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A NECESSARY AND SUFFICIENT CONDITION FOR EDGE
UNIVERSALITY AT THE LARGEST SINGULAR

VALUES OF COVARIANCE MATRICES
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University of Toronto and University of Wisconsin–Madison

In this paper, we prove a necessary and sufficient condition for the edge
universality of sample covariance matrices with general population. We con-
sider sample covariance matrices of the form Q = T X(T X)∗, where X is an
M2 × N random matrix with Xij = N−1/2qij such that qij are i.i.d. random
variables with zero mean and unit variance, and T is an M1 × M2 determin-
istic matrix such that T ∗T is diagonal. We study the asymptotic behavior of
the largest eigenvalues of Q when M := min{M1,M2} and N tend to infin-
ity with limN→∞ N/M = d ∈ (0,∞). We prove that the Tracy–Widom law
holds for the largest eigenvalue of Q if and only if lims→∞ s4P(|qij | ≥ s) =
0 under mild assumptions of T . The necessity and sufficiency of this condi-
tion for the edge universality was first proved for Wigner matrices by Lee and
Yin [Duke Math. J. 163 (2014) 117–173].
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1. Introduction. Sample covariance matrices are fundamental objects in
modern multivariate statistics. In the classical setting [2], for an M × N sample
matrix X, people focus on the asymptotic properties of XX∗ when M is fixed and
N goes to infinity. In this case, the central limit theorem and law of large num-
bers can be applied to the statistical inference procedure. However, the advance
of technology has led to high dimensional data such that M is comparable to or
even larger than N [26, 27]. This high dimensionality cannot be handled with the
classical multivariate statistical theory.

An important topic in the statistical study of sample covariance matrices is the
distribution of the largest eigenvalues, which have been playing essential roles in
analyzing the data matrices. For example, they are of great interest to principal
component analysis (PCA) [28], which is a standard technique for dimensional-
ity reduction and provides a way to identify patterns from real data. Also, the
largest eigenvalues are commonly used in hypothesis testing, such as the well-
known Roy’s largest root test [37]. For a detailed review, one can refer to [27, 41,
54].

In this paper, we study the largest eigenvalues of sample covariance matrices
with comparable dimensions and general population (i.e., the expectation of the
sample covariance matrices are nonscalar matrices). More specifically, we con-
sider sample covariance matrices of the form Q = T X(T X)∗, where the sample
X = (xij ) is an M2 × N random matrix with i.i.d. entries such that Ex11 = 0 and
E|x11|2 = N−1, and T is an M1 ×M2 deterministic matrix. On dimensionality, we
assume that N/M → d as N → ∞, where M := min{M1,M2}. In the last decade,
random matrix theory has been proved to be one of the most powerful tools in
dealing with this kind of large dimensional random matrices. It is well known
that the empirical spectral distribution (ESD) of Q converges to the (deformed)
Marchenko–Pastur (MP) law [34], whose rightmost edge λr gives the asymptotic
location of the largest eigenvalue. Furthermore, it was proved in a series of papers
that under a proper N2/3 scaling, the distribution of the largest eigenvalue λ1 of Q
around λr converges to the Tracy–Widom distribution [49, 50], which arises as the
limiting distribution of the rescaled largest eigenvalues of the Gaussian orthogonal
ensemble (GOE). This result is commonly referred to as the edge universality, in
the sense that it is independent of the detailed distribution of the entries of X. The
Tracy–Widom distribution of (λ1 − λr) was first proved for Q with X consisting
of i.i.d. centered real or complex Gaussian random entries (i.e., X is a Wishart
matrix) and with trivial population (i.e., T = I ) [26]. The edge universality in the
T = I case was later proved for all random matrices X whose entries satisfy ar-
bitrary sub-exponential distribution [42, 43]. When T is a (nonscalar) diagonal
matrix, the Tracy–Widom distribution was first proved for Wishart matrix X in
[14] (nonsingular T case) and [38] (singular T case). Later the edge universality
in the case with diagonal T was proved in [6, 32] for random matrices X with
sub-exponentially distributed entries. The most general case with rectangular and
nondiagonal T is considered in [31], where the edge universality was proved for
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X with sub-exponentially distributed entries. Similar results have been proved for
Wigner matrices in [18, 33, 48].

In this paper, we prove a necessary and sufficient condition for the edge univer-
sality of sample covariance matrices with general population. Briefly speaking, we
will prove the following result.

If T ∗T is diagonal and satisfies some mild assumptions, then the rescaled eigen-

values N
2
3 (λ1(Q) − λr) converges weakly to the Tracy–Widom distribution if and

only if the entries of X satisfy the following tail condition:

(1.1) lim
s→∞ s4

P
(|q11| ≥ s

)= 0.

For a precise statement of the result, one can refer to Theorem 2.7. Note that
under the assumption that T ∗T is diagonal, the matrix Q is equivalent (in terms
of eigenvalues) to a sample covariance matrix with diagonal T . Hence our result
is basically an improvement of the ones in [6, 32]. The condition (1.1) provides
a simple criterion for the edge universality of sample covariance matrices without
assuming any other properties of matrix entries.

Note that the condition (1.1) is slightly weaker than the finite fourth moment
condition for

√
Nx11. In the null case with T = I , it was proved previously in

[55] that λ1 → λr almost surely if the fourth moment exists. Later the finite fourth
moment condition is proved to be also necessary for the almost sure convergence of
λ1 in [5]. Our theorem, however, shows that the existence of finite fourth moment
is not necessary for the Tracy–Widom fluctuation. In fact, one can easily construct
random variables that satisfies condition (1.1) but has infinite fourth moment. For
example, we can use the following probability density function with x−5(logx)−1

tail:

ρ(x) = e4(4 logx + 1)

x5(logx)2 1{x>e}.

Then in this case λ1 does not converge to λr almost surely, but N2/3(λ1 − λr) still
converges weakly to the Tracy–Widom distribution. On the other hand, Silverstein
proved that λ1 → λr in probability under the condition (1.1) [44]. So our result
can be also regarded as an improvement of the one in [44].

The necessity and sufficiency of the condition (1.1) for the edge universality of
Wigner matrix ensembles has been proved by Lee and Yin in [33]. The main idea
of our proof is similar to theirs. For the necessity part, the key observation is that
if the condition (1.1) does not hold, then X has a large entry with nonzero proba-
bility. As a result, the largest eigenvalue of Q can be larger than C with nonzero
probability for any fixed constant C > λr , that is, λ1 �→ λr in probability. The suf-
ficiency part is more delicate. A key observation of [33] is that if we introduce a
“cutoff” on the matrix elements of X at the level N−ε , then the matrix with cutoff
can well approximate the original matrix in terms of the largest singular value if
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and only if the condition (1.1) holds. Thus our problem can be reduced to proving
the edge universality of the sample covariance matrices whose entries have size
(or support) ≤ N−ε . In [6, 32], the edge universality for sample covariance ma-
trices has been proved assuming a sub-exponential decay of the xij entries; see
Lemma 3.13. Under their assumptions, the typical size of the xij entries are of
order O(N−1/2+ε) for any constant ε > 0. Then a major part of this paper is de-
voted to extending the “small” support case to the “large” support case where the
xij entries have size N−ε . This can be accomplished with a Green function com-
parison method, which has been applied successfully in proving the universality of
covariance matrices [42, 43]. A technical difficulty is that the change of the sample
covariance matrix Q is nonlinear in terms of the change of X. To handle this, we
use the self-adjoint linearization trick; see Definition 3.4.

This paper is organized as follows. In Section 2, we define the deformed
Marchenko–Pastur law and its rightmost edge (i.e., the soft edge) λr , and then
state the main theorem—Theorem 2.7—of this paper. In Section 3, we introduce
the notation and collect some tools that will be used to prove the main theorem. In
Section 4, we prove Theorem 2.7. In Section 5 and Section 6, we prove some key
lemmas and theorems that are used in the proof of main result. In particular, the
Green function comparison is performed in Section 6. In Appendix A, we prove
the local law of sample covariance matrices with support N−φ for some constant
φ > 0.

REMARK 1.1. In this paper, we do not consider the edge universality at the
leftmost edge for the smallest eigenvalues. It will be studied elsewhere. Let λl be
the leftmost edge of the deformed Marchenko-Pastur law. It is worth mentioning
that the condition (1.1) can be shown to be sufficient for the edge universality at λl

if λl �→ 0 as N → ∞. However, it seems that (1.1) is not necessary. So far, there is
no conjecture about the necessary and sufficient condition for the edge universality
at the leftmost edge.

Conventions. All quantities that are not explicitly constant may depend on N ,
and we usually omit N from our notation. We use C to denote a generic large
positive constant, whose value may change from one line to the next. Similarly,
we use ε, τ and c to denote generic small positive constants. For two quantities
aN and bN depending on N , the notation aN = O(bN) means that |aN | ≤ C|bN |
for some constant C > 0, and aN = o(bN) means that |aN | ≤ cN |bN | for some
positive sequence {cN } with cN → 0 as N → ∞. We also use the notation aN ∼
bN if aN = O(bN) and bN = O(aN). For a matrix A, we use ‖A‖ := ‖A‖l2→l2

to denote the operator norm and ‖A‖HS the Hilbert–Schmidt norm; for a vector
v = (vi)

n
i=1, ‖v‖ ≡ ‖v‖2 stands for the Euclidean norm, while |v| ≡ ‖v‖1 stands

for the l1-norm. In this paper, we often write an n × n identity matrix In×n as 1 or
I without causing any confusions. If two random variables X and Y have the same

distribution, we write X
d= Y .
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2. Definitions and main result.

2.1. Sample covariance matrices with general populations. We consider the
M1 × M1 sample covariance matrix Q1 := T X(T X)∗, where T is a deterministic
M1 × M2 matrix and X is a random M2 × N matrix. We assume X = (xij ) has
entries xij = N−1/2qij , 1 ≤ i ≤ M2 and 1 ≤ j ≤ N , where qij are i.i.d. random
variables satisfying

(2.1) Eq11 = 0, E|q11|2 = 1.

In this paper, we regard N as the fundamental (large) parameter and M1,2 ≡
M1,2(N) as depending on N . We define M := min{M1,M2} and the aspect ratio
dN := N/M . Moreover, we assume that

(2.2) dN → d ∈ (0,∞) as N → ∞.

For simplicity of notation, we will almost always abbreviate dN as d in this paper.
We denote the eigenvalues of Q1 in decreasing order by λ1(Q1) ≥ · · · ≥ λM1(Q1).
We will also need the N × N matrix Q2 := (T X)∗T X and denote its eigenvalues
by λ1(Q2) ≥ · · · ≥ λN(Q2). Since Q1 and Q2 share the same nonzero eigenvalues,
we will for simplicity write λj , 1 ≤ j ≤ min{N,M1}, to denote the j th eigenvalue
of both Q1 and Q2 without causing any confusion.

We assume that T ∗T is diagonal. In other words, T has a singular decomposi-
tion T = UD̄, where U is an M1 ×M1 unitary matrix and D̄ is an M1 ×M2 rectan-
gular diagonal matrix. Then it is equivalent to study the eigenvalues of D̄X(D̄X)∗.
When M1 ≤ M2 (i.e., M = M1), we can write D̄ = (D,0) where D is an M × M

diagonal matrix such that D11 ≥ · · · ≥ DMM . Hence we have D̄X = DX̃, where
X̃ is the upper M ×N block of X with i.i.d. entries xij , 1 ≤ i ≤ M and 1 ≤ j ≤ N .
On the other hand, when M1 ≥ M2 (i.e., M = M2), we can write D̄ = (D0 ) where
D is an M × M diagonal matrix as above. Then D̄X = (

DX
0

)
, which shares the

same nonzero singular values with DX. The above discussions show that we can
make the following stronger assumption on T :

(2.3) M1 = M2 = M and T ≡ D = diag
(
σ

1/2
1 , σ

1/2
2 , . . . , σ

1/2
M

)
,

where

σ1 ≥ σ2 ≥ · · · ≥ σM ≥ 0.

Under the above assumption, the population covariance matrix of Q1 is defined as

(2.4) � := EQ1 = D2 = diag(σ1, σ2, . . . , σM).

We denote the empirical spectral density of � by

(2.5) πN := 1

M

M∑
i=1

δσi
.
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We assume that there exists a small constant τ > 0 such that

(2.6) σ1 ≤ τ−1 and πN

([0, τ ])≤ 1 − τ for all N.

Note the first condition means that the operator norm of � is bounded by τ−1, and
the second condition means that the spectrum of � cannot concentrate at zero.

For definiteness, in this paper we focus on the real case, that is, the random vari-
able q11 is real. However, we remark that our proof can be applied to the complex
case after minor modifications if we assume in addition that Req11 and Imq11 are
independent centered random variables with variance 1/2.

We summarize our basic assumptions here for future reference.

ASSUMPTION 2.1. We assume that X is an M × N random matrix with real
i.i.d. entries satisfying (2.1) and (2.2). We assume that T is an M ×M deterministic
diagonal matrix satisfying (2.3) and (2.6).

2.2. Deformed Marchenko–Pastur law. In this paper, we will study the eigen-
value statistics of Q1,2 through their Green functions or resolvents.

DEFINITION 2.2 (Green functions). For z = E + iη ∈ C+, where C+ is the
upper half complex plane, we define the Green functions for Q1,2 as

(2.7) G1(z) := (DXX∗D∗ − z
)−1

, G2(z) := (X∗D∗DX − z
)−1

.

We denote the empirical spectral densities (ESD) of Q1,2 as

ρ
(N)
1 := 1

M

M∑
i=1

δλi(Q1), ρ
(N)
2 := 1

N

N∑
i=1

δλi(Q2).

Then the Stieltjes’ transforms of ρ1,2 are given by

m
(N)
1 (z) :=

∫ 1

x − z
ρ

(N)
1 (dx) = 1

M
TrG1(z),

m
(N)
2 (z) :=

∫ 1

x − z
ρ

(N)
2 (dx) = 1

N
TrG2(z).

Throughout the rest of this paper, we omit the super-index N from our notation.

REMARK 2.3. Since the nonzero eigenvalues of Q1 and Q2 are identical, and
Q1 has M − N more (or N − M less) zero eigenvalues, we have

(2.8) ρ1 = ρ2d + (1 − d)δ0

and

(2.9) m1(z) = −1 − d

z
+ dm2(z).
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In the case D = IM×M , it is well known that the ESD of X∗X, ρ2, converges
weakly to the Marchenko–Pastur (MP) law [34]:

(2.10) ρMP(x) dx := 1

2π

√[(λ+ − x)(x − λ−)]+
x

dx,

where λ± = (1 ± d−1/2)2. Moreover, m2(z) converges to the Stieltjes’ transform
mMP(z) of ρMP(z), which can be computed explicitly as

(2.11) mMP(z) = d−1 − 1 − z + i
√

(λ+ − z)(z − λ−)

2z
, z ∈C+.

Moreover, one can verify that mMP(z) satisfies the self-consistent equation [6, 43,
45]

(2.12)
1

mMP(z)
= −z + d−1 1

1 + mMP(z)
, ImmMP(z) ≥ 0 for z ∈ C+.

Using (2.8) and (2.9), it is easy to get the expressions for ρ1c, the asymptotic
eigenvalue density of Q1, and m1c, the Stieltjes’ transform of ρ1c.

If D is nonidentity but the ESD πN in (2.5) converges weakly to some π̂ , then it
was shown in [34] that the empirical eigenvalue distribution of Q2 still converges
in probability to some deterministic distributions ρ̂2c, referred to as the deformed
Marchenko–Pastur law below. It can be described through the Stieltjes’ transform:

m̂2c(z) :=
∫
R

ρ̂2c(dx)

x − z
, z = E + iη ∈ C+.

For any given probability measure π̂ compactly supported on R+, we define m̂2c

as the unique solution to the self-consistent equation [6, 31, 32]

(2.13)
1

m̂2c(z)
= −z + d−1

∫
x

1 + m̂2c(z)x
π̂(dx),

where the branch-cut is chosen such that Im m̂2c(z) ≥ 0 for z ∈ C+. It is well
known that the functional equation (2.13) has a unique solution that is uniformly
bounded on C+ under the assumptions (2.2) and (2.6) [34]. Letting η ↘ 0, we can
recover the asymptotic eigenvalue density ρ̂2c with the inverse formula

(2.14) ρ̂2c(E) = lim
η↘0

1

π
Im m̂2c(E + iη).

The measure ρ̂2c is sometimes called the multiplicative free convolution of π̂ and
the MP law; see, for example, [1, 52]. Again with (2.8) and (2.9), we can easily
obtain m̂1c and ρ̂1c(z).

Similar to (2.13), for any finite N we define m
(N)
2c as the unique solution to the

self-consistent equation

(2.15)
1

m
(N)
2c (z)

= −z + d−1
N

∫
x

1 + m
(N)
2c (z)x

πN(dx),
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and define ρ
(N)
2c through the inverse formula as in (2.14). Then we define m

(N)
1c

and ρ
(N)
1c (z) using (2.8) and (2.9). In the rest of this paper, we will always omit

the super-index N from our notation. The properties of m1,2c and ρ1,2c have been
studied extensively; see, for example, [3, 4, 7, 24, 31, 46, 47]. Here, we collect
some basic results that will be used in our proof. In particular, we shall define the
rightmost edge (i.e., the soft edge) of ρ1,2c.

