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PHASE TRANSITIONS IN THE ONE-DIMENSIONAL COULOMB
GAS ENSEMBLES

BY TATYANA S. TUROVA1

University of Lund

We consider the system of particles on a finite interval with pairwise
nearest neighbours interaction and external force. This model was introduced
by Malyshev [Probl. Inf. Transm. 51 (2015) 31–36] to study the flow of
charged particles on a rigorous mathematical level. It is a simplified version of
a 3-dimensional classical Coulomb gas model. We study Gibbs distribution
at finite positive temperature extending recent results on the zero tempera-
ture case (ground states). We derive the asymptotics for the mean and for the
variances of the distances between the neighbouring charges. We prove that
depending on the strength of the external force there are several phase tran-
sitions in the local structure of the configuration of the particles in the limit
when the number of particles goes to infinity. We identify 5 different phases
for any positive temperature.

The proofs rely on a conditional central limit theorem for nonidentical
random variables, which has an interest on its own.

1. Introduction. Coulomb gas distribution appears in a variety of mathemat-
ical models. Here, we focus on the one which describes the charges with nearest
neighbour Coulomb interaction on an interval in a presence of external force. This
model was introduced and studied recently by Malyshev [16], and then by Maly-
shev and Zamyatin [17], motivated by the fact that many electric phenomena are
still not well understood, and “even might seem mysterious” ([17]).

Study of statistical mechanics of Coulomb gas has a long history. Coulomb
gas models in dimension 2 are of a particular interest. Their connection to the
Ginzburg–Landau theory of superconductivity and to random matrix theory is well
explained in [19]. It appears that the Gibbs distribution of the Coulomb gas model
is strongly related to the distribution of the eigenvalues of random matrices (see,
e.g., [6] on a brief introduction into the typical methods in this area). The existence
and universality of scaling limits for the eigenvalues of a random normal matrix
are studied, for example, in [2, 3] and [4] (see the reference therein).

The large deviations principle helps to study the configurations of the Coulomb
gas particularly at low temperature, when the configurations which minimize
the energy make the major contribution to the partition function. For the d-
dimensional models of Coulomb gas the large deviations principle (at speed N2)
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is proved in [19] for a rather general situation. This result is used to determine the
macroscopic distribution of the particles. Some linear statistics of the configura-
tions are discussed in [6] (see, in particular, Example 1 in [6] for the dimension-one
model.)

Recently, in [5] a precise asymptotic expansion of the free energy was derived,
which allowed to establish the central limit theorem for the fluctuations of the
linear statistics at any positive temperature.

The large deviations principle (at speed N ) is established even for the two-
dimensional two-component plasma [13]. The latter model considers particles of
both positive and negative charges with logarithmic interactions.

The one-dimensional models play an important role in statistical physics being
the first rigorously studied cases. In a series of papers, Lenard ([8, 14, 15]) devel-
oped a method of Wiener integrals to study the partition function for the Gibbs
distribution related to the one-dimensional Coulomb energy, which is given by

(1.1) H(q,σ ) = −∑
i �=j

σiσjφ
(|qi − qj |),

where qi ∈ R is location of the ith particle, and σi ∈ {−1,+1} is its charge. The
case φ(x) = x corresponds the (truly) one-dimensional Coulomb potential; it was
studied in [8, 14, 15]. Already in [14], an effect of a constant external electric field
was briefly discussed. The results of [8] and [15] on the thermodynamic limits and
phase transitions were further developed; see, for example, [1], where the model of
jellium [taking σi ≡ −1 in (1.1)] was treated as well. Results of [1] also confirmed
a periodic structure of the limiting states in the presence of constant external field.

Another continuous one-dimensional gas model with Lennard–Jones-type po-
tential [the pairwise interaction is φ(r) = 1

rγ − c
r2 , C > 0] is considered in [11] and

[12]. It is proved that depending on the parameters of the model at the low tem-
perature there are basically three different phases in the space occupied by the gas,
firmly distinguished by the corresponding density of particles. The proofs in [11]
and [12] rely on sophisticated combinatorial arguments concerning the entropy of
the system.

The model of [16] which we consider here, is aimed to study the flow of charged
particles in a network-like media, which might be approximated by a graph, that
is, it is locally 1-dimensional. Therefore, we combine the features of dimension
one, where the particles are assumed to be hardly aligned on an interval, and of
“real” dimension 3, taking interactions in a form φ(x) = 1

x
[see (1.1)]; all particles

have the same charges in our model. Already in [16], it was proved that at the
zero temperature case (ground states) there are phase transitions in the structure
of the configuration of charges under different strength of external force. Then a
local structure of Gibbs configurations at positive temperature but without external
force was analyzed in [17].

