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COEXISTENCE AND EXTINCTION FOR STOCHASTIC
KOLMOGOROV SYSTEMS

BY ALEXANDRU HENING AND DANG H. NGUYEN1

Tufts University and Wayne State University

In recent years there has been a growing interest in the study of the dy-
namics of stochastic populations. A key question in population biology is to
understand the conditions under which populations coexist or go extinct. The-
oretical and empirical studies have shown that coexistence can be facilitated
or negated by both biotic interactions and environmental fluctuations. We
study the dynamics of n populations that live in a stochastic environment and
which can interact nonlinearly (through competition for resources, predator–
prey behavior, etc.). Our models are described by n-dimensional Kolmogorov
systems with white noise (stochastic differential equations—SDE). We give
sharp conditions under which the populations converge exponentially fast to
their unique stationary distribution as well as conditions under which some
populations go extinct exponentially fast.

The analysis is done by a careful study of the properties of the invariant
measures of the process that are supported on the boundary of the domain. To
our knowledge this is one of the first general results describing the asymptotic
behavior of stochastic Kolmogorov systems in non-compact domains.

We are able to fully describe the properties of many of the SDE that appear
in the literature. In particular, we extend results on two dimensional Lotka-
Volterra models, two dimensional predator–prey models, n dimensional sim-
ple food chains, and two predator and one prey models. We also show how
one can use our methods to classify the dynamics of any two-dimensional
stochastic Kolmogorov system satisfying some mild assumptions.
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1. Introduction. Real populations do not evolve in isolation and as a result
much of ecology is concerned with understanding the characteristics that allow two
species to coexist, or one species to take over the habitat of another. It is of fun-
damental importance to understand what will happen to an invading species. Will
it invade successfully or die out in the attempt? If it does invade, will it coexist
with the native population? Mathematical models for invasibility have contributed
significantly to the understanding of the epidemiology of infectious disease out-
breaks [Cross et al. (2005)] and ecological processes [Law and Morton (1996),
Caswell (2001)]. There is widespread empirical evidence that heterogeneity, aris-
ing from abiotic (precipitation, temperature, sunlight) or biotic (competition, pre-
dation) factors, is important in determining invasibility [Davies et al. (2005), Pyšek
and Hulme (2005)]. The fluctuations of the environment make the dynamics of
populations inherently stochastic.

The combined effects of biotic interactions and environmental fluctuations are
key when trying to determine species richness. Sometimes biotic effects can result
in species going extinct. However, if one adds the effects of a random environ-
ment, extinction might be reversed into coexistence. In other instances, determin-
istic systems that coexist become extinct once one takes into account environ-
mental fluctuations. A successful way of studying this interplay is by modelling
the populations as discrete or continuous-time Markov processes and looking at
the long-term behavior of these processes [Benaïm and Schreiber (2009), Benaïm,
Hofbauer and Sandholm (2008), Blath, Etheridge and Meredith (2007), Cattiaux
and Méléard (2010), Cattiaux et al. (2009), Chesson (2000), Evans, Hening and
Schreiber (2015), Evans et al. (2013), Lande, Engen and Saether (2003), Schreiber,
Benaïm and Atchadé (2011), Schreiber and Lloyd-Smith (2009)].

A natural way of analyzing the coexistence of species is by analyzing the aver-
age per-capita growth rate of a population when rare. Intuitively, if this growth rate
is positive the respective population increases when rare, and can invade, while if
it is negative the population decreases and goes extinct. If there are only two pop-
ulations, then coexistence is ensured if each population can invade when it is rare
and the other population is stationary [Chesson and Ellner (1989), Evans, Hening
and Schreiber (2015), Turelli (1977)].

There is a general theory for coexistence for deterministic models [Hofbauer
(1981), Hofbauer and So (1989), Hutson (1984)]. It is shown that a sufficient con-
dition for persistence is the existence of a fixed set of weights associated with the
interacting populations such that this weighted combination of the populations’s
invasion rates is positive for any invariant measure supported by the boundary
(i.e., associated to a sub-collection of populations); see Hofbauer (1981).

A few recent studies have explored the effect of environmental stochasticity on
continuous-time models. In Benaïm, Hofbauer and Sandholm (2008), the authors
found that if a deterministic continuous-time model satisfies the above persistence
criterion, then under some weak assumptions the corresponding stochastic differ-
ential equation with a small diffusion term has a positive stationary distribution
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concentrated on the positive global attractor of the deterministic system. For gen-
eral stochastic difference and differential equations with arbitrary levels of noise on
a compact state space, sufficient conditions for persistence are given in Schreiber,
Benaïm and Atchadé (2011).

The aim of this paper is two-fold. First, we want to have a general theory that
gives sharp sufficient conditions for both persistence and extinction for stochastic
Kolmogorov systems. Second, we want our methods to work on noncompact state
spaces (e.g., Rn+).

The criteria we present for persistence are the same as those in Schreiber, Be-
naïm and Atchadé (2011). However, we extend their result to noncompact state
spaces and we prove that the convergence rate is exponential. We note that some
of our persistence results have been announced in the 2014 Bernoulli lecture of
Michel Benaïm. Furthermore, criteria for persistence for general Markov processes
appear in Benaïm (2014) and we use some of those ideas in our proofs. We come
up with natural assumptions under which one or more populations go extinct with
nonzero probability. There do not seem to be general criteria for extinction in the
literature. Results have been obtained for a Lotka–Volterra competitive system in
the two-dimensional setting for SDE [Evans, Hening and Schreiber (2015)] and
piecewise-deterministic Markov processes [Benaïm and Lobry (2016)]. However,
in these cases there are only two or three ergodic invariant probability measures on
the boundary and as such the proofs simplify significantly.

It should be noted that most of the related results in the literature are obtained
by choosing a function and imposing conditions such that the function has some
Lyapunov-type properties. The choice of a Lyapunov function is usually artificial
and imposes unnecessary constraints on the system. The results one gets are there-
fore limited as the particular Lyapunov function does not reflect the true nature
of the dynamical system. Our approach is to carefully analyze the dynamics of
the process near the boundary of its domain. Because of this, we are able to fully
characterize and classify the asymptotic behavior of the system.

As corollaries of our main theorems, we extend results on two-dimensional
Lotka–Volterra models [see Evans, Hening and Schreiber (2015), Benaïm and
Lobry (2016)], two-dimensional predator–prey models [see Chen and Kulperger
(2005), Rudnicki (2003), Rudnicki and Pichór (2007)], two predator and one prey
models [see Liu and Bai (2016)] and populations modeled by SDE in a compact
state space [see Schreiber, Benaïm and Atchadé (2011)].

The paper is organized as follows. In Section 1.1, we define our framework,
the problems we study, our different assumptions and the main results. In Sec-
tion 2, we exhibit a few examples that fall into our general setting (Lotka–Volterra
competition and predator–prey models). We also give an example of a coopera-
tive Lotka–Volterra model that does not satisfy our assumptions. However, in this
case either the solution blows up in finite time or there is no invariant probability
measure supported by the interior of the domain. In Section 3, we analyze some
of the properties of the SDE that models our populations. In particular, we show it
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has a well-defined strong solution X for all t > 0 and that this solution is pathwise
unique. Section 4 is devoted to the study of conditions under which X converges to
its unique invariant probability measure on R

n,◦
+ := (0,∞)n. In Theorem 4.1, we

show that, under some natural assumptions, X is strongly stochastically persistent
and that the convergence in total variation of its transition probability to a unique
stationary distribution on R

n,◦
+ is exponentially fast. In Section 5, we look at when

one or more of the populations go extinct with a positive probability. First, we
show in Theorem 5.1 that if there exists an invariant probability measure living on
the boundary that is a sink, then the process converges to the boundary in a weak
sense. Under a few extra assumptions, we show in Theorem 5.2 that for every sink
invariant measure μ on the boundary the process converges with strictly positive
probability to the support of μ. Finally, we present in the Appendix the proofs of
some auxiliary lemmas from Section 3 and Section 5.

1.1. Notation and results. We work on a complete probability space (�,F,

{Ft }t≥0,P) with a filtration {Ft }t≥0 satisfying the usual conditions. Consider a
stochastic Kolmogorov system

(1.1) dXi(t) = Xi(t)fi

(
X(t)

)
dt + Xi(t)gi

(
X(t)

)
dEi(t), i = 1, . . . , n

taking values in [0,∞)n. We assume E(t) = (E1(t), . . . ,En(t))
T = ��B(t) where

� is a n × n matrix such that ��� = � = (σij )n×n and B(t) = (B1(t), . . . ,Bn(t))

is a vector of independent standard Brownian motions adapted to the filtration
(Ft )t≥0. The SDE (1.1) is describing the dynamics of n interacting populations
X(t) = (X1(t), . . . ,Xn(t))t≥0. Throughout the paper, we set Rn+ := [0,∞)n and
R

n,◦
+ := (0,∞)n.

REMARK 1.1. One might wonder if one could treat the more general model

dXi(t) = Xi(t)fi

(
X(t)

)
dt

+ Xi(t)gi

(
X(t)

) n∑
j=1

�ij

(
X(t)

)
dBj (t), i = 1, . . . , n.

In our model (1.1), we work with a constant correlation matrix � = (σij ) but it
can be seen that the proofs do not depend on whether � is constant or a function
of x. Thus, our results still hold if � depends on x as long as it is bounded and
locally Lipschitz. Actually, we can always assume it is bounded because we can
normalize � and absorb the necessary factors into gi(x).

The drift term of our system is due to the deterministic dynamics while the
diffusion term is due to the effects of random fluctuations of the environment. The
drift for population i is given by Xi(t)fi(X(t)) where fi is its per-capita growth
rate. From now on, the process given by the solution to (1.1) will be denoted by X
or (X(t))t≥0.



STOCHASTIC KOLMOGOROV SYSTEMS 1897

Let L be the infinitesimal generator of the process X. For smooth enough func-
tions F :Rn+ →R, the generator L acts as

LF(x) =∑
i

xifi(x)
∂F

∂xi

(x) + 1

2

∑
i,j

σij xixjgi(x)gj (x)
∂2F

∂xi ∂xj

(x).

We use the norm ‖x‖ =∑n
i=1 |xi | in R

n. For a, b ∈ R, let a∧b := min{a, b} and
a ∨ b := max{a, b}. Similarly, we let

∧n
i=1 ui := mini ui and

∨n
i=1 ui := maxi ui .

We remark that (1.1) can be seen as a generalization to noncompact state spaces
of the model studied in Schreiber, Benaïm and Atchadé (2011). The following is a
standing assumption throughout the paper.

ASSUMPTION 1.1. The coefficients of (1.1) satisfy the following conditions:

(1) diag(g1(x), . . . , gn(x))��� diag(g1(x), . . . , gn(x)) = (gi(x)gj (x)σij )n×n

is a positive definite matrix for any x ∈ R
n+.

(2) fi(·), gi(·) :Rn+ →R are locally Lipschitz functions for any i = 1, . . . , n.
(3) There exist c = (c1, . . . , cn) ∈R

n,◦
+ and γb > 0 such that

(1.2)

lim sup
‖x‖→∞

[∑
i cixifi(x)

1 + c�x
− 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

+ γb

(
1 +∑

i

(∣∣fi(x)
∣∣+ g2

i (x)
))]

< 0.

REMARK 1.2. Parts (2) and (3) of Assumption 1.1 guarantee the existence
and uniqueness of strong solutions to (1.1). We need part (1) of Assumption 1.1 to
ensure that the solution to (1.1) is a nondegenerate diffusion. Moreover, we show
later that (3) implies the tightness of the family of transition probabilities of the
solution to (1.1).

REMARK 1.3. There are a few different ways to add stochastic noise to de-
terministic population dynamics. We assume that the environment mainly affects
the growth/death rates of the populations. See Braumann (2002), Evans, Hening
and Schreiber (2015), Evans et al. (2013), Gard (1988), Hening, Nguyen and Yin
(2017), Schreiber, Benaïm and Atchadé (2011), Turelli (1977) for more details.

We next define what we mean by persistence and extinction in our setting.

DEFINITION 1.1. The process X is strongly stochastically persistent if it has
a unique invariant probability measure π∗ on R

n,◦
+ and

(1.3) lim
t→∞

∥∥PX(t,x, ·) − π∗(·)∥∥TV = 0, x ∈ R
n,◦
+ ,

where ‖·, ·‖TV is the total variation norm and PX(t,x, ·) is the transition probability
of (X(t))t≥0.
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DEFINITION 1.2. If X(0) = x ∈ R
n,◦
+ , we say the population Xi goes extinct

with probability px > 0 if

Px

{
lim

t→∞Xi(t) = 0
}

= px.

We say the population Xi goes extinct if for all x ∈ R
n,◦
+

Px

{
lim

t→∞Xi(t) = 0
}

= 1.

EXAMPLE 1.1. Most of the common ecological models satisfy condition
(1.2).

• Consider the linear one-dimensional model

dX(t) = aX(t) dt + σX(t) dB(t).

If a − σ 2

2 < 0, then (1.2) is satisfied for any c > 0.
• Consider the logistic model

dX(t) = X(t)
[
a − bX(t)

]
dt + σX(t) dB(t), b > 0.

Then equation (1.2) is satisfied for any c > 0.
• Consider the competitive Lotka–Volterra model

dXi(t) = Xi(t)

[
ai −∑

j

bjiXj (t)

]
dt + Xi(t)gi

(
X(t)

)
dEi(t),

with bji > 0, j, i = 1, . . . , n.
If
∑n

i=1 g2
i (x) < K(1 + ‖x‖ + ∧n

i=1 g2
i (x)), then (1.2) is satisfied with c =

(1, . . . ,1). We give a short argument for why this is true. Since bij > 0, there
is b̃ > 0 such that

(1.4)

∑
i xi(ai −∑

j bjixj )

1 +∑
i xi

< −b̃

(
1 +∑

i

xi

)
if ‖x‖ is sufficiently large. By the Cauchy–Schwarz inequality, there are σ̃1, σ̃2 > 0
such that

(1.5) −1

2

∑
i,j σij xixjgi(x)gj (x)

(1 +∑
i xi)2 ≤ −σ̃1

∑
i x

2
i g2

i (x)

(1 +∑i xi)2 ≤ −σ̃2

(
n∧

i=1

g2
i (x)

)
,

when ‖x‖ is sufficiently large. In light of (1.4) and (1.5), if
∑n

i=1 g2
i (x) <

K(1 + ‖x‖ +∧n
i=1 g2

i (x)), we can find γb > 0 such that∑
i xi(ai −∑

j bjixj )(x)

1 +∑i xi

− 1

2

∑
i,j σij xixjgi(x)gj (x)

(1 +∑
i xi)2

+ γb

(
1 +∑

i

(∣∣∣∣ai −∑
j

bjixj

∣∣∣∣+ g2
i (x)

))
< 0

for sufficiently large ‖x‖. As a result, (1.2) holds.
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• Consider the predator–prey Lotka–Volterra model{
dX(t) = X(t)

[
a1 − b1X(t) − c1Y(t)

]
dt + X(t)g1

(
X(t), Y (t)

)
dE1(t),

dY (t) = Y(t)
[−a2 − b2Y(t) + c2X(t)

]
dt + Y(t)g2

(
X(t), Y (t)

)
dE2(t),

with b1, b2 > 0, c1, c2 ≥ 0, a2 ≥ 0. If
∑2

i=1 g2
i (x, y) < K(1 + x + y + g2

1(x, y) ∧
g2

2(x, y)), one can use arguments similar to those from the competitive Lotka–
Volterra model to show that (1.2) is satisfied with c = (c2, c1).