Corresponding to the equation in (2.15), we define the function

(2.16) f (m) := − 1

m
+ d−1

N

∫
x

1 + mx
πN(dx).

Then m2c(z) can be characterized as the unique solution to the equation z = f (m)

with Imm ≥ 0.

LEMMA 2.4 (Support of the deformed MP law). The densities ρ1c and ρ2c

have the same support on R+, which is a union of connected components:

(2.17) suppρ1,2c ∩ (0,∞) =
p⋃

k=1

[a2k, a2k−1] ∩ (0,∞),

where p ∈ N depends only on πN . Here, ak are characterized as following: there
exists a real sequence {bk}2p

k=1 such that (x,m) = (ak, bk) are the real solutions to
the equations

(2.18) x = f (m) and f ′(m) = 0.

Moreover, we have b1 ∈ (−σ−1
1 ,0). Finally, under assumptions (2.2) and (2.6), we

have a1 ≤ C for some positive constant C.

For the proof of this lemma, one can refer to Lemma 2.6 and Appendix A.1 of
[31]. It is easy to observe that m2c(ak) = bk according to the definition of f . We
shall call ak the edges of the deformed MP law ρ2c. In particular, we will focus on
the rightmost edge λr := a1. To establish our result, we need the following extra
assumption.

ASSUMPTION 2.5. For σ1 defined in (2.3), we assume that there exists a small
constant τ > 0 such that

(2.19)
∣∣1 + m2c(λr)σ1

∣∣≥ τ for all N.

REMARK 2.6. The above assumption has previously appeared in [6, 14, 31].
It guarantees a regular square-root behavior of the spectral density ρ2c near λr

(see Lemma 3.6 below), which is used in proving the local deformed MP law at
the soft edge. Note that f (m) has singularities at m = −σ−1

i for nonzero σi , so the
condition (2.19) simply rules out the singularity of f at m2c(λr).



EDGE UNIVERSALITY OF COVARIANCE MATRICES 1687

2.3. Main result. The main result of this paper is the following theorem. It
establishes the necessary and sufficient condition for the edge universality of the
deformed covariance matrix Q2 at the soft edge λr . We define the following tail
condition for the entries of X:

(2.20) lim
s→∞ s4

P
(|q11| ≥ s

)= 0.

THEOREM 2.7. Let Q2 = X∗T ∗T X be an N × N sample covariance matrix
with X and T satisfying Assumptions 2.1 and 2.5. Let λ1 be the largest eigenvalues
of Q2.

• Sufficient condition: If the tail condition (2.20) holds, then we have

(2.21) lim
N→∞P

(
N2/3(λ1 − λr) ≤ s

)= lim
N→∞P

G(N2/3(λ1 − λr) ≤ s
)

for all s ∈R, where P
G denotes the law for X with i.i.d. Gaussian entries.

• Necessary condition: If the condition (2.20) does not hold for X, then for any
fixed s > λr , we have

(2.22) lim sup
N→∞

P(λ1 ≥ s) > 0.

REMARK 2.8. In [32], it was proved that there exists γ0 ≡ γ0(N) depending
only on πN and the aspect ratio dN such that

lim
N→∞P

G(γ0N
2/3(λ1 − λr) ≤ s

)= F1(s)

for all s ∈R, where F1 is the type-1 Tracy–Widom distribution. The scaling factor
γ0 is given by [14]

1

γ 3
0

= 1

d

∫ (
x

1 + m2c(λr)x

)3
πN(dx) − 1

m2c(λr)3 ,

and Assumption 2.5 assures that γ0 ∼ 1 for all N . Hence (2.21) and (2.22) together
show that the distribution of the rescaled largest eigenvalue of Q2 converges to the
Tracy–Widom distribution if and only if the condition (2.20) holds.

REMARK 2.9. The universality result (2.21) can be extended to the joint dis-
tribution of the k largest eigenvalues for any fixed k:

lim
N→∞P

((
N2/3(λi − λr) ≤ si

)
1≤i≤k

)
= lim

N→∞P
G((N2/3(λi − λr) ≤ si

)
1≤i≤k

)(2.23)

for all s1, s2, . . . , sk ∈ R. Let HGOE be an N × N random matrix belonging to the
Gaussian orthogonal ensemble. The joint distribution of the k largest eigenvalues
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of HGOE, μGOE
1 ≥ · · · ≥ μGOE

k , can be written in terms of the Airy kernel for any
fixed k [23]. It was proved in [32] that

lim
N→∞P

G((γ0N
2/3(λi − λr) ≤ si

)
1≤i≤k

)
= lim

N→∞P
((

N2/3(μGOE
i − 2

)≤ si
)
1≤i≤k

)
for all s1, s2, . . . , sk ∈ R. Hence (2.23) gives a complete description of the finite-
dimensional correlation functions of the largest eigenvalues of Q2.

2.4. Statistical applications. In this subsection, we briefly discuss possible ap-
plications of our results to high-dimensional statistics. Theorem 2.7 indicates that
the Tracy–Widom distribution still holds true for the data with heavy tails as in
(2.20). Heavy-tailed data is commonly collected in insurance, finance and telecom-
munications [11]. For example, the log-return of S&P500 index is a heavy-tailed
time series and is usually calibrated using distributions with only few moments.
For this type of data, many high dimensional statistical hypothesis tests that rely on
some strong moment assumptions cannot be employed. For example, the spheric-
ity test based on arithmetic mean of the eigenvalues and maximum likelihood ratio
principle needs either Gaussian assumption or high moments assumption [22, 40,
54]. Hence, our result on the distribution of the largest singular value can serve as
a valuable tool for many statistical applications.

We now give a few concrete examples of applications to multivariate statistics,
empirical finance and signal processing. Consider the following model:

(2.24) x = 
s + T z,

where s is a k-dimensional centered vector with population covariance matrix S, z
is an M-dimensional random vector with i.i.d. mean zero and variance one entries,

 is an M × k deterministic matrix of full rank and T is a M × M deterministic
matrix. Moreover, we assume that the vectors s and z are independent. In practice,
suppose we observe N such i.i.d. samples.

This model has many applications in statistics. One example is from multivari-
ate statistics. It is important to determine if there exists any relation between two
sets of variables. To test independence, we consider a multivariate multiple regres-
sion model (2.24) in the sense that x, s are the two sets of variables for testing [25].
We wish to test the null hypothesis that these regression coefficients (entries of 
)
are all equal to zero:

(2.25) Ho : 
 = 0 vs. Ha : 
 �= 0.

Another example is from financial studies [19–21]. In the empirical research of
finance, (2.24) is the factor model, where s is the common factor, 
 is the factor
loading matrix and z is the idiosyncratic component. In order to analyze the stock
return x, we first need to know if the factor s is significant for the prediction.
Here, the statistical test can also be constructed as (2.25). The third example is
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from classic signal processing [29], where (2.24) gives the standard signal-plus-
noise model. A fundamental task is to detect the signals via observed samples,
and the very first step is to know whether there exists any such signal. Hence our
hypothesis testing problem can be formulated as

Ho : k = 0 vs. Ha : k ≥ 1.

For the above hypothesis testing problems, under Ho, the population covariance
matrix of x is T T ∗, and 
S
∗ + T T ∗ under Ha . The largest eigenvalue of the ob-
served samples then serves as a natural choice for the tests. Under the high dimen-
sional setting, this problem was studied in [8, 35] under the assumptions that z is
Gaussian and T = I . Nadakuditi and Silverstein [36] also considered this problem
with correlated Gaussian noise (i.e., T is not a multiple of I ). Under the assump-
tion that the entries have arbitrarily high moments, the problem beyond Gaussian
assumption was considered in [6, 32]. Our result shows that, for the heavy-tailed
data satisfying (2.20), we can still employ the previous statistical inference meth-
ods.

Unfortunately, in practice, T is usually unknown. In particular, the parameters
λr and γ0 in Theorem 2.7, Remark 2.8 and Remark 2.9 are unknown, and it would
appear that our result cannot be applied directly. Following the strategy in [39], we
can use the following statistics:

(2.26) T1 := λ1 − λ2

λ2 − λ3
.

The main advantage of T1 is that its limiting distribution is independent of λr and
γ0 under Ho, which makes it asymptotically pivotal. As mentioned in Remark 2.9,
we have a complete description of the limiting distribution of T1. Although the
explicit formula is unavailable currently, one can approximate the limiting distri-
bution of T1 using numerical simulations for the extreme eigenvalues of GOE or
GUE.

Our result can be also used in model checking problems in time series analy-
sis, especially the analysis of financial time series [13, 51]. In most of the model
building processes, the last step is devoted to checking whether the residuals are
white noise, which is an essential driving element of the time series. We assume
the residuals have GARCH effect. Consider the GARCH(1,1) model, where the
residuals rt and the volatility σt satisfy

rt = σtεt , σ 2
t = ω + αr2

t−1 + βσ 2
t−1,

where εt is a standard white noise. We want to check the null hypothesis that the
residuals are white noise:

Ho : α = β = 0 vs. Ha : αβ �= 0.

Assuming that K points of rt are available, we can construct an M × N matrix R

with MN = K [13], Section 3. Under Ho, the population covariance matrix is ωI .
Then the largest eigenvalue (or T1) of RR∗ can be used as our test statistic.
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3. Basic notation and tools.

3.1. Notation. Following the notation in [15, 17], we will use the following
definition to characterize events of high probability.

DEFINITION 3.1 (High probability event). Define

(3.1) ϕ := (logN)log logN.

We say that an N -dependent event � holds with ξ -high probability if there exist
constant c,C > 0 independent of N , such that

(3.2) P(�) ≥ 1 − NC exp
(−cϕξ )

for all sufficiently large N . For simplicity, for the case ξ = 1, we just say high
probability. Note that if (3.2) holds, then P(�) ≥ 1 − exp(−c′ϕξ ) for any constant
0 ≤ c′ < c.

DEFINITION 3.2 (Bounded support condition). A family of M × N matrices
X = (xij ) are said to satisfy the bounded support condition with q ≡ q(N) if

(3.3) P

(
max

1≤i≤M,1≤j≤N
|xij | ≤ q

)
≥ 1 − e−Nc

for some c > 0. Here, q ≡ q(N) depends on N and usually satisfies

N−1/2 logN ≤ q ≤ N−φ,

for some small constant φ > 0. Whenever (3.3) holds, we say that X has support q .

REMARK 3.3. Note that the Gaussian distribution satisfies the condition (3.3)
with q < N−φ for any φ < 1/2. We also remark that if (3.3) holds, then the
event {|xij | ≤ q,∀1 ≤ i ≤ M,1 ≤ j ≤ N} holds with ξ -high probability for any
fixed ξ > 0 according to Definition 3.1. For this reason, the bad event {|xij | >

q for some i, j} is negligible, and we will not consider the case where the band
event happens throughout the proof.

Next, we introduce a convenient self-adjoint linearization trick, which has been
proved to be useful in studying the local laws of random matrices of the A∗A type
[12, 31, 53]. We define the following (N + M) × (N + M) block matrix, which is
a linear function of X.

DEFINITION 3.4 (Linearizing block matrix). For z ∈ C+, we define the
(N + M) × (N + M) block matrix

(3.4) H ≡ H(X) :=
(

0 DX

(DX)∗ 0

)
,
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and its Green function

(3.5) G ≡ G(X,z) :=
(−IM×M DX

(DX)∗ −zIN×N

)−1

.

DEFINITION 3.5 (Index sets). We define the index sets:

I1 := {1, . . . ,M}, I2 := {M + 1, . . . ,M + N}, I := I1 ∪ I2.

Then we label the indices of the matrices according to

X = (Xiμ : i ∈ I1,μ ∈ I2) and D = diag(Dii : i ∈ I1).

In the rest of this paper, whenever referring to the entries of H and G, we will
consistently use the latin letters i, j ∈ I1, greek letters μ,ν ∈ I2 and a, b ∈ I . For
1 ≤ i ≤ min{N,M} and M + 1 ≤ μ ≤ M + min{N,M}, we introduce the notation
ī := i + M ∈ I2 and μ̄ := μ − M ∈ I1. For any I × I matrix A, we define the
following 2 × 2 submatrices:

(3.6) A[ij ] =
(

Aij Aij̄

Aīj Aīj̄

)
, 1 ≤ i, j ≤ min{N,M}.

We shall call A[ij ] a diagonal group if i = j , and an off-diagonal group otherwise.

It is easy to verify that the eigenvalues λ1(H) ≥ · · · ≥ λM+N(H) of H are re-
lated to the ones of Q2 through

(3.7) λi(H) = −λN+M−i+1(H) =√λi(Q2), 1 ≤ i ≤ N ∧ M,

and

λi(H) = 0, N ∧ M + 1 ≤ i ≤ N ∨ M,

where we used the notation N ∧ M := min{N,M} and N ∨ M := max{N,M}.
Furthermore, by the Schur complement formula, we can verify that

G =
(

z
(
DXX∗D∗ − z

)−1 (
DXX∗D∗ − z

)−1
DX

X∗D∗(DXX∗D∗ − z
)−1 (

X∗D∗DX − z
)−1

)

=
(

zG1 G1DX

X∗D∗G1 G2

)
=
(

zG1 DXG2
G2X

∗D∗ G2

)
.

(3.8)

Thus a control of G yields directly a control of the resolvents G1,2 defined in (2.7).
By (3.8), we immediately get that

m1 = 1

Mz

∑
i∈I1

Gii, m2 = 1

N

∑
μ∈I2

Gμμ.
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Next, we introduce the spectral decomposition of G. Let

DX =
N∧M∑
k=1

√
λkξkζ

∗
k ,

be a singular value decomposition of DX, where

λ1 ≥ λ2 ≥ · · · ≥ λN∧M ≥ 0 = λN∧M+1 = · · · = λN∨M,

and {ξk}Mk=1 and {ζk}Nk=1 are orthonormal bases of RI1 and R
I2 , respectively. Then

using (3.8), we can get that for i, j ∈ I1 and μ,ν ∈ I2,

Gij =
M∑

k=1

zξk(i)ξ
∗
k (j)

λk − z
, Gμν =

N∑
k=1

ζk(μ)ζ ∗
k (ν)

λk − z
,(3.9)

Giμ =
N∧M∑
k=1

√
λkξk(i)ζ

∗
k (μ)

λk − z
, Gμi =

N∧M∑
k=1

√
λkζk(μ)ξ∗

k (i)

λk − z
.(3.10)

3.2. Main tools. For small constant c0 > 0 and large constants C0,C1 > 0, we
define a domain of the spectral parameter z = E + iη as

(3.11) S(c0,C0,C1) :=
{
z = E + iη : λr − c0 ≤ E ≤ C0λr,

ϕC1

N
≤ η ≤ 1

}
.

We define the distance to the rightmost edge as

(3.12) κ ≡ κE := |E − λr | for z = E + iη.

Then we have the following lemma, which summarizes some basic properties of
m2c and ρ2c.

LEMMA 3.6 (Lemma 2.1 and Lemma 2.3 in [7]). There exists sufficiently
small constant c̃ > 0 such that

(3.13) ρ2c(x) ∼√λr − x for all x ∈ [λr − 2c̃, λr ].
The Stieltjes’ transform m2c satisfies that

(3.14)
∣∣m2c(z)

∣∣∼ 1,

and

(3.15) Imm2c(z) ∼
{
η/

√
κ + η, E ≥ λr,√

κ + η, E ≤ λr

for z = E + iη ∈ S(c̃,C0,−∞).

REMARK 3.7. Recall that ak are the edges of the spectral density ρ2c; see
(2.17). Hence ρ2c(ak) = 0, and we must have ak < λr − 2c̃ for 2 ≤ k ≤ 2p. In
particular, S(c0,C0,C1) is away from all the other edges if we choose c0 ≤ c̃.
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DEFINITION 3.8 (Classical locations of eigenvalues). The classical location
γj of the j th eigenvalue of Q2 is defined as

(3.16) γj := sup
x

{∫ +∞
x

ρ2c(x) dx >
j − 1

N

}
.

In particular, we have γ1 = λr .

REMARK 3.9. If γj lies in the bulk of ρ2c, then by the positivity of ρ2c we
can define γj through the equation∫ +∞

γj

ρ2c(x) dx = j − 1

N
.

We can also define the classical location of the j th eigenvalue of Q1 by changing
ρ2c to ρ1c and (j − 1)/N to (j − 1)/M in (3.16). By (2.8), this gives the same
location as γj for j ≤ N ∧ M .

DEFINITION 3.10 (Deterministic limit of G). We define the deterministic
limit � of the Green function G in (3.8) as

(3.17) �(z) :=
(

−(1 + m2c(z)�
)−1 0

0 m2c(z)IN×N

)
,

where � is defined in (2.4).

In the rest of this section, we present some results that will be used in the proof
of Theorem 2.7. Their proofs will be given in subsequent sections.