Here, we study how the local properties of configurations are changed in the
presence of an external electric field. Simplicity of our model allows a “precise
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resolution”: we are able to distinguish 5 different phases. We prove that for the
weak force the charges remain to be densely and almost equally spaced over the
entire interval, at the critical value of external force they occupy only a finite part
of the interval, and when the force is above the critical value, all of the charges
collapse in one end of the interval.

Note that here the phase transitions (along the strength of the external forth) are
observed at any positive temperature, unlike, for example, in the model of [12],
where similar transitions in the empirical density of particle are proved but only
at low temperature. Therefore, model [16] provides a rare example of an exactly
solvable model which, while being not realistic in a present form, still exhibits
the properties of physical systems. Furthermore, the proved results were not yet
reported even qualitatively in more complicated Coulomb gas models.

The major simplification of the present model is that only the nearest neighbours
interactions are taken into account. This certainly is a crucial assumption for the
presented exact solution. However, having understood this case one can get strong
intuition about more complex models; we shall discuss some generalizations after
we state the results below.

The methods we use here develop the probabilistic approach of [17] (and [7])
but now in an inhomogeneous setting. Notice also that the basic idea in the proof
is still in a way close to the large deviations technique.

2. Model and results.

2.1. Model. Consider a system of N + 1 identical particles on the interval
[0,L], whose locations are represented by a vector ȳ = (y0, . . . , yN) with ordered
components:

0 = y0 < · · · < yN = L.

The length of the interval plays no role, so we fix it from now on to be one:

L = 1.

Fixed values y0 = 0 and yN = 1 mean here that at both ends there are particles
with fixed positions.

For any vector (configuration)

ȳ ∈ S := {
(y0, . . . , yN) : 0 = y0 < · · · < yN = 1

}
define a function of potential

(2.1) U(ȳ) = β

N∑
k=1

V (yk − yk−1) +
N∑

k=1

∫ yk

0
Fs ds,

where the positive function V represents a pairwise interaction between the par-
ticles, β > 0 is a parameter, and function Fs represents an external force at point
s ∈ [0,1]. (Notice that here all the charges have the same sign.)
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ASSUMPTION 2.1. A pairwise Coulomb repulsive interaction is given by

(2.2) V (x) = 1

x
, x > 0.

The external force Fy = F does not depend on the location y, but it is a function
of the number of particles: F = F(N).

Under Assumption 2.1, we can rewrite the potential (2.1) of a configuration ȳ

as

(2.3) Uβ,F (ȳ) = β

N∑
k=1

1

yk − yk−1
+

N∑
k=1

Fyk.

For a positive temperature t > 0, the potential function Uβ,F (ȳ) defines the
following Gibbs density function:

(2.4) f (ȳ; t) = 1

Z 1
t
Uβ,F

(N)
e− 1

t
Uβ,F (ȳ), ȳ ∈ S,

where the normalizing factor (called the partition function) is

(2.5) Z 1
t
U

(N) =
∫

· · ·
∫

0<y1<···<yN−1<1
e− 1

t
U(ȳ) dy1 · · ·yN−1.

For N > 2, let Ȳ = (Y0 = 0, Y1, . . . , YN−1, YN = 1) be a random vector on S
with the Gibbs density (2.4). The entries of this vector represent positions of the
particles on the interval: N − 1 random and two fixed positions at both ends.

We shall study the asymptotic distribution of the inter-spaces between the par-
ticles, which are the random variables Yk − Yk−1, 1 ≤ k ≤ N , when N → ∞.

When F = 0, this model was treated in [17] [it is a particular case of part (a) of
the following below theorem].

When t → 0, the Gibbs distribution (2.4) converges to the one concentrated at
the minimum of Uβ,F . Therefore, the minimal values of Uβ,F are referred to as
“zero-temperature case”, or the ground states. It was proved in [16] that there are
4 different phases of the ground states for Uβ,F depending on F .

2.2. Results. We prove here that at any positive temperature there are 5 dif-
ferent phases; these are listed in the following theorem in the increasing order of
external force.

We use the notation g(N) = �(h(N)) if both hold: g(N) = O(h(N)) and
h(N) = O(g(N)).