Let M be the set of ergodic invariant probability measures of X supported on
the boundary ∂Rn+ := R

n+ \Rn,◦
+ . Note that if we let δ∗ be the Dirac measure con-

centrated at 0 then δ∗ ∈ M so that M 
= ∅. For a subset M̃ ⊂ M, denote by
Conv(M̃) the convex hull of M̃, that is, the set of probability measures π of the
form π(·) =∑

μ∈M̃ pμμ(·) with pμ > 0,
∑

μ∈M̃ pμ = 1.
Consider μ ∈ M. Assume μ 
= δ∗. Since the diffusion X is nondegenerate in

each subspace, there exist 0 < n1 < · · · < nk ≤ n such that supp(μ) = R
μ
+ where

R
μ
+ := {

(x1, . . . , xn) ∈R
n+ : xi = 0 if i ∈ I c

μ

}
for Iμ := {n1, . . . , nk} and I c

μ := {1, . . . , n} \ {n1, . . . , nk}. If μ = δ∗, then we note

that Rδ∗
+ = {0}. Let

R
μ,◦
+ := {

(x1, . . . , xn) ∈ R
n+ : xi = 0 if i ∈ I c

μ and xi > 0 if xi ∈ Iμ

}
and ∂R

μ
+ := R

μ
+ \Rμ,◦

+ .
The following condition ensures strong stochastic persistence.

ASSUMPTION 1.2. For any μ ∈ Conv(M), one has

max{i=1,...,n}
{
λi(μ)

}
> 0,

where

λi(μ) :=
∫
∂Rn+

(
fi(x) − σiig

2
i (x)

2

)
μ(dx).

[In view of Lemma 3.3, λi(μ) is well defined.]

THEOREM 1.1. Suppose that Assumptions 1.1 and 1.2 hold. Then X is
strongly stochastically persistent and converges exponentially fast to its unique
invariant probability measure π∗ on R

n,◦
+ .

The proof of this result is presented in detail in Section 4. The following remark
gives a rough intuitive sketch of the proof.
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REMARK 1.4. From a dynamical point of view, the solution in the interior
domain R

n,◦
+ is persistent if every invariant probability measure on the boundary

is a “repeller.” In a deterministic setting, an equilibrium is a repeller if it has a
positive Lyapunov exponent. In a stochastic model, ergodic invariant measures
play a similar role. To determine the Lyapunov exponents of an ergodic invariant
measure, one can look at the equation for lnXi(t). An application of Itô’s lemma
yields that

lnXi(t)

t
= lnXi(0)

t
+ 1

t

∫ t

0

[
fi

(
X(s)

)− g2
i (X(s))σii

2

]
ds

+ 1

t

∫ t

0
gi

(
X(s)

)
dEi(s).

If X is close to the support of an ergodic invariant measure μ for a long time,
then

1

t

∫ t

0

[
fi

(
X(s)

)− g2
i (X(s))σii

2

]
ds

can be approximated by the average with respect to μ

λi(μ) =
∫
∂Rn+

(
fi(x) − g2

i (x)σii

2

)
μ(dx)

while the term
lnXi(0)

t
+ 1

t

∫ t

0
gi

(
X(s)

)
dEi(s)

is negligible. This implies that λ(μi), i = 1, . . . , n are the Lyapunov exponents of
μ [it can also be seen that λ(μi) gives the long-term growth rate of Xi(t) if X is
close to the support of μ]. As a result, if maxn

i=1{λ(μi)} > 0, then the invariant
measure μ is a “repeller.” Therefore, Assumption 1.2 guarantees the persistence
of the population. Moreover, by evaluating the exponential rate lnXi(T )

T
for suffi-

ciently large T (so that the ergodicity takes effect), we can show that the solution
goes away from the boundary exponentially fast, and then obtain a geometric rate
of convergence in total variation under Assumptions 1.1 and 1.2. This is achieved
by constructing a suitable Lyapunov function with the help of the Laplace trans-
form and the approximations that were mentioned above. Note that since we work
on a noncompact space, Assumption 1.2 part (3) is needed to show that the solution
enters a compact subset of Rn+ exponentially fast.

The following condition will imply extinction.

ASSUMPTION 1.3. There exists a μ ∈ M such that

(1.6) max
i∈I c

μ

{
λi(μ)

}
< 0.
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If Rμ
+ 
= {0}, suppose further that for any ν ∈ Conv(Mμ), we have

(1.7) max
i∈Iμ

{
λi(ν)

}
> 0,

where Mμ := {ν′ ∈M : supp(ν′) ⊂ ∂R
μ
+}.

Define

(1.8) M1 := {μ ∈ M : μ satisfies Assumption 1.3}
and

(1.9) M2 := M \M1.

THEOREM 1.2. Under Assumptions 1.1 and 1.3, for any δ > 0 sufficiently
small and any x ∈ R

n,◦
+ we have

(1.10) lim
t→∞Ex

(
n∧

i=1

Xi(t)

)δ

= 0.

The proof of this result is given in Section 5.

REMARK 1.5. If an ergodic invariant measure μ with support on the boundary
is an “attractor,” it will attract solutions starting nearby. Intuitively, condition (1.6)
forces Xi(t), i ∈ I c

μ to get close to 0 if the solution starts close to R
μ,◦
+ . We need

condition (1.7) to ensure that μ is a “sink” in R
μ,◦
+ , that is, if X is close to R

μ,◦
+ , it

is not pulled away to the boundary ∂R
μ,◦
+ of Rμ,◦

+ (see Remark 1.6).
To prove Theorem 1.2, using the idea above, we construct a Lyapunov func-

tion U vanishing on R
μ,◦
+ such that ExU(X(T )) ≤ U(x) if x ∈ R

n,◦
+ sufficiently

close to R
μ,◦
+ and T is a sufficiently large time. Then we can construct a su-

permartingale to show that with a large probability Xi(t), i ∈ I c
μ cannot go far

from 0 if the starting point of X is sufficiently close to R
μ,◦
+ . With some addi-

tional arguments from the theory of Markov processes, we can show that X has
no invariant probability measure in R

n,◦
+ and approaches the boundary in some

sense.
In the case when there is no persistence, one may want to know exactly which

species go extinct and which survive. We answer this question in Theorem 5.2.
Relying on the repulsion of invariant measures in M2 = M \ M1 and properties
of the randomized occupation measures, we can deduce that the process X must
enter the “attracting” region of some invariant measure in M1. Finally, the at-
traction property of the measures from M1 helps us characterize the survival and
extinction of each species.



1902 A. HENING AND D. H. NGUYEN

REMARK 1.6. If condition (1.7) does not hold, we could have the following
bad situation. Assume there exists ν ∈ Mμ such that

max
i∈Iμ\Iν

{
λi(ν)

}= 0.

In this case, ν is not always a “repeller.” Solutions that start near Rμ,◦
+ will tend

to stay close to R
μ
+ since λi(μ) < 0, i ∈ I c

μ. However, if ν is not a repeller the
solutions may concentrate on R

ν ⊂ ∂R
μ
+. Now, if there exists an i∗ ∈ I c

μ such that
λi∗(ν) > 0 then solutions can be pushed away from R

μ
+ since Xi∗(t) will tend to

increase.

To characterize the extinction of specific populations, we need some additional
conditions.

ASSUMPTION 1.4. Suppose that there is a δ1 > 0 such that

lim‖x‖→∞
‖x‖δ1

∑
i g

2
i (x)

1 +∑i (|fi(x)| + |gi(x)|2) = 0.

Without loss of generality, suppose that δ1 ≤ δ0 (where δ0 is defined at the begin-
ning of Section 3).

REMARK 1.7. Assumption 1.4 forces the growth rates of g2
i (·) to be slightly

lower than those of |fi(·)|. This is needed in order to suppress the diffusion part so
that we can obtain the tightness of the random normalized occupation measures

�̃t (·) := 1

t

∫ t

0
1{X(s)∈·} ds, t > 0

as well as the convergence of
∫
R

n+(fi(x) − g2
i (x)

2 )�̃tk (dx) to λi(π) given that �̃tk

converges weakly to π for some sequence (tk)k∈N with limk→∞ tk = ∞. Having
these properties, we can analyze the asymptotic behavior of the sample paths of
the solution.

To describe exactly which populations go extinct, we need an additional as-
sumption which ensures that apart from those in Conv(M1), invariant probability
measures are “repellers.”

ASSUMPTION 1.5. Suppose that one of the following is true:

• M2 = ∅.
• For any ν ∈ Conv(M2), max{i=1,...,n}{λi(ν)} > 0.

For any initial condition X(0) = x ∈R
n+, denote the weak∗-limit set of the fam-

ily {�̃t (·), t ≥ 1} by U = U(ω).
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THEOREM 1.3. Suppose that Assumptions 1.1, 1.4 and 1.5 are satisfied and
M1 
=∅. Then for any x ∈ R

n,◦
+

(1.11)
∑

μ∈M1

P μ
x = 1,

where

P μ
x := Px

{
U(ω) = {μ} and lim

t→∞
lnXi(t)

t
= λi(μ) < 0, i ∈ I c

μ

}
> 0, x ∈ R

n,◦
+ ,μ ∈ M1.

REMARK 1.8. Our results can be easily modified and applied to SDE living
on smooth enough domains D ⊂R

n. We chose to work on [0,∞)n because it was
the most natural noncompact example for the dynamics of biological populations.
In particular, one can recover and extend the results from Schreiber, Benaïm and
Atchadé (2011) where the authors looked at the state space D = {(y1, . . . , yn) ∈
R

n+ : y1 + · · · + yn = 1}.
2. Examples. We present some applications of our main results. We will

make use of Theorems 1.1, 1.2 and 1.3 together with the following intuitive lemma
whose proof is postponed to Section 5.

LEMMA 2.1. For any μ ∈ M and i ∈ Iμ, we have λi(μ) = 0.

REMARK 2.1. The intuition behind Lemma 2.1 is the following: if we are
inside the support of an ergodic invariant measure μ then we are at an ‘equilibrium’
and the process does not tend to grow or decay.

EXAMPLE 2.1. Consider a stochastic Lotka–Volterra competitive model

(2.1)

{
dX1(t) = X1(t)

[
a1 − b1X1(t) − c1X2(t)

]
dt + X1(t) dE1(t),

dX2(t) = X2(t)
[
a2 − b2X2(t) − c2X1(t)

]
dt + X2(t) dE2(t),

where bi, ci > 0, i = 1,2. It is straightforward to see that λi(δ
∗) = ai − σii

2 ,

i = 1,2. If λ1(δ
∗) < 0 [resp., λ2(δ

∗) < 0] there is no invariant probability measure
on R

◦
1+ := {(x1,0) : x1 > 0} [resp., R◦

2+ := {(0, x2) : x2 > 0}] in view of Theo-
rem 1.1. If λi(δ

∗) > 0, there is a unique invariant probability measure μi on R
◦
i+,

i = 1,2. By Lemma 2.1, we have

λi(μi) = ai − σii

2
− bi

∫
R

◦
i+

xiμi(dx) = 0

which implies

(2.2)
∫
R

◦
i+

xiμi(dx) = 2ai − σii

2bi

.
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Thus

λ2(μ1) =
∫
R

◦
1+

[
a2 − σ22

2
− c2x1

]
μ1(dx) = a2 − σ22

2
− c2

2a1 − σ11

2b1

and

λ1(μ2) =
∫
R

◦
2+

[
a1 − σ11

2
− c1x2

]
μ2(dx) = a1 − σ11

2
− c1

2a2 − σ22

2b2
.

Using Theorems 1.1 and 1.3, we have the following classification:

• If λ1(δ
∗) > 0, λ2(δ

∗) > 0 and λ1(μ2) > 0, λ2(μ1) > 0, any invariant proba-
bility measure in ∂R2+ has the form μ = p0δ

∗ + p1μ1 + p2μ2 with 0 ≤ p0,p1,p2
and p0 +p1 +p2 = 1. It can easily be verified that maxi=1,2{λi(μ)} > 0 for any μ

having the form above. As a result, there is a unique invariant probability measure
π∗ on R

2,◦
+ and P(t,x, ·),x ∈ R

2,◦
+ converges to π∗ in total variation exponentially

fast.
• If λi(δ

∗) < 0, i = 1,2, then Xi(t) converges to 0 almost surely with the ex-
ponential rate λi(δ

∗) for any initial condition x = (x1, x2) ∈R
2,◦
+ .

• If λi(δ
∗) > 0, λj (δ

∗) < 0 for one i ∈ {1,2} and j ∈ {1,2} \ {i}, then λj (μi) <

0 and Xj(t) converges to 0 almost surely with the exponential rate λj (μi) for
any initial condition x = (x1, x2) ∈ R

2,◦
+ and the randomized occupation measure

converges weakly to μi almost surely.
• If λi(δ

∗) > 0, i ∈ {1,2} and λ1(μ2) < 0, λ2(μ1) < 0, then px
i > 0, i = 1,2

and px
1 + px

2 = 1 where

px
i = Px

{
U(ω) = {μi} and lim

t→∞
lnXj(t)

t
= λj (μi), j ∈ {1,2} \ {i}

}
.

• If λ1(δ
∗) > 0, λ2(δ

∗) > 0, λj (μi) < 0, λi(μj ) > 0 for i, j ∈ {1,2}, i 
= j ,
then Xj(t) converges to 0 almost surely with the exponential rate λj (μi) and the
randomized occupation measure converges weakly to μi almost surely for any
initial condition x = (x1, x2) ∈ R

2,◦
+ .

This extends and generalizes the results from Evans, Hening and Schreiber (2015).

