and the loop that contains (x, t).

In order to represent a quantum model, one should add the weight θ# loops with
θ = 2,3,4, . . . ; quantum correlations are then given in terms of loop correlations,
and magnetic long-range order is equivalent to the presence of macroscopic loops.
Notice that the parameter β plays the role of the inverse temperature of the quan-
tum spin system, hence the notation.

The random interchange model (i.e., the case u = 1 and θ = 1) has been the
object of several studies when the graph is a tree [3, 10, 11], the complete graph
[5, 6, 15], the hypercube [13], and the Hamming graph [14]; a result for general
graphs was also proved in [2]. In the case of arbitrary θ ∈ {2,3, . . .}, and on the
complete graph, the critical parameter has also been determined [7, 8]. Another
generalization of the random interchange model is Mallows permutations, studied
in [9, 16].

The occurrence of macroscopic loops can be proved using the method of reflec-
tion positivity and infrared bounds in the case where u ∈ [0, 1

2 ], θ = 2,3, . . . , and a
cubic lattice of sufficiently high dimensions (depending on θ ); see [18] for precise
statements.

In the case where the graph is a three-dimensional cubic lattice with edges be-
tween nearest-neighbors, and with θ = 1, the critical parameter βc(u) has been
calculated numerically in [4]. The result is depicted in Figure 2 and shows a con-
vex curve where βc(0) is slightly smaller than βc(1) and which has a minimum at
or around u = 1

2 . This behavior is expected to hold for all dimensions d ≥ 3.
Trees are expected to approximate high dimensions. We consider here infinite

regular trees with offspring degree d . Loops are almost surely well defined in the
same way as previously (since vertices have uniformly bounded degrees) but now
some loops may be unbounded. We prove that a transition takes place at the critical
parameter βc = βc(u, d) given by

(1.1) βc(u, d) = 1

d
+ 1 − u(1 − u) − 1

6(1 − u)2

d2 + o
(
d−2)

.

The second graph of Figure 2 shows βc as function of u (with d = 5). The lead-
ing order of the critical parameter, 1

d
, is also the leading order for the percolation

threshold in the associated percolation model where an edge is open if at least one
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FIG. 2. The critical parameter βc as function of u: Left, on the three-dimensional cubic lattice
(numerical results from [4]); right, equation (1.1) with d = 5.

cross or double bar is present in the corresponding interval [0, β]. The next order
for βc is a nontrivial function of u and it is smallest for u = 2

5 . This function can
be understood by looking at edges with two links and at loop connections with two
crosses, two double bars or one each. As is explained below (see Figure 4), loop
connections are better in the latter case, with a cross and a double bar.2

Let E∞ denote the event where the root of the tree (at time 0) belongs to an
infinite loop.

THEOREM 1.1. Let A > 0 be arbitrary and β = 1
d

+ α
d2 with α ≤ A. There

exists d0 (that may depend on A but not on α) such that for all d ≥ d0, there exists
αc(u, d) such that

Pβ,d,u(E∞)

{= 0 if α < αc(u, d),

> 0 if α > αc(u, d).

Further, we have αc(u, d) = 1−u(1−u)− 1
6(1−u)2 +o(1) as d → ∞, uniformly

in u.

This theorem follows from Propositions 2.1 and 3.1. Proposition 2.1 establishes
the existence of d0(α) such that loops occur for α > αc but not for α < αc, if
d > d0(α). The case u = 1, that is, the interchange model on trees, was treated up
to first order in d−1 by Hammond [10], following the work of Angel [3]. Propo-
sition 3.1 implies that d0(α) is uniform on bounded intervals. The corresponding
result for the interchange model (u = 1) was proved by Hammond [11]. It turns
out that his method can be adapted to u �= 1 with minor modifications, as explained
in Section 3.

2Alan Hammond pointed out this important observation to us.
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The reason we require α to be bounded by A is that our arguments only apply
for β close to d−1; hence d0 depends on A. Presumably, there is some A0 > 0
such that P(E∞) > 0 whenever α > A0. For the interchange model, this was also
proved by Hammond [10], but his arguments use in a crucial way a comparison
with random walk, which fails for u < 1 due to the “time-reversal” which occurs
when a double bar is traversed. [For α < 0, we have P(E∞) = 0 for all d by
standard comparison with percolation.]

Of the two previous methods for proving the occurrence of infinite loops in the
interchange model, due to Angel [3] and Hammond [10], respectively, our argu-
ment is thus closer to that of Angel, which also requires β to be close to d−1.
However, where Angel uses a comparison with a branching process, we instead
directly prove recursion inequalities for the probability of long loops. These in-
equalities include error terms which are of higher order in d−1 and may be made
negligible by taking d large.

The case θ �= 1 could probably be treated in a similar way, although a full study
is needed in order to rule out extra obstacles. A major open problem is to establish
that, in the case where the graph is a box in Z

d ′
with nearest-neighbor edges, the

critical parameter satisfies equation (1.1) with d = 2d ′ − 1.