THEOREM 2.2. Let t > 0 and β > 0 be fixed arbitrarily, and let

Ȳ = (Y0 = 0, Y1, . . . , YN−1, YN = 1)
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be a random vector in S = {(y0, . . . , yN) : 0 = y0 < · · · < yN = 1} with the Gibbs
density

(2.6) fȲ (ȳ) = e− 1
t
Uβ,F (ȳ)

Z 1
t
Uβ,F

(N)
, ȳ ∈ S,

where the potential function Uβ,F is given by (2.3).
Define

Fcr(N) = 4βN.

For any fixed t > 0 and β > 0, the following holds when N → ∞.

(a) Weak subcritical force. If F(N) = o(N), then for all 1 ≤ k ≤ N ,

(2.7) E(YN+1−k − YN−k) = 1

N

(
1 − F

2βN

(
k

N
− 1

2

)
+ O

(
F 2

N2

)
+ O

(
logN√

N

))

and

(2.8) Var(Yk − Yk−1) = t

2βN3

(
1 + o(1)

)
.

(b) Subcritical force. If F(N) = F0N < Fcr(N), that is,

(2.9) F0 < 4β,

then

(2.10) E(YN+1−k − YN−k) = 1

akN

(
1 + O

(
logN√

N

))

and

(2.11) Var(YN+1−k − YN−k) = t

2βa3
kN

3

(
1 + o(1)

)
,

where

(2.12) ak =
√√√√1 +

(
k

N
− 1

2

)
F0

β
+ F 2

0

16β2 .

(c) Critical force. If F(N) = Fcr(N) = 4βN , then

(2.13) E(YN+1−k − YN−k) =
√

1

4(k − 1)N + |�(N)| + 1

k3/4 O

(
logN

N3/4

)
,

and

(2.14) Var(Yk − Yk−1) = 1

k3/4 O

(
(logN)2

N3/4

)
.
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(d) Supercritical force. If F(N) = F0N > Fcr(N), that is, F0 > 4β , then

(2.15) 1 −EYN−1 = E(YN − YN−1) = 1 −
√

4β

F0
+ O

(
1√
N

)

and

(2.16) Var(YN−1) = Var(YN − YN−1) = O

(
1√
N

)
,

while for all k ≥ 2

(2.17) E(YN+1−k − YN−k) =
√

β

(k − 1)F0N + tλ0
+ 1

k3/4 O

(
logN

N3/4

)
,

and

(2.18) Var(YN+1−k − YN−k) = 1

k3/2 O

(
(logN)2

N3/2

)
,

where λ0 = λ0(β,F0, t) is the unique solution to

(2.19)

∫ 1
0 xeλ0x− β

tx dx∫ 1
0 eλ0x− β

tx dx
= 1 −

√
4β

F0
.

(e) Strong supercritical force. If F(N) 
 N , then

(2.20) 1 −EYN−1 = E(YN − YN−1) = 1 − O

(√
N

F
+ N−3/2

)
,

and

(2.21) Var(YN−1) = O

(
N

F
+ N−3/2

)
.

In all statements the terms O , o and � are uniform in k, but may depend on t

and β .

This theorem confirms that the phase transitions discovered in [16] for the
ground states, take place for the Gibbs measure at any positive finite temperature
as well. Remarkably, the principal terms for the asymptotics of the mean inter-
spaces do not depend on temperature t in the subcritical phases (a) and (b), and
moreover they are equal to their counterparts for the ground states described in
[16]. This suggests the continuity of the expectation of the inter-spaces at t = 0
in the subcritical phase. Note that in [16] the ground states for the cases (b) and
(c) are described as one phase. Here, at positive temperature, we see that there are
different scalings under conditions (b) and (c), respectively.

Figure 1 helps one to visualize the positions of the particles in different phases.
The particles at each phase are placed at intervals equal to the principal terms of
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FIG. 1. n = 100, β = 1, (a) F = 1, (b) F0 = 1, (c) �(N) = N , (d) F0 = 16, (e) F = N3.

mean values found in Theorem 2.2. Five different phases described by Theorem 2.2
are the following.

(a) Weak subcritical force. The particles remain to be equally spaced on the
average, at distance 1/N , just as for F = 0, and the variances are of order N−3.

(b) Subcritical force. The same orders N−1 and N−3 for the mean and the
variance, respectively, of the inter-spaces are preserved, however, they are not
homogeneous any longer. The constants ak take different values between a1 =

1
1−F0

4β

(1 + o(1/N)) > 1 and 1
2 < aN = 1

1+F0
4β

< 1. In particular, when F0 ↑ 4β one

has aN → 1/2, while a1 → ∞.
(c) Critical force. All the inter-spaces converge to zero (in L2 at least). Hence,

the particles still densely cover the entire interval; however, the order of the mean
varies from N−1/2 to N−1.