LEMMA 3.11 (Local deformed MP law). Suppose the Assumptions 2.1
and 2.5 hold. Suppose X satisfies the bounded support condition (3.3) with
q ≤ N−φ for some constant φ > 0. Fix C0 > 0 and let c1 > 0 be a sufficiently
small constant. Then there exist constants C1 > 0 and ξ1 ≥ 3 such that the follow-
ing events hold with ξ1-high probability:

⋂
z∈S(2c1,C0,C1)

{∣∣m2(z) − m2c(z)
∣∣≤ ϕC1

(
min

{
q,

q2

√
κ + η

}
+ 1

Nη

)}
,(3.18)

⋂
z∈S(2c1,C0,C1)

{
max
a,b∈I

∣∣Gab(z) − �ab(z)
∣∣≤ ϕC1

(
q +

√
Imm2c(z)

Nη
+ 1

Nη

)}
,(3.19)

{‖H‖2 ≤ λr + ϕC1
(
q2 + N−2/3)}.(3.20)

The estimates in (3.18) and (3.19) are usually referred to as the averaged local
law and entrywise local law, respectively. In fact, under different assumptions, they
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have been proved previously in different forms [6, 31]. For completeness, we will
give a concise proof in Appendix A that fits into our setting.

The local laws (3.18) and (3.19) can be used to derive some important properties
of the eigenvectors and eigenvalues of the random matrices. For instance, they lead
to the following results about the delocalization of eigenvectors and the rigidity of
eigenvalues. Note that (3.21) gives an almost optimal estimate on the flatness of
the singular vectors of DX, while (3.22) gives some quite precise information on
the locations of the singular values of DX. We will prove them in Section 5.

LEMMA 3.12. Suppose the events (3.18) and (3.19) hold with ξ1-high prob-
ability. Then there exists constant C′

1 > 0 such that the following events hold with
ξ1-high probability:

(1) Delocalization:

(3.21)
⋂

k:λr−c1≤γk≤λr

{
max

i

∣∣ξk(i)
∣∣2 + max

μ

∣∣ζk(μ)
∣∣2 ≤ ϕC′

1

N

}
.

(2) Rigidity of eigenvalues: if q ≤ N−φ for some constant φ > 1/3,

(3.22)
⋂

j :λr−c1≤γj≤λr

{|λj − γj | ≤ ϕC′
1
(
j−1/3N−2/3 + q2)},

where λj is the j th eigenvalue of (DX)∗DX and γj is defined in (3.16).

With Lemma 3.11, Lemma 3.12 and a standard Green function comparison
method, one can prove the following edge universality result when the support
q is small. For the details of the method, the reader can refer to for example, [6],
Section 4, [32], Section 4, [15], Theorem 2.7, [18], Section 6 and [43], Section 4.

LEMMA 3.13 (Theorem 1.3 of [6]). Let XW and XV be two sample co-
variance matrices satisfying the assumptions in Lemma 3.11. Moreover, suppose
q ≤ ϕCN−1/2 for some constant C > 0. Then there exist constants ε, δ > 0 such
that, for any s ∈ R, we have

P
V (N2/3(λ1 − λr) ≤ s − N−ε)− N−δ ≤ P

W (N2/3(λ1 − λr) ≤ s
)

≤ P
V (N2/3(λ1 − λr) ≤ s + N−ε)+ N−δ,

(3.23)

where P
V and P

W denote the laws of XV and XW , respectively.

REMARK 3.14. As in [15, 18, 33], Lemma 3.13, as well as Theorem 3.16
below, can be can be generalized to finite correlation functions of the k largest
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eigenvalues for any fixed k:

P
V ((N2/3(λi − λr) ≤ si − N−ε)

1≤i≤k

)− N−δ

≤ P
W ((N2/3(λi − λr) ≤ si

)
1≤i≤k

)
≤ P

V ((N2/3(λi − λr) ≤ si + N−ε)
1≤i≤k

)+ N−δ.

(3.24)

The proof of (3.24) is similar to that of (3.23) except that it uses a general form of
the Green function comparison theorem; see, for example, [18], Theorem 6.4. As
a corollary, we can then get the stronger universality result (2.23).

For any matrix X satisfying Assumption 2.1 and the tail condition (2.20), we
can construct a matrix X1 that approximates X with probability 1 − o(1), and
satisfies Assumption 2.1, the bounded support condition (3.3) with q ≤ N−φ for
some small φ > 0, and

(3.25) E|xij |3 ≤ BN−3/2, E|xij |4 ≤ B(logN)N−2

for some constant B > 0 (see Section 4 for the details). We will need the following
local law, eigenvalues rigidity and edge universality results for covariance matrices
with large support and satisfying condition (3.25).

THEOREM 3.15 (Rigidity of eigenvalues: large support case). Suppose the
Assumptions 2.1 and 2.5 hold. Suppose X satisfies the bounded support condition
(3.3) with q ≤ N−φ for some constant φ > 0 and the condition (3.25). Fix the
constants c1, C0, C1 and ξ1 as given in Lemma 3.11. Then there exists constant
C2 > 0, depending only on c1, C1, B and φ, such that with high probability we
have

(3.26) max
z∈S(c1,C0,C2)

∣∣m2(z) − m2c(z)
∣∣≤ ϕC2

Nη

for sufficiently large N . Moreover, (3.26) implies that for some constant C̃ > 0, the
following events hold with high probability:

(3.27)
⋂

j :λr−c1≤γj≤λr

{|λj − γj | ≤ ϕC̃j−1/3N−2/3}
and

(3.28)
{

sup
E≥λr−c1

∣∣n(E) − nc(E)
∣∣≤ ϕC̃

N

}
,

where

(3.29) n(E) := 1

N
#{λj ≥ E}, nc(E) :=

∫ +∞
E

ρ2c(x) dx.
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THEOREM 3.16. Let XW and XV be two i.i.d. sample covariance matrices
satisfying the assumptions in Theorem 3.15. Then there exist constants ε, δ > 0
such that, for any s ∈ R, we have

P
V (N2/3(λ1 − λr) ≤ s − N−ε)− N−δ ≤ P

W (N2/3(λ1 − λr) ≤ s
)

≤ P
V (N2/3(λ1 − λr) ≤ s + N−ε)+ N−δ,

(3.30)

where P
V and P

W denote the laws of XV and XW , respectively.

LEMMA 3.17 (Bounds on Gij : large support case). Let X be a sample covari-
ance matrix satisfying the assumptions in Theorem 3.15. Then for any 0 < c < 1
and z ∈ S(c1,C0,C2) ∩ {z = E + iη : η ≥ N−1+c}, we have the following weak
bound:

(3.31) E
∣∣Gab(z)

∣∣2 ≤ ϕC3

(
Imm2c(z)

Nη
+ 1

(Nη)2

)
, a �= b

for some constant C3 > 0.

In proving Theorem 3.15, Theorem 3.16 and Lemma 3.17, we will make use
of the results in Lemmas 3.11–3.13 for covariance matrices with small support.
In fact, given any matrix X satisfying the assumptions in Theorem 3.15, we can
construct a matrix X̃ having the same first four moments as X but with smaller
support q = O(N−1/2 logN).

LEMMA 3.18 (Lemma 5.1 in [33]). Suppose X satisfies the assumptions in
Theorem 3.15. Then there exists another matrix X̃ = (x̃ij ), such that X̃ satisfies
the bounded support condition (3.3) with q = O(N−1/2 logN), and the first four
moments of the entries of X and X̃ match, that is,

(3.32) Exk
ij = Ex̃k

ij , k = 1,2,3,4.

From Lemmas 3.11–3.13, we see that Theorems 3.15, 3.16 and Lemma 3.17
hold for X̃. Then due to (3.32), we expect that X has “similar properties” as X̃,
so that these results also hold for X. This will be proved with a Green function
comparison method, that is, we expand the Green functions with X in terms of
Green functions with X̃ using resolvent expansions, and then estimate the relevant
error terms; see Section 6 for more details.

4. Proof of of the main result. In this section, we prove Theorem 2.7 with
the results in Section 3.2. We begin by proving the necessity part.

PROOF OF THE NECESSITY. Assume that lims→∞ s4
P(|q11| ≥ s) �= 0. Then

we can find a constant 0 < c0 < 1/2 and a sequence {rn} such that rn → ∞ as
n → ∞ and

(4.1) P
(|qij | ≥ rn

)≥ c0r
−4
n .
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Fix any s > λr . We denote L := �τM�, I := √
τ−1s and define the event


N = {There exist i and j,1 ≤ i ≤ L,1 ≤ j ≤ N, such that |xij | ≥ I
}
.

We first show that λ1(Q2) ≥ s when 
N holds. Suppose |xij | ≥ I for some
1 ≤ i ≤ L and 1 ≤ j ≤ N . Let u ∈ R

N such that u(k) = δkj . By assumption (2.6),
we have σi ≥ τ for i ≤ L. Hence

λ1(Q2) ≥ 〈u, (DX)∗(DX)u
〉= M∑

k=1

σkx
2
kj ≥ σix

2
ij ≥ τ

(√
τ−1s

)2 = s.

Now we choose N ∈ {�(rn/I )2� : n ∈ N}. With the choice N = �(rn/I )2�, we have

1 − P(
N) = (1 − P
(|x11| ≥ I

))NL ≤ (1 − P
(|q11| ≥ rn

))NL

≤ (1 − c0r
−4
n

)NL ≤ (1 − c1N
−2)c2N

2
(4.2)

for some constant c1 > 0 depending on c0 and I , and some constant c2 > 0 de-
pending on τ and d . Since (1 − c1N

−2)c2N
2 ≤ c3 for some constant 0 < c3 < 1 in-

dependent of N , the above inequality shows that P(
N) ≥ 1 − c3 > 0. This shows
that lim supN→∞ P(
N) > 0 and concludes the proof. �

PROOF OF THE SUFFICIENCY. Given the matrix X satisfying Assumption 2.1
and the tail condition (2.20), we introduce a cutoff on its matrix entries at the level
N−ε . For any fixed ε > 0, define

αN := P
(|q11| > N1/2−ε), βN := E

[
1
(|q11| > N1/2−ε)q11

]
.

By (2.20) and integration by parts, we get that for any δ > 0 and large enough N ,

(4.3) αN ≤ δN−2+4ε, |βN | ≤ δN−3/2+3ε.

Let ρ(x) be the distribution density of q11. Then we define independent random
variables qs

ij , ql
ij , cij , 1 ≤ i ≤ M and 1 ≤ j ≤ N , in the following ways:

• qs
ij has distribution density ρs(x), where

(4.4) ρs(x) = 1
(∣∣∣∣x − βN

1 − αN

∣∣∣∣≤ N1/2−ε

)ρ(x − βN

1−αN
)

1 − αN

;

• ql
ij has distribution density ρl(x), where

(4.5) ρl(x) = 1
(∣∣∣∣x − βN

1 − αN

∣∣∣∣> N1/2−ε

)ρ(x − βN

1−αN
)

αN

;

• cij is a Bernoulli 0–1 random variable with P(cij = 1) = αN and
P(cij = 0) = 1 − αN .
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Let Xs , Xl and Xc be random matrices such that Xs
ij = N−1/2qs

ij , Xl
ij = N−1/2ql

ij

and Xc
ij = cij . By (4.4), (4.5) and the fact that Xc

ij is Bernoulli, it is easy to check

that for independent Xs , Xl and Xc,

(4.6) Xij
d= Xs

ij

(
1 − Xc

ij

)+ Xl
ijX

c
ij − 1√

N

βN

1 − αN

,

where by (4.3), we have ∣∣∣∣ 1√
N

βN

1 − αN

∣∣∣∣≤ 2δN−2+3ε.

Therefore, if we define the M × N matrix Y = (Yij ) by

Yij = 1√
N

βN

1 − αN

for all i and j,

we have ‖Y‖ ≤ cN−1+3ε for some constant c > 0. In the proof below, one will
see that ‖D(X + Y)‖ = λ

1/2
1 ((X + Y)∗D∗D(X + Y)) = O(1) with probability

1 − o(1), where λ1(·) denotes the largest eigenvalue of the random matrix. Then it
is easy to verify that with probability 1 − o(1),

(4.7)
∣∣λ1
(
(X + Y)∗D∗D(X + Y)

)− λ1
(
X∗D∗DX

)∣∣= O
(
N−1+3ε).

Thus the deterministic part in (4.6) is negligible under the scaling N2/3.
By (2.20) and integration by parts, it is easy to check that

Eqs
11 = 0, E

∣∣qs
11

∣∣2 = 1 − O
(
N−1+2ε),

E
∣∣qs

11

∣∣3 = O(1), E
∣∣qs

11

∣∣4 = O(logN).
(4.8)

We note that X1 := (E|qs
ij |2)−1/2Xs is a matrix that satisfies the assumptions for

X in Theorem 3.16. Together with the estimate for E|qs
ij |2 in (4.8), we conclude

that there exist constants ε, δ > 0 such that for any s ∈ R,

P
G(N2/3(λ1 − λr) ≤ s − N−ε)− N−δ ≤ P

s(N2/3(λ1 − λr) ≤ s
)

≤ P
G(N2/3(λ1 − λr) ≤ s + N−ε)+ N−δ,

(4.9)

where Ps denotes the law for Xs and P
G denotes the law for a Gaussian covariance

matrix. Now we write the first two terms on the right-hand side of (4.6) as

Xs
ij

(
1 − Xc

ij

)+ Xl
ijX

c
ij = Xs

ij + RijX
c
ij ,

where Rij := Xl
ij − Xs

ij . It remains to show that the effect of the RijX
c
ij terms on

λ1 is negligible. We call the corresponding matrix as Rc := (RijX
c
ij ). Note that

Xc
ij is independent of Xs

ij and Rij .
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We first introduce a cutoff on matrix Xc as X̃c := 1AXc, where

A := {#{(i, j) : Xc
ij = 1

}≤ N5ε}
∩ {Xc

ij = Xc
kl = 1 ⇒ {i, j} = {k, l} or {i, j} ∩ {k, l} = ∅

}
.

If we regard the matrix Xc as a sequence Xc of NM i.i.d. Bernoulli random vari-
ables, it is easy to obtain from the large deviation formula that

(4.10) P

(
MN∑
i=1

Xc
i ≤ N5ε

)
≥ 1 − exp

(−Nε)
for sufficiently large N . Suppose the number m of the nonzero elements in Xc is
given with m ≤ N5ε . Then it is easy to check that

P

(
∃i = k, j �= l or i �= k, j = l such that Xc

ij = Xc
kl = 1

∣∣∣MN∑
i=1

Xc
i = m

)

= O
(
m2N−1).

(4.11)

Combining the estimates (4.10) and (4.11), we get that

(4.12) P(A) ≥ 1 − O
(
N−1+10ε).

On the other hand, by condition (2.20), we have

(4.13) P
(|Rij | ≥ ω

)≤ P

(
|qij | ≥ ω

2
N1/2

)
= o

(
N−2)

for any fixed constant ω > 0. Hence if we introduce the matrix

E = 1
(
A ∩

{
max
i,j

|Rij | ≤ ω
})

Rc,

then

(4.14) P
(
E = Rc)= 1 − o(1)

by (4.12) and (4.13). Thus we only need to study the largest eigenvalue of
(Xs + E)∗D∗D(Xs + E), where maxi,j |Eij | ≤ ω and the rank of E is less than
N5ε . In fact, it suffices to prove that

(4.15) P
(∣∣λs

1 − λE
1
∣∣≤ N−3/4)= 1 − o(1),

where λs
1 := λ1((X

s)∗D∗DXs) and λE
1 := λ1((X

s + E)∗D∗D(Xs + E)). The es-
timate (4.15), combined with (4.7), (4.9) and (4.14), concludes (2.21).

Now we prove (4.15). Note that X̃c is independent of Xs , so the positions of
the nonzero elements of E are independent of Xs . Without loss of generality, we
assume the m nonzero entries of DE are

(4.16) e11, e22, . . . , emm, m ≤ N5ε.
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For the other choices of the positions of nonzero entries, the proof is exactly the
same. But we make this assumption to simplify the notation. By (2.6) and the
definition of E, we have |eii | ≤ τ−1ω for 1 ≤ i ≤ m.

We define the matrices:

Hs :=
(

0 DXs(
DXs

)∗ 0

)
and HE := Hs + P, P :=

(
0 DE

(DE)∗ 0

)
.

Then we have the eigendecomposition P = V PDV ∗, where PD is a 2m × 2m

diagonal matrix

PD = diag(e11, . . . , emm,−e11, . . . ,−emm),

and V is an (M + N) × 2m matrix such that

Vab =

⎧⎪⎪⎨
⎪⎪⎩

δa,i/
√

2 + δa,(M+i)/
√

2, b = i, i ≤ m,

δa,i/
√

2 − δa,(M+i)/
√

2, b = i + m, i ≤ m,

0, b ≥ 2m + 1.

With the identity

det
(−IM×M DX

(DX)∗ −zIN×N

)
= det(−IM×M)det

(
X∗D∗DX − zIN×N

)
,

and Lemma 6.1 of [30], we find that if μ /∈ σ((DXs)∗DXs), then μ is an eigen-
value of Qγ := (Xs + γE)∗D∗D(Xs + γE) if and only if

(4.17) det
(
V ∗Gs(μ)V + (γPD)−1)= 0,

where

Gs(μ) :=
(
Hs −

(
IM×M 0

0 μIN×N

))−1

.

Define Rγ := V ∗GsV + (γPD)−1 for 0 < γ < 1. It has the following 2 × 2 blocks
[recall the definition (3.6)]: for 1 ≤ i ≤ m,(

R
γ
i,j R

γ
i,j+m

R
γ
i+m,j R

γ
i+m,j+m

)
= 1

2

(
1 1
1 −1

)
G[ij ]

(
1 1
1 −1

)

+ δij

(
(γ eii)

−1 0
0 −(γ eii)

−1

)
.