2. The critical parameter. As mentioned above, we consider an infinite
rooted regular tree with offspring degree d . To each edge is associated the inter-
val [0,1], and an independent Poisson point process where “crosses” occur with
intensity uβ ∈ [0, β], and “double bars” occur with intensity (1 − u)β . (This is a
variation of the model discussed above, with β affecting the intensities rather than
the time interval, which is obviously equivalent.)

Let us define ᾱ(u) = 1 −u(1 −u)− 1
6(1 −u)2. In what follows, we always take

0 ≤ α ≤ A for some arbitrary but fixed A > 0, and error terms may depend on A.

PROPOSITION 2.1. Let β = 1
d

+ α
d2 and δ > 0. There exists d0(δ) such that

the following hold for all d > d0:

(a) For every α ≤ ᾱ − δ, we have

Pβ,d,u

(
(ρ,0) ↔ ∞) = 0.

(b) For every α ≥ ᾱ + δ, we have

Pβ,d,u

(
(ρ,0) ↔ ∞)

> 0.

Note that we prove exponential decay for (a), that is, the loop containing (ρ,0)

has diameter m with probability less than Ce−ηm. These claims can be compared
to the numerical results for three-dimensional lattices. Also, the special case u = 1
of our result gives a solution to Problem 10 of [3] (for large enough d).
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2.1. Preliminaries. We let T denote an infinite tree where each vertex has
d ≥ 2 offspring, and write ρ for its root. For m ≥ 0, let T (m) denote the subtree of
T consisting of the first m generations.

We write σm for the probability that (ρ,0) belongs to a loop which reaches
generation m in T (m), and ζm = 1 − σm. Note that σm ≤ σm−1 and that σm →
P((ρ,0) ↔ ∞) as m → ∞. We write Bm

(ρ,0) for the event that (ρ,0) does not

belong to a loop which reaches generation m in T (m), so that P(Bm
(ρ,0)) = ζm. Thus

Bm
(ρ,0) is the event that the loop of (ρ,0) is “blocked” from generation m, and σm

is the probability that it “survives” for m generations.
Crosses and double-bars will be referred to collectively as links. If (xy, t) ∈ ω

is a link, then in general we have that the points (x, t+) and (x, t−) may belong
to different loops [the same is true for (y, t+) and (y, t−)]. We say that a link is
a monolink if (x, t+) and (x, t−) belong to the same loop. The following simple
observation will be useful.

PROPOSITION 2.2. Suppose that y is a child of x in T (m). If there is only one
link between x and y, then it is a monolink.

PROOF. Denote the link (xy, t). In the configuration obtained by removing
this link, the points (x, t) and (y, t) belong to two different loops, since we are on
a tree. When the link is added back in, the loops are merged to a single loop, since
the tree is finite. This proves the claim. �

Write A1 for the event that, for each child x of ρ, there is at most one link
between ρ and x. Write A2 for the event that: (i) there is a unique child x of ρ

with exactly 2 links between ρ and x, (ii) for all siblings x′ of x there is at most
one link between ρ and x′, and (iii) for all children y of x there is at most one link
between x and y. See Figure 3.

FIG. 3. Summing over two events A1 and A2.
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Clearly, we have that

(2.1)
ζm = P

(
Bm

(ρ,0)

)
= P

(
Bm

(ρ,0) ∩ A1
) + P

(
Bm

(ρ,0) ∩ A2
) + P

(
Bm

(ρ,0) \ (A1 ∪ A2)
)
.

In the rest of this section, we work with β of the form

(2.2) β = 1

d
+ α

d2

for α ∈ R.

2.2. Occurrence of long loops. We now prove part (b) of Proposition 2.1. For
given m ≥ 1 and ε > 0, we define

(2.3) σ̃m = σm ∧ σm−1 ∧
(

ε

d

)
= σm ∧

(
ε

d

)
.

Recall that we assume α ≤ A. In this section, we show the following.

PROPOSITION 2.3. For all m ≥ 1, we have

σm ≥ σ̃m−1 + σ̃m−1

d

(
α − ᾱ(u)

) − 1

2
σ̃ 2

m−1 + O
(
d−3)

,

where the O(d−3) is uniform in m (but depends on A).

Given the proposition, we can establish the occurrence of infinite loops.

PROOF OF PROPOSITION 2.1, PART (B). We claim that if ε < 2(α − ᾱ(u))

is small enough then, for d large enough, we have σm ≥ σ̃m ≥ ε
d

for all m. Since
σ0 = 1 and σ1 ≥ 1 − (e−β)d , the claim holds for m = 1, and Proposition 2.3 gives
the claim by induction. Hence σm ≥ ε

d
for all m, which gives the result. �

PROOF OF PROPOSITION 2.3. The starting point is the inequality

(2.4) ζm ≤ P
(
Bm

(ρ,0) ∩ A1
) + P

(
Bm

(ρ,0) ∩ A2
) + 1 − P(A1) − P(A2),

which follows directly from (2.1). First, note that

(2.5) P(A1) = (
e−β(1 + β)

)d
, P(A2) = 1

2
dβ2e−β(

e−β(1 + β)
)2d−1

.