(d) Supercritical force. The particles occupy densely only a positive fraction of

the interval [0,1], namely (0,1 −
√

4β
F0

), where the scaling varies as in (c), while
on the remaining part there are no particles (except the ones with fixed positions at
the ends).

(e) Strong supercritical force. All the particles (except the ones with fixed posi-
tions at the ends) are jammed towards one end.

The clear analogy allows one to speculate that this model should be versatile in
physics for explaining phenomena of superconductivity.

We are able to define the precise asymptotics for the variance only in the cases
of weak external force. Notice also that in the weak force case we use even sharper
results, as asymptotics for the densities (see proofs in Section 3.5). Our proof does
not show whether the upper bounds in the cases (c), (d), (e) are optimal. (One may
guess that the optimal bounds will coincide with the ones derived in Corollary 3.8
below.) Still due to the very small variance one can even get further information on
the macro-characteristics of the systems as, for example, Ym+k − Ym for any 0 ≤
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m < m+ k ≤ N . At least in all cases except the critical one, our results still yield a
concentration of these characteristics around their mean. As a side result, we also
mention (Remark 3.12 below) that at least in the subcritical case our analysis yields
exact asymptotic for the partition function, and thus the phase transition might be
observed in the macro-states as well.

2.3. Possible generalizations. The analysis here relies on the specific assump-
tion that the particles are hardly aligned so that only the nearest-neighbours inter-
actions are counted, the assumption which makes the model “exactly solvable”.
However, it certainly suggests that a similar result should hold as well when the k-
neighbours interactions are counted, or even all pairwise interactions are counted.
The case of finite k should qualitatively be exactly same as the one treated here:
up to constants the scaling limits should be the same.

Further conjecture could be the following: when all the interactions are taken
into account the critical value for the external force will be of order N logN . When
the external force is at most o(N logN), the spacings will be of nonuniform over
the interval order

logN

N log(N
2 − k + 2)

, k ≤ N/2 and
logN

N log(k − N
2 + 2)

, k > N/2

(compare to Theorem 2.2 where the spacings in presence of weak force are uni-
form). Then increase of the external constant force will result again in a number
of different phases, which are not monotone, unlike the present case (Theorem 2.2
states that the particles’ density is monotone increasing towards one end). How-
ever, qualitatively, we expect again a finite number (5?) of different phases.

Another direction of the generalization of the model is the form of the external
force. First, it should be noted that already in [16] this question was discussed for
the ground (zero temperature) case. It was proved there that if the external force is
monotone increasing (i.e., replace Fs = F in the Assumption 2.1 by Fs = Fh(s),
where h(s) is positive, monotone and bounded on [0,1]), then there is a unique
equilibrium ground state. This should be also the case for the Gibbs states. One
can work out this model using the same arguments as here. Our conjecture is that
the phase transitions along F = F(N) will be qualitatively the same as in case
h(s) ≡ 1 considered here.

However, the picture will be different when the force is nonmonotone over the
interval. As it was exemplified in [16], in this case one may expect nonunique-
ness of the minimums of the energy function. This should result in another phase
transition at low temperature.

The analysis presented here is not much sensitive to the form of the potential
V (x); in fact different cases were already treated in [17]. The scaling of the critical
external force will be different of course, but the entire program can be worked out
along the same lines (see also [17] for the systems without external force). Here,
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we focus on the Coulomb potential because the aim of our model is to explain the
physics of the electric current.

Finally, we mention that the models on graphs with different from the interval
structure have not yet been studied, but they might bring new features.

3. Proof of Theorem 2.2.

3.1. Scaling along the temperature t . Observe that the function of potential
Uβ,F in (2.3) has the following scaling property: for any β , F and t > 0,

(3.1)
1

t
Uβ,F (ȳ) = Uβ

t
, F

t
(ȳ).

Correspondingly, for any β , F and t > 0 the density function fȲ in (2.6) can be
written as

(3.2) fȲ (ȳ) = e− 1
t
Uβ,F (ȳ)

Z 1
t
Uβ,F

(N)
= e

−U
β̂,F̂

(ȳ)

ZU
β̂,F̂

(N)
,

where β̂ = β
t
, and F̂ = F

t
.