EXAMPLE 2.2. Consider a stochastic Lotka–Volterra model with two preda-
tors competing for one prey:

(2.3)

⎧⎪⎨⎪⎩
dX1(t) = X1(t)

[
a1 − b1X1(t) − c21X2(t) − c31X3(t)

]
dt + X1(t) dE1(t),

dX2(t) = X2(t)
[−a2 − b2X2(t) + c12X1(t) − c32X3(t)

]
dt + X2(t) dE2(t),

dX3(t) = X3(t)
[−a3 − b3X3(t) + c13X1(t) − c23X2(t)

]
dt + X2(t) dE3(t).

Assume that ai, bi > 0, i = 1,3, c21, c31, c12, c21, c31, c32 ≥ 0. Note that, if c23 > 0
and c32 > 0, then (2.3) describes an interacting population of two predators
(X2,X3) competing for one prey X1. If c23 < 0 and c32 > 0, then (2.3) is a model
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of a tri-trophic food chain where X3 is the top predator and X2 is the intermediate
species.

In order to analyze this model, first consider the equation on the boundary
{(0, x2, x3) : x2, x3 ≥ 0}. Since λi(δ

∗) = −ai − σii

2 < 0, i = 2,3, an application
of Theorem 1.2 to the space {(0, x2, x3) : x2, x3 ≥ 0} shows that there is only one
invariant probability measure on {(0, x2, x3) : x2, x3 ≥ 0}, which is δ∗. It indicates
that without the prey, both predators die out.

Now, consider the equation on the boundaries R12+ := {(x1, x2,0) : x1, x2 ≥ 0}
and R13+ := {(x1,0, x3) : x1, x3 ≥ 0}. If λ1(δ

∗) = a1 − σ11
2 < 0, δ∗ is the unique

invariant probability measure on R
3+ by virtue of Theorem 1.2. If λ1(δ

∗) > 0, there
is an invariant probability measure μ1 on R

◦
1+ := {(x1,0,0) : x1 > 0}. Similar to

(2.2), we have

(2.4)
∫
R

◦
1+

x1μ1(dx) = 2a1 − σ11

2b1
.

Thus

λi(μ1) =
∫
R

◦
1+

[
−ai − σii

2
+ c1ix1

]
μ1(dx)

= −ai − σii

2
+ c1i

2a1 − σ11

2b1
, i = 2,3.

If λ1(δ
∗) > 0 and λi(μ1) < 0, i = 2,3, by Theorem 1.2, there is no invariant prob-

ability measure on R
◦
1i+.

If λ1(δ
∗) > 0 and λ2(μ1) > 0, by Theorem 1.1, there is an invariant probability

measure μ12 on R
◦
12+. In light of Lemma 2.1, we have∫

R
◦
12+

x1μ12(dx) = A1,

∫
R

◦
12+

x2μ12(dx) = A2,

where (A1,A2) be the unique solution to⎧⎪⎨⎪⎩
a1 − σ11

2
− b1x1 − c21x2 = 0,

−a2 − σ22

2
− b2x2 + c12x1 = 0.

In this case,

λ3(μ12) =
∫
R

◦
12+

[
−a3 − σ33

2
+ c13x1 − c23x2

]
μ12(dx)

= −a3 − σ33

2
+ c13A1 − c23A2.
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Similarly, if λ1(δ
∗) > 0 and λ3(μ1) > 0, by Theorem 1.1, there is an invariant

probability measure μ13 on R
◦
13+ and

λ2(μ13) =
∫
R

◦
13+

[
−a2 − σ22

2
+ c12x1 − c32x3

]
μ13(dx)

= −a2 − σ22

2
+ c12Â1 − c32Â3,

where (Â1, Â3) is the unique solution to⎧⎪⎨⎪⎩
a1 − σ11

2
− b1x1 − c31x3 = 0,

−a3 − σ33

2
− b3x3 + c13x1 = 0.

By the ergodic decomposition theorem, every invariant probability measure on
∂R3+ is a convex combination of δ∗,μ1,μ12,μ13 (when these measures exist).
Some computations for the Lyapunov exponents with respect to a convex com-
bination of these ergodic measures together with an application of Theorem 1.1
show that P(t,x, ·),x ∈ R

3,◦
+ converges exponentially fast to an invariant probabil-

ity measure π∗ on R
3,◦
+ if one of the following is satisfied:

• λ1(δ
∗) > 0, λ2(μ1) > 0, λ3(μ1) < 0 and λ3(μ12) > 0.

• λ1(δ
∗) > 0, λ2(μ1) < 0, λ3(μ1) > 0 and λ2(μ13) > 0.

• λ1(δ
∗) > 0, λ2(μ1) > 0, λ3(μ1) > 0, λ3(μ12) > 0, and λ2(μ13) > 0.

As an application of Theorem 1.3, we have the following classification for ex-
tinction:

• If λ1(δ
∗) < 0, then for any initial condition x ∈ R

3,◦
+ , X1(t),X2(t),X3(t),

converge to 0 almost surely with the exponential rates λi(δ
∗), i = 1,2,3, respec-

tively.
• If λ1(δ

∗) > 0, λi(μ1) < 0, i = 2,3 then Xi(t), i = 2,3 converge to 0 almost
surely with the exponential rate λi(μ1), i = 2,3, respectively, and the occupation
measure converges almost surely for any initial condition x ∈ R

3,◦
+ to μ1.

• If λ1(δ
∗) > 0, λi(μ1) > 0, λj (μ1i ) < 0, λj (μ1) < 0 for i, j ∈ {2,3}, i 
= j ,

then Xj(t) converges to 0 almost surely with the exponential rate λj (μ1i ) and the
occupation measure converges almost surely for any initial condition x ∈ R

3,◦
+ to

μ1i .
• If λ1(δ

∗) > 0, λ2(μ1) > 0, λ3(μ1) > 0, λj (μ1i ) < 0, λi(μ1j ) > 0 for i, j ∈
{2,3}, i 
= j then Xj(t) converges to 0 almost surely with the exponential rate
λj (μ1i ) and the occupation measure converges almost surely for any initial condi-
tion x ∈ R

3,◦
+ to μ1i .

• If λ1(δ
∗) > 0, λ2(μ1) > 0, λ3(μ1) > 0, λ2(μ13) < 0, λ3(μ12) < 0, then px

i >

0, i = 2,3 and px
2 + px

3 = 1 where

px
i = Px

{
U(ω) = {μ1i} and lim

t→∞
lnXi(t)

t
= λi(μ1j ), i ∈ {2,3} \ {j}

}
.
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Elementary but tedious computations show that our results significantly improve
those in Liu and Bai (2016).

Restricting our analysis to R12+ (this describes the evolution of one predator
and its prey) we get

(2.5)

{
dX1(t) = X1(t)

[
a1 − b1X1(t) − c21X2(t)

]
dt + X1(t) dE1(t),

dX2(t) = X2(t)
[−a2 − b2X2(t) + c12X1(t)

]
dt + X2(t) dE2(t).

In view of the analysis above, if λ1(δ
∗) < 0 then X1(t),X2(t) converge to 0 almost

surely with the exponential rates λ1(δ
∗) and λ2(δ

∗), respectively. If λ1(δ
∗) > 0

and λ2(μ1) < 0, then X2 converges to 0 almost surely with the exponential rate
λ2(μ1) and the occupation measure of the process (X1,X2) converges to μ1. If
λ1(δ

∗) > 0, λ2(μ1) > 0, the transition probability of (X1(t),X2(t)) on R
◦
12+ con-

verges to an invariant probability measure in total variation with an exponential
rate. These results are similar to those appearing in Rudnicki (2003), Rudnicki and
Pichór (2007). However, we generalize their results by obtaining a geometric rate
of convergence.

REMARK 2.2. The condition for persistence in Rudnicki (2003), Rudnicki
and Pichór (2007) is obtained by constructing a Lyapunov function V satisfying
LV (x) ≤ −a,x ∈ R

2,◦
+ for some a > 0. The papers describe how to construct the

functions V rather than giving an explicit formula. It seems to us that the function
V constructed in Rudnicki (2003) is not twice differentiable.

EXAMPLE 2.3. Consider a stochastic Lotka–Volterra cooperative model

(2.6)

{
dX1(t) = X1(t)

[
a1 − b1X1(t) + c1X2(t)

]
dt + X1(t) dE1(t),

dX2(t) = X2(t)
[
a2 − b2X2(t) + c2X1(t)

]
dt + X2(t) dE2(t),

where ai, bi, ci > 0, ai − σii

2 > 0, i = 1,2. As shown in Example 2.1, there ex-
ist unique invariant probability measures μi on R

◦
i+, i = 1,2 (defined in Exam-

ple 2.1). Moreover,

λ2(μ1) =
∫
R

◦
1+

[
a2 − σ22

2
+ c2x1

]
μ1(dx) = a2 − σ22

2
+ c2

2a1 − σ11

2b1
> 0

and

λ1(μ2) =
∫
R

◦
2+

[
a1 − σ11

2
+ c1x2

]
μ2(dx) = a1 − σ11

2
+ c1

2a2 − σ22

2b2
> 0.

Suppose further that

(2.7) b1b2 − c1c2 < 0.
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REMARK 2.3. We note that a similar example has been studied in Cattiaux
and Méléard (2010). The main difference is that the authors of Cattiaux and
Méléard (2010) consider demographic stochasticity instead of environmental
stochasticity; their diffusion terms look like

√
Xi(t) dEi(t). In their setting, the

diffusion hits one of the two axes in finite time almost surely and they study the
existence of quasi-stationary distributions (since there are no nontrivial stationary
distributions). We note however that they need b1b2 −c1c2 > 0 together with some
other symmetry assumptions.

Standard computations show that part (3) of Assumption 1.1 is not satisfied
by this model. Since ai − σii

2 > 0 and λi > 0, i = 1,2, Assumption 1.2 holds.
However, we show that the solution either blows up in finite time almost surely or
there is no invariant measure on R

2,◦
+ .

We argue by contradiction. Suppose (X1(t),X2(t)) does not blow up in finite
time and has an invariant measure on R

2,◦
+ . As a result, (X1(t),X2(t)) is a recurrent

process. It follows from Itô’s formula that

b2 lnX1(t) + b1 lnX2(t)

t
= b2 lnX1(0) + b1 lnX2(0)

t

+ b2

(
a1 − σ11

2

)
+ b1

(
a2 − σ22

2

)
+ (c1c2 − b1b2)

1

t

∫ t

0
X1(s) ds

+ 1

t

∫ t

0

(
b2 dE1(s) + b1 dE2(s)

)
.

Since

lim
t→∞

1

t

∫ t

0

(
b2 dE1(s) + b1 dE2(s)

)= 0 a.s.,

b2(a1 − σ11
2 ) + b1(a2 − σ22

2 ) > 0 and c1c2 − b1b2 > 0, it follows that

lim sup
t→∞

b2 lnX1(t) + b1 lnX2(t)

t
> 0 a.s.

Thus, (X1(t),X2(t)) cannot be a recurrent process in R
2,◦
+ . This is a contradic-

tion.

EXAMPLE 2.4. Consider the two-dimensional system

(2.8) dXi(t) = Xi(t)fi

(
X(t)

)
dt + Xi(t)gi

(
X(t)

)
dEi(t), i = 1,2.

Suppose that Assumptions 1.1 and 1.4 hold. If λi(δ
∗) = fi(0) − 1

2g2
i (0)σii > 0,

then (X(t)) has a unique invariant probability measure μi on R
◦
i+ (which is defined

as in Example 2.1). The density pi(·) of μi can be found explicitly (in terms of



STOCHASTIC KOLMOGOROV SYSTEMS 1909

integrals) by solving the Fokker–Plank equation

− d

du

[
pi(u)fi(û)

]+ σii

2

d2

du2

[
pi(u)g2

i (û)
]= 0, u > 0,

where û = (u,0) if i = 1 and û = (0, u) if i = 2. Then λj (μi), i, j = 1,2, i 
= j

can be computed in terms of integrals. Using arguments similar to those in Ex-
amples 2.1 and 2.2, we have the following classification, which generalizes the
Lotka–Volterra competitive and predator–prey models in previous examples:

• If λi(δ
∗) > 0, i = 1,2, λ1(μ2) > 0, λ2(μ1) > 0, then there is a unique invari-

ant probability measure π∗ on R
2,◦
+ and P(t,x, ·),x ∈ R

2,◦
+ converges to π∗ in total

variation exponentially fast.
• If λi(δ

∗) > 0, λj (δ
∗) < 0, λj (μi) > 0 for some i = 1,2 and j 
= i, then there

is a unique invariant probability measure π∗ on R
2,◦
+ and P(t,x, ·),x ∈ R

2,◦
+ con-

verges to π∗ in total variation exponentially fast.
• If λi(δ

∗) < 0, i = 1,2 then Xi(t) converges to 0 at the exponential rate
λi(δ

∗), i = 1,2.
• If λi(δ

∗) > 0, λj (μi) < 0 and λj (δ
∗) < 0 for i, j = 1,2, i 
= j , then Xj(t)

converges to 0 at the exponential rate λj (μi) and the randomized occupation mea-
sure converges weakly to μi .

• If λi(δ
∗) > 0, λj (μi) < 0 and λj (δ

∗) > 0, λi(μj ) > 0 for i, j = 1,2, i 
= j ,
then Xj(t) converges to 0 at the exponential rate λj (μi) and the randomized oc-
cupation measure converges weakly to μi .

• If λ1(δ
∗) > 0, λ2(δ

∗) > 0, λ1(μ2) < 0, λ2(μ1) < 0, then px
i > 0, i = 1,2 and

px
1 + px

2 = 1 where

px
i = Px

{
U(ω) = {μi} and lim

t→∞
lnXj(t)

t
= λj (μi), j ∈ {1,2} \ {i}

}
.

REMARK 2.4. Our methods can also be used to study the simple food chain

dX1(t) = X1(t)
(
a10 − a11X1(t) − a12X2(t)

)
dt + X1(t) dE1(t),

dX2(t) = X2(t)
(−a20 + a21X1(t) − a22X2(t) − a23X3(t)

)
dt

+ X2(t) dE2(t),

...

dXn−1(t) = Xn−1(t)
(−an−1,0 + an−1,n−2Xn−2(t)

− an−1,n−1Xn−1(t) − an−1,nXn

)
dt

+ Xn−1(t) dEn−1(t),

dXn(t) = Xn(t)
(−an0 + an,n−1Xn−1(t) − annXn(t)

)
dt

+ Xn(t) dEn(t).