Next, note that

P
(
Bm

(ρ,0) ∩ A1
) =

d∑
k=0

(
d

k

)(
βe−β)k(

e−β)d−k
(ζm−1)

k

= (
e−β(1 + βζm−1)

)d
.

(2.6)
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FIG. 4. When there are two crosses at times t1 and t2, connection is only with the interval [t1, t2] of
length X = t2 − t1; when there are two double bars, connection is only with the interval [0, t1]∪[t2,1]
of length 1 − X; when there is one cross and one double bar, connection is with the whole interval
[0,1]. The latter case is more favourable for connections.

This relies on Proposition 2.2. Indeed, if there are k children x1, . . . , xk of ρ that
are linked to ρ, with one link each, at times t1, . . . , tk say, then (ρ,0) lies in the
same loop as all of (x1, t1), . . . , (xk, tk). The probability of not being connected to
generation 0 is the same if one has one incoming link from a parent as if one has
none, and is thus ζm−1 for each of (x1, t1), . . . , (xk, tk).

In obtaining a similar expression for the case A2, it is useful to refer to Figure 4.
Let ρ and x denote the restrictions of the subset highlighted in blue to {ρ} ×
[0,1] and {x} × [0,1], respectively. Thus ρ and x have respective lengths X

and 1 − X in the case of two crosses; X and X in the case of two double-bars; and
1 in the case of a mixture. It may look obvious that X is uniformly distributed in
[0,1]; this is however incorrect, since it can be written as

X = min{U1,U2} + 1 − max{U1,U2},
where U1, U2 are independent uniform random variables on [0,1]; in particular,
E[X] = 2

3 .
As before, any link from ρ to a sibling x′ of x, or from x to a child y, is a mono-

link. Links that fall in ρ ∪x have a chance of connecting (ρ,0) to generation m,
the others do not. There are d choices of x and the probability of exactly two links
from ρ to x is 1

2β2e−β . Conditioning on this as well as the lengths |ρ | and |x |,
and considering the probabilities for the remaining monolinks to connect (ρ,0) to
generation m, one obtains

(2.7)
P

(
Bm

(ρ,0) ∩ A2
) = 1

2
dβ2e−β

E
[(

e−β(
1 + βζm−1|ρ | + β

(
1 − |ρ |)))d−1

× (
e−β(

1 + βζm−2|x | + β
(
1 − |x |)))d]

,
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where the expectation is over the lengths |ρ | and |x |. As noted above, we have

(2.8)

|ρ | = 1 − |x | = X, with probability u2,

|ρ | = |x | = X, with probability (1 − u)2,

|ρ | = |x | = 1, with probability 2u(1 − u).

We now use the inequalities

(2.9) ζm−1 ≤ 1 − σ̃m−1, ζm−2 ≤ 1 − σ̃m−1

to obtain from (2.6) that

(2.10) P
(
Bm

(ρ,0) ∩ A1
) ≤ (

e−β(1 + β − σ̃m−1β)
)d

and from (2.7) that

(2.11)
P

(
Bm

(ρ,0) ∩ A2
) ≤ 1

2
dβ2e−β

E
[(

e−β(
1 + β − σ̃m−1β|ρ |))d−1

× (
e−β(

1 + β − σ̃m−1β|x |))d]
.

In light of (2.10), (2.11) and (2.5), we will proceed by providing estimates for
terms of the form

(2.12)
(
e−β(1 + β − σxβ)

)d
,

for σ = O(d−1) and constant x ∈ [0,1]. Since β = 1
d

+ α
d2 , the following are easy

to verify:

e−β = 1 − 1

d
+ 1

d2

(
1

2
− α

)
+ 1

d3

(
α − 1

6

)
+ O

(
d−4)

,

1 + β − σxβ = 1 + 1

d
+ 1

d2 (α − xσd) − 1

d3 (αxσd).

(2.13)

Here and in what follows, the O(·) may depend on A (our absolute bound on α)
but is uniform in the other parameters. Hence

(2.14)

e−β(1 + β − σxβ) = 1 + 1

d2

(
−1

2
− xσd

)

+ 1

d3

(
1

3
− α + xσd − αxσd

)
+ O

(
d−4)

.

Combining this with

(2.15)
(

1 + a

n2 + b

n3 + O
(
n−4))n

= 1 + a

n
+ 1

n2

(
b + a2

2

)
+ O

(
n−3)
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we see that
(
e−β(1 + β − σxβ)

)d = 1 − 1

d

(
1

2
+ xσd

)

+ 1

d2

(
1

3
− α + xσd − αxσd + 1

2

(
1

2
+ xσd

)2)
(2.16)

+ O
(
d−3)

.

Applying this to (2.10) and (2.5), we obtain

(2.17) P(A1) − P
(
Bm

(ρ,0) ∩ A1
) ≥ σ̃m−1 − σ̃m−1

d

(
3

2
− α

)
− 1

2
σ̃ 2

m−1 + O
(
d−3)

.