Therefore, with a slight abuse of notation, namely writing β and F instead of β̂

and F̂ , we shall first study Ȳ with the density

(3.3) fȲ (ȳ) = e−Uβ,F (ȳ)

ZUβ,F
(N)

, ȳ ∈ S,

and then in the resulting formulas we shall transform the parameters back by

(3.4) β → β

t
, F → F

t
.

3.2. Representation of vector of inter-spaces. Consider Ȳ with the density
(3.3). We begin with establishing a useful representation for the random variables
Yk − Yk−1, 1 ≤ k ≤ N .

PROPOSITION 3.1. Let Xk, k = 1, . . . ,N , be independent random variables
with density functions

(3.5) fXk
(x) = 1

ck

e−βV (x)−Fkx = 1

ck

e− β
x
−Fkx, x ∈ [0,1],

where

(3.6) ck =
∫ 1

0
e− β

x
−Fkx dx.

Then the following distributional identity holds for all N ≥ 2:

(3.7) (1 − YN−1, YN−1 − YN−2, . . . , Y2 − Y1, Y1)
d= (X1, . . . ,XN)|∑N

i=1 Xi=1.
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PROOF. Using Assumptions 2.1, let us rewrite the potential function as fol-
lows:

(3.8)

U(ȳ) = Uβ,F (ȳ) = β

N∑
k=1

V (yk − yk−1) + F

N∑
k=1

(N − k + 1)(yk − yk−1)

= β

N∑
k=1

V (yN+1−k − yN−k) + F

N∑
k=1

k(yN+1−k − yN−k),

where y0 = 1, yN = 1. Denote here for all 1 ≤ k ≤ N and x ∈ (0,1]
gk(x) = βV (x) + Fkx = β

x
+ Fkx.

With this notation

U(ȳ) =
N∑

k=1

gk(yN+1−k − yN−k),

and then the density of Y1, . . . , YN−1 given by (3.3) can be rewritten as

(3.9) fY1,...,YN−1(y1, . . . , yN−1) = 1

ZUβ,F
(N)

e−∑N
k=1 gk(yN+1−k−yN−k).

From here, we derive the joint density of the increments 1 − YN−1, YN−1 −
YN−2, . . . , Y2 − Y1:

(3.10) f1−YN−1,...,Y2−Y1(x1, . . . , xN−1) = 1

ZUβ,F
(N)

e−∑N−1
k=1 gk(xk)−gN(1−∑N−1

k=1 xk)

for all positive values x1, . . . , xN−1, such that
∑N−1

k=1 xk ≤ 1.
On the other hand, straight from the definition of the variables Xk , we get

(3.11)

fX1,...,XN−1|∑N
k=1 Xk=1(x1, . . . , xN−1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
∏N

k=1 ck)
−1e−∑N−1

k=1 gk(xk)−gN(1−∑N−1
k=1 xk)

f∑N
k=1 Xk

(1)
,

if xk > 0 ∀1 ≤ k ≤ N − 1, and
N−1∑
k=1

xk ≤ 1,

0, otherwise.

Since we have the same functions on the right in (3.11) and (3.10), it follows that

(3.12) (1 − YN−1, . . . , Y2 − Y1)
d= (X1, . . . ,XN−1)|∑N

i=1 Xi=1.

Finally, we observe that Y1 = 1−(1−YN−1)−· · ·−(Y2 −Y1), while conditionally
on

∑N
i=1 Xi = 1 one has XN = 1 − ∑N−1

i=1 Xi . Therefore, the statement of the
proposition follows by (3.12). �
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Let us mention here for a further reference, that as a direct consequence of
the equality of (3.11) and (3.10) we have a useful representation for the partition
function as well, namely

(3.13) ZUβ,F
(N) =

(
N∏

k=1

ck

)
f∑N

k=1 Xk
(1).

Proposition 3.1 implies immediately the following corollary.

COROLLARY 3.2. For all 1 ≤ k ≤ N , the following identity in distribution
holds:

(3.14) YN−k+1 − YN−k
d= Xk|∑N

i=1 Xi=1,

where YN = 1 and Y0 = 0.

Therefore, in order to prove Theorem 2.2 we shall study the conditional density
of Xk given

∑N
i=1 Xi = 1.

3.3. Lagrange multiplier. Here, we shall solve some optimization problem,
introducing an auxiliary parameter, and hence, introducing new distributions.