(2.9)
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In this model, X1 describes a prey species, which is at the bottom of the food
chain. The next n − 1 species are predators. Species 1 has a per-capita growth rate
a10 > 0 and its members compete for resources according to the intracompetition
rate a11 > 0. Predator species j has a death rate −aj0 < 0, preys upon species j −1
at rate aj,j−1 > 0, competes with its own members at rate ajj > 0 and is preyed
upon by predator j + 1 at rate aj,j+1 > 0. The last species, Xn, is considered to
be the apex predator of the food chain. Using Theorems 1.1, 1.2 and 1.3, together
with some linear algebra, we can have a sharp classification for the persistence and
extinction of each species in the system (2.9). A detailed analysis of this can be
found in Hening and Nguyen (2017a, 2017b).

3. Invariant measures, Lyapunov exponents and log-Laplace transforms.
In this section, we explore some of the properties of the SDE (1.1). These will be
used in later sections in order to prove the main results. In view of (1.2), there is
an M > 0 such that

(3.1)

[∑
i cixifi(x)

1 + c�x
− 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

+ γb

(
1 +∑

i

(∣∣fi(x)
∣∣+ g2

i (x)
))]

< 0

if ‖x‖ ≥ M . Since ∣∣gi(x)gj (x)σij

∣∣≤ 1

2
|σij |(∣∣gi(x)

∣∣2 + ∣∣gj (x)
∣∣2)

we can find δ0 ∈ (0,
γb

2 ∧ 1) such that

(3.2) 3δ0
∑
i,j

∣∣gi(x)gj (x)σij

∣∣+ δ0
∑
i

g2
i (x) ≤ γb

∑
i

g2
i (x), x ∈ R

n+.

By (3.1) and (3.2), we have

(3.3)

∑
i cixifi(x)

1 + c�x
− 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

+ γb + δ0
∑
i

(∣∣fi(x)
∣∣+ g2

i (x)
)

+ 3δ0
∑
i,j

∣∣gi(x)gj (x)σij

∣∣< 0 for all ‖x‖ ≥ M.

For p = (p1, . . . , pn) ∈ R
n,◦
+ , ‖p‖ ≤ δ0, define the function V :Rn,◦

+ →R+ by

(3.4) V (x) := 1 + c�x∏
i x

pi

i

.
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Using (3.3), one can define

(3.5)

H := sup
x∈Rn+

{∑
i cixifi(x)

1 + c�x
− 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

+ γb + δ0
∑
i

(∣∣fi(x)
∣∣+ g2

i (x)
)+ 3δ0

∑
i,j

∣∣gi(x)gj (x)σij

∣∣}
< ∞.

LEMMA 3.1. For any x ∈ R
n+, there exists a pathwise unique strong solution

(X(t)) to (1.1) with initial value X(0) = x. Let I ⊂ {1, . . . , n} and x ∈ R
I,◦
+ where

R
I,◦
+ = {

x ∈ R
n+ : xi = 0 if i /∈ I and xi > 0 if i ∈ I

}
.

The solution (X(t)) with initial value x will stay forever in R
I,◦
+ with probability 1.

Moreover, for x ∈ R
n,◦
+ and V defined by (3.4), we have

(3.6) ExV
δ0
(
X(t)

)≤ exp(δ0Ht)V δ0(x).

LEMMA 3.2. There are H1,H2 > 0 such that for any x ∈R
n+, t > 0

(3.7) Ex
(
1 + c�X(t)

)δ0 ≤ H1 + (
1 + c�x

)δ0e−δ0γbt

and

Ex

∫ t

0

(
1 + c�X(s)

)δ0

[
1 +∑

i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2)]ds

≤ H2
((

1 + c�x
)δ0 + t

)
.

(3.8)

Moreover, the solution process (X(t)) is a Feller process on R
n+.

REMARK 3.1. There are different possible definitions of “Feller” in the liter-
ature. What we mean by Feller is that the semigroup (Tt )t≥0 of the process maps
the set of bounded continuous functions Cb(R

n+) into itself, that is,

Tt

(
Cb

(
R

n+
))⊂ Cb

(
R

n+
)
, t ≥ 0.

Define the family of measures:

�x
t (·) := 1

t

∫ t

0
Px
{
X(s) ∈ ·}ds, x ∈ R

n+, t > 0.

LEMMA 3.3. Let μ be an invariant probability measure of X. Then∫
R

n+

(
1 + c�x

)δ0

(
1 +∑

i

(∣∣fi(x)
∣∣+ ∣∣gi(x)

∣∣2))μ(dx) ≤ H2
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and ∫
R

n+

(∑
i cixifi(x)

1 + c�x
− 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

)
μ(dx) = 0.

LEMMA 3.4. Suppose the following:

• The sequences (xk)k∈N ⊂ R
n+, (Tk)k∈N ⊂ R+ are such that ‖xk‖ ≤ M , Tk > 1

for all k ∈ N and limk→∞ Tk = ∞.
• The sequence (�

xk

Tk
)k∈N converges weakly to an invariant probability mea-

sure π .
• The function h : Rn+ → R is any continuous function satisfying |h(x)| ≤

Kh(1 + c�x)δ(1 +∑i(|fi(x)| + |gi(x)|2)), x ∈R
n+, for some Kh ≥ 0, δ < δ0.

Then one has

lim
k→∞

∫
R

n+
h(x)�

xk

Tk
(dx) =

∫
R

n+
h(x)π(dx).

LEMMA 3.5. Let Y be a random variable, θ0 > 0 a constant, and suppose

E exp(θ0Y) +E exp(−θ0Y) ≤ K1.

Then the log-Laplace transform φ(θ) = lnE exp(θY ) is twice differentiable on
[0,

θ0
2 ) and

dφ

dθ
(0) = EY,

0 ≤ d2φ

dθ2 (θ) ≤ K2, θ ∈
[
0,

θ0

2

)
for some K2 > 0 depending only on K1.

REMARK 3.2. We note that we got the very nice idea of using the log-Laplace
transform in the proofs of our persistence results from the manuscript Benaïm
(2014).

To proceed, let us recall some technical concepts and results needed to prove
the main theorem. Let � = (�0,�1, . . . ) be a discrete-time Markov chain on a
general state space (E,E), where E is a countably generated σ -algebra. Denote
by P the Markov transition kernel for �. If there is a nontrivial σ -finite positive
measure ϕ on (E,E), such that for any A ∈ E satisfying ϕ(A) > 0 we have

∞∑
n=1

Pn(x,A) > 0, x ∈ E,

where Pn is the n-step transition kernel of �, then the Markov chain � is called
irreducible. It can be shown [see Nummelin (1984)] that if � is irreducible, then
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there exists a positive integer d and disjoint subsets E0, . . . ,Ed−1 such that for all
i = 0, . . . , d − 1 and all x ∈ Ei , we have

P(x,Ej ) = 1 where j = i + 1 (mod d).

The smallest positive integer d satisfying the above is called the period of �. An
aperiodic Markov chain is a chain with period d = 1.

A set C ∈ E is called petite, if there exists a nonnegative sequence (an)n∈N with∑∞
n=1 an = 1 and a nontrivial positive measure ν on (E,E) such that

∞∑
n=1

anPn(x,A) ≥ ν(A), x ∈ C,A ∈ E .

We have the following lemma.

LEMMA 3.6. For any T > 0, the Markov chain {X(kT ), k ∈ N} on R
n,◦
+ is

irreducible and aperiodic. Moreover, every compact set K ⊂ R
n,◦
+ is petite.

The proofs of the above lemmas are collected in the Appendix.

4. Persistence. This section is devoted to finding conditions under which X
converges to a unique invariant probability measure supported on R

n,◦
+ .

It is shown in Schreiber, Benaïm and Atchadé [(2011), Lemma 4], by the min-
max principle that Assumption 1.2 is equivalent to the existence of p > 0 such
that

(4.1) min
μ∈M

{∑
i

piλi(μ)

}
:= 2ρ∗ > 0.

By rescaling if necessary, we can assume that ‖p‖ = δ0.

LEMMA 4.1. Suppose that Assumption 1.2 holds. Let p and ρ∗ be as in (4.1).
There exists a T ∗ > 0 such that, for any T > T ∗, x ∈ ∂Rn+,‖x‖ ≤ M one has

(4.2)
1

T

∫ T

0
Ex�

(
X(t)

)
dt ≤ −ρ∗,

where

(4.3)

�(x) :=
∑

i cixifi(x)

1 + c�x
− 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

−∑
i

pi

(
fi(x) − σiig

2
i (x)

2

)
.
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PROOF. We argue by contradiction. Suppose that the conclusion of this lemma
is not true. Then we can find xk ∈ ∂Rn+,‖xk‖ ≤ M and Tk > 0, limk→∞ Tk = ∞
such that

(4.4)
1

T k

∫ Tk

0
Exk

�
(
X(t)

)
dt > −ρ∗, k ∈ N.

Note that

�
xk
t (dy) := 1

t

∫ t

0
Pxk

{
X(s) ∈ dy

}
ds.

By Tonelli’s theorem, we get that

(4.5)

∫
R

n+

(
1 + c�y

)δ0�
xk
t (dy) =

∫
R

n+

(
1 + c�y

)δ0 1

t

∫ t

0
Pxk

{
X(s) ∈ dy

}
ds

= 1

t

∫ t

0
Exk

(
1 + c�X(s)

)δ0 ds.

It follows from Lemma 3.2 that

sup
k∈N,t≥0

∫
R

n+

(
1 + c�y

)δ0�
xk
t (dy) = sup

k∈N,t≥0

1

t

∫ t

0
Exk

(
1 + c�X(s)

)δ0 ds

≤ sup
‖x‖≤M,t≥0

1

t

∫ t

0

(
H1 + (1 + c�x

)δ0e−δ0γbs
)
ds(4.6)

< ∞.

This implies that the family (�
xk

Tk
)k∈N is tight in R

n+. As a result, (�
xk

Tk
)k∈N has

a convergent subsequence in the weak∗-topology. Without loss of generality, we
can suppose that {�xk

Tk
: k ∈ N} is a convergent sequence in the weak∗ topology. It

can be shown (by Ethier and Kurtz [(2009), Theorem 9.9], or by Evans, Hening
and Schreiber [(2015), Proposition 6.4]), that its limit is an invariant probability
measure μ of X. As a consequence of Lemma 3.4,

lim
k→∞

1

Tk

∫ Tk

0
Exk

�
(
X(t)

)
dt =

∫
R

n+
�(x)μ(dx).

In view of Lemma 3.3 and (4.1), we get that

lim
k→∞

1

Tk

∫ Tk

0
Exk

�
(
X(t)

)
dt = −

n∑
i=1

piλi(μ) ≤ −2ρ∗,

which contradicts (4.4). �

From now on, let n∗ ∈ N be such that

(4.7) γb

(
n∗ − 1

)
> H.
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PROPOSITION 4.1. Let V (·) be defined by (3.4) with p and ρ∗ satisfying (4.1)
and T ∗ > 0 satisfying the assumptions of Lemma 4.1. There are θ ∈ (0,

δ0
2 ), Kθ >

0, such that for any T ∈ [T ∗, n∗T ∗] and x ∈ R
n,◦
+ ,‖x‖ ≤ M ,

ExV
θ (X(T )

)≤ V θ(x) exp
(
−1

2
θρ∗T

)
+ Kθ.

PROOF. We have from Itô’s formula that

(4.8) lnV
(
X(T )

)= lnV
(
X(0)

)+ G(T ),

where

(4.9)

G(T ) =
∫ T

0
�
(
X(t)

)
dt

+
∫ T

0

[∑
i ciXi(t)gi(X(t)) dEi(t)

1 + c�X(t)
−∑

i

pigi

(
X(t)

)
dEi(t)

]
.

In view of (4.8) and (3.6),

(4.10) Ex exp
(
δ0G(T )

)= ExV
δ0(X(T ))

V δ0(x)
≤ exp(δ0HT ).

Let V̂ (·) : Rn,◦
+ �→R+ be defined by V̂ (x) = (1 + c�x)

∏n
i=1 x

pi

i . We can use (3.3)
and some of the estimates from the proof of Lemma 3.1 to obtain

(4.11)
ExV̂

δ0(X(T ))

V̂ δ0(x)
≤ exp(δ0HT ).

Note that

(4.12) V −δ0(x) = V̂ δ0(x)
(
1 + c�x

)−2δ0 ≤ V̂ δ0(x).

Applying (4.12) to (4.11) yields

(4.13)

Ex exp
(−δ0G(T )

)= ExV
−δ0(X(T ))

V −δ0(x)

≤ ExV̂
δ0(X(T ))

V −δ0(x)

≤ ExV̂
δ0(X(T ))

V̂ δ0(x)

(
1 + c�x

)2δ0

≤ (1 + c�x
)2δ0 exp(δ0HT ).

By (4.10) and (4.13), the assumptions of Lemma 3.5 hold for G(T ). Therefore,
there is K̃2 ≥ 0 such that

0 ≤ d2φ̃x,T

dθ2 (θ) ≤ K̃2 for all θ ∈
[
0,

δ0

2

)
,x ∈ R

n,◦
+ ,‖x‖ ≤ M,T ∈ [T ∗, n∗T ∗],
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where

φ̃x,T (θ) = lnEx exp
(
θG(T )

)
.

In view of Lemma 4.1 and the Feller property of (X(t)), there exists a δ̃ > 0 such
that if ‖x‖ ≤ M , dist(x, ∂Rn+) < δ̃ and T ∈ [T ∗, n∗T ∗] then

(4.14)

ExG(T ) =
∫ T

0
Ex

(∑
i ciXi(t)fi(X(t))

1 + c�X(t)

−
∑

i,j cicjXi(t)Xj (t)gi(X(t))gj (X(t))σij

2(1 + c�X(t))2

)
dt

−
n∑

i=1

pi

∫ T

0
Ex

(
fi

(
X(t)

)− σiig
2
i (X(t))

2

)
dt

≤ −3

4
ρ∗T .

Another application of Lemma 3.5 yields

dφ̃x,T

dθ
(0) = ExG(T ) ≤ −3

4
ρ∗T for x ∈R

n,◦
+ ,‖x‖ ≤ M,T ∈ [T ∗, n∗T ∗].

By a Taylor expansion around θ = 0, for ‖x‖ ≤ M,dist(x, ∂Rn+) < δ̃, T ∈
[T ∗, n∗T ∗] and θ ∈ [0,

δ0
2 ) we have

φ̃x,T (θ) ≤ −3

4
ρ∗T θ + θ2K̃2.

If we choose any θ ∈ (0,
δ0
2 ) satisfying θ <

ρ∗T ∗
4K̃2

, we obtain that

φ̃x,T (θ) ≤ −1

2
ρ∗T θ

(4.15)
for all x ∈ R

n,◦,‖x‖ ≤ M,dist
(
x, ∂Rn+

)
< δ̃,T ∈ [T ∗, n∗T ∗].