Now consider the case of P(A2) and (2.11). Since

(2.18)
1

2
dβ2e−β = 1

2d
+ O

(
d−2)

it suffices in this case to use (2.16) to order 1
d

. We may also replace the d − 1 in
the exponent by d . We obtain that

P(A2) − P
(
Bm

(ρ,0) ∩ A2
)

≥
(

1

2d
+ O

(
d−2))

E

[(
1 − 1

d

)

−
(

1 − 1

d

(
1

2
+ |ρ |σ̃m−1d

))(
1 − 1

d

(
1

2
+ |x |σ̃m−1d

))]

+ O
(
d−3)

= σ̃m−1

2d
E

[|ρ | + |x |] + O
(
d−3)

= σ̃m−1

2d

(
u2 + 4

3
(1 − u)2 + 4u(1 − u)

)
+ O

(
d−3)

= σ̃m−1

d

(
1

2
+ u(1 − u) + 1

6
(1 − u)2

)
+ O

(
d−3)

.

(2.19)

Here, we used (2.8) and E(X) = 2
3 . Adding this to (2.17) and substituting in (2.4),

we obtain the claim. �

2.3. Absence of long loops. Interestingly, the absence of large loops for α <

ᾱ(u) seems harder to establish than their occurrence for α > ᾱ(u). Intuitively,
this is because for part of the range of α that we consider (namely, for α > 1

2 )
the percolation-tree (obtained by keeping only edges carrying at least one link) is
infinite with positive probability, yet we still need to show that the loops are always
blocked.
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We will use the notation p0,p1,p2, . . . and p≥2,p≥3, . . . for the probabilities
for a Poisson(β) random variable. We also use the shorthand

(2.20) q = p≥3 =
∞∑

j=3

e−β βj

j ! = 1

6d3 + O
(
d−4)

,

and define for m ≥ 3

(2.21) σ̌m−1 =
m∑

�=3

(dq)�−3σm−�.

Here and in what follows, the O(·) may depend on A (our absolute bound on α)
but is uniform in the other parameters. In this section, we prove the following.

PROPOSITION 2.4. For all m ≥ 3, we have

σm ≤ σ̌m−1

(
1 + α − ᾱ(u)

d
+ O

(
d−2))

,

where the O(d−2) is uniform in m (but depends on A).

The proposition implies the remaining part of Proposition 2.1.

PROOF OF PROPOSITION 2.1, PART (A). Suppose α − ᾱ(u) ≤ −2ε < 0. For
d large enough, we have dq ≤ 1/d2 and, by Proposition 2.4, that

(2.22) σm ≤
(

1 − ε

d

)
σ̌m−1 ≤

(
1 − ε

d

) m∑
�=3

σm−�

(
1

d2

)�−3
,

for all m ≥ 3. We show, by induction over m, that if d is large enough, then there
are constants C = C(d) > 0 and σ = σ(d) ∈ (0,1) such that

(2.23) σk ≤ Cσk for all k ≥ 0.

This clearly implies the result. We choose σ = 1 − ε
6d

, and by choosing C appro-
priately we can assume that (2.23) holds for k = 0,1,2. Suppose that it holds for
k ≤ m − 1 for some m ≥ 3. Then by (2.22)

(2.24)

σm ≤ Cσm

(
1 − ε

d

)(
1

σ

)3 m∑
l=3

(
1

σd2

)�−3

≤ Cσm

(
1 − ε

d

)(
1

σ

)3 1

1 − 1/σd2 .
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But here the factor

(2.25)

(
1 − ε

d

)(
1

σ

)3 1

1 − 1/σd2

=
(

1 − ε

d

)(
1 + 3

ε

6d
+ O

(
d−2))(

1 + O
(
d−2))

= 1 − ε

2d
+ O

(
d−2) ≤ 1,

provided d is large enough. Hence (2.23) follows for k = m, as required. �

LEMMA 2.5. Assume that

P
(
Bm

(ρ,0) ∩ (A1 ∪ A2)
c) ≥ P

(
(A1 ∪ A2)

c)[1 − cσ̌m−1]
for some constant c > 0. Then the bound of Proposition 2.4 holds true.

PROOF. We note that, by (2.5), (2.6) and (2.7), we have that

P
(
Bm

(ρ,0) ∩ A1
) ≥ P(A1)

(
1 − σm−1

(
1 + α − 1

d
+ O

(
d−2)))

,

P
(
Bm

(ρ,0) ∩ A2
)

≥ P(A2)

(
1 − σm−2

(
1 + 2u(1 − u) + 1

3
(1 − u)2 + O

(
d−1)))

.

(2.26)

This uses the inequalities σm−1 ≤ σm−2 and (1 − x)n ≥ 1 − nx for x ∈ [0,1] and
n ≥ 1, as well as the asymptotics

(2.27)
β

1 + β
= 1

d
+ α − 1

d2 + O
(
d−3)

.