(4.18)

Now let μ := λs
1 ± N−3/4. We claim that

(4.19) P
(
detRγ (μ) �= 0 for all 0 < γ ≤ 1

)= 1 − o(1).

If (4.19) holds, then μ is not an eigenvalue of Qγ with probability 1−o(1). Denot-
ing the largest eigenvalue of Qγ by λ

γ
1 , 0 < γ ≤ 1, and defining λ0

1 := limγ→0 λ
γ
1 ,
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we have λ0
1 = λs

1 and λ1
1 = λE

1 by definition. With the continuity of λ
γ
1 with respect

to γ and the fact that λ0
1 ∈ (λs

1 − N−3/4, λs
1 + N−3/4), we find that

λE
1 = λ1

1 ∈ (λs
1 − N−3/4, λs

1 + N−3/4),
with probability 1 − o(1), that is, we have proved (4.15).

Finally, we prove the claim (4.19). Choose z = λr + iN−2/3 and note that Hs

has support N−ε . Then by (3.19) and (3.15), we have with high probability,

(4.20) max
a

∣∣Gs
aa(z) − �aa(λr)

∣∣≤ N−ε/2,

where we also used the Assumption 2.5 and∣∣m2c(z) − m2c(λr)
∣∣∼ |z − λr |1/2,

which follows from (3.13). For the off-diagonal terms, we use (3.31), (3.15) and
the Markov inequality to conclude that

(4.21) max
a �=b∈{1,...,m}∪{M+1,...,M+m}

∣∣Gs
ab(z)

∣∣≤ N−1/6,

holds with probability 1 − o(N−1/6). As pointed out in Remark 3.14, we can ex-
tend (4.9) to finite correlation functions of the largest eigenvalues. Since the largest
eigenvalues in the Gaussian case are separated in the scale ∼ N−2/3, we conclude
that

(4.22) P

(
min

i

∣∣λi

((
Xs)∗Xs)− μ

∣∣≥ N−3/4
)

≥ 1 − o(1).

On the other hand, the rigidity result (3.27) gives that with high probability,

(4.23) |μ − λr | ≤ ϕC̃N−2/3 + N−3/4.

Using (3.21), (4.22), (4.23) and the rigidity estimate (3.27), we can get that with
probability 1 − o(1),

(4.24) max
a,b

∣∣Gs
ab(z) − Gs

ab(μ)
∣∣< N−1/4+ε.

For instance, for α,β ∈ I2, small c > 0 and large enough C > 0, we have with
probability 1 − o(1) that∣∣Gαβ(z) − Gαβ(μ)

∣∣
≤∑

k

∣∣ζk(α)ζ ∗
k (β)

∣∣∣∣∣∣ 1

λk − z
− 1

λk − μ

∣∣∣∣
≤ C

N2/3

∑
γk≤λr−c

∣∣ζk(α)ζ ∗
k (β)

∣∣+ ϕC

N5/3

∑
γk>λr−c

1

|λk − z||λk − μ|

≤ C

N2/3 + ϕC

N5/3

∑
1≤k≤ϕC

1

|λk − z||λk − μ|
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+ ϕC

N5/3

∑
k>ϕC,γk>λr−c

1

|λk − z||λk − μ|

≤ C

N2/3 + ϕ2C

N1/4 + ϕC

N2/3

(
1

N

∑
k>ϕC,γk>λr−c

1

|λk − z||λk − μ|
)

≤ N−1/4+ε,

where in the first step we used (3.9), in the second step (3.21) and |λk − z| ×
|λk − μ| � 1 for γk ≤ λr − c due to (3.27), in the third step the Cauchy–Schwarz
inequality, in the fourth step (4.22) and in the last step the rigidity estimate (3.27).
For all the other choices of a and b, we can prove the estimate (4.24) in a similar
way. Now by (4.24), we see that (4.20) and (4.21) still hold if we replace z by
μ = λs

1 ± N−3/4 and double the right-hand sides. Then using maxi |eii | ≤ τ−1ω

and (4.18), we get that for any 0 < γ ≤ 1,

min
1≤i≤m,γ

{∣∣Rγ
ii

∣∣, ∣∣Rγ
i+m,i+m

∣∣}≥ τω−1 − 1

2

∣∣�ii(λr) + m2c(λr)
∣∣− O

(
N−ε/2),

max
1≤i≤m,γ

{∣∣Rγ
i,i+m

∣∣, ∣∣Rγ
i+m,i

∣∣}≤ 1

2

∣∣�ii(λr) − m2c(λr)
∣∣+ O

(
N−ε/2)

and

max
1≤i �=j≤m,γ

(∣∣Rγ
i,j

∣∣+ ∣∣Rγ
i+m,j

∣∣+ ∣∣Rγ
i,j+m

∣∣+ ∣∣Rγ
i+m,j+m

∣∣)= O
(
N−1/6),

hold with probability 1 − o(1). Thus Rγ is diagonally dominant with probability
1 − o(1) (provided that ω is chosen to be sufficiently small). This proves the claim
(4.19), which further gives (4.15) and completes the proof. �

5. Proof of Lemma 3.12, Theorem 3.15 and Theorem 3.16.

PROOF OF LEMMA 3.12. We first prove the delocalization result in (3.21)
assuming that (3.22) holds with ξ1-high probability. Choose z0 = E + iη0 ∈
S(2c1,C0,C1) with η0 = ϕC1N−1. By (3.19), we have∣∣Gμμ(z0)

∣∣= O(1) with ξ1-high probability.

Then using the spectral decomposition (3.9), we get

(5.1)
N∑

k=1

η0|ζk(μ)|2
(λk − E)2 + η2

0

= ImGμμ(z0) = O(1).

By (3.22), it is easy to see that λk + iη0 ∈ S(2c1,C0,C1) with ξ1-high probability
for every k such that λr − c1 ≤ γk ≤ λr . Then choosing E = λk in (5.1) yields that

∣∣ζk(μ)
∣∣2 � η0 = ϕC1

N
with ξ1-high probability.

The proof for |ξk(i)|2 is similar.
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Now we prove the rigidity results in (3.22) when q ≤ N−1/3. Our argument ba-
sically follows from the ones in [17], Section 8, [18], Section 5 and [43], Section 8.
Recall the notation in (3.29), we first claim the following lemma. It can be proved
with a standard argument using the local law (3.18) and the Helffer–Sjöstrand cal-
culus. For the reader’s sake, we include its proof in Appendix B.

LEMMA 5.1. Suppose the event (3.18) holds with ξ1-high probability. Then
there exists constant C̃1 > 0 such that

(5.2)
⋂

E≥λr−c1

{∣∣n(E) − nc(E)
∣∣≤ ϕC̃1

(
N−1 + q3 + q2√κE

)}
holds with ξ1-high probability, where κE is defined in (3.12).

Now we derive the estimate (3.22) from Lemma 5.1. We define the event � as
the intersection of the events on which (5.2) and (3.20) hold. We first assume that
λj , γj ≥ λr −ϕKN−2/3 for some constant K > C̃1. Then by (3.20) and q ≤ N−1/3,
we have that on �,

(5.3) |λj − γj | ≤ ϕLN−2/3

for some constant L > max{K,C1}. Note that by (3.13), nc(x) ∼ (λr − x)3/2 for
x near λr , that is,

(5.4) nc(γj ) = j

N
∼ (λr − γj )

3/2.

Then in this case, we have j ≤ ϕ2K . Together with (5.3), we get (3.22) (for a
sufficiently large constant C′

1 > 0).
For the rest of j ’s, we use the dyadic decomposition

Uk := {j : γj ≥ λr − c1,2kϕKN−2/3 < λr − min{γj , λj } ≤ 2k+1ϕKN−2/3}
for k ≥ 0. By (5.2) and q ≤ N−1/3, we find that on �,

(5.5)
j

N
= nc(γj ) = n(λj ) = nc(λj ) + ϕC̃1O

(
N−1 + q2√κλj

)
.

On � and for j ∈ Uk , the second term on the right-hand side of (5.5) can be esti-
mated as

ϕC̃1O
(
N−1 + q2√κλj

)≤ CϕC̃1N−1 + C2k/2ϕC̃1+K/2q2N−1/3.

Moreover, on � and for j ∈ Uk we have

nc(γj ) ≥ c23k/2ϕ3K/2N−1 � ϕC̃1O
(
N−1 + q2√κλj

)
,

where we used (5.4) again. Then we deduce from (5.5) that

nc(λj ) = nc(γj )
[
1 + O

(
ϕC̃1−K)].
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Thus on � and for j ∈ Uk , we have λr − λj ∼ λr − γj , and hence |n′
c(x)| ∼

|n′
c(γj )| for any x between γj and λj . Thus mean-value theorem and (5.5) imply

that on � and for j ∈ Uk ,

|λj − γj | ≤ C|nc(λj ) − nc(γj )|
|n′

c(γj )| ≤ CϕC̃1

(j/N)1/3

(
N−1 + q2√κλj

)

≤ CϕC̃1

(j/N)1/3

(
N−1 + q2√κγj

+ q2
√

|λj − γj |)
≤ CϕC̃1

(
j−1/3N−2/3 + q2)+ CϕC̃1N1/3q2

√
|λj − γj |

≤ CϕC̃1
(
j−1/3N−2/3 + q2)+ Cϕ2C̃1q2 + 1

2
|λj − γj |,

where we used that |n′
c(γj )| ∼ (λr −γj )

1/2 ∼ (j/N)1/3, κλj
≤ κγj

+|λj −γj | and
κγj

∼ (j/N)2/3. Thus the above inequality gives that on � and for j ∈ Uk ,

|λj − γj | ≤ Cϕ2C̃1
(
j−1/3N−2/3 + q2).

This concludes (3.22). �

With Lemma 3.18, given X satisfying the assumptions in Theorem 3.15, we can
construct a matrix X̃ with support bounded by q = O(N−1/2 logN) and shares the
same first four moments with X. We first prove Theorem 3.15 with the following
lemma. Its proof will be given in Section 6.

LEMMA 5.2. Let X, X̃ be two matrices as in Lemma 3.18, and G ≡ G(X,z),
G̃ ≡ G(X̃, z) be the corresponding Green functions. For z ∈ S(c1,C0,C1) with
large enough C1 > 0, if there exist deterministic quantities J ≡ J (N) and K ≡
K(N) such that

(5.6) max
a �=b

∣∣G̃ab(z)
∣∣≤ J,

∣∣m̃2(z) − m2c(z)
∣∣≤ K

hold with ξ1-high probability for some ξ1 ≥ 3, then for any p ∈ 2N with p ≤ ϕ, we
have

(5.7) E
∣∣m2(z) − m2c(z)

∣∣p ≤ E
∣∣m̃2(z) − m2c(z)

∣∣p + (Cp)Cp(J 2 + K + N−1)p.

PROOF OF THEOREM 3.15. By Lemma 3.18, X̃ has support bounded by q =
O(N−1/2 logN). Together with (3.15), we get

q = O

(
logN

√
Imm2c

Nη

)
,

q2

√
κ + η

= O

(
(logN)2

Nη

)
.
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Then (3.18) and (3.19) show that we can choose

J = ϕC′/2
(

1

Nη
+
√

Imm2c

Nη

)
and K = ϕC′

Nη

for some large enough constant C′ > 0 such that (5.6) holds with ξ1-high proba-
bility. Then using Markov inequality and (5.7), we get that for sufficiently large
constant C2 > 0 and small constants c, c′ > 0,

P
(∣∣m2(z) − m2c(z)

∣∣≥ ϕC2(Nη)−1)
≤ (Cη−1)p exp(−cϕξ1)

ϕC2p(Nη)−p
+ (Cp)CpϕC′p

ϕC2p
≤ exp

(−c′ϕ
)
,

where we used p = ϕ and the trivial bound |m̃2(z) − m2c(z)| ≤ Cη−1 [see (A.5)]
on the bad event with probability ≤ exp(−cϕξ1). This proves (3.26). Then using
(3.26), one can derive (3.27) and (3.28) with the same arguments as in the previous
proof of Lemma 3.12. In fact, comparing (3.26) with (3.18), it is easy to see that
we can simply take q = 0 in (5.2) and (3.22) to get the desired bounds. �

For the matrix X̃ in Lemma 3.18, it satisfies the desired edge universality ac-
cording to Lemma 3.13. Then Theorem 3.16 follows immediately from the follow-
ing comparison lemma.

LEMMA 5.3. Let X and X̃ be two matrices as in Lemma 3.18. Then there exist
constants ε, δ > 0 such that, for any s ∈ R we have

P
X̃(N2/3(λ1 − λr) ≤ s − N−ε)− N−δ ≤ P

X(N2/3(λ1 − λr) ≤ s
)

≤ P
X̃(N2/3(λ1 − λr) ≤ s + N−ε)+ N−δ,

(5.8)

where P
X and P

X̃ are the laws for X and X̃, respectively.

By the rigidity result (3.27), we can assume that the parameter s satisfies

(5.9) |s| ≤ ϕC̃,

since otherwise (3.27) already gives the desired result. Our goal is to write the
distribution of the largest eigenvalue in terms of a cutoff function depending only
on the Green functions. Then it is natural to use the Green function comparison
method to conclude the proof. Let

N (E1,E2) := #{j : E1 ≤ λj ≤ E2}
denote the number of eigenvalues of Q2 = X∗D∗DX in [E1,E2]; similarly we de-
fine Ñ for Q̃2 = X̃∗D∗DX̃. Then to quantify the distribution of λ1, it is equivalent
to use P(N (E,∞) = 0). Set

(5.10) Eu := λr + 2N−2/3ϕC̃,
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and for any E ≤ Eu, define XE := 1[E,Eu] to be the characteristic function of the
interval [E,Eu]. For any η > 0, we define

θη(x) := 1

π

η

x2 + η2 = 1

π
Im

1

x − iη
,

to be an approximate delta function on scale η. Note that under the above defini-
tions, we have N (E,Eu) = TrXE(Q2) and

(5.11) TrXE−l ∗ θη(Q2) = N
1

π

∫ Eu

E−l
Imm2(y + iη) dy

for any l > 0. Let q be a smooth symmetric cutoff function such that

q(x) =
{

1 if |x| ≤ 1/9,

0 if |x| ≥ 2/9,

and we assume that q(x) is decreasing when x ≥ 0. Then the following lemma
provides a way to approximate P(N (E,∞) = 0) with a function depending only
on Green functions.

LEMMA 5.4. For ε > 0, let η = N−2/3−9ε and l = N−2/3−ε/2. Suppose The-
orem 3.15 holds. Then for all E such that

|E − λr | ≤ 3

2
ϕC̃N−2/3,

where the constant C̃ is as in (3.27), (3.28), (5.9) and (5.10), we have

Eq
(
TrXE−l ∗ θη(Q2)

)≤ P
(
N (E,∞) = 0

)
≤ Eq

(
TrXE+l ∗ θη(Q2)

)+ exp
(−cϕC̃)(5.12)

for some constant c > 0.

PROOF. See [43], Corollary 4.2, or [18], Corollary 6.2, for the proof. The key
inputs are the rigidity estimates (3.27) and (3.28) in Theorem 3.15. �

To prove Lemma 5.3, we need the following Green function comparison result,
which will be proved in Section 6.

LEMMA 5.5. Let X and X̃ be two matrices as in Lemma 3.18. Suppose F :
R→R is a function whose derivatives satisfy

(5.13) sup
x

∣∣F (n)(x)
∣∣(1 + |x|)−C4 ≤ C4, n = 1,2,3

for some constant C4 > 0. Then for any sufficiently small constant ε > 0 and for
any real numbers

E,E1,E2 ∈ Iε := {x : |x − λr | ≤ N−2/3+ε} and η := N−2/3−ε,
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we have

(5.14)
∣∣EF

(
Nη Imm2(z)

)−EF
(
Nη Im m̃2(z)

)∣∣≤ N−φ+C5ε, z = E + iη,

and ∣∣∣∣EF

(
N

∫ E2

E1

Imm2(y + iη) dy

)
−EF

(
N

∫ E2

E1

Im m̃2(y + iη) dy

)∣∣∣∣
≤ N−φ+C5ε,

(5.15)

where φ is defined in Theorem 3.15 and C5 > 0 is some constant.

PROOF OF LEMMA 5.3. Recall that we only need to consider s that satisfies
(5.9). Thus it suffices to assume that |E − λr | ≤ ϕC̃N−2/3. Then by Lemma 5.5
and (5.11), there exists constant δ > 0 such that

(5.16) Eq
(
TrXE−l ∗ θη(Q̃2)

)≤ Eq
(
TrXE−l ∗ θη(Q2)

)+ N−δ.

For the choice l = 1
2N−2/3−ε , we also have |E − l − λr | ≤ 3

2ϕC̃N−2/3. Thus we
can apply Lemma 5.4 to get

(5.17) P
(
Ñ (E − 2l,∞) = 0

)≤ Eq
(
TrXE−l ∗ θη(Q̃2)

)+ exp
(−cϕC̃).

With (5.16), (5.17) and Lemma 5.4, we get that

P
(
Ñ (E − 2l,∞) = 0

)− 2N−δ ≤ Eq
(
TrXE−l ∗ θη(Q2)

)
≤ P

(
N (E,∞) = 0

)
.