In light of (4.15), we have for such θ and ‖x‖ ≤ M,0 < dist(x, ∂Rn+) < δ̃, T ∈
[T ∗, n∗T ∗] that

(4.16)
ExV

θ(X(T ))

V θ (x)
= exp φ̃x,T (θ) ≤ exp

(
−1

2
ρ∗T θ

)
.

In view of (3.6), we have for x satisfying ‖x‖ ≤ M,dist(x, ∂Rn+) ≥ δ̃ and T ∈
[T ∗, n∗T ∗] that

(4.17) ExV
θ (X(T )

)≤ exp
(
θn∗T ∗H

)
sup

‖x‖≤M,dist(x,∂Rn+)≥δ̃

{
V (x)

}=: Kθ < ∞.

The desired result follows from (4.16) and (4.17). �
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THEOREM 4.1. Suppose that Assumptions 1.1 and 1.2 hold. Let θ be as in
Proposition 4.1, n∗ as in (4.7). There are κ = κ(θ, T ∗) ∈ (0,1), K̃ = K̃(θ, T ∗) > 0
such that

(4.18) ExV
θ (X(n∗T ∗))≤ κV θ(x) + K̃ for all x ∈ R

n,◦
+ .

As a result, X is strongly persistent. Furthermore, the convergence of its transition
probability in total variation to its unique probability measure π∗ on R

n,◦
+ is expo-

nentially fast. For any initial value x ∈ R
n,◦
+ and any π∗-integrable function f , we

have

(4.19) Px

{
lim

T →∞
1

T

∫ T

0
f
(
X(t)

)
dt =

∫
R

n,◦
+

f (u)π∗(du)

}
= 1.

PROOF. By direct calculation and using (3.3), we have

(4.20) LV θ(x) ≤ −θγbV
θ (x) if ‖x‖ ≥ M.

Define

(4.21) τ = inf
{
t ≥ 0 : ∥∥X(t)

∥∥≤ M
}
.

In view of (4.20), we can obtain from Dynkin’s formula that

Ex
[
exp

(
θγb

(
τ ∧ n∗T ∗))V θ (X(τ ∧ n∗T ∗))]

≤ V θ(x) +Ex

∫ τ∧n∗T ∗

0
exp(θγbs)

[
LV θ (X(s)

)+ θγbV
θ (X(s)

)]
ds

≤ V θ(x).

Thus,

(4.22)

V θ(x) ≥ Ex
[
exp

(
θγb

(
τ ∧ n∗T ∗))V θ (X(τ ∧ n∗T ∗))]

= Ex
[
1{τ≤(n∗−1)T ∗} exp

(
θγb

(
τ ∧ n∗T ∗))V θ (X(τ ∧ n∗T ∗))]

+Ex
[
1{(n∗−1)T ∗<τ<n∗T ∗} exp

(
θγb

(
τ ∧ n∗T ∗))V θ (X(τ ∧ n∗T ∗))]

+Ex
[
1{τ≥n∗T ∗} exp

(
θγb

(
τ ∧ n∗T ∗))V θ (X(τ ∧ n∗T ∗))]

≥ Ex
[
1{τ≤(n∗−1)T ∗}V θ (X(τ )

)]
+ exp

(
θγb

(
n∗ − 1

)
T ∗)

Ex
[
1{(n∗−1)T ∗<τ<n∗T ∗}V θ (X(τ )

)]
+ exp

(
θγbn

∗T ∗)
Ex
[
1{τ≥n∗T ∗}V θ (X(n∗T ∗))].

By the strong Markov property of (X(t)) and Proposition 4.1, we obtain

(4.23)

Ex
[
1{τ≤(n∗−1)T ∗}V θ (X(n∗T ∗))]

≤ Ex
[
1{τ≤(n∗−1)T ∗}

[
Kθ + e− 1

2 θp∗(n∗T ∗−τ)V θ (X(τ )
)]]

≤ Kθ + exp
(
−1

2
θρ∗T ∗

)
Ex
[
1{τ≤(n∗−1)T ∗}V θ (X(τ )

)]
.
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By making use again of the strong Markov property of (X(t)) and (3.6), we get

(4.24)

Ex
[
1{(n∗−1)T ∗<τ<n∗T ∗}V θ (X(n∗T ∗))]

≤ Ex
[
1{(n∗−1)T ∗<τ<n∗T ∗}eθH(n∗T ∗−τ)V θ (X(τ )

)]
≤ exp

(
θHT ∗)

Ex
[
1{(n∗−1)T ∗<τ<n∗T ∗}

(
V θ (X(τ )

))]
.

Applying (4.23) and (4.24) to (4.22) yields

(4.25)

V θ(x) ≥ Ex
[
1{τ≤(n∗−1)T ∗}V θ (X(τ )

)]
+ exp

(
θγb

(
n∗ − 1

)
T ∗)

Ex
[
1{(n∗−1)T ∗<τ<n∗T ∗}V θ (X(τ )

)]
+ exp

(
θγbn

∗T ∗)
Ex
[
1{τ≥n∗T ∗}V θ (X(n∗T ∗))]

≥ exp
(

1

2
θρ∗T ∗

)
Ex
[
1{τ≤(n∗−1)T ∗}V θ (X(n∗T ∗))]

− exp
(

1

2
θρ∗T ∗

)
Kθ + exp

(−θHT ∗) exp
(
θγb

(
n∗ − 1

)
T ∗)

×Ex
[
1{(n∗−1)T ∗<τ<n∗T ∗}V θ (X(n∗T ∗))]

+ exp
(
θγbn

∗T ∗)
Ex
[
1{τ≥n∗T ∗}V θ (X(n∗T ∗))]

≥ exp
(
mθT ∗)

ExV
θ (X(n∗T ∗))− Kθ exp

(
1

2
θρ∗T ∗

)
,

where m = min{1
2ρ∗, γbn

∗, γb(n
∗ − 1) − H } > 0 by (4.7). The proof of (4.18) is

complete by taking κ = exp(−mθT ∗) and

K̃ = Kθ exp
(

1

2
θρ∗T ∗

)
exp

(−mθT ∗).
By Lemma 3.6, the Markov chain {X(kn∗T ∗) : k ∈ N} is irreducible and aperiodic.
Moreover, each compact subset of Rn,◦

+ is petite. Applying the second corollary of
Meyn and Tweedie [(1992), Theorem 6.2], we deduce from (4.25) that

(4.26)
∥∥P (kn∗T ∗,x, ·)− π∗(·)∥∥TV ≤ Cxr

k,

where π∗ is an invariant probability measure of {X(kn∗T ∗), k ∈ N} on R
n,◦
+ , for

some r ∈ (0,1) and Cx > 0 a constant depending on x ∈ R
n,◦
+ .

On the other hand, it follows from (4.25) and Meyn and Tweedie [(1992), The-
orem 6.2], that for any compact set K ⊂ R

n,◦
+ , we have Exτ

∗
K < ∞ where τ ∗

K is the
first time the Markov chain {X(kn∗T ∗), k ∈ N} enters K . Thus, the process X is a
positive recurrent diffusion, or equivalently, X has a unique invariant probability
measure on R

n,◦
+ [see, e.g., Khasminskii (2012), Chapter 4]. Because of (4.26), the

unique invariant probability measure of the process X must be π∗. Moreover, it is
well known that ‖P(t,x, ·) − π∗(·)‖TV is decreasing in t (it can be shown easily
using the Kolmogorov–Chapman equation). We therefore obtain an exponential
upper bound for ‖P(t,x, ·) − π∗(·)‖TV. �
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5. Extinction. This section is devoted to the study of conditions under which
some of the species will go extinct with strictly positive probability.

LEMMA 5.1. For any μ ∈ M and i ∈ Iμ, we have λi(μ) = 0.

PROOF. In view of Itô’s formula,

lnXi(t)

t
= lnXi(0)

t
+ 1

t

∫ t

0

[
fi

(
X(s)

)− g2
i (X(s))σii

2

]
ds + 1

t

∫ t

0
gi

(
X(s)

)
dEi(s).

In the same manner as in the second part of the proof of Lemma 3.3, we can show
that if X(0) = x0 ∈ R

μ,◦
+ and i ∈ Iμ, then

lim
t→∞

1

t

∫ t

0

[
fi

(
X(s)

)− g2
i (X(s))σii

2

]
ds = λi(μ) Px0-a.s.

and

lim
t→∞

1

t

∫ t

0
gi

(
X(s)

)
dEi(s) = 0 Px0-a.s.

Consequently,

lim
t→∞

lnXi(t)

t
= λi(μ) Px0-a.s.

On the other hand, because the diffusion is nondegenerate, and the process X has
an ergodic invariant probability measure on R

μ,◦
+ , it follows from Khasminskii

(1960) that X is positive recurrent on R
μ,◦
+ . If λi(μ) 
= 0 for some i ∈ Iμ, then

with probability 1 we have that as t → ∞ either Xi(t) → 0 [if λi(μ) < 0] or
Xi(t) → ∞ [if λi(μ) > 0]. This contradicts the fact that X is positive recurrent on
R

μ,◦
+ . As a result, λi(μ) = 0 for i ∈ Iμ. �

Condition (1.7) is equivalent to the existence of 0 < p̂i < δ0, i ∈ Iμ such that
for any ν ∈Mμ, we have ∑

i∈Iμ

p̂iλi(ν) > 0.

Thus, there is p̌ ∈ (0, δ0) sufficiently small such that

(5.1)
∑
i∈Iμ

p̂iλi(ν) − p̌ max
i∈I c

μ

{
λi(ν)

}
> 0 for any ν ∈ Mμ.

In view of (5.1), (1.6) and Lemma 5.1, there is ρe > 0 such that for any ν ∈Mμ ∪
{μ},
(5.2)

∑
i∈Iμ

p̂iλi(ν) − p̌ max
i∈I c

μ

{
λi(ν)

}
> 3ρe.
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LEMMA 5.2. Suppose that Assumption 1.3 holds. Let M be as in (3.1), H as
in (3.5) and p̂i , p̌, ρe as in (5.2). Let ne ∈ N such that γb(ne − 1) > H . There are
Te ≥ 0, δe > 0 such that, for any T ∈ [Te, neTe], ‖x‖ ≤ M,xi < δe, i ∈ I c

μ, we have

1

T

∫ T

0
Ex

(∑
i ciXi(t)fi(X(t))

1 + c�X(t)
−
∑

i,j cicjXi(t)Xj (t)gi(X(t))gj (X(t))σij

2(1 + c�X(t))2

)
dt

− ∑
i∈Iμ

p̂i

1

T

∫ T

0
Ex

(
fi

(
X(t)

)− σiig
2
i (X(t))

2

)
dt

(5.3)

+ p̌ max
i∈I c

μ

{
1

T

∫ T

0
Ex

(
fi

(
X(t)

)− σiig
2
i (X(t))

2

)
dt

}
≤ −ρe.

PROOF. Analogous to Lemma 4.1, using (5.2), one can show there exists a
Te > 0 such that for any T > Te,x ∈ R

μ
+,‖x‖ ≤ M , we have

1

T

∫ T

0
Ex

(∑
i ciXi(t)fi(X(t))

1 + c�X(t)
−
∑

i,j cicjXi(t)Xj (t)gi(X(t))gj (X(t))σij

2(1 + c�X(t))2

)
dt

− ∑
i∈Iμ

p̂i

1

T

∫ T

0
Ex

(
fi

(
X(t)

)− σiig
2
i (X(t))

2

)
dt

(5.4)

+ p̌ max
i∈I c

μ

{
1

T

∫ T

0
Ex

(
fi

(
X(t)

)− σiig
2
i (X(t))

2

)
dt

}
≤ −2ρe.

By the Feller property of (X(t)) and compactness of the set {x ∈ R
μ
+,‖x‖ ≤ M},

there is a δe > 0 such that for any T ∈ [Te, neTe], ‖x‖ ≤ M,xi < δe, i ∈ I c
μ, the

estimate (5.3) holds. �

PROPOSITION 5.1. Suppose that Assumption 1.3 holds. Let δ0 > 0 be as in
(3.2). There is a θ ∈ (0, δ0) such that for any T ∈ [Te, neTe] and x ∈ R

n,◦
+ satisfying

‖x‖ ≤ M , xi < δe, i ∈ I c
μ one has

ExUθ

(
X(T )

)≤ exp
(
−1

2
θρeT

)
Uθ(x),

where M,Te, p̂i, p̌, δe, ne are as in Lemma 5.2 and

Uθ(x) = ∑
i∈I c

μ

[(
1 + c�x

) x
p̌
i∏

j∈Iμ
x

p̂j

j

]θ
, x ∈ R

n,◦
+ .
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PROOF. For i ∈ I c
μ, let Ui(x) = (1+c�x)

x
p̌
i∏

j∈Iμ
x

p̂j
j

. Similar to Proposition 4.1,

by making use of Lemma 5.2, one can find a θ > 0 such that for T ∈ [Te, neTe],
x ∈ R

n,◦
+ with ‖x‖ ≤ M , and xi < δe we have

EUθ
i

(
X(T )

)≤ exp
(
−1

2
θρeT

)
Uθ

i (x).

The proof is complete by noting that

Uθ(x) = ∑
i∈I c

μ

Uθ
i (x).

�

LEMMA 5.3. Let H be defined by (3.5). For θ ∈ [0, δ0], we have

ExUθ

(
X(t)

)≤ exp(θHt)Uθ(x), x ∈ R
n,◦
+ .

PROOF. By the arguments from the proof of (3.6), for θ ≤ δ0, i ∈ I c
μ we have

ExU
θ
i

(
X(t)

)≤ exp(θHt)Uθ
i (x), x ∈ R

n,◦
+ .

From this estimate, we can take the sum over I c
μ to obtain the desired result. �

REMARK 5.1. It is key to note that the inequalities (A.3) and (A.4) hold if
|pi | < δ0 no matter if the pi’s are negative or positive. This then allows us to have
the same kind of estimates for Uθ and Vθ .

THEOREM 5.1. Under Assumptions 1.1 and 1.3, for any δ < δ0 and any x ∈
R

n,◦
+ we have

(5.5) lim
t→∞Ex

n∧
i=1

Xδ
i (t) = 0,

where
∧n

i=1 ai = mini=1,...,n{ai}.

PROOF. Just as in (4.20), we have

(5.6) LUθ(x) ≤ −θγbUθ(x) if ‖x‖ ≥ M.