We have σ̌m−1 ≥ σm−2 ≥ σm−1 and P(A1) = 1 − 1
2d

+ O(d−2) and P(A2) = 1
2d

+
O(d−2). Together with the assumption of the lemma, we have, using (2.1),

σm ≤ 1 − P(A1)

[
1 − σm−1

(
1 + α − 1

d
+ O

(
d−2))]

− P(A2)

[
1 − σm−2

(
1 + 2u(1 − u) + 1

3
(1 − u)2 + O

(
d−1))]

− P
(
(A1 ∪ A2)

c)[1 − cσ̌m−1]

= σm−1P(A1)

[
1 + α − 1

d
+ O

(
d−2)]

+ σm−2P(A2)

[
1 + 2u(1 − u) + 1

3
(1 − u)2 + O

(
d−1)]

+ cσ̌m−1P
(
(A1 ∪ A2)

c)(2.28)
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≤ σ̌m−1

[
1 + α − 1

d
− 1

2d
+ O

(
d−2) + 1

2d

+ u(1 − u) + 1
6(1 − u)2

d
+ O

(
d−2)]

.

This is indeed the upper bound of Proposition 2.4. �

The rest of this section will be devoted to the proof of the assumption of
Lemma 2.5.

We write (A1 ∪ A2)
c as a union

(2.29) (A1 ∪ A2)
c =

d⋃
k=1

(
A′

k ∪ A′′
k

)
,

of the disjoint events:

• A′
1: that ρ has exactly one child with ≥ 3 links and all other children of ρ have

0 or 1 links;
• A′

k for k ≥ 2: that ρ has exactly k children with ≥ 2 links;
• A′′

k for k ≥ 1: that ρ has exactly one child x with exactly 2 links, all other
children of ρ have 0 or 1 links, and x has exactly k children with ≥ 2 links.

The following bounds will be useful later.

LEMMA 2.6. For d large enough, we have

d∑
k=1

kP
(
A′

k

) ≤ 2
d∑

k=1

P
(
A′

k

)
, and

d∑
k=1

kP
(
A′′

k

) ≤ 2
d∑

k=1

P
(
A′′

k

)
.

PROOF. We start with the A′′
k :s, which is actually the simpler case. For con-

venience, we write A′′
0 for the event that ρ has exactly one child x with exactly 2

links, and that the other children of ρ have 0 or 1 links. Then

(2.30)
d∑

k=1

kP
(
A′′

k

) = P
(
A′′

0
) d∑
k=1

kP
(
A′′

k | A′′
0
) = P

(
A′′

0
)
dp≥2,

since the last sum is the expected number of children of x with two links or more.
Similarly,

(2.31)
d∑

k=1

P
(
A′′

k

) = P
(
A′′

0
) d∑
k=1

P
(
A′′

k | A′′
0
) = P

(
A′′

0
)(

1 − (1 − p≥2)
d)

.

It is easy to deduce that

(2.32)

∑d
k=1 kP(A′′

k)∑d
k=1 P(A′′

k)
→ 1, as d → ∞,
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which gives the claim for the A′′
k . For the A′

k a straightforward but tedious calcu-
lation gives that

(2.33)
d∑

k=1

kP
(
A′

k

) = dp≥2 − dp2(1 − p≥2)
d−1 = 5/12

d2 + O
(
d−3)

and

(2.34)

d∑
k=1

P
(
A′

k

) = 1 − (1 − p≥2)
d − dp2(1 − p≥2)

d−1

= 7/24

d2 + O
(
d−3)

.

Hence

(2.35)

∑d
k=1 kP(A′

k)∑d
k=1 P(A′

k)
→ 10

7
< 2, as d → ∞,

which gives the claim for the A′
k . �

The main idea in establishing the assumption of Lemma 2.5 is to use a certain
random subtree Ť of T (m), which we think of as the “complex component of ρ”.
We will use Ť to avoid dealing explicitly with the possibility that the loop of (ρ,0)

propagates across edges carrying ≥ 3 links. Since edges carrying ≥ 3 links are rare,
the connected component of ρ in the subtree spanned by such edges is typically
small. This subtree is bounded by edges carrying 0, 1 or 2 links each, and we will
use estimates on the probability that a loop is blocked after traversing such an edge.
It will be convenient to define Ť slightly differently than as the subtree spanned by
edges with ≥ 3 links, since we want the event (A1 ∪ A2)

c be be Ť -measurable.
In order to define Ť , it helps to think that it consists of “bulk sites” and “end

sites.” The root ρ is a bulk site by definition. Assume that the tree has been defined
up to level k, and let x be a bulk site at level k. An offspring y is:

(a) a bulk site if the number of links nxy on the edge x is equal to 3,4, . . .;
(b) a bulk site if x = ρ, nxy = 2, and all siblings z of y satisfy nxz ∈ {0,1};
(c) an end site if nxy ∈ {0,1,2}, unless there is situation (b).

Note that the event (A1 ∪ A2)
c is measurable with respect to Ť .