(5.18)

If we choose E = λr + sN− 2
3 , then (5.18) implies that

P
X̃(N2/3(λ1 − λr) ≤ s − N−ε)− 2N−δ ≤ P

X(N2/3(λ1 − λr) ≤ s
)
.

This proves one of the inequalities in (5.3). The other inequality can be proved in
a similar way using Lemma 5.4 and Lemma 5.5. This proves Lemma 5.3, which
further completes the proof of Theorem 3.16. �

6. Proof of Lemma 5.2, Lemma 5.5 and Lemma 3.17. For the proof in this
section, we will use the Green function comparison method developed in [33].
More specifically, we will apply the Lindeberg replacement strategy to G in (3.5).
Let X = (xiμ) and X̃ = (x̃iμ) be two matrices as in Lemma 3.18 (in this section
we name the indices as in Definition 3.5). Define a bijective ordering map � on
the index set of X as

� : {(i,μ) : 1 ≤ i ≤ M,M + 1 ≤ μ ≤ M + N
}→ {1, . . . , γmax = MN}.

For any 1 ≤ γ ≤ γmax, we define the matrix Xγ = (x
γ
iμ) such that x

γ
iμ = xiμ if

�(i,μ) ≤ γ , and x
γ
iμ = x̃iμ otherwise. Note we have that X0 = X̃, Xγmax = X, and
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Xγ satisfies the bounded support condition with q = N−φ for all 0 ≤ γ ≤ γmax.
Correspondingly, we define

(6.1) Hγ :=
(

0 DXγ(
DXγ

)∗ 0

)
, Gγ :=

(−IM×M DXγ(
DXγ

)∗ −zIN×N

)−1

.

Note that Hγ and Hγ−1 differ only at the (i,μ) and (μ, i) elements, where
�(i,μ) = γ . Then we define the (N + M) × (N + M) matrices V and W by

Vab = (1{(a,b)=(i,μ)} + 1{(a,b)=(μ,i)})
√

σixiμ

and

Wab = (1{(a,b)=(i,μ)} + 1{(a,b)=(μ,i)})
√

σix̃iμ,

so that Hγ and Hγ−1 can be written as

(6.2) Hγ = Q + V, Hγ−1 = Q + W

for some (N +M)× (N +M) matrix Q satisfying Qiμ = Qμi = 0. For simplicity
of notation, we denote the Green functions by

(6.3) S := Gγ , T := Gγ−1, R :=
(
Q −

(
IM×M 0

0 zIN×N

))−1

.

Under the above definitions, we can write

S =
(
Q −

(
IM×M 0

0 zIN×N

)
+ V

)−1

= (I + RV )−1R.(6.4)

Thus we can expand S using the resolvent expansion till order m:

(6.5) S = R − RV R + (RV )2R + · · · + (−1)m(RV )mR + (−1)m+1(RV )m+1S.

On the other hand, we can also expand R in terms of S,

(6.6) R = (I − SV )−1S = S + SV S + (SV )2S + · · · + (SV )mS + (SV )m+1R.

We have similar expansions for T and R by replacing V , S with W , T in (6.5) and
(6.6).

By the bounded support condition, we have

(6.7) max
a,b

|Vab| = √
σi |xiμ| = O

(
N−φ),

with ξ1-high probability. Together with Lemma 3.11 and (6.6), it is easy to check
that maxa,b |Rab| = O(1) with ξ1-high probability. Thus there exists a constant
C6 > 0 such that with ξ1-high probability,

(6.8) sup
z∈S(c1,C0,C1)

max
γ

max
a,b

max
{|Sab|, |Tab|, |Rab|}≤ C6,
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where we used (3.19) and the fact that m2c(z) is uniformly bounded on
S(c1,C0,C1). On the other hand, by (A.5) we have the following trivial deter-
ministic bound for S, R and T :

(6.9) max
γ

max
a,b

max
{|Sab|, |Tab|, |Rab|}≤ Cη−1 ≤ N.

In the following discussions, we fix γ and i,μ such that �(i,μ) = γ . The expres-
sions below will depend on γ , but we drop this dependence for convenience. For
simplicity, we will use |v| ≡ ‖v‖1 to denote the l1-norm for any vector v.

The following lemma gives a simple estimate for the remainder terms in (6.5)
and (6.6).

LEMMA 6.1. There exists constant C > 0 such that for any m ∈ N,

(6.10) max
a,b

max
{∣∣((RV )mS

)
ab

∣∣, ∣∣((SV )mR
)
ab

∣∣}= O
(
CmN−mφ),

with ξ1-high probability.

PROOF. By the definition of V , we have, for example,

(6.11)
(
(RV )mS

)
ab = ∑

(al,bl)∈{(i,μ),(μ,i)}:1≤l≤m

(
√

σixiμ)mRaa1Rb1a2 · · ·Sbmb.

Since there are 2m terms in the above sum, the conclusion follows immediately
from (6.7) and (6.8). �

From the expression (6.11), one can see that it is helpful to introduce the fol-
lowing notation.

DEFINITION 6.2 (Matrix operators ∗γ ). For any two (N + M) × (N + M)

matrices A and B , we define A ∗γ B as

(6.12) A ∗γ B := AIγ B, (Iγ )ab = 1{(a,b)=(i,μ)} + 1{(a,b)=(μ,i)},

where (i,μ) is such that �(i,μ) = γ . In other words, we have

(A ∗γ B)ab = AaiBμb + AaμBib.

When γ is fixed, we often drop the subscript γ and write A∗B for simplicity. Also
we denote the mth power of A under the ∗γ -product by A∗m, that is,

(6.13) A∗m ≡ A∗γ m := A ∗ A ∗ A ∗ · · · ∗ A︸ ︷︷ ︸
m

.

DEFINITION 6.3 (Pγ,k and Pγ,k notation). For k ∈ N and k = (k1, . . . , ks) ∈
N

s , γ = �(i,μ), we define

(6.14) Pγ,kGab := G
∗γ (k+1)

ab
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and

(6.15) Pγ,k

(
s∏

t=1

Gatbt

)
:=

s∏
t=1

(Pγ,kt Gatbt ) =
s∏

t=1

G
∗γ (kt+1)

at bt
.

If G1 and G2 are products of matrix entries as above, then we define

(6.16) Pγ,k(G1 + G2) := Pγ,kG1 +Pγ,kG2.

Similarly, for the product of the entries of G − �, we define

(6.17) P̃γ,k

(
s∏

t=1

(G − �)atbt

)
:=

s∏
t=1

(
P̃γ,kt (G − �)atbt

)
,

where

P̃γ,k(G − �)ab :=
{
(G − �)ab if a = b and k = 0,

G
∗(k+1)
ab otherwise.

Again, we will often drop the subscript γ whenever there is no confusion about it.

REMARK 6.4. Note that Pγ,k and P̃γ,k are not linear operators acting on
matrices, but just notation we use for simplification. Moreover, for k, l ∈ N and
k ∈ N

k+1, it is easy to verify that

(6.18) G∗lIγ G∗k = G∗(l+k), Pγ,k(Pγ,kGab) = Pγ,k+|k|Gab.

For the second equality, note that Pγ,kGab is a sum of products of the entries of
G, where each product contains k + 1 matrix entries.

With the above definitions and bound (6.8), it is easy to prove the following
lemma.

LEMMA 6.5. There exists constant C̃6 > 0 such that for any k ∈ N
s, γ , and

a1, b1, . . . , as, bs , we have

(6.19) max

{∣∣∣∣∣Pγ,k

(
s∏

t=1

Aatbt

)∣∣∣∣∣,
∣∣∣∣∣P̃γ,k

(
s∏

t=1

(A − �)atbt

)∣∣∣∣∣
}

≤ C̃
s+|k|+1
6 ,

with ξ1-high probability, where A can be R, S or T .

Now we begin to perform the Green function comparison strategy. The basic
idea is to expand S and T in terms of R using the resolvent expansions as in
(6.5) and (6.6), and then compare the two expressions. We expect that the main
terms will cancel since xiμ and x̃iμ have the same first four moments, while the
remaining error terms will be sufficiently small since xiμ and x̃iμ have support
bounded by N−φ . The key is the following Lemma 6.6, whose proof is the same
as the one for Lemma 6.5 in [33].
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LEMMA 6.6 (Green function representation theorem). Let z ∈ S(c1,C0,C1)

and �(i,μ) = γ . Fix s = O(ϕ) and ζ = O(ϕ). Then we have

E

s∏
t=1

Satbt = ∑
0≤k≤4

AkE
[
(−√

σixiμ)k
]

+ ∑
5≤|k|≤2ζ/φ,k∈Ns

σ
|k|/2
i AkEPγ,k

s∏
t=1

Satbt + O
(
N−ζ ),

(6.20)

where Ak , 0 ≤ k ≤ 4, depend only on R, Ak’s are independent of (at , bt ),
1 ≤ t ≤ s, and

(6.21) |Ak| ≤ N−|k|φ/10−2.

Similarly, we have

E

s∏
t=1

(S − �)atbt = ∑
0≤k≤4

ÃkE
[
(−√

σixiμ)k
]

+ ∑
5≤|k|≤2ζ/φ,k∈Ns

σ
|k|/2
i AkEP̃γ,k

s∏
t=1

Satbt + O
(
N−ζ ),

(6.22)

where Ãk , 0 ≤ k ≤ 4, depend only on R, and Ak’s are the same as above.
Finally, as (6.20), we have

E

s∏
t=1

Satbt = E

s∏
t=1

Ratbt

+ ∑
1≤|k|≤2ζ/φ,k∈Ns

σ
|k|/2
i ÃkEPγ,k

s∏
t=1

Satbt + O
(
N−ζ ),

(6.23)

where Ã are independent of (at , bt ), 1 ≤ t ≤ s, and

(6.24) |Ãk| ≤ N−|k|φ/10.

Note that the terms A and Ã do depend on γ and we have omitted this dependence
in the above expressions.

REMARK 6.7. We emphasize that most of the comparison arguments in [33],
Section 6, can be carried over here due to the introduction of the linearized block
matrix in Definition 3.4 and the local laws given in Lemma 3.11. To make this
point clear, let H = (hij ) and H̃ = (h̃ij ) be two N × N real Wigner matrices.
Suppose one would like to compare their Green functions G = (H −z)−1 and G̃ =
(H̃ − z)−1 through the Lindeberg replacement strategy. Then consider a bijective
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ordering map � : {(i, j) : 1 ≤ i ≤ j ≤ N} → {1,2, . . . ,N(N + 1)/2}, we have for
i < j and �(i, j) = γ ,

Hγ = Q + V, Gγ = (Hγ − z
)−1

,

Hγ−1 = Q + W, Gγ−1 = (Hγ−1 − z
)−1

,

where

Vkl = (1{(k,l)=(i,j)} + 1{(k,l)=(j,i)})hij , Wkl = (1{(k,l)=(i,j)} + 1{(k,l)=(j,i)})h̃ij ,

and Q is an N × N matrix satisfying Qij = Qji = 0. Compared with (6.2) and
(6.3), we observe the obvious similarity between these two settings. In particular,
the key resolvent expansions (6.5) and (6.6) take the same form as in the Wigner
case. Thus most of the comparison arguments in [33] can be used in our paper,
as long as we have some appropriate estimates on the R,S,T entries, which have
been provided by Lemma 3.11. Due to this reason, we omit the details for the
proof. (In fact, the comparison argument in our paper is a little simpler than the
one in [33], since we do not need to include a separate argument for the diagonal
entries as in the Wigner case.)

It is clear that a result similar to Lemma 6.6 also holds for the product of T

entries. Thus as in (6.20), we define the notation Aγ,a , a = 0,1 as follows:

E

s∏
t=1

Satbt = ∑
0≤k≤4

AkE
[
(−√

σixiμ)k
]

(6.25)

+ ∑
5≤|k|≤2ζ/φ,k∈Ns

σ
|k|/2
i Aγ,0

k EPγ,k

s∏
t=1

Satbt + O
(
N−ζ ),

E

s∏
t=1

Tatbt = ∑
0≤k≤4

AkE
[
(−√

σix̃iμ)k
]

(6.26)

+ ∑
5≤|k|≤2ζ/φ,k∈Ns

σ
|k|/2
i Aγ,1

k EPγ,k

s∏
t=1

Tatbt + O
(
N−ζ ).

Since Ak , 0 ≤ k ≤ 4, depend only on R and xiμ, x̃iμ have the same first four
moments, we get from (6.25) and (6.26) that for s = O(ϕ) and ζ = O(ϕ),

E

s∏
t=1

Gatbt −E

s∏
t=1

G̃at bt

=
γmax∑
γ=1

(
E

s∏
t=1

G
γ
atbt

−E

s∏
t=1

G
γ−1
at bt

)
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=
γmax∑
γ=1

∑
5≤|k|≤2ζ/φ,k∈Ns

σ
|k|/2
i(6.27)

×
(
Aγ,0

k EPγ,k

s∏
t=1

G
γ
atbt

−Aγ,1
k EPγ,k

s∏
t=1

G
γ−1
at bt

)

+ O
(
N−ζ+2),

where we abbreviate G := G(X,z) and G̃ := G(X̃, z). Then we obtain that∣∣∣∣∣E
s∏

t=1

G
γmax
at bt

∣∣∣∣∣≤
∣∣∣∣∣E

s∏
t=1

G0
at bt

∣∣∣∣∣
+

γmax∑
γ=1

∑
a=0,1

∑
5≤|k|≤2ζ/φ,k∈Ns

σ
|k|/2
i

∣∣Aγ,a
k

∣∣∣∣∣∣∣EPγ,k

s∏
t=1

G
γ−a
at bt

∣∣∣∣∣
+ O

(
N−ζ+2).

(6.28)

By (6.19) and (6.21), the second term in (6.28) is bounded by

∑
5≤k≤2ζ/φ

γmax∑
γ=1

∑
a=0,1

∑
|k|=k,k∈Ns

σ
k/2
i

∣∣Aγ,a
k

∣∣∣∣∣∣∣EPγ,k

s∏
t=1

G
γ−a
at bt

∣∣∣∣∣
≤ ∑

5≤k≤2ζ/φ

N−kφ/10sk(C′
6
)s+k+1

≤ 2N−5φ/10s5(C′
6
)s+6 ≤ N−5φ/20(C′

6
)s

(6.29)

for some constant C′
6 > 0, where we used the rough bound #{k ∈ N

s : |k| = k} ≤ sk

and s = O(ϕ).
However, the bound in (6.29) is not good enough. To improve it, we iterate

the above arguments as following. Recall that Pγ,k
∏s

t=1 G
γ−a
at ,bt

is also a sum of

products of G entries. Applying (6.27) again to the term EPγ,k
∏s

t=1 G
γ−a
at ,bt

and
replacing γmax in (6.28) with γ − a, we obtain that∣∣∣∣∣EPγ,k

s∏
t=1

G
γ−a
at bt

∣∣∣∣∣≤
∣∣∣∣∣EPγ,k

s∏
t=1

G0
at bt

∣∣∣∣∣
+

γ−a∑
γ ′=1

∑
a′=0,1

∑
5≤|k′|≤2ζ/φ,k′∈Ns+|k|

σ
|k′|/2
i′

× ∣∣Aγ ′,a′
k′

∣∣∣∣∣∣∣EPγ ′,k′Pγ,k

s∏
t=1

G
γ ′−a′
at bt

∣∣∣∣∣
+ O

(
N−ζ ).
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Together with (6.28), we have∣∣∣∣∣E
s∏

t=1

G
γmax
at bt

∣∣∣∣∣≤
∣∣∣∣∣E

s∏
t=1

G0
at bt

∣∣∣∣∣
+

γmax∑
γ=1

∑
a=0,1

∑
5≤|k|≤2ζ/φ,k∈Ns

σ
|k|/2
i

∣∣Aγ,a
k

∣∣∣∣∣∣∣EPγ,k

s∏
t=1

G0
at ,bt

∣∣∣∣∣
+∑

γ,γ ′

∑
a,a′

∑
k,k′

σ
|k|/2
i σ

|k′|/2
i′

∣∣Aγ,a
k Aγ ′,a′

k′
∣∣∣∣∣∣∣EPγ ′,k′Pγ,k

s∏
t=1

G
γ ′−a′
at bt

∣∣∣∣∣
+ O

(
N−ζ+2).

Again using (6.19) and (6.21), it is easy to see that

∑
γ,γ ′

∑
a,a′

∑
k,k′

σ
|k|/2
i σ

|k′|/2
i′

∣∣Aγ,a
k Aγ ′,a′

k′
∣∣∣∣∣∣∣EPγ ′,k′Pγ,k

s∏
t=1

G
γ ′−a′
at bt

∣∣∣∣∣≤ N− 10φ
20
(
C′

6
)s

,

where we used that k′ + k ≥ 10. Repeating the above process for n ≤ 6ζ/φ times,
we obtain that∣∣∣∣∣E

s∏
t=1

G
γmax
at bt

∣∣∣∣∣≤
6ζ/φ∑
n=0

∑
γ1,...,γn

∑
a1,...,an

∑
k1,...,kn

∣∣∣∣∏
j

σ
|kj |
mj Aγj ,aj

kj

∣∣∣∣
×
∣∣∣∣∣EPγn,kn

· · ·Pγ1,k1

s∏
t=1

G0
at bt

∣∣∣∣∣
+ O

(
ζN−ζ+2),

where

k1 ∈ N
s, k2 ∈ N

s+|k1|, k3 ∈ N
s+|k1|+|k2|, . . . , and

5 ≤ |ki | ≤ 2ζ

φ
.