Let

ς := δ
p̌θ
e

Cθ
U

,

CU := sup
{∏

i∈Iμ
x

p̂i

i

1 + c�x
: x ∈ R

n,◦
+
}

< ∞,
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and

ξ := inf
{
t ≥ 0 : Uθ (X(t)

)≥ ς
}
.

Clearly, if Uθ(x) < ς , then ξ > 0 and for any i ∈ I c
μ, we get

(5.7) Xi(t) ≤ δe, t ∈ [0, ξ).

Let

Ũθ (x) := ς ∧ Uθ(x).

We have from the concavity of x �→ x ∧ ς that

ExŨθ

(
X(T )

)≤ ς ∧EUθ

(
X(T )

)
.

Let τ be defined by (4.21). By (5.6) and Dynkin’s formula, we have that

Ex
[
exp

(
θγb(τ ∧ ξ ∧ neTe)

)
Uθ

(
X
(
θγb(τ ∧ ξ ∧ neTe)

))]
≤ Uθ(x) +Ex

∫ θγb(τ∧ξ∧neTe)

0
exp(θγbs)

[
LUθ

(
X(s)

)+ θγbUθ

(
X(s)

)]
ds

≤ Uθ(x).

As a result,

(5.8)

Uθ(x) ≥ Ex
[
exp

(
θγb(τ ∧ ξ ∧ neTe)

)
Uθ

(
X(τ ∧ ξ ∧ neTe)

)]
≥ Ex

[
1{τ∧ξ∧(ne−1)Te=τ }Uθ

(
X(τ )

)]
+Ex

[
1{τ∧ξ∧(ne−1)Te=ξ}Uθ

(
X(ξ)

)]
+ exp

(
θγb(ne − 1)Te

)
Ex
[
1{(ne−1)Te<τ∧ξ<neTe}Uθ

(
X(τ ∧ ξ)

)]
+ exp(θγbneTe)Ex

[
1{τ∧ξ≥neTe}Uθ

(
X(neTe)

)]
.

By the strong Markov property of (X(t)) and Proposition 5.1 [which we can use
because of (5.7)],

(5.9)

Ex
[
1{τ∧ξ∧(ne−1)Te=τ }Uθ

(
X(neTe)

)]
≤ Ex

[
1{τ∧ξ∧(ne−1)Te=τ } exp

(
−1

2
θρe(neTe − τ)

)
Uθ

(
X(τ )

)]
≤ Ex

[
1{τ∧ξ∧(ne−1)Te=τ }Uθ

(
X(τ )

)]
.

Similarly, by the strong Markov property of (X(t)) and Lemma 5.3, we obtain

(5.10)

Ex
[
1{(ne−1)Te<τ∧ξ<neTe}Uθ

(
X(neTe)

)]
≤ Ex

[
1{(ne−1)Te<τ∧ξ<neTe} exp

(
θH(neTe − τ ∧ ξ)

)
Uθ

(
X(τ ∧ ξ)

)]
≤ exp(θHTe)Ex

[
1{(ne−1)Te<τ∧ξ<neTe}Uθ

(
X(τ ∧ ξ)

)]
.
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If Uθ(x) < ς , then applying (5.9), (5.10) and the inequality Ũθ (X(neTe)) ≤
Uθ(X(neTe ∧ ξ)) to (5.8) yields

(5.11)

Ũθ (x) = Uθ(x)

≥ Ex
[
1{τ∧ξ∧(ne−1)Te=τ }Uθ

(
X(τ )

)]
+Ex

[
1{τ∧ξ∧(ne−1)Te=ξ}Uθ

(
X(ξ)

)]
+ exp

(
θγb(ne − 1)Te

)
Ex
[
1{(ne−1)Te<τ∧ξ<neT }Uθ

(
X(τ ∧ ξ)

)]
+ exp(θγbneTe)Ex

[
1{τ∧ξ≥neTe}Uθ

(
X(neTe)

)]
≥ Ex

[
1{τ∧ξ∧(ne−1)Te=τ }Uθ

(
X(neTe)

)]
+Ex

[
1{τ∧ξ∧(ne−1)Te=ξ}Ũθ

(
X(neTe)

)]
+ exp

(
θγb(ne − 1)Te − θHTe

)
×Ex

[
1{(ne−1)Te<τ∧ξ<neTe}Uθ

(
X(neTe)

)]
+ exp(θγbneTe)Ex

[
1{τ∧ξ≥neTe}Uθ

(
X(neTe)

)]
≥ ExŨθ

(
X(neTe)

) (
since Ũθ (·) ≤ Uθ(·)).

Clearly, if Uθ(x) ≥ ς then

(5.12) ExŨθ

(
X(neTe)

)≤ ς = Ũθ (x).

As a result of (5.11), (5.12) and the Markov property of (X(t)), the sequence
{Y(k) : k ∈ N} where Y(k) := Ũθ (X(kneTe)) is a supermartingale. For λ ∈
(0, ς), ε ∈ (0,1), let ζλ := inf{k ∈ N : Y(k) ≥ λ}. If Uθ(x) ≤ λε, we have

(5.13) ExY(k ∧ ζλ) ≤ ExY(0) = Uθ(x) ≤ λε for all k ∈N.

Subsequently, (5.13) combined with the Markov inequality yields

Px{ζλ < k} ≤ λ−1
ExY(k ∧ ζλ) ≤ ε, k ∈N,Uθ (x) ≤ λε.

Next, let k → ∞ to get

(5.14) Px{ζλ < ∞} ≤ ε if Uθ(x) ≤ λε.

Note that for a given compact set K ⊂ R
n,◦
+ with nonempty interior, and for any

ε > 0 there exists a λ > 0 such that

(5.15) Px
{
Xi(t) ≥ λ for all t ∈ [0, neTe], i = 1, . . . , n

}
> 1 − ε, x ∈ K.

This standard fact can be shown in the same manner as (5.20), which is proved
later in Lemma 5.5.

We show by contradiction that (X(t)) is transient. If the process (X(t)) is re-
current in R

n,◦
+ , then X(t) will enter K in a finite time almost surely given that

X(0) ∈ R
n,◦
+ . By the strong Markov property and (5.15), we have

(5.16) Px
{
Xi(kneTe) ≥ λ, i = 1, . . . , n for some k ∈ N

}
> 1 − ε, x ∈ R

n,◦
+ .
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If x ∈R
n,◦
+ is such that Uθ(x) is sufficiently small, then both (5.14) and (5.16) hold,

a contradiction. Thus, X is transient.
As a result, any weak∗limit of PX(t,x, ·) is a probability measure concentrated

on ∂Rn+. Suppose that (5.5) does not hold. Then there exist x0 ∈ R
n,◦
+ , ε̂ > 0 and a

sequence tk ↑ ∞ as k → ∞ such that

(5.17)
∫
R

n+

(
n∧

i=1

xδ
i

)
PX(tk,x0, dx) > ε̂ for any k ∈ N.

Since the family {PX(t,x0, ·), t ≥ 0} is tight in R
n+ due to Lemma 3.2, there

exists a subsequence of {tk} (still denoted by {tk} for convenience) such that
PX(tk,x0, ·) converges weakly to π as k → ∞. Similar computations to the ones
from Lemma 3.4 show that and h(·) is a continuous function on R

n+ such that for
all x ∈ R

n+ we have |h(x)| < K(1 + ‖x‖)δ, δ < δ0 then h(·) is π -integrable and∫
R

n+ h(x)PX(tk,x0, dx) → ∫
R

n+ h(x)π(dx). Because π with supp(π) ⊂ ∂Rn+, we
have ∫

R
n+

(
n∧

i=1

xδ
i

)
π(dx) = 0

and (
n∧

i=1

xδ
i

)
≤ K

(
1 + ‖x‖)δ.

These facts imply

lim
k→∞

∫
R

n+

(
n∧

i=1

xδ
i

)
PX(tk,x0, dx) = 0,

which contradicts (5.17). As a result, (5.5) has to hold. �

To prove Theorem 1.3, we need the following lemmas.

LEMMA 5.4. Suppose that Assumption 1.4 is satisfied. Then there is a K̂ > 0
such that

Px

{
lim sup
t→∞

1

t

∫ t

0

(
1 + c�X(s)

)δ1

×
(

1 +∑
i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2))ds ≤ K̂

}
= 1, x ∈ R

n+.

Moreover,

(5.18) Px

{
lim

t→∞
1

t

∫ t

0

∑
i ciXi(s)gi(X(s))

1 + c�X(s)
dEi(s) = 0

}
= 1, x ∈ R

n+.
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LEMMA 5.5. Let Assumption 1.4 be satisfied. There is a K̂1 > 1 such that

(5.19) Px

{
lim inf
t→∞

1

t

∫ t

0
1{‖X(s)‖≤K̂1} ds ≥ 1

2

}
= 1, x ∈R

n+.

Moreover, for any ε1, ε2 > 0, there is a β > 0 such that for each i = 1, . . . , n,

(5.20) Px
{
Xi(t) > β,∀t ∈ [0, neTe]}> 1 − ε1 if x ∈ R

n+,‖x‖ ≤ K̂1, xi > ε2,

where ne, Te are as in Lemma 5.2.

LEMMA 5.6. Let Assumption 1.4 be satisfied and let �̃t (·) be the random
normalized occupation measure defined in Remark 1.7. Suppose we have a sample
path of X satisfying

lim sup
t→∞

1

t

∫ t

0

(
1 + c�X(s)

)δ1

(
1 +∑

i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2))ds ≤ K̂

and that there is a sequence (Tk)k∈N ⊂ R
n+ such that limk→∞ Tk = ∞ and

(�̃Tk
(·))k∈N converges weakly to an invariant probability measure π of X when

k → ∞. Then for this sample path, we have
∫
R

n+ h(x)�̃Tk
(dx) → ∫

R
n+ h(x)π(dx)

for any continuous function h : Rn+ → R satisfying |h(x)| < Kh(1 + c�x)δ ×
(1 +∑i (|fi(x)| + |gi(x)|2)),x ∈ R

n+, with Kh a positive constant and δ ∈ [0, δ1).

The proofs of Lemmas 5.4 and 5.5 are given in the Appendix while that of
Lemma 5.6 is almost the same as that of Lemma 3.4 and is left for the reader.

LEMMA 5.7. Let Assumption 1.4 be satisfied. For any initial condition X(0) =
x ∈ R

n+, the family {�̃t (·), t ≥ 1} is tight in R
n+, and its weak∗-limit set, denoted

by U = U(ω) is a family of invariant probability measures of X with probability 1.

PROOF. The tightness follows from Lemma 5.4. The property of the weak∗
limit set of normalized occupation measures was first proved in Schreiber, Benaïm
and Atchadé [(2011), Theorems 4, 5] for compact state spaces and then general-
ized to a locally compact state space in Evans, Hening and Schreiber (2015), The-
orem 4.2. Similar results for general Markov processes can be found in Benaïm
(2014). �

LEMMA 5.8. Suppose that Assumption 1.4 is satisfied. Let μ ∈ M1. For any
x ∈ R

n,◦
+ ,

Px
{
U(ω) ⊂ Conv

(
Mμ ∪ {μ})}= Px

{
U(ω) = {μ}}.

REMARK 5.2. Note that, since {U(ω) = {μ}} ⊂ {U(ω) ⊂ Conv(Mμ ∪ {μ})},
it would be equivalent to prove that {U(ω) ⊂ Conv(Mμ ∪ {μ})} = {U(ω) = {μ}}
Px-a.s. for all x ∈ R

n,◦
+ .
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PROOF OF LEMMA 5.8. Since μ satisfies Assumption 1.3, it follows from
(1.7) that, there are p

μ
i > 0, i ∈ Iμ such that

(5.21)
∑
i∈Iμ

p
μ
i λi(ν) > 0, ν ∈ Mμ.

As a result of Lemmas 3.3, 5.6 and 5.7,

Px

{
lim

t→∞
1

t

∫ t

0

[∑
i ciXi(s)fi(X(s))

1 + c�X(s)

− 1

2

∑
i,j cicjXi(s)Xj (s)gi(X(s))gj (X(s))

(1 + c�X(s))2

]
ds = 0

}
= 1.

(5.22)

In light of Itô’s formula, it follows from (5.18) and (5.22) that

Px

{
lim sup
t→∞

lnXi(t)

t
≤ 0, i = 1, . . . , n

}
≥ Px

{
lim sup
t→∞

ln(1 + c�X(t))

t
= 0

}
= 1, x ∈ R

n,◦
+ .

(5.23)

On the other hand, similar to (5.18), we have

(5.24) Px

{
lim

t→∞
1

t

∫ t

0
gi

(
X(s)

)
dEi(s) = 0, i = 1, . . . , n

}
= 1.

In view of (5.24) and (5.23), to prove the lemma, it suffices to show that if the
following properties:

(a) U(ω) ⊂ Conv(Mμ ∪ {μ});
(b)

(5.25) lim
t→∞

1

t

∫ t

0
gi

(
X(s)

)
dEi(s) = 0, i = 1, . . . , n;

(c)

(5.26) lim sup
t→∞

lnXi(t)

t
≤ 0, i = 1, . . . , n

hold then U(ω) = {μ}.
We argue by contradiction. Assume there is a sequence {tk} with limk→∞ tk =

∞ such that �̃tk (·) converges weakly to an invariant probability of the form π =
(1−ρ)π1 +ρμ where ρ ∈ (0,1] and π1 ∈ Conv(Mμ). It follows from Lemma 5.4
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and (5.21) that

(5.27)

lim
k→∞

1

tk

∑
i∈Iμ

p
μ
i

∫ tk

0

(
fi

(
X(s)

)− σiig
2
i (X(s))

2

)
ds

= ∑
i∈Iμ

p
μ
i λi(π)

= (1 − ρ)
∑
i∈Iμ

p
μ
i λi(π1) + ρ

∑
i∈Iμ

p
μ
i λi(μ)

= (1 − ρ)
∑
i∈Iμ

p
μ
i λi(π1) (due to Lemma 5.1)

> 0.

As a result of (5.25), (5.27) and Itô’s formula,

lim
k→∞

∑
i∈Iμ

p
μ
i

lnXi(tk)

tk

= lim
k→∞

1

tk

∑
i∈Iμ

p
μ
i

∫ tk

0

[(
fi

(
X(s)

)− σiig
2
i (X(s))

2

)
ds + gi

(
X(s)

)
dEi(s)

]

> 0

which contradicts (5.26). This completes the proof. �

LEMMA 5.9. Suppose that Assumption 1.4 is satisfied. Let μ ∈ M1. For any
k ∈N, ε > 0, there is a � > 0 such that

Px

{
U(ω) = {μ} and lim

t→∞
lnXi(t)

t
= λi(μ) < 0, i ∈ I c

μ

}
> 1 − ε, x ∈ Kk,�

μ ,

where

Kk,�
μ := {

x ∈R
n,◦
+ , k−1 ≤ xi ≤ k for i ∈ Iμ, xi < � for i ∈ I c

μ

}
.