We write ω̌ for the configuration of crosses and double-bars within Ť . For j =
1,2 and 1 ≤ � ≤ m − 1, we write E (j)

� for the set of leaves (end sites) of Ť at

distance � from ρ and with j incoming links. If x ∈ E (1)
� , we write t (x) for the

time-coordinate of the incoming link, and if y ∈ E (2)
� we write t1(y) and t2(y)

for the time-coordinates of the two incoming links. We also let E� = E (1)
� ∪ E (2)

�

(1 ≤ � ≤ m − 1) and we let Em be the set of vertices of Ť at distance m from ρ.
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For y ∈ T (m), we let Ty be the subtree rooted at y, consisting of y and all
its descendants in T (m). For a sub-tree T ′ of T (m), we write �(T ′) for the set
of configurations of crosses and double-bars in T ′. In particular, �(Ty) is the set
of configurations in the subtree rooted at y. We write Bk

(y,t) ⊆ �(Ty) for the set of
configurations in Ty such that the loop of (y, t) visits no vertex z ∈ Ty at distance
k from y (note that we do not consider any incoming links to y from its parent).
And we write Bm

(ρ,0)(y) ⊆ �(T (m)) for the event that the loop of (ρ,0) visits no
vertex z ∈ Ty at distance m from ρ, that is, the loop does not reach distance m in
the subtree rooted at y.

The next lemma concerns the probability of blocking a loop at a vertex y when
there are two links between y and its parent.

LEMMA 2.7. Let y be a vertex of T (m) at distance � from ρ, let 0 < t1 < t2 <

1, let ω′ ∈ �(T (m) \ Ty) be arbitrary and let ω′′ ∈ Bm−�
(y,t1)

∩ Bm−�
(y,t2)

. Consider a

configuration ω ∈ �(T (m)) whose restriction to T (m) \ Ty (resp., Ty) is ω′ (resp.,
ω′′) and in addition has exactly two links to y from its parent, at times t1 and t2.
Then ω ∈ Bm

(ρ,0)(y).

This lemma is useful since the event Bm−�
(y,t1)

∩ Bm−�
(y,t2)

is defined entirely in the

subgraph Ty , which is disjoint from T (m) \ Ty , and due to the bound

(2.36) P
(
Bm−�

(y,t1)
∩ Bm−�

(y,t2)

) ≥ 1 − 2σm−�.

PROOF OF LEMMA 2.7. Write x for the parent of y. In ω′, the points (x, t1)

and (x, t2) belong to some loops L′
1, L′

2, where possibly L′
1 = L′

2. Similarly, in
ω′′ the points (y, t1) and (y, t2) belong to some loops L′′

1, L′′
2, possibly equal. Note

that neither L′′
1 nor L′′

2 reaches distance m − � from y in Ty .
We can form ω by starting with ω′ ∪ ω′′, and putting in the links (xy, t1) and

(xy, t2) one at a time. When putting in (xy, t1) we necessarily merge L′
1 and L′′

1,
since they were disjoint before. When we then put in (xy, t2) we either cause
another merge, involving L′′

2, or we cause a loop to split. In either case, no loop of
T (m) \ Ty ever merges with a loop which reaches distance m from ρ in Ty . �

Note that, writing P̌(·) for P(· | Ť , ω̌),

P
(
Bm

(ρ,0) ∩ (A1 ∪ A2)
c)

= E
[
1(A1∪A2)

c P̌
(
Bm

(ρ,0)

)]

= E

[
1(A1∪A2)

c P̌

(
m⋂

�=1

⋂
y∈E�

Bm
(ρ,0)(y)

)]
.

(2.37)
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But by Lemma 2.7 and (2.36) we have

P̌

(
m⋂

�=1

⋂
y∈E�

Bm
(ρ,0)(y)

)

≥ P̌

(
m−1⋂
�=1

⋂
x∈E(1)

�

Bm−�
(x,t (x))

⋂
y∈E(2)

�

(
Bm−�

(y,t1(y)) ∩ Bm−�
(y,t2(y))

))
1{Em =∅}

=
m−1∏
�=1

∏
x∈E(1)

�

P̌
(
Bm−�

(x,t (x))

) ∏
y∈E(2)

�

P̌
(
Bm−�

(y,t1(y)) ∩ Bm−�
(y,t2(y))

)
1{Em = ∅}(2.38)

≥
m−1∏
�=1

(1 − σm−�)
|E(1)

� |(1 − (2σm−�) ∧ 1
)|E(2)

� |1{Em = ∅}

≥ 1 − 2
m∑

�=1

σm−�|E�|.

(Here, σ0 = 1, and the last line is negative when Em �= ∅.) Hence

(2.39) P
(
Bm

(ρ,0) ∩ (A1 ∪ A2)
c) ≥ E

[
1(A1∪A2)

c

(
1 − 2

m∑
�=1

σm−�|E�|
)]

,

and the assumption of Lemma 2.5 follows if we show that

(2.40)
m∑

�=1

σm−�E
[
1(A1∪A2)

c |E�|] ≤ 48P
(
(A1 ∪ A2)

c)σ̌m−1.