(6.30)

Again using (6.19), (6.21) and s, ζ = O(ϕ), we obtain that∣∣∣∣∣E
s∏

t=1

G
γmax
at bt

∣∣∣∣∣≤
∣∣∣∣∣E

s∏
t=1

G0
at bt

∣∣∣∣∣
+ Cs

7 max
k,n

(
N−2)n(N−φ/20)∑i |ki |

× ∑
γ1,...,γn

∣∣∣∣∣EPγn,kn
· · ·Pγ1,k1

s∏
t=1

G0
at bt

∣∣∣∣∣
+ O

(
ζN−ζ+2)

(6.31)
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for some constant C7 > 0. We remark that the above estimate still holds if we
replace some of the G entries with G entries, since we have only used the absolute
bounds for the relevant entries.

Now we use Lemma 6.6 and (6.31) to complete the proof of Lemma 3.17,
Lemma 5.2 and Lemma 5.5.

PROOF OF LEMMA 3.17. We apply (6.31) to GabGab with s = 2 and ζ = 3.
Recall that X̃ is a bounded support matrix with q = O(N−1/2 logN). Then by
(3.19), we have with ξ1-high probability,

(6.32) |G̃ab| ≤ ϕC1+1
(√

Imm2c(z)

Nη
+ 1

Nη

)
, a �= b

for z ∈ S(c1,C0,C1), where we used that

N−1/2 ≤ C

√
Imm2c(z)

Nη
,

which follows from (3.15). On the other hand, we have the trivial bound
maxa,b |G̃ab| ≤ N on the bad event [see (A.5)]. Hence we can get the bound

E|G̃ab|2 ≤ Cϕ2C1+2
(

Imm2c(z)

Nη
+ 1

(Nη)2

)
, a �= b.

Again with (3.15), it is easy to check that the right-hand side is larger than N−1.
Thus the remainder term O(N−ζ+2) in (6.31) is negligible.

It remains to handle the second term on the right-hand side of (6.31). Let
�(it ,μt ) = γt . Then we have

max
γ1,...,γn:a,b/∈⋃1≤t≤n{it ,μt }

∣∣EPγn,kn
· · ·Pγ1,k1(G̃abG̃ab)

∣∣
≤ Cϕ2C1+2

(
Imm2c(z)

Nη
+ 1

(Nη)2

)
,

(6.33)

since Pγn,kn
· · ·Pγ1,k1G̃abG̃ab is a finite sum of the products of the matrix entries

of G̃ and G̃, and there are at least two off diagonal terms in each product. This
bound immediately gives that

(
N−2)n ∑

γ1,γ2,...,γn

∣∣EPγn,kn
· · ·Pγ1,k1(G̃abG̃ab)

∣∣≤ ϕC

(
Imm1c(z)

Nη
+ 1

(Nη)2

)

for some large enough constant C > 0. Here, if {a, b} ∩ {it ,μt } �= ∅ for some
1 ≤ t ≤ n, we bound the above sum by N−1, which is due to the lost of a free
index. Plugging this estimate into (6.31), we conclude Lemma 3.17. �
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PROOF OF LEMMA 5.2. For simplicity, instead of (5.7), we shall prove that∣∣E(m2(z) − m2c(z)
)p∣∣

≤ ∣∣E(m̃2(z) − m2c(z)
)p∣∣+ (Cp)Cp(J 2 + K + N−1)p.

(6.34)

The proof for (5.7) is exactly the same but with slightly heavier notation.
Define a function f (I, J ) such that

(6.35)
∑
I,J

f (I, J ) = 1, f (I, J ) ≥ 0

for I = (a1, a2, . . . , as) and J = (b1, b2, . . . , bs). Since A are independent of at

and bt (1 ≤ t ≤ s), we may consider a linear combination of (6.31) with coeffi-
cients given by f (I, J ). Moreover, with (6.22), we can extend (6.31) to the product
of (G − �) entries, that is,∣∣∣∣∣E∑

I,J

f (I, J )

s∏
t=1

(G − �)atbt

∣∣∣∣∣
≤
∣∣∣∣∣E∑

I,J

f (I, J )

s∏
t=1

(G̃ − �)atbt

∣∣∣∣∣
+ Cs

8 max
k,n,γ

(
N−φ/20)∑i |ki |

×
∣∣∣∣∣E∑

I,J

f (I, J )P̃γn,kn
· · · P̃γ1,k1

s∏
t=1

(G̃ − �)atbt

∣∣∣∣∣
+ O

(
ζN−ζ+2)

(6.36)

for some constant C8 > 0. If we take at = bt ∈ I2, s = p, ζ = p+2 and f (I, J ) =
N−p∏ δatbt , it is easy to check that

(6.37) E
∑
I,J

f (I, J )

s∏
t=1

(
Gα − �

)
at bt

= E
(
mα

2 − m2c

)p
, α = 0, γmax.

Now to conclude (6.34), it suffices to control the second term on the right-hand
side of (6.36). We consider the terms

P̃γn,kn
· · · P̃γ1,k1

p∏
t=1

(G̃μtμt − m2c)(6.38)

for k1, . . . ,kn satisfying (6.30). By definition of P̃ , (6.38) is a sum of at most
C
∑ |ki | products of G̃μν and (G̃μμ − m2c) terms, where the total number of G̃μν

and (G̃μμ − m2c) terms in each product is
∑ |ki | + p = O(ϕ2). Due to the rough

bound (6.9), (6.38) is always bounded by NO(ϕ2). Then by the assumption that
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(5.6) and (6.8) hold with ξ1-high probability with ξ1 ≥ 3, we see that the expec-
tation over the event that (5.6) or (6.8) does not hold is negligible. Furthermore,
for each product in (6.38) and any 1 ≤ t ≤ p, there are two μt ’s in the indices
of G. These two μt ’s can only appear as (1) (G̃μtμt − m2c) in the product, or
(2) GμtaGbμt , where a, b come from some γk and γl via P̃ (see Definition 6.3).
Then after averaging over N−p∑

μ1,...,μp
, this term becomes (1) m̃2 −m2c, which

is bounded by K by (5.6), or (2) N−1∑
μt

GμtaGb,μt , which is bounded by
J 2 + CN−1 by (5.6). For any other G’s in the product with no μt , we simply
bound them by C using (6.8). Then, for any fixed γ1, . . . , γn, k1, . . . ,kn, we have
proved that ∣∣∣∣∣ 1

Np

∑
μ1,...,μp

EP̃γn,kn
· · · P̃γ1,k1

p∏
t=1

(G̃μtμt − m2c)

∣∣∣∣∣
≤ C

∑ |ki |+p(J 2 + K + N−1)p.

(6.39)

Together with (6.36), this concludes (6.34). �

Recall that with Lemma 5.2, we can prove Theorem 3.15 (see Section 5). Now
we prove Lemma 5.5 with the help of Theorem 3.15.

PROOF OF LEMMA 5.5. For simplicity, we only prove (5.14). The proof for
(5.15) is similar. By (A.6), we have

(6.40)
∥∥G2(z)

∥∥2
HS =∑

μ,ν

|Gμν |2 = N Imm2(z)

η
.

Hence it is equivalent to prove that

(6.41)
∣∣∣∣EF

(
η2
∑
μ,ν

GμνGμν

)
−EF

(
η2
∑
μ,ν

G̃μνG̃μν

)∣∣∣∣≤ N−φ+C5ε

for z = E + iη with E ∈ Iε and η = N−2/3−ε . Corresponding to the notation in
(6.3), we denote

xS := η2
∑
μ,ν

SμνSμν, xR := η2
∑
μ,ν

RμνRμν,

xT := η2
∑
μ,ν

TμνT μν.
(6.42)

Applying (6.40) to S,T and using (3.26) and (3.15), we get that with high proba-
bility

(6.43) max
γ

{∣∣xS
∣∣+ ∣∣xT

∣∣}≤ NCε
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for some constant C > 0. Since the rank of Hγ − Q is at most 2, by the Cauchy
interlacing theorem we have

(6.44) |TrS − TrR| ≤ Cη−1.

Together with (6.43), we also get that

(6.45) max
γ

∣∣xR
∣∣≤ NCε with high probability.

By (3.19), (6.7) and the expansion (6.6), we get that with high probability,

(6.46) max
γ

{|Sμν | + |Rμν |}≤ N−φ+Cε + Cδμν.

Moreover, by (6.9) we have the trivial bounds

(6.47)
∣∣xS
∣∣+ ∣∣xR

∣∣= O
(
η2N2η−2)= O

(
N2), max

μ,ν

{|Sμν |+|Rμν |}= O(N),

on the bad event. Since the bad event holds with exponentially small probability,
we can ignore it in the proof.

Applying the Lindeberg replacement strategy, we get that

EF

(
η2
∑
μ,ν

GμνGμν

)
−EF

(
η2
∑
μ,ν

G̃μνG̃μν

)

=
γmax∑
γ=1

[
EF
(
xS)−EF

(
xT )].

(6.48)

From the Taylor expansion, we have

F
(
xS)− F

(
xR)

=
2∑

l=1

1

l!F
(l)(xR)(xS − XR)s + 1

3!F
(3)(ζS)

(
xS − xR)3,(6.49)

where ζS lies between xS and xR . We have a similar expansion for F(xT )−F(xR)

with ζS replaced by ζT .
Let �(i,μ) = γ and fix m ∈ N. We perform the expansion (6.5) and use

Lemma 6.1 to get that with ξ1-high probability,

(6.50) Satbt = ∑
0≤k≤m

(−√
σixiμ)kPkRatbt + O

(
CmN−mφ).

Using this expansion and bound (6.8), we have that with ξ1-high probability,
s∏

t=1

Satbt = ∑
0≤k≤ms

∑
k∈I s

m,k

(
Pk

s∏
t=1

Ratbt

)
(−√

σixiμ)k + O
(
Cm+sN−mφ),(6.51)

where

(6.52) k := (k1, . . . , ks), I s
m,k =

{
k ∈ N

s : 0 ≤ ki ≤ m,
∑

ki = k
}
.
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From the above definition, we have the rough bound

(6.53)
∣∣I s

m,k

∣∣≤ sk.

By Lemma 6.5 and (6.53), the k > m terms in (6.51) can be bounded by∣∣∣∣∣∑
k>m

∑
k∈I s

m,k

(
Pk

s∏
t=1

Ratbt

)
(−√

σixiμ)k

∣∣∣∣∣≤ ∑
k>m

skC̃k+s+1
6

(
CN−φ)k

= O
(
smCm+sN−mφ),

with ξ1-high probability. Hence with ξ1-high probability,
s∏

t=1

Satbt =
s∏

t=1

Ratbt + ∑
1≤k≤m

(−√
σixiμ)k

( ∑
k∈I s

m,k

Pk

s∏
t=1

Ratbt

)

+ O
(
smCm+sN−mφ).

(6.54)

Similarly, we also have with ξ1-high probability,
s∏

t=1

Tatbt =
s∏

t=1

Ratbt + ∑
1≤k≤m

(−√
σix̃iμ)k

( ∑
k∈I s

m,k

Pk

s∏
t=1

Ratbt

)

+ O
(
smCm+sN−mφ).

(6.55)

Again we can replace some of the resolvent entries with their complex conjugates
by modifying the notation slightly.

Now we apply (6.54) and (6.55) with s = 2 and m := 3/φ to get that

xS = xR + ∑
1≤k≤3/φ

( ∑
k∈I 2

3/φ,k

η2
∑
μ,ν

Pγ,k(RμνRμν)

)
(−√

σixiμ)k

(6.56)
+ O

(
CN−3),

xT = xR + ∑
1≤k≤3/φ

( ∑
k∈I 2

3/φ,k

η2
∑
μ,ν

Pγ,k(RμνRμν)

)
(−√

σix̃iμ)k

(6.57)
+ O

(
CN−3),

with high probability. To control the second term in (6.56), we need the following
lemma.

LEMMA 6.8. For any fixed k �= 0, k ∈ I 2
3/φ,k , and p = O(1) with p ∈ 2N, we

have

(6.58) E

∣∣∣∣∑
μ,ν

Pγ,k(RμνRμν)

∣∣∣∣p ≤ (N1+Cε)p.
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PROOF. This is (6.89) of [33], we can repeat the proof there with minor mod-
ifications. In fact, its proof is similar to the one for Lemma 5.2 given above. Thus
we omit the details. �

Given (6.58), with Markov inequality we find that for any fixed k �= 0 with
k ∈ I 2

3/φ,k , there exists constant C > 0 such that

(6.59)
∣∣Pγ,kxR

∣∣ := ∣∣∣∣η2
∑
μ,ν

Pγ,k(RμνRμν)

∣∣∣∣≤ N−1/3+Cε,

with probability with 1 − N−A for any fixed A > 0, where we used that η =
N−2/3−ε . Combining (6.56), (6.59), (6.46) and (3.25), we see that there exists
a constant C > 0 such that

(6.60) E
∣∣xS − xR

∣∣3 ≤ N−5/2+Cε,

for sufficiently large N independent of γ , where we used the bound (6.47) on the
bad event with probability O(N−A). Since ζS is between xS and xR , we have
|ζS | ≤ NCε with high probability by (6.43). Together with (6.60) and the assump-
tion (5.13), we get

(6.61)

∣∣∣∣∣
γmax∑
γ=1

E
[
F (3)(ζS)

(
xS − xR)3]∣∣∣∣∣≤ N−1/2+Cε.

We have a similar estimate for E[F (3)(ζT )(xT − xR)3].
Now it only remains to deal with the first term on the right-hand side of (6.49).

Using (6.56), (6.57) and the fact that the first four moments of xiμ and x̃iμ match,
we obtain that for l = 1,2,∣∣E[F (l)(xR)(xS − xR)l]−E

[
F (l)(xR)(xT − xR)l]∣∣

≤
∣∣∣∣∣
6/φ∑
k=5

∑
∑s

t=1 |kt |=k

∑
kt∈I 2l

3/φ,k

E

s∏
t=1

(
Pγ,kt

xR)∣∣∣∣∣(∣∣E(−√
σixiμ)k

∣∣+ ∣∣E(−√
σix̃iμ)k

∣∣)

+ O
(
CN−3+Cε).

Recall that (3.25) holds for xiμ and x̃iμ, xiμ has support bounded by O(N−φ),
and x̃iμ has support bounded by O(N−1/2 logN). Then it is easy to check that
|E(−x̃iμ)k| ≤ (logN)CN−5/2 and |E(−xiμ)k| ≤ (logN)CN−2−φ for k ≥ 5. Using
(6.59), we obtain that for 1 ≤ l ≤ 2∣∣E[F (l)(xR)(xS − xR)l]−E

[
F (l)(xR)(xT − xR)l]∣∣≤ N−2−φ+C5ε.

Together with (6.48), (6.49) and (6.61), this concludes the proof. �
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APPENDIX A: PROOF OF LEMMA 3.11

Throughout the proof, we denote the spectral parameter by z = E + iη.

A.1. Basic tools. In this subsection, we collect some tools that will be used in
the proof. For simplicity, we denote Y := DX.

DEFINITION A.1 (Minors). For T ⊆ I , we define the minor H(T) := (Hab :
a, b ∈ I \ T) obtained by removing all rows and columns of H indexed by
a ∈ T. Note that we keep the names of indices of H when defining H(T), that
is, (H (T))ab = 1{a,b/∈T}Hab. Correspondingly, we define the Green function

G(T) := (H(T))−1 =
(

zG(T)
1 G(T)

1 Y (T)(
Y (T)

)∗G(T)
1 G(T)

2

)

=
(

zG(T)
1 Y (T)G(T)

2

G(T)
2

(
Y (T)

)∗ G(T)
2

)
,

and the partial traces

m
(T)
1 := 1

M
TrG(T)

1 = 1

Mz

∑
i /∈T

G
(T)
ii , m

(T)
2 := 1

N
TrG(T)

2 = 1

N

∑
μ/∈T

G(T)
μμ,

where we adopt the convention that G
(T )
ab = 0 if a ∈ T or b ∈ T. We will abbreviate

({a}) ≡ (a), ({a, b}) ≡ (ab), and

∑
a /∈T

≡
(T)∑
a

,
∑

a,b/∈T
≡

(T)∑
a,b

.

LEMMA A.2 (Resolvent identities). (i) For i ∈ I1 and μ ∈ I2, we have

(A.1)
1

Gii

= −1 − (YG(i)Y ∗)
ii ,

1

Gμμ

= −z − (Y ∗G(μ)Y
)
μμ.

(ii) For i �= j ∈ I1 and μ �= ν ∈ I2, we have

(A.2) Gij = GiiG
(i)
jj

(
YG(ij)Y ∗)

ij , Gμν = GμμG(μ)
νν

(
Y ∗G(μν)Y

)
μν.

For i ∈ I1 and μ ∈ I2, we have

Giμ = GiiG
(i)
μμ

(−Yiμ + (YG(iμ)Y
)
iμ

)
,

Gμi = GμμG
(μ)
ii

(−Y ∗
μi + (Y ∗G(μi)Y ∗)

μi

)
.