PROOF. Let Ũ (x) be the function defined as in the proof of Theorem 5.1.
In view of Lemma 5.5, there is β > 0 such that

(5.28) Px

{
max
i∈I c

μ

{
Xi(t)

}
> β,∀t ∈ [0, neTe]

}
>

1

2
, x ∈ Hμ,

where

Hμ =
{
x ∈ R

n+ : ‖x‖ ≤ K̂1,max
i∈I c

μ

{xi} ≥ 1
}
.
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It can be seen that

(5.29) ν(Hμ) > 0 for ν ∈ M \ (Mμ ∪ {μ}).
By the definition of Ũ (·), there is � > 0 sufficiently small such that

(5.30) sup
x∈Kk,�

μ

{
Ũ (x)

}≤ ε

2
inf

y∈Rn,◦
+ ,xi≥β,i∈I c

μ

{
Ũ (y)

}
.

In view of (5.30), since {Y(j) := Ũθ (X(jneTe)) : j ∈ N} is a supermartingale,
similar to (5.14), we can obtain

(5.31) Px

{
max
i∈I c

μ

{
Xi(jneTe)

}
< β for all j ∈ N

}
> 1 − ε

2
if x ∈ Kk,�

μ .

Now, suppose that there is x ∈ Kk,�
μ such that

(5.32) Px

{
lim sup
t→∞

1

t

∫ t

0
1{X(s)∈Hμ} ds > 0

}
> ε.

Then

(5.33) Px{τHμ < ∞} > ε,

where τHμ = inf{t > 0 : X(t) ∈ Hμ}.
By the strong Markov property of {X(t) : t ∈ R+}, it follows from (5.28) and

(5.33) that

Px

(
{τHμ < ∞} ∩

{
max
i∈I c

μ

{
Xi(t)

}≥ β for t ∈ [τHμ, τHμ + neTe]
})

>
1

2
ε,

which contradicts (5.31). Thus, (5.32) does not hold, that is, we have

(5.34) Px

{
lim

t→∞
1

t

∫ t

0
1{X(s)∈Hμ} ds = 0

}
> 1 − ε, x ∈Kk,�

μ .

If for an ω ∈ �, and a sequence {tj } with limj→∞ tj = ∞, �̃tj (·) converges
weakly to an invariant probability of the form π = (1 − ρ)π1 + ρπ2 where
ρ ∈ (0,1] and π1 ∈ Conv(Mμ ∪{μ}), π2 ∈ Conv(M\ (Mμ ∪{μ})) then by (5.29)

lim sup
j→∞

1

tj

∫ tj

0
1{X(s)∈Hμ} ds ≥ π(Hμ) ≥ ρπ2(Hμ) > 0.

This inequality, combined with Lemma 5.7 and (5.34), implies that

Px
{
U(ω) ⊂ Conv

(
Mμ ∪ {μ})}> 1 − ε, x ∈ Kk,�

μ .

Lemma 5.8 and the above force

(5.35) Px
{
U(ω) = {μ}}> 1 − ε, x ∈Kk,�

μ .
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In view of Lemma 5.6 and (5.35), we have for x ∈ Kk,�
μ and for each i = 1, . . . , n

that

(5.36) Px

{
lim

t→∞
1

t

∫ t

0

(
fi

(
X(s)

)− σiig
2
i (X(s))

2

)
ds = λi(μ)

}
> 1 − ε.

The claim of this lemma follows from (5.36), (5.24) and an application of Itô’s
formula. �

THEOREM 5.2. Suppose that Assumptions 1.1, 1.4 and 1.5 are satisfied and
M1 
=∅. Then for any x ∈ R

n,◦
+

(5.37)
∑

μ∈M1

P μ
x = 1,

where for x ∈ R
n,◦
+ ,μ ∈M1

P μ
x := Px

{
U(ω) = {μ} and lim

t→∞
lnXi(t)

t
= λi(μ) < 0, i ∈ I c

μ

}
> 0.

PROOF. First, suppose that Assumption 1.5 is satisfied with nonempty M2.
Then there is q = (q1, . . . , qn) ∈ R

n,◦
+ such that ‖q‖ = 1 and

(5.38) max
ν∈M2

{∑
i

qiλi(ν)

}
> 0.

Using (5.38) and arguing by contradiction, similar to the argument from
Lemma 5.8, we can show that with probability 1, U(ω) is a subset of Conv(M) \
Conv(M2). In other words, each invariant probability π ∈ U(ω) has the form
π = (1 − ρ)π1 + ρπ2 where ρ ∈ [0,1),π1 ∈ Conv(M1),π2 ∈ Conv(M2). Let
k0 > 1 and for each μ ∈ M1 define

K0
μ = {

x ∈ R
μ
+ : xi ∧ x−1

i ≤ k0, i ∈ Iμ

}
.

By Lemma 5.9, there are k > k0 and � > 0 such that

(5.39) Px

{
lim

t→∞
lnXi(t)

t
= λi(μ) < 0, i ∈ I c

μ

}
> 1 − ε

for all μ ∈ M1 and x ∈ Kk,�
μ . Let ψ(·) : Rn+ → [0,1] be a continuous function

satisfying

ψ(x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 if x ∈ ⋃

μ∈M1

K0
μ,

0 if x ∈ R
n,◦
+ \

( ⋃
μ∈M1

Kk,�
μ

)
.
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Since π1(
⋃

μ∈M1 K0
μ) > 0 for any π1 ∈ Conv(M1) and U(ω) is a subset of

Conv(M) \ Conv(M2) with probability 1, then we have from Lemma 5.7 that

(5.40) Px

{
lim inf
t→∞

1

t

∫ t

0
ψ
(
X(s)

)
ds > 0

}
= 1, x ∈R

n,◦
+ .

Since ψ(x) = 0 if x ∈ R
n,◦
+ \ (

⋃
μ∈M1 Kk,�

μ ), we deduce from (5.40) that

(5.41) Px

{
lim inf
t→∞

1

t

∫ t

0
1{X(s)∈⋃

μ∈M1 Kk,�
μ } ds > 0

}
= 1, x ∈ R

n,◦
+ .

Thus, if X(0) ∈ R
n,◦
+ then {X(s)} will enter

⋃
μ∈M1 Kk,�

μ with probability 1. This
fact, combined with (5.39) and the strong Markov property of {X(s)}, implies that∑

μ∈M1

P μ
x > 1 − ε, x ∈ R

n,◦
+ ,

where

P μ
x = Px

{
U(ω) = {μ} and lim

t→∞
lnXi(t)

t
= λi(μ) < 0, i ∈ I c

μ

}
.

Letting ε → 0, we obtain (5.37). The positivity of P
μ
x follows from (5.39) and the

fact that {X(s)} will visit Kk,�
μ with a positive probability due to the nondegeneracy

of the diffusion.
Next, we consider the case when M1 
= ∅ and M2 = ∅. Then we claim that

M1 = {δ∗} where δ∗ be the Dirac measure concentrated on the origin 0. Indeed,
if M1 contains a measure μ with R

μ
+ 
= {0}, then δ∗ ∈ Mμ. Since μ satisfies

Assumption 1.3, in view of (1.7), δ∗ ∈ M2 which results in a contradiction. Thus,
M = M1 = {δ∗}. As a result, U(ω) = {δ∗} with probability 1. Then we can easily
deduce with probability 1 that

lim
t→∞

lnXi(t)

t
= λi

(
δ∗)= fi(0) − σiig

2
i (0)

2
< 0, i = 1, . . . , n

since δ∗ satisfies (1.6). �

APPENDIX A: PROOFS FOR LEMMAS IN SECTION 3

PROOF OF LEMMA 3.1. We restrict our proof for the existence and uniqueness
of the solution with initial value x ∈ R

n,◦
+ . If x ∈ R

I,◦
+ for any I ⊂ {1, . . . , n}, the

proof carries over. Let V (·) be defined by (3.4). Since ‖p‖ ≤ δ0 < 1, it is obvious
that

(A.1) lim
m→∞ inf

{
V (x) : xi ∨ x−1

i > m for some i = 1, . . . , n
}= ∞.
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Note that

LV δ0(x) = δ0V
δ0(x)

[∑
i cixifi(x)

1 + c�x
+ δ0 − 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

−∑
i

(
pifi(x) − pig

2
i (x)σii

2

)
+ δ0

2

∑
i,j

pipjσijgi(x)gj (x)(A.2)

− δ0
∑
i,j

cipixiσij gi(x)gj (x)

(1 + c�x)

]
.

Since ‖p‖ ≤ δ0, we have

(A.3)
∣∣∣∣∑

i

pifi(x)

∣∣∣∣≤ δ0
∑
i

∣∣fi(x)
∣∣

and

δ0

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2 +∑
i

pig
2
i (x)σii

2
+ δ0

2

∑
i,j

pipjσijgi(x)gj (x)

− δ0
∑
i,j

cipixiσij gi(x)gj (x)

(1 + c�x)
(A.4)

≤ 3δ0
∑
i,j

(∣∣gi(x)gj (x)σij

∣∣).
Applying (3.3), (3.5), (A.3) and (A.4) to (A.2) one gets

(A.5) LV δ0(x) ≤ δ0HV δ0(x), x ∈R
n,◦
+ .

Since the coefficients of (1.1) are locally Lipschitz, using (A.1) and (A.5), it
follows from Khasminskii [(2012), Theorem 3.5] that (1.1) has a unique solu-
tion X(t) that remains in R

n,◦
+ almost surely for all t ≥ 0 whenever X(0) =

x ∈ R
n,◦
+ . The estimate (3.6) can also be derived from Khasminskii (2012),

Theorem 3.5. �

PROOF OF LEMMA 3.2. Let Vc(x) := (1 + c�x)δ0 . By noting that

δ0

∣∣∣∣
∑

i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

∣∣∣∣≤ δ0
∑
i,j

−∣∣gi(x)gj (x)σij

∣∣
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a direct calculation combined with (3.3) and (3.5) shows that

(A.6)

LVc(x) = δ0Vc(x)

[∑
i cixifi(x)

1 + c�x
+ δ0 − 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

]

≤ δ0Vc(x)

[∑
i cixifi(x)

1 + c�x
− 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

+ γb + δ0
∑
i

(∣∣fi(x)
∣∣+ g2

i (x)
)+ δ0

∑
i,j

∣∣gi(x)gj (x)σij

∣∣]

− δ0Vc(x)
[
γb + δ0

∑(∣∣fi(x)
∣∣+ g2

i (x)
)]

≤ δ0HVc(x)1{‖x‖≤M} − δ0Vc(x)

(
γb + δ0

∑
i

(∣∣fi(x)
∣∣+ ∣∣gi(x)

∣∣2))

≤ δ0H̃1 − δ0Vc(x)

(
γb + δ0

∑
i

(∣∣fi(x)
∣∣+ ∣∣gi(x)

∣∣2)) ∀x ∈ R
n+,

where H̃1 := H sup‖y‖≤M{Vc(y)}. Letting ηk = inf{t > 0 : ‖X(t)‖ ≥ k}, we have
by applying Dynkin’s formula to the function ϕ(x, t) = eγbδ0tVc(x) and the stop-
ping time ηk ∧ t and making use of (A.6) that

(A.7)

Exe
δ0γb(ηk∧t)Vc

(
X(ηk ∧ t)

)
= Vc(x) +Ex

∫ ηk∧t

0
eδ0γbs

(
δ0γbVc

(
X(s)

)+LVc
(
X(s)

))
ds

≤ Vc(x) + δ0H̃1Ex

∫ ηk∧t

0
eδ0γbs ds

≤ Vc(x) + H1e
δ0γbt ,

where H1 := γ −1
b H̃1. Letting k → ∞ in (A.7) together with Fatou’s lemma forces

eδ0γbtExVc(X(t)) ≤ Vc(x) + H1e
δ0γbt , which in turn implies

ExVc
(
X(t)

)≤ H1 + Vc(x)e−δ0γbt

as required. Another application of Dynkin’s formula combined with (A.6) yields

ExVc
(
X
(
(ηk ∧ t)

))
= Vc(x) +Ex

∫ ηk∧t

0
LVc

(
X(s)

)
ds

≤ Vc(x) + δ0H̃1E

∫ ηk∧t

0
ds

− δ2
0Ex

∫ ηk∧t

0
Vc
(
X(s)

)[
1 +∑

i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2)]ds.
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As a result,

δ2
0Ex

∫ ηk∧t

0
Vc
(
X(s)

)[
1 +∑

i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2)]ds ≤ Vc(x) + δ0H̃1t.

If we let k → ∞, we obtain (3.8) with H2 = δ−2
0 ∨ (δ−1

0 H̃1).
Finally, since lim‖x‖→∞ Vc(x) = ∞, it follows easily from (A.7) that

lim
k→∞Px{ηk < t} = 0 uniformly on each compact subset of Rn+.

The above coupled with the assumption that fi(·), gi(·), i = 1, . . . , n are locally
Lipschitz allow us to modify the proof of Mao [(1997), Theorem 2.9.3] by a trun-
cation argument in order to get the Markov–Feller property of (X(t)). �

PROOF OF LEMMA 3.3. It suffices to suppose that μ is ergodic.
Let φ(x) = [(1 + c�x)δ0(1 +∑

i (|fi(x)| + |gi(x)|2)). Since μ is invariant, we
have

(A.8)
∫
R

n+

(
k ∧ φ(x)

)
μ(dx) = lim

t→∞

∫
R

n+
Ex
[
k ∧ φ

(
X(t)

)]
μ(dx).

In view of Lemma 3.2,

(A.9) lim sup
t→∞

Ex
[
k ∧ φ

(
X(t)

)]≤ H2, x ∈ R
n+.

As a consequence of Fatou’s lemma, it follows from (A.8) and (A.9) that∫
R

n+

(
k ∧ φ(x)

)
μ(dx) ≤ H2 for any k ∈N.

Letting k → ∞ and making use of Fatou’s lemma again, we get∫
R

n+
φ(x)μ(dx) ≤ H2.