The following will let us establish (2.40) (and hence Proposition 2.4).

LEMMA 2.8. For d large enough, k ≥ 1, m ≥ 3 and 1 ≤ � ≤ m, we have

E
[
1A′

k
|E�|] ≤ 4kP

(
A′

k

)
a′
� and E

[
1A′′

k
|E�|] ≤ 4kP

(
A′′

k

)
a′′
� ,

where a′
1 = 1, a′

� = (dq)�−2 for � ≥ 2, a′′
1 = a′′

2 = 1, and a′′
� = (dq)�−3 for � ≥ 3.

PROOF. It suffices to bound the conditional expectations

(2.41) E
[|E�| | A′

k

]
and E

[|E�| | A′′
k

]
by the appropriate functions. We prove the result for the A′

k , the arguments for the
A′′

k are similar.
There are several cases to consider, we start with � = 1. Given A′

k , the number
of 1’s in generation � = 1 has distribution Bin(d −k,p1/(p0 +p1)), and it follows
that

(2.42) E
[∣∣E (1)

1

∣∣ | A′
k

] = (d − k)
p1

p0 + p1
≤ p1d

p0 + p1
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which is trivially bounded by 2k = 2ka′
1. Next, we have E[|E (2)

1 | | A′
1] = 0,

whereas for k ≥ 2 the number of 2’s in generation � = 1 has distribution
Bin(k,p2/p≥2), so that

(2.43) E
[∣∣E (2)

1

∣∣ | A′
k

] = k
p2

p≥2
≤ k ≤ 2ka′

1.

For 2 ≤ � ≤ m − 1, we argue as follows. We consider the subtree of Ť formed
by edges with ≥ 3 links; the number of 1’s (resp., 2’s) in generation � of Ť equals
the size of generation � − 1 of the subtree times an independent Bin(d,p1) [resp.,
Bin(d,p2)] random variable. Each edge with ≥ 3 links from ρ is the root of a
Galton–Watson tree of (≥ 3):s; these Galton–Watson trees have offspring distribu-
tion Bin(d, q), and hence on average (dq)r descendants after r steps. For k = 1,
we get simply

(2.44) E
[∣∣E (j)

�

∣∣ | A′
1
] = (dpj )(dq)�−2 ≤ 2a′

�.

For k ≥ 2, there are Bin(k,p≥3/p≥2) Galton–Watson trees to consider, hence

(2.45) E
[∣∣E (j)

�

∣∣ | A′
k

] =
(
k
p≥3

p≥2

)
(dpj )(dq)�−2 ≤ 2ka′

�.

For � = m, a similar argument gives

(2.46)
E

[|Em| | A′
1
] = (

(1 − p0)d
)
(dq)m−2 and

E
[|Em| | A′

k

] =
(
k
p≥3

p≥2

)(
(1 − p0)d

)
(dq)m−2. �

PROOF OF PROPOSITION 2.4. As mentioned, it is enough to establish (2.40).
Using Lemmas 2.6 and 2.8 as well as the inequalities a′

� ≤ a′′
� and σm−1 ≤ σm−2 ≤

σm−3, we see that
m∑

�=1

σm−�E
[
1(A1∪A2)

c |E�|]

=
m∑

�=1

σm−�

d∑
k=1

(
E

[
1A′

k
|E�|] +E

[
1A′′

k
|E�|])

≤ 4
m∑

�=1

σm−�

(
a′
� + a′′

�

) d∑
k=1

k
(
P

(
A′

k

) + P
(
A′′

k

))

≤ 16
m∑

�=1

σm−�a
′′
�

d∑
k=1

(
P

(
A′

k

) + P
(
A′′

k

))

= 16

(
σm−1 + σm−2 +

m∑
�=3

σm−�(dq)�−3

)
P

(
(A1 ∪ A2)

c)
≤ 48P

(
(A1 ∪ A2)

c)σ̌m−1,

(2.47)

for d large enough, as required. �
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FIG. 5. Illustration for the random link a and the bottleneck-link b.

3. Sharpness of the transition. The arguments of Hammond [11] can
straightforwardly be adapted to our setting. We thus obtain the following “sharp-
ness” result, which shows that (in the interval β ∈ [d−1, d−1 + 2d−2]) there is a
unique βc such that σ(β) = P((ρ,0) ↔ ∞) satisfies σ = 0 for β < βc and σ > 0
for β > βc:

PROPOSITION 3.1. For d large enough, the function β �→ σ(β) is nonde-
creasing on the interval β ∈ [d−1, d−1 + 2d−2].

SKETCH PROOF. Hammond’s arguments [11] are written for the case u = 1
when there are only crosses, but they apply (almost verbatim) to the general case
u ∈ [0,1]. We provide here a synopsis of the proof, for the reader’s benefit.