(A.3)

(iii) For a ∈ I and b, c ∈ I \ {a},
(A.4) G

(a)
bc = Gbc − GbaGac

Gaa

,
1

Gbb

= 1

G
(a)
bb

− GbaGab

GbbG
(a)
bb Gaa

.

(iv) All of the above identities hold for G(T) instead of G for T⊂ I .
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PROOF. All these identities can be proved using Schur’s complement formula.
The reader can refer to, for example, [31], Lemma 4.4. �

LEMMA A.3. Fix constants c0,C0,C1 > 0. The following estimates hold uni-
formly for all z ∈ S(c0,C0,C1):

(A.5) ‖G‖ ≤ Cη−1, ‖∂zG‖ ≤ Cη−2.

Furthermore, we have the following identities:

∑
μ∈I2

|Gνμ|2 = ∑
μ∈I2

|Gμν |2 = ImGνν

η
,(A.6)

∑
i∈I1

|Gji |2 = ∑
i∈I1

|Gij |2 = |z|2
η

Im
(

Gjj

z

)
,(A.7)

∑
i∈I1

|Gμi |2 = ∑
i∈I1

|Giμ|2 = Gμμ + z̄

η
ImGμμ,(A.8)

∑
μ∈I2

|Giμ|2 = ∑
μ∈I2

|Gμi |2 = Gii

z
+ z̄

η
Im
(

Gii

z

)
.(A.9)

All of the above estimates remain true for G(T) instead of G for any T⊆ I .

PROOF. These estimates and identities can be proved through simple calcula-
tions with (3.8), (3.9) and (3.10). We refer the reader to [31], Lemma 4.6, and [53],
Lemma 3.5. �

LEMMA A.4. Fix constants c0,C0,C1 > 0. For any T ⊆ I , the following
bounds hold uniformly in z ∈ S(c0,C0,C1):

(A.10)
∣∣m2 − m

(T)
2

∣∣≤ 2|T|
Nη

and

(A.11)

∣∣∣∣∣ 1

N

M∑
i=1

σi

(
G

(T)
ii − Gii

)∣∣∣∣∣≤ C|T|
Nη

,

where C > 0 is a constant depending only on τ .

PROOF. For μ ∈ I2, we have

∣∣m2 − m
(μ)
2

∣∣= 1

N

∣∣∣∣∑
ν∈I2

GνμGμν

Gμμ

∣∣∣∣≤ 1

N |Gμμ|
∑
ν∈I2

|Gνμ|2 = ImGμμ

Nη|Gμμ| ≤ 1

Nη
,
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where in the first step we used (A.4), and in the second and third steps we used the
equality (A.6). Similarly, using (A.4) and (A.8) we get

∣∣m2 − m
(i)
2

∣∣= 1

N

∣∣∣∣∑
ν∈I2

GνiGiν

Gii

∣∣∣∣≤ 1

N |Gii |
(

Gii

z
+ z̄

η
Im
(

Gii

z

))
≤ 2

Nη
.

Then we can prove (A.10) by induction on the indices in T. The proof for (A.11)
is similar except that one needs to use the assumption (2.6). �

The following large deviation bounds for bounded supported random variables
are proved in [17], Lemma 3.8.

LEMMA A.5. Let (xi), (yi) be independent families of centered and inde-
pendent random variables, and (Ai), (Bij ) be families of deterministic complex
numbers. Suppose the entries xi and yj have variance at most N−1 and satisfies
the bounded support condition (3.3) with q ≤ N−ε for some constant ε > 0. Then
for any fixed ξ > 0, the following bounds hold with ξ -high probability:∣∣∣∣∑

i

Aixi

∣∣∣∣≤ ϕξ

[
q max

i
|Ai | + 1√

N

(∑
i

|Ai |2
)1/2]

,(A.12)

∣∣∣∣∑
i,j

xiBij yj

∣∣∣∣≤ ϕ2ξ

[
q2Bd + qBo + 1

N

(∑
i �=j

|Bij |2
)1/2]

,(A.13)

∣∣∣∣∑
i

x̄iBiixi −∑
i

(
E|xi |2)Bii

∣∣∣∣≤ ϕξqBd,(A.14)

∣∣∣∣∑
i �=j

x̄iBij xj

∣∣∣∣≤ ϕ2ξ

[
qBo + 1

N

(∑
i �=j

|Bij |2
)1/2]

,(A.15)

where

Bd := max
i

|Bii |, Bo := max
i �=j

|Bij |.

Finally, we have the following lemma, which is a consequence of the Assump-
tion 2.5.

LEMMA A.6. There exists constants c0, τ
′ > 0 such that

(A.16)
∣∣1 + m2c(z)σk

∣∣≥ τ ′

for all z ∈ S(c0,C0,C1) and 1 ≤ k ≤ M .

PROOF. By Assumption 2.5 and the fact m2c(λr) ∈ (−σ−1
1 ,0), we have∣∣1 + m2c(λr)σk

∣∣≥ τ, 1 ≤ k ≤ M.
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Applying (3.13) to the Stieltjes’ transform

(A.17) m2c(z) :=
∫
R

ρ2c(dx)

x − z
,

one can verify that m2c(z) ∼ √
z − λr for z close to λr . Hence if κ + η ≤ 2c0 for

some sufficiently small constant c0 > 0, we have∣∣1 + m2c(z)σk

∣∣≥ τ/2.

Then we consider the case with E − λr ≥ c0 and η ≤ c1 for some constant c1 > 0.
In fact, for η = 0 and E ≥ λr + c0, m2c(E) is real and it is easy to verify that
m′

2c(E) ≥ 0 using the formula (A.17). Hence we have∣∣1 + σkm2c(E)
∣∣≥ ∣∣1 + σkm2c(λr + c0)

∣∣≥ τ/2 for E ≥ λr + c0.

Using (A.17) again, we can get that∣∣∣∣dm2c(z)

dz

∣∣∣∣≤ c−2
0 for E ≥ λr + c0.

So if c1 is sufficiently small, we have∣∣1 + σkm2c(E + iη)
∣∣≥ 1

2

∣∣1 + σkm2c(E)
∣∣≥ τ/4

for E ≥ λr + c0 and η ≤ c1. Finally, it remains to consider the case with η ≥ c1.
If σk ≤ |2m2c(z)|−1, then we have |1 + σkm2c(z)| ≥ 1/2. Otherwise, we have
Imm2c(z) ∼ 1 by (3.15). Together with (3.14), we get that∣∣1 + σkm2c(z)

∣∣≥ σk Imm2c(z) ≥ Imm2c(z)

2m2c(z)
≥ τ ′

for some constant τ ′ > 0. �

A.2. Proof of the local laws. Our goal is to prove that G is close to � in the
sense of entrywise and averaged local laws. Hence it is convenient to introduce the
following random control parameters.

DEFINITION A.7 (Control parameters). We define the entrywise and averaged
errors

(A.18) � := max
a,b∈I

∣∣(G − �)ab

∣∣, �o := max
a �=b∈I |Gab|, θ := |m2 − m2c|.

Moreover, we define the random control parameter

(A.19) �θ :=
√

Imm2c + θ

Nη
+ 1

Nη
,

and the deterministic control parameter

(A.20) � :=
√

Imm2c

Nη
+ 1

Nη
.
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In analogy to [17], Section 3 and [31], Section 5, we introduce the Z variables

Z(T)
a := (1 −Ea)

(
G(T)

aa

)−1
, a /∈ T,

where Ea[·] := E[· | H(a)], that is, it is the partial expectation over the randomness
of the ath row and column of H . By (A.1), we have

(A.21) Zi = (Ei − 1)
(
YG(i)Y ∗)

ii = σi

∑
μ,ν∈I2

G(i)
μν

(
1

N
δμν − XiμXiν

)
,

and

Zμ = (Eμ − 1)
(
Y ∗G(μ)Y

)
μμ

= ∑
i,j∈I1

√
σiσjG

(μ)
ij

(
1

N
δij − XiμXjμ

)
.

(A.22)

The following lemma plays a key role in the proof of local laws.

LEMMA A.8. Let c0 > 0 be a sufficiently small constant and fix C0,C1, ξ > 0.
Define the z-dependent event �(z) := {�(z) ≤ (logN)−1}. Then there exists
constant C > 0 such that the following estimates hold for all a ∈ I and z ∈
S(c0,C0,C1) with ξ -high probability:

1(�)
(
�o + |Za|)≤ Cϕ2ξ (q + �θ),(A.23)

1(η ≥ 1)
(
�o + |Za|)≤ Cϕ2ξ (q + �θ).(A.24)

PROOF. Applying the large deviation Lemma A.5 to Zi in (A.21), we get that
on �,

|Zi | ≤ Cϕ2ξ

[
q + 1

N

(∑
μ,ν

∣∣G(i)
μν

∣∣2)1/2]

= Cϕ2ξ

[
q + 1

N

(∑
μ

ImG
(i)
μμ

η

)1/2]
= Cϕ2ξ

[
q +

√√√√ Imm
(i)
2

Nη

]
,

(A.25)

holds with ξ -high probability, where we used (2.6), (A.6) and the fact that
maxa,b |Gab| = O(1) on event �. Now by (A.18), (A.19) and the bound (A.10),
we have that

(A.26)

√√√√ Imm
(i)
2

Nη
=
√√√√ Imm2c + Im(m

(i)
2 − m2) + Im(m2 − m2c)

Nη
≤ C�θ.

Together with (A.25), we conclude that

1(�)|Zi | ≤ Cϕ2ξ (q + �θ),
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with ξ -high probability. Similarly, we can prove the same estimate for 1(�)|Zμ|.
In the proof, we also need to use (2.9) and

Im
(
−d − 1

z

)
= O(η) = O

(
Imm2c(z)

)
.

If η ≥ 1, we always have maxa,b |Gab| = O(1) by (A.5). Then repeating the above
proof, we obtain that

1(η ≥ 1)|Za| ≤ Cϕ2ξ (q + �θ),

with ξ -high probability.
Similarly, using (A.2) and Lemmas A.3–A.5, we can prove that with ξ -high

probability,

(A.27) 1(�)
(|Gij | + |Gμν |)≤ Cϕ2ξ (q + �θ),

holds uniformly for i �= j and μ �= ν. It remains to prove the bound for Giμ

and Gμi . Using (A.3), the bounded support condition (3.3) for Xiμ, the bound
maxa,b |Gab| = O(1) on �, Lemma A.3 and Lemma A.5, we get that with ξ -high
probability,

|Giμ| ≤ C

(
q +

∣∣∣∣∣
(iμ)∑
j,ν

XiνG
(iμ)
νj Xjμ

∣∣∣∣∣
)

≤ Cϕ2ξ

[
q + 1

N

(
(iμ)∑
j,ν

∣∣G(iμ)
νj

∣∣2)1/2]

≤ Cϕ2ξ

[
q + 1

N

(
(μ)∑
ν

(
G(iμ)

νν + z̄

η
ImG(iμ)

νν

))1/2]

≤ Cϕ2ξ

[
q +

√
|m(iμ)

2 |
N

+
√√√√ Imm

(iμ)
2

Nη

]
.

(A.28)

As in (A.26), we can show that

(A.29)

√√√√ Imm
(iμ)
2

Nη
= O(�θ).

For the other term, we have√
|m(iμ)

2 |
N

≤
√

|m2c| + |m(iμ)
2 − m2| + |m2 − m2c|

N

≤ C

(
1

N
√

η
+
√

θ

N
+
√

|m2c|
N

)
≤ C�θ,

(A.30)
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where we used (A.10), and that

|m2c|
N

= O

(
Imm2c

Nη

)
,

since |m2c| = O(1) and Imm2c � η by Lemma 3.6. From (A.28), (A.29) and
(A.30), we obtain that

1(�)|Giμ| ≤ Cϕ2ξ (q + �θ),

with ξ -high probability. Together with (A.27), we get the estimate in (A.23) for �o.
Finally, the estimate (A.24) for �o can be proved in a similar way with the bound
1(η ≥ 1)maxa,b |Gab| = O(1). �

Our proof of the local law starts with an analysis of the self-consistent equation.
Recall that m2c(z) is the solution to the equation z = f (m) for f defined in (2.16).

LEMMA A.9. Let c0 > 0 be sufficiently small. Fix C0 > 0, ξ ≥ 3 and
C1 ≥ 8ξ . Then there exists C > 0 such that the following estimates hold uniformly
in z ∈ S(c0,C0,C1) with ξ -high probability:

1(η ≥ 1)
∣∣z − f (m2)

∣∣≤ Cϕ2ξ (q + N−1/2),(A.31)

1(�)
∣∣z − f (m2)

∣∣≤ Cϕ2ξ (q + �θ),(A.32)

where � is as given in Lemma A.8. Moreover, we have the finer estimates

(A.33) 1(�)
(
z − f (m2)

)= 1(�)
([Z]1 + [Z]2

)+ O
(
ϕ4ξ (q2 + �2

θ

))
,

with ξ -high probability, where

(A.34) [Z]1 := 1

N

∑
i∈I1

σi

(1 + m2σi)2 Zi, [Z]2 := 1

N

∑
μ∈I2

Zμ.

PROOF. We first prove (A.33), from which (A.32) follows due to (A.23) and
(A.16). By (A.1), (A.21) and (A.22), we have

(A.35)
1

Gii

= −1 − σi

N

∑
μ∈I2

G(i)
μμ + Zi = −1 − σim2 + εi

and

(A.36)
1

Gμμ

= −z − 1

N

∑
i∈I1

σiG
(μ)
ii + Zμ = −z − 1

N

∑
i∈I1

σiGii + εμ,

where

εi := Zi + σi

(
m2 − m

(i)
2

)
and εμ := Zμ + 1

N

∑
i∈I1

σi

(
Gii − G

(μ)
ii

)
.
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By (A.10), (A.11) and (A.23), we have for all i and μ,

(A.37) 1(�)
(|εi | + |εμ|)≤ Cϕ2ξ (q + �θ),

with ξ -high probability. Then using (A.36), we get that for any μ and ν,

(A.38) 1(�)(Gμμ − Gνν) = 1(�)GμμGνν(εν − εμ) = O
(
ϕ2ξ (q + �θ)

)
,

with ξ -high probability. This implies that

(A.39) 1(�)|Gμμ − m2| ≤ Cϕ2ξ (q + �θ), μ ∈ I2,

with ξ -high probability.
Now we plug (A.35) into (A.36) and take the average N−1∑

μ. Note that we
can write

1

Gμμ

= 1

m2
− 1

m2
2

(Gμμ − m2) + 1

m2
2

(Gμμ − m2)
2 1

Gμμ

.

After taking the average, the second term on the right-hand side vanishes and the
third term provides a O(ϕ4ξ (q + �θ)

2) factor by (A.39). On the other hand, using
(A.4) and (A.23) we get that

1(�)

∣∣∣∣ 1

N

∑
i∈I1

σi

(
G

(μ)
ii − Gii

)∣∣∣∣≤ 1(�)
1

N

∑
i∈I1

σi

∣∣∣∣GiμGμi

Gμμ

∣∣∣∣≤ Cϕ4ξ (q + �θ)
2

and

1(�)
∣∣m2 − m

(i)
2

∣∣≤ 1(�)
1

N

∑
μ∈I2

∣∣∣∣GμiGiμ

Gii

∣∣∣∣≤ Cϕ4ξ (q + �θ)
2,

with ξ -high probability. Hence the average of (A.36) gives

1(�)
1

m2
= 1(�)

{
−z + 1

N

∑
i∈I1

σi

1 + σim2 − Zi + O(ϕ4ξ (q + �θ)2)
+ [Z]2

}

+ O
(
ϕ4ξ (q + �θ)

2),
with ξ -high probability. Finally, using (A.16) and the definition of � we can ex-
pand the fractions in the sum to get that

1(�)

{
z + 1

m2
− 1

N

∑
i∈I1

σi

1 + σim2

}
= 1(�)

([Z]1 + [Z]2
)+ O

(
ϕ4ξ (q + �θ)

2).
This concludes (A.33).

Then we prove (A.31). Using the bound 1(η ≥ 1)maxa,b |Gab| = O(1), it
is easy to get that |m2| = O(1) and θ = O(1). Thus we have 1(η ≥ 1)�θ =
O(N−1/2) and (A.37) gives

(A.40) 1(η ≥ 1)
(|εi | + |εμ|)≤ Cϕ2ξ (q + N−1/2),
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with ξ -high probability. First, we claim that for η ≥ 1,

(A.41) |m2| ≥ Imm2 ≥ c with ξ -high probability

for some constant c > 0. By the spectral decomposition (3.9), we have

ImGii = Im
M∑

k=1

z|ξk(i)|2
λk − z

=
M∑

k=1

∣∣ξk(i)
∣∣2 Im

(
−1 + λk

λk − z

)
≥ 0.

Then by (A.36), G−1
μμ is of order O(1) and has an imaginary part ≤ −η +

O(ϕ2ξ (q + N−1/2)) with ξ -high probability. This implies that ImGμμ � η with
ξ -high probability, which concludes (A.41). Next, we claim that

(A.42) |1 + σim2| ≥ c′ with ξ -high probability

for some constant c′ > 0. In fact, if σi ≤ |2m2|−1, we trivially have |1 + σim2| ≥
1/2. Otherwise, we have σi � 1 [since |m2| = O(1)], which gives that

|1 + σim2| ≥ σi Imm2 ≥ c′.