By the strong law of large numbers [see, e.g., Khasminskii (2012), Theorem 4.2]
and the μ-integrability of

∑
i (|fi(x)| + |g2

i (x)|) (due to the inequality above), one
gets

(A.10)

lim
t→∞

1

t

∫ t

0

[
ciXi(s)fi(X(s))

1 +∑i ciXi(s)

− 1

2

∑
i,j σij cicjXi(s)Xj (s)gi(X(s))gj (X(s))

(1 +∑i ciXi(s))2

]
ds

=
∫
R

n+

[
cixifi(x)

1 + c�x
− 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

]
μ(dx)

< ∞ Pμ-a.s.
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and

lim
t→∞

1

t

∫ t

0

∑
i,j σij cicjXi(s)Xj (s)gi(X(s))gj (X(s))

(1 +∑
i ciXi(s))2 ds

=
∫
R

n+

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2 μ(dx) < ∞ Pμ-a.s.

The above limit tells us that if we let

Qt := 〈L·,L·〉t
be the quadratic variation of the local martingale

Lt :=
∫ t

0

∑
i ciXi(s)gi(X(s)) dEi(s)

1 +∑i ciXi(s)

then

lim sup
t→∞

Qt

t
=
∫
R

n+

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2 μ(dx) < ∞ Pμ-a.s.

Applying the strong law of large numbers for local martingales [see Mao (1997),
Theorem 1.3.4], one can see that

(A.11) lim
t→∞

1

t

∫ t

0

∑
i ciXi(s)gi(X(s)) dEi(s)

1 +∑
i ciXi(s)

= 0 Pμ-a.s.

In view of (A.10), (A.11) and Itô’s formula,

lim
t→∞

ln(1 + c�X(t))

t

=
∫
R

n+

[∑
i cixifi(x)

1 + c�x

− 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

]
μ(dx) Pμ-a.s.

(A.12)

A simple contradiction argument coupled with (A.12) forces∫
R

n+

[∑
i cixifi(x)

1 + c�x
− 1

2

∑
i,j σij cicj xixjgi(x)gj (x)

(1 + c�x)2

]
μ(dx) = 0. �

PROOF OF LEMMA 3.4. Let VM = sup{(1 + c�x)δ0 : ‖x‖ ≤ M} and fix ε > 0.
Pick lε ∈ N such that

ε(1 + c�x)δ0−δ

KhH2(1 + VM)
> 1 for any ‖x‖ ≥ lε.
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Let φl(·) : Rn+ → [0,1] be a continuous function with compact support satisfying
φl(x) = 1 if ‖x‖ ≤ lε . One gets the following sequence of inequalities:

(A.13)

∫
R

n+

(
1 − φl(x)

)∣∣h(x)
∣∣�xk

Tk
(dx)

≤ Kh

∫
R

n+

(
1 − φl(x)

)(
1 + c�x

)δ
×
(

1 +∑
i

(∣∣fi(x)
∣∣+ ∣∣gi(x)

∣∣2))�
xk

Tk
(dx)

≤ Khε

KhH2(1 + VM)

∫
R

n+

(
1 − φl(x)

)(
1 + c�x

)δ0

×
(

1 +∑
i

(∣∣fi(x)
∣∣+ ∣∣gi(x)

∣∣2))�
xk

Tk
(dx)

≤ ε,

where the last inequality follows by (3.8). Similar to (A.13), we have from
Lemma 3.3 that

(A.14)
∫
R

n+

(
1 − φl(x)

)∣∣h(x)
∣∣π(dx) ≤ ε.

Since �
xk

Tk
converges weakly to π , we get

(A.15) lim
k→∞

∫
R

n+
φl(x)h(x)�

xk

Tk
(dx) =

∫
R

n+
φl(x)h(x)π(dx).

As a consequence of (A.13), (A.14) and (A.15)

(A.16) lim sup
k→∞

∣∣∣∣∫
R

n+
h(x)�

xk

Tk
(dx) −

∫
R

n+
h(x)π(dx)

∣∣∣∣≤ 2ε.

The desired result follows by letting ε → 0. �

PROOF OF LEMMA 3.5. It is easy to show that there exists some K3 > 0 such
that

|y|k exp(θy) ≤ K3
(
exp(θ0y) + exp(−θ0y)

)
, k = 1,2

for θ ∈ [0, θ0
2 ], y ∈ R. For any y ∈ R, let ξ(y) be a number lying between y and 0

such that exp(ξ(y)) = ey−1
y

. Pick θ ∈ [0,
θ0
2 ) and let h ∈ R such that 0 ≤ θ + h ≤

θ0
2 . Then

lim
h→0

exp((θ + h)Y ) − exp(θY )

h
= Y exp(θY ) a.s.



1936 A. HENING AND D. H. NGUYEN

and ∣∣∣∣exp((θ + h)Y ) − exp(θY )

h

∣∣∣∣= |Y | exp
(
θY + ξ(hY )

)
≤ 2K3

[
exp(θ0Y) + exp(−θ0Y)

]
.

By the Lebesgue dominated convergence theorem,

dE exp(θY )

dθ
= lim

h→0
E

exp((θ + h)Y ) − exp(θY )

h
= EY exp(θY ).

Similarly,

d2
E exp(θY )

dθ2 = EY 2 exp(θY ).

As a result, we obtain

dφ

dθ
= EY exp(θY )

E exp(θY )

which implies

dφ

dθ
(0) = EY

and

d2φ

dθ2 = EY 2 exp(θY )E exp(θY ) − [EY exp(θY )]2

[E exp(θY )]2 .

By Hölder’s inequality, we have EY 2 exp(θY )E exp(θY ) ≥ [EY exp(θY )]2 and,
therefore,

d2φ

dθ2 ≥ 0 ∀θ ∈
[
0,

θ0

2

)
.

Moreover,

d2φ

dθ2 ≤ EY 2 exp(θY )

E exp(θY )

≤ K3(E exp(θ0Y) +E exp(−θ0Y))

exp(θEY)

≤ K3(E exp(θ0Y) +E exp(−θ0Y))

exp(−θ0|EY |)
< K2

for some K2 depending only on K1 and K3. �
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PROOF OF LEMMA 3.6. Let K ⊂ R
n,◦
+ be a compact set and let D be an open,

relatively compact subset of R
n,◦
+ with smooth boundary such that K ⊂ D. For

x ∈ D and t > 0, define the measure

PD(t,x, ·) = Px
({

X(t) ∈ ·}∩ {X(s) ∈ D,s ∈ [0, t]}).
For a bounded continuous function f : Rn �→ R vanishing outside D, let uf (t, x)

be the solution to

(A.17)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∂u

∂t
+Lu = 0 in D × [0, T ),

u(T , x) = f (x) on D,

u(t, x) = 0 on ∂D × [0, T ].
By the Feynman–Kac theorem [see, e.g., Mao (1997), Theorem 2.8.2],

uf (t, x) =
∫
D

f (y)PD(T − t,x, dy).

Under the assumption of nondegeneracy [part (1) of Assumption 1.1], we deduce
from Friedman [(2008), Theorem 3.16 and its corollary] that PD(t,x, ·) has a den-
sity pD(t,x,y) that is strictly positive and continuous in (x,y) ∈ D × D. Since K

is compact, pK,D(t,y) := infx∈K pD(t,x,y) is strictly positive and continuous in
y ∈ D.

For y /∈ D, we define pK,D(t,y) = 0. Let mK,D(·) be the measure whose density
is pK,D(T ,y). For any x ∈ K and a measurable B ⊂ R

n,◦
+ , we have

P(t,x,B) ≥ PD(T ,x,B) ≥ mK,D(B).

Thus, K is a petite set for the Markov chain {X(kT ), k ∈ N}. On the other hand,
since pD(t,x,y) is strictly positive for any D, we note that

(A.18) P(T ,x,B) > 0 for any set B whose Lebesgue measure is nonzero.

Thus, {X(kT ), k ∈ N} is irreducible. Moreover, it is easy to derive from (A.18)
that there are no disjoint subsets of Rn+ \ {0}, denoted by A0, . . . ,Ad−1 with some
d > 1 such that for any x ∈ Ai ,

P(T ,x,Aj ) = 1 where j = i + 1 (mod d).

As a result, the Markov chain {X(kT ), k ∈N} is aperiodic. �

APPENDIX B: PROOFS FOR LEMMAS IN SECTION 4

PROOF OF LEMMA 5.4. Applying (A.6) with δ0 replaced by δ1 < δ0, gives us

(B.1)

L
(
1 + c�x

)δ1 ≤ δ1H̃1 − δ1
(
1 + c�x

)δ1

×
(
γb + δ1

∑
i

(∣∣fi(x)
∣∣+ ∣∣gi(x)

∣∣2)), x ∈ R
n+
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for some H̃1 > 0. Equation (B.1) together with Itô’s formula implies

(1 + c�X(t))δ1

t
= (1 + c�X(0))δ1

t
+ 1

t

∫ t

0
L
(
1 + c�X(s)

)δ1 ds

+ 1

t

∫ t

0

∑
i ciXi(s)gi(X(s)) dEi(s)

(1 + c�X(s))1−δ1
ds

≤ (1 + c�X(0))δ1

t
+ δ1H̃2 + 1

t

∫ t

0

∑
i ciXi(s)gi(X(s)) dEi(s)

(1 + c�X(s))1−δ1

− δ1
1

t

∫ t

0

(
1 + c�X(s)

)δ1

×
(
γb + δ1

∑
i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2))ds.

Since (1+c�X(t))δ1

t
≥ 0, the above yields

δ1

2t

∫ t

0

(
1 + c�X(s)

)δ1

(
γb + δ1

∑
i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2))

≤ (1 + c�X(0))δ1

t
+ δ1H̃2 + 1

t

∫ t

0

∑
i ciXi(s)gi(X(s)) dEi(s)

(1 + c�X(s))1−δ1
(B.2)

− δ1

2t

∫ t

0

(
1 + c�X(s)

)δ1

(
γb + δ1

∑
i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2))ds.

For each i = 1, . . . , n, the quadratic variation of∫ t

0

ciXi(s)gi(X(s)) dEi(s)

(1 + c�X(s))1−δ1

is

Qt :=
∫ t

0

[ciXi(s)gi(X(s))]2σii

(1 + c�X(s))2−2δ1
ds.

We have the following estimate for each i = 1, . . . , n:

[cixigi(x)]2σii

(1 + c�x)2−2δ1
≤ (1 + c�x

)2δ1g2
i (x)σii

≤ Ki

[(
1 + c�x

)δ1

(
γb + δ1

∑
i

(∣∣fi(x)
∣∣+ ∣∣gi(x)

∣∣2))],
where due to Assumption 1.4

Ki = sup
x∈Rn+

{
(1 + c�x)δ1g2

i (x)σii

γb + δ1
∑

i (|fi(x)| + |gi(x)|2)
}

< ∞.
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Thus,

(B.3)
∫ ∞

0

dQt

(1 + At)2 ≤
∫ ∞

0
Ki

dAt

(1 + At)2 = Ki < ∞ a.s.,

where

At :=
∫ u

0

(
1 + c�X(s)

)δ1

(
γb + δ1

∑
i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2))ds.

On the other hand,

(B.4) lim
t→∞At ≥ lim

t→∞γbt = ∞ a.s.

By (B.3), (B.4) we can use the strong law of large numbers for local martingales
(see Mao [(1997), Theorem 1.3.4]) in order to obtain for each i = 1, . . . , n that

(B.5)
lim

t→∞

∫ t
0 ciXi(s)gi(X(s)(1 + c�X(s))δ1−1 dEi(s)∫ t

0 (1 + c�X(s))δ1(γb + δ1
∑

i (|fi(X(s))| + |gi(X(s))|2)) ds

= 0 Px-a.s.

This implies

(B.6)

lim sup
t→∞

[
1

t

∫ t

0

∑
i ciXi(s)gi(X(s)) dEi(s)

(1 + c�X(s))1−δ1

− δ1

2t

∫ t

0

(
1 + c�X(s)

)δ1

(
γb + δ1

∑
i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2))ds

]
≤ 0 Px-a.s.

Applying (B.6) to (B.2), we get

(B.7)
lim sup
t→∞

δ1

2t

∫ t

0

(
1 + c�X(s)

)δ1

(
γb + δ1

∑
i

(∣∣fi

(
X(s)

)∣∣+ ∣∣gi

(
X(s)

)∣∣2))ds

≤ δ1H̃1 Px-a.s.

Similar to the proof of (A.11), we can obtain (5.18) from (B.7) and the strong law
of large numbers for local martingales. The proof is complete. �

PROOF OF LEMMA 5.5. Let K̂1 be sufficiently large such that (1 + c�x)δ1 >

2K̂ if ‖x‖ ≥ K̂1. By Lemma 5.4,

lim sup
t→∞

1

t

∫ t

0
1{‖X(s)‖>K̂1} ds ≤ 1

2K̂
lim sup
t→∞

1

t

∫ t

0

(
1 + c�X(s)

)δ1 ds

≤ 1

2K̂
K̂ = 1

2
Px-a.s.,x ∈ R

n+,

which implies (5.19).
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Next, we prove (5.20). Fix i ∈ {1, . . . , n} and define Ṽi = 1+c�x
x

δ0
i

on {x ∈ R
n+ :

xi > 0}. Similar to (A.5), it can be shown that

LṼ
δ0
i (x) ≤ δ0HṼ

δ0
i (x), x ∈ R

n+, xi > 0.

Let ζk := inf{t > 0 : Xi(t)
−1 ∨ ‖X(t)‖ > k}. We have by Dynkin’s formula that

ExṼ
δ0
i

(
X
(
(neTe) ∧ ζk

))≤ Ṽ
δ0
i (x) +Ex

∫ (neTe)∧ζk

0
LṼ

δ0
i

(
X(s)

)
ds

≤ Ṽ
δ0
i (x) + δ0H

∫ neTe

0
ExṼ

δ0
i

(
X(s ∧ ζk)

)
ds.

Using Gronwall’s inequality yields

(B.8) ExṼ
δ0
i

(
X
(
(neTe) ∧ ζk

))≤ Ṽ
δ0
i (x) exp(δ0HneTe), x ∈R

n+, xi > 0.

Let k1 ∈ N sufficiently large such that

Ṽ
δ0
i (y) >

1

ε1
sup

‖x‖≤K̂1,xi≥ε2

{
Ṽ

δ0
i (x)

}
exp(δ0HneTe)

(B.9)
for all y ∈ R

n+, y−1
i ∨ ‖y‖ > k1.

It follows from (B.8) and (B.9) that

Px{ζk1 < neTe} ≤ ExṼ
δ0
i (X((neTe) ∧ ζk1))

inf{Ṽ δ0
i (y) : y ∈ R

n+, y−1
i ∨ ‖y‖ > k1}

≤ ε1

for x ∈R
n+,‖x‖ ≤ K̂1, xi ≥ ε2.

Now inequality (5.20) follows by straightforward computations. �
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