The starting point is a formula for the derivative dσn

dβ
, involving the concept of

“the added link” (called the added bar by Hammond). In addition to the Poisson
process ω of links (i.e., crosses and double-bars), let a be an independently and
uniformly placed link in T (n), which is a cross with probability u and otherwise a
double-bar. Let P + and P − denote the following pivotality events:

(3.1) P + = {(ρ,0)
ω
�n, (ρ,0)

ω∪{a}↔ n}, P − = {(ρ,0)
ω↔n, (ρ,0)

ω∪{a}
� n}.

In words, P + is the event that a creates a connection to level n that was not present
in ω, and P − is the event that a breaks a connection to level n. We say that a
is on-pivotal if P + happens and off-pivotal if P − happens. Then we have [11],
Lemma 1.7:

(3.2)
dσn

dβ
= |En|(P(

P +) − P
(
P −))

.

Here, En denotes the set of edges of T (n).
Hammond shows that the difference on the right-hand side of (3.2) is positive

on the interval in β considered (when d is large enough). The result then follows
by letting n → ∞. To show that P(P +) − P(P −) ≥ 0, Hammond introduces the
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following events. First, the crossing-event C that the loop L(ρ,0)(ω) of (ρ,0) in ω

visits an end-point of the added link a before reaching level n. Note that P ± ⊆ C,
since if C does not happen then the added link has no effect on whether or not
L(ρ,0) reaches level n. Second, the bottleneck-event B that some edge of T (n) on
the (unique) path from ρ to a supports only one link. On the event B , let the
bottleneck-link b be the furthest such link from ρ. And third, the no-escape-event
N ⊆ B that the loop L(ρ,0)(ω \ b) of (ρ,0) in ω \ b does not reach level n. See
Figure 5.

Note that P ± can be written as a disjoint union:

(3.3) P ± = (
P ± ∩ C ∩ Bc) ∪ (

P ± ∩ C ∩ B ∩ N
)
.

Indeed, one only needs to check that C ∩ B ⊆ N , that is, if C happens and there
is a bottle-neck, then the no-escape-event happens. But if C happens and b is
a bottle-neck, then in ω \ b the loop L(ρ,0) cannot reach level n, because if it
did then it would reach level n in both ω and ω ∪ a also, since b is a monolink
(Proposition 2.2).

Hence it suffices to provide lower bounds on the differences:

δ1 = P
(
P + ∩ C ∩ Bc) − P

(
P − ∩ C ∩ Bc),

δ2 = P
(
P + ∩ C ∩ B ∩ N

) − P
(
P − ∩ C ∩ B ∩ N

)
.

(3.4)

It is easy to give a lower bound on the first term in δ1. Indeed, suppose the follow-
ing happen: (i) in ω there is no link adjacent to ρ, (ii) a is adjacent to ρ, (iii) the
other endpoint of a is connected by a loop to level n. Then P + ∩ C ∩ Bc happens.
It follows that

(3.5) P
(
P + ∩ C ∩ Bc) ≥ (

e−β)d d

|En|σn−1.

It turns out that the second term in δ1 satisfies

(3.6) P
(
P − ∩ C ∩ Bc) ≤ c

σn−1

|En| ,

for some constant c independent of d . The detailed argument for this is more in-
volved (see [11], Lemma 4.5), but no changes are required compared to Ham-
mond’s original argument. Very briefly, the reason that one gets a constant factor
c rather than a factor which grows with d as in (3.5) is as follows. If P − happens,
then necessarily the edge supporting a also supports some link of ω: if it did not
then adding a would necessarily merge two loops, thereby preserving any connec-
tions to level n. If also Bc happens, that is, there is no bottleneck, then necessarily
a ∈ M∪ S where M is the connected cluster of ρ consisting of edges which sup-
port ≥ 2 links in ω, and S is the set of edges that are adjacent to an edge of M and
support exactly one link in ω. Now M is a very sub-critical Galton–Watson tree,
and is therefore of at most constant (expected) size, and S is an approximately
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constant [Bin(d,βe−β)] multiple of the number of leaves of M, and is thus also
small. Hence there is an approximately constant number of locations for a which
are consistent with the event P − ∩ C ∩ Bc, giving the factor c/|En|. The factor
σn−1 appears in (3.6) since some link of S is connected to level n.

Putting together (3.5) and (3.6), we obtain that, for d large enough,

(3.7) δ1(n) ≥ d

2

(
e−β)d σn−1

|En| .

Now consider the other term δ2(n), where the bottleneck- and no-escape-events
B and N happen. Since N happens, any connections to level n must occur in the
subtree rooted at the bottleneck edge b, which is some (random) distance n′ ≤ n

from level n. Since b was defined as the furthest bottleneck from ρ, there is no
bottleneck in this subtree. We thus essentially have that δ2(n) = δ1(n

′), so we can
use the bounds on δ1 that were already established. The only n-dependence in
those bounds was in the factors σn−1/|En|. It follows that for large enough d we
certainly have δ2(n) ≥ 0. Together with (3.7) and (3.2), this gives

(3.8)
dσn−1

dβ
≥ d

2

(
e−β)d

σn−1 ≥ 0,

which as explained gives the result. �
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