Finally, with (A.40), (A.41) and (A.42), we can repeat the previous arguments to
get (A.31). �

The following lemma gives the stability of the equation z = f (m). Roughly
speaking, it states that if z − f (m2(z)) is small and m2(z̃) − m2c(z̃) is small for
Im z̃ ≥ Im z, then m2(z) − m2c(z) is small. For an arbitrary z ∈ S(c0,C0,C1), we
define the discrete set

L(w) := {z} ∪ {z′ ∈ S(c0,C0,C1) : Rez′ = Rez, Imz′ ∈ [Imz,1] ∩ (N−10
N
)}

.

Thus, if Imz ≥ 1, then L(z) = {z}; if Imz < 1, then L(z) is a 1-dimensional lattice
with spacing N−10 plus the point z. Obviously, we have |L(z)| ≤ N10.

LEMMA A.10. The self-consistent equation z − f (m) = 0 is stable on
S(c0,C0,C1) in the following sense. Suppose the z-dependent function δ satisfies
N−2 ≤ δ(z) ≤ (logN)−1 for z ∈ S(c0,C0,C1) and that δ is Lipschitz continuous
with Lipschitz constant ≤ N2. Suppose moreover that for each fixed E, the function
η �→ δ(E + iη) is nonincreasing for η > 0. Suppose that u2 : S(c0,C0,C1) → C

is the Stieltjes’ transform of a probability measure. Let z ∈ S(c0,C0,C1) and sup-
pose that for all z′ ∈ L(z) we have

(A.43)
∣∣z − f (u2)

∣∣≤ δ(z).

Then we have

(A.44)
∣∣u2(z) − m2c(z)

∣∣≤ Cδ√
κ + η + δ

for some constant C > 0 independent of z and N , where κ is defined in (3.12).
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PROOF. This result is proved in [31], Appendix A.2. �

Note that by Lemma A.10 and (A.31), we immediately get that

(A.45) 1(η ≥ 1)θ(z) ≤ Cϕ2ξ (q + N−1/2),
with ξ -high probability. From (A.24), we obtain the off-diagonal estimate

(A.46) 1(η ≥ 1)�o(z) ≤ Cϕ2ξ (q + N−1/2),
with ξ -high probability. Using (A.39), (A.35) and (A.45), we get that

(A.47) 1(η ≥ 1)
(|Gii − �ii | + |Gμμ − m2c|)≤ Cϕ2ξ (q + N−1/2),

with ξ -high probability, which gives the diagonal estimate. These bounds can be
easily generalized to the case η ≥ c for some fixed c > 0. Comparing with (3.19),
one can see that the bounds (A.46) and (A.47) are optimal for the η ≥ c case. Now
it remains to deal with the small η case (in particular, the local case with η � 1).
We first prove the following weak bound.

LEMMA A.11. Let c0 > 0 be sufficiently small. Fix C0 > 0, ξ ≥ 3 and
C1 ≥ 8ξ . Then there exists C > 0 such that with ξ -high probability,

(A.48) �(z) ≤ Cϕ2ξ (√q + (Nη)−1/3),
holds uniformly in z ∈ S(c0,C0,C1).

PROOF. One can prove this lemma using a continuity argument as in [9], Sec-
tion 4.1 or [17], Section 3.6. The key inputs are Lemmas A.8–A.10, the diagonal
estimate (A.39) and the estimates (A.45)–(A.47) for the η ≥ 1 case. All the other
parts of the proof are essentially the same. �

To get stronger local laws in Lemma 3.11, we need stronger bounds on [Z]1 and
[Z]2 in (A.33). They follow from the following fluctuation averaging lemma.

LEMMA A.12. Fix a constant ξ > 0. Suppose q ≤ ϕ−5ξ and that there exists
S̃ ⊆ S(c0,C0,L) with L ≥ 18ξ such that with ξ -high probability,

(A.49) �(z) ≤ γ (z) for z ∈ S̃,

where γ is a deterministic function satisfying γ (z) ≤ ϕ−ξ . Then we have that with
(ξ − τN)-high probability,

(A.50)
∣∣[Z]1(z)

∣∣+ ∣∣[Z]2(z)
∣∣≤ ϕ18ξ

(
q2 + 1

(Nη)2 + Imm2c(z) + γ (z)

Nη

)

for z ∈ S̃, where τN := 2/ log logN .
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PROOF. We suppose that the event � holds. The bound for [Z]2 is proved in
Lemma 4.1 of [17]. The bound for [Z]1 can be proved in a similar way, except
that the coefficients σi/(1 + m2σi)

2 are random and depend on i. This can be dealt
with by writing, for any i ∈ I1,

m2 = m
(i)
2 + 1

N

∑
μ∈I2

GμiGiμ

Gii

= m
(i)
2 + O

(
�2

o

)
,

where by Lemma A.8, we have

�2
o ≤ Cϕ4ξ (q2 + �2

θ

)≤ Cϕ4ξ

(
q2 + 1

(Nη)2 + Imm2c(z) + γ (z)

Nη

)
,

with ξ -high probability. Then we write

[Z]1 = 1

N

∑
i∈I1

σi

(1 + m
(i)
2 σi)2

Zi + O
(
�2

o

)

= 1

N

∑
i∈I1

(1 −Ei )

[
σi

(1 + m
(i)
2 σi)2

G−1
ii

]
+ O

(
�2

o

)

= 1

N

∑
i∈I1

(1 −Ei )

[
σi

(1 + m2σi)2 G−1
ii

]
+ O

(
�2

o

)
.

(A.51)

The method to bound the first term in the line (A.51) is a slight modification of the
one in [17] or the simplified proof given in [16], Appendix B. For a demonstration
of this process, one can also refer to the proof of Lemma 4.9 of [53]. Finally, one
can use that the event � holds with ξ -high probability by Lemma A.11 to conclude
the proof. �

PROOF OF (3.18) AND (3.19). Fix c0,C0 > 0, ξ > 3 and set

L := 120ξ, ξ̃ := 2/ log 2 + ξ.

Hence we have ξ̃ ≤ 2ξ and L ≥ 60ξ̃ . Then to prove (3.19), it suffices to prove

(A.52)
⋂

z∈S(c0,C0,L)

{
�(z) ≤ Cϕ20ξ̃

(
q +

√
Imm2c(z)

Nη
+ 1

Nη

)}
,

with ξ -high probability.
By Lemma A.11, the event � holds with ξ̃ -high probability. Then together with

Lemma A.12 and (A.33), we get that with (ξ̃ − τN)-high probability,

∣∣z − f (m2)
∣∣≤ Cϕ18ξ̃

[
q2 + 1

(Nη)2 + Imm2c + Cϕ2ξ̃ (
√

q + (Nη)−1/3)

Nη

]

≤ C

[
ϕ20ξ̃

(
q2 + 1

(Nη)4/3

)
+ ϕ18ξ̃ Imm2c

Nη

]
,
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where we used Young’s inequality for the
√

q/(Nη) term. Now applying
Lemma A.10, we get that with (ξ̃ − τN)-high probability,

θ ≤ Cϕ10ξ̃

(
q + 1

(Nη)2/3

)
+ Cϕ18ξ̃ Immc

Nη
√

κ + η

≤ Cϕ18ξ̃

(
q + 1

(Nη)2/3

)
,

where we used (3.15) in the second step. Then using Lemma A.8, (A.35) and
(A.39), it is easy to obtain that

� ≤ Cϕ2ξ̃ (q + �θ) + θ ≤ Cϕ18ξ̃

(
q + 1

(Nη)2/3

)
+ Cϕ2ξ̃

√
Imm2c

Nη

≤ ϕ20ξ̃

(
q + 1

(Nη)2/3

)
+ ϕ3ξ̃

√
Imm2c

Nη

uniformly in z ∈ S(c0,C0,L) with (ξ̃ − τN)-high probability, which is a better
bound than the one in (A.48). We can repeat this process M times, where each
iteration yields a stronger bound on � which holds with a smaller probability.
More specifically, suppose that after k iterations we get the bound

� ≤ ϕ20ξ̃

(
q + 1

(Nη)1−τ

)
+ ϕ3ξ̃

√
Imm2c

Nη
(A.53)

uniformly in z ∈ S(c0,C0,L) with ξ̃ ′-high probability. Then by Lemma A.12 and
(A.33), we have with (ξ̃ ′ − τN)-high probability,

∣∣z − f (m2)
∣∣≤ Cϕ18ξ̃

[
q2 + 1

(Nη)2 + Imm2c

Nη

+ ϕ20ξ̃

Nη

(
q + 1

(Nη)1−τ

)
+ ϕ3ξ̃

Nη

√
Imm2c

Nη

]

≤ C

[
ϕ38ξ̃

(
q2 + 1

(Nη)2−τ

)
+ ϕ18ξ̃ Imm2c

Nη

]
.

Then using Lemma A.10, we get that with (ξ̃ ′ − τN)-high probability,

θ ≤ Cϕ19ξ̃

(
q + 1

(Nη)1−τ/2

)
+ Cϕ18ξ̃ Immc

Nη
√

κ + η

≤ Cϕ19ξ̃

(
q + 1

(Nη)1−τ/2

)
.
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Again with Lemma A.8, (A.35) and (A.39), we obtain that

� ≤ Cϕ2ξ̃ (q + �θ) + θ ≤ Cϕ19ξ̃

(
q + 1

(Nη)1−τ/2

)
+ Cϕ2ξ̃

√
Immc

Nη

≤ ϕ20ξ̃

(
q + 1

(Nη)1−τ/2

)
+ ϕ3ξ̃

√
Immc

Nη

(A.54)

uniformly in z ∈ S(c0,C0,L) with (ξ̃ ′ − τN)-high probability. Comparing with
(A.53), we see that the power of (Nη)−1 is increased from 1 − τ to 1 − τ/2, and
moreover, there is no extra constant C appearing on the right-hand side of (A.54).
Thus after M iterations, we get

� ≤ ϕ20ξ̃

(
q + 1

(Nη)1−(1/2)M−1/3

)
+ ϕ3ξ̃

√
Immc

Nη
(A.55)

uniformly in z ∈ S(c0,C0,L) with (ξ̃ − MτN)-high probability. Taking M =
�log logN/ log 2� such that

ξ̃ − MτN ≥ ξ,
1

(Nη)−(1/2)M−1/3
≤ (Nη)4/(3 logN) ≤ C,

we can then conclude (A.52) and hence (3.19). Finally, to prove (3.18), we only
need to plug (A.52) into Lemma A.12 and then apply Lemma A.10. �

PROOF OF (3.20). The bound in (3.20) follows from a standard application
of the local laws (3.18) and (3.19). The proof is exactly the same as the one for
Lemma 4.4 in [17]. We omit the details here. �

APPENDIX B: PROOF OF LEMMA 5.1

By (3.20), we have λ1 = ‖H‖2 ≤ λr + ϕC1(q2 + N−2/3) with ξ1-high proba-
bility. Hence it suffices to prove (5.2) for E ≤ λr + ϕC1(q2 + N−2/3). We define
ρ(x) := N−1∑

j δ(x − λj ). It is easy to see that n(E) := ∫∞
E ρ(x) dE and m2(z)

is the Stieltjes’ transform of ρ(x). Then we introduce the differences:

�ρ(x) := ρ(x) − ρ2c(x), �m(z) := m2(z) − m2c(z).

Fix η0 = ϕC1N−1, E2 = λr + ϕC1+1(q2 + N−2/3) and λr − c1 ≤ E1 < E2 − 2η0.
We denote E := max{E2 − E1, η0} and κ := min{κE1, κE2}. Let χ(y) be a smooth
cutoff function with χ(y) = 0 for |y| ≥ 2E , χ(y) = 1 for |y| ≤ E , and |χ ′(y)| ≤
CE−1. Let f ≡ fE1,E2,η0 be a smooth function supported in [E1 − η0,E2 + η0]
such that f (x) = 1 if x ∈ [E1 + η0,E2 − η0], and |f ′| ≤ Cη−1

0 , |f ′′| ≤ Cη−2
0 if

|x − Ei | ≤ η0. Using the Helffer–Sjöstrand calculus (see, e.g., [10]), we have

f (E) = 1

2π

∫
R2

iyf ′′(x)χ(y) + i(f (x) + iyf ′(x))χ ′(y)

E − x − iy
dx dy.
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Then we obtain that∣∣∣∣
∫

f (E)�ρ(E)dE

∣∣∣∣
≤ C

∫
R2

(∣∣f (x)
∣∣+ |y|∣∣f ′(x)

∣∣)∣∣χ ′(y)
∣∣∣∣�m(x + iy)

∣∣dx dy(B.1)

+ C
∑
i

∣∣∣∣
∫
|y|≤η0

∫
|x−Ei |≤η0

yf ′′(x)χ(y) Im�m(x + iy) dx dy

∣∣∣∣(B.2)

+ C
∑
i

∣∣∣∣
∫
|y|≥η0

∫
|x−Ei |≤η0

yf ′′(x)χ(y) Im�m(x + iy) dx dy

∣∣∣∣.(B.3)

Using (3.18) with η = η0 and (3.15), we get that

(B.4) η0 Imm2(E + iη0) = O
(
ϕC1N−1)

with ξ1-high probability. Since η Imm2c(E + iη) is increasing with η, we obtain
that with ξ1-high probability,

(B.5) η
∣∣Im�m(E + iη)

∣∣= O
(
ϕC1N−1) for all 0 ≤ η ≤ η0.

Moreover, since G(X,z)∗ = G(X, z̄), the estimates (3.18) and (B.5) also hold for
z ∈C−.

Now we bound the terms (B.1), (B.2) and (B.3). Using (3.18) and that the sup-
port of χ ′ is in E ≤ |y| ≤ 2E , the term (B.1) is bounded by∫

R2

(∣∣f (x)
∣∣+ |y|∣∣f ′(x)

∣∣)∣∣χ ′(y)
∣∣∣∣�m(x + iy)

∣∣dx dy

≤ CϕC1

(
1

N
+ q2E√

κ + E

)
,

(B.6)

with ξ1-high probability. Using |f ′′| ≤ Cη−2
0 and (B.5), we can bound the terms in

(B.2) by ∣∣∣∣
∫
|y|≤η0

∫
|x−Ei |≤η0

yf ′′(x)χ(y) Im�m(x + iy) dx dy

∣∣∣∣≤ C
ϕC1

N
,

with ξ1-high probability. Finally, we integrate the term (B.3) by parts first
in x, and then in y [and use the Cauchy–Riemann equation ∂ Im(�m)/∂x =
−∂ Re(�m)/∂y] to get that∫

y≥η0

∫
|x−Ei |≤η0

yf ′′(x)χ(y) Im�m(x + iy) dx dy

=
∫
y≥η0

∫
|x−Ei |≤η0

yf ′(x)χ(y)
∂ Re�m(x + iy)

∂y
dx dy
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= −
∫
|x−Ei |≤η0

η0χ(η0)f
′(x)Re�m(x + iη0) dx(B.7)

−
∫
y≥η0

∫
|x−Ei |≤η0

(
yχ ′(y) + χ(y)

)
f ′(x)Re�m(x + iy) dx dy.(B.8)

We bound the term in (B.7) by O(ϕC1N−1) using (3.18) and |f ′| ≤ Cη−1
0 . The first

term in (B.8) can be estimated by O(ϕC1( 1
N

+ q2E√
κ+E )) as in (B.6). For the second

term in (B.8), we use (3.18) and |f ′| ≤ Cη−1
0 to get that with ξ1-high probability,∣∣∣∣

∫
y≥η0

∫
|x−Ei |≤η0

χ(y)f ′(x)Re�m(x + iy) dx dy

∣∣∣∣
≤ C

∫ 2E

η0

ϕC1

(
1

Ny
+ q2

√
κ + y

)
dy

≤ CϕC1

(
logN

N
+ q2E√

κ + E

)
.

Obviously, the same bounds hold for the y ≤ −η0 part. Combining the above esti-
mates, we get that with ξ1-high probability,∣∣∣∣

∫
f (E)�ρ(E)dE

∣∣∣∣≤ ϕC1+1
(

1

N
+ q2E√

κ + E

)

≤ ϕC1+1
(

1

N
+ q2√E2 − E1 + η0

)

≤ ϕ2C1+2
(

1

N
+ q3 + q2√κE1

)
,

(B.9)

where we used E2 = λr + ϕC1+1(q2 + N−2/3) in the last step.
For any interval I := [E − η0,E + η0] with E ∈ [λr − c1,E2], we have

n(E + η0) − n(E − η0) ≤∑
k

2η2
0

(λk − E)2 + η2
0

= 2η0 Imm2(E + iη0) = O
(
ϕC1N−1),

(B.10)

with ξ1-high probability, where we used (B.4) in the last step. On the other hand,
we trivially have

(B.11) nc(E + η0) − nc(E − η0) = O(η0) = O
(
ϕC1N−1),

with ξ1-high probability, since the density ρ2c(x) is bounded by (3.13). Now with
(B.9), (B.10) and (B.11), we get that with ξ1-high probability,∣∣(n(E2) − n(E)

)− (nc(E2) − nc(E)
)∣∣≤ Cϕ2C1+2

(
1

N
+ q3 + q2√κE

)
for all λr − c1 ≤ E < E2 − 2η0. This concludes (5.2) since E2 is chosen such that
n(E2) = nc(E2) = 0 with ξ1-high probability.
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