Following the ideas of [7], let us embed the distribution of Xk (defined in Propo-
sition 3.1) into a more general class. Namely, for any λ ∈ R define a density func-
tion

(3.15) fk,λ(u) = 1

ck(λ)
e− β

u
−(λ+Fk)u, u ∈ [0,1],

where

ck(λ) =
∫ 1

0
e− β

u
−(λ+Fk)u du,

and denote the corresponding random variable Xk,λ. In these notation, Xk
d= Xk,0.

We assume that for each fixed λ the random variables Xk,λ, k = 1, . . . ,N , are
independent. The remarkable property of these random variables is that for any
λ ∈ R the following equality in distribution holds:

(3.16) Xk|∑N
i=1 Xi=1

d= Xk,λ|∑N
i=1 Xi,λ=1.

Indeed, denoting

SN =
N∑

i=1

Xi, S
N,k̂

= ∑
i �=k

Xi

and, correspondingly,

SN,λ =
N∑

i=1

Xi,λ, S
N,k̂,λ

= ∑
i �=k

Xi,λ,
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it is straightforward to check that for the conditional densities one has

(3.17) fXk |∑N
i=1 Xi=1(x) := fXk

(x)fS
N,k̂

(1 − x)

fSN
(1)

= fk,λ(x)fS
N,k̂,λ

(1 − x)

fSN,λ
(1)

,

that is, the right-hand side does not depend on λ.
Diaconis and Freedman [7] used this property to prove the conditional central

limit theorem for the identically distributed random variables; their result was then
used in [17] to treat the case without external force (which is still the i.i.d. case ).

Here, we show that a similar argument works even without the assumption of
the identity of distributions. The main idea is to tune the free parameter λ so that
the condition

∑N
k=1 Xk,λ = 1 becomes a natural one in the following sense. Since

we have a sum of independent random variables, we may expect that due to the
central limit theorem the density of the normalized sum SN,λ converges to the
density of a normal distribution with the maximum at the point of its expected
value. Therefore, we shall choose λ so that

(3.18) ESN,λ =
N∑

k=1

EXk,λ = 1.

Before solving (3.18), let us note that with a help of random variables Xk,λ we
can rewrite also the representation for the partition function (3.13) as follows:

(3.19) ZUβ,F
(N) = eλ

(
N∏

k=1

ck(λ)

)
f∑N

k=1 Xk,λ
(1).

Now we turn to (3.18). Notice that the definition (3.15) yields (see also [17]
and [7]) that EXk,λ is a strictly decreasing function of λ, such that EXk,λ → 0
when λ → +∞ while EXk,λ → 1 when λ → −∞. Hence, equation (3.18) defines
uniquely λ which satisfies this condition. To solve equation (3.18), first we con-
sider EXk,λ. Notice, that in [17] one can find the principal term of the asymptotic
of this value. Here, using the arguments of [17], we get more details.

PROPOSITION 3.3. For any 1 ≤ k ≤ N and F ≥ 0,

(3.20) mk,λ := EXk,λ =
√

β

kF + λ
+ 3

4(kF + λ)

(
1 + o(1)

)
,

and

(3.21) Var(Xk,λ) =
√

β

2(kF + λ)3/2

(
1 + o(1)

)
as kF + λ → ∞.
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PROOF. Let us write here

(3.22) λk = λ + kF,

and, correspondingly, Xk,λ = Xλk
and ck(λ) = c(λk) (these notation are consistent

with the ones in [17]).
For any λ > 0 and α ∈ {1,2,3}, define

(3.23) Iα(λ,β) =
∫ ∞

0
xα−1e−λx− β

x dx.

Then we have

(3.24) EXλ =
∫ 1

0 xe−λx− β
x dx

c(λ)
=

∫ 1
0 xe−λx− β

x dx∫ 1
0 e−λx− β

x dx
= I2(λ,β) + O(e− 1

2 λ)

I1(λ,β) + O(e− 1
2 λ)

,

as λ → ∞. It was observed in [17] that

(3.25) Iα(λ,β) = 2βα/2Kα(2
√

λβ)

λα/2 ,

where Kα(z) is a Bessel function for which the asymptotic expansion when z → ∞
is known to be

(3.26) Kα(z) =
√

π

2

e−z

√
z

(
1 + 4α2 − 1

8z
+ o

(
z−1))

(consult, e.g., [9]).

REMARK 3.4. Asymptotic (3.26) holds as well when z → ∞ in a sector of a
complex plain with | arg z| ≤ π

2 − ε if 0 < ε < π
2 .

Hence, using (3.25) and then (3.26), we derive from (3.24)

(3.27)

EXλ =
β
λ
K2(2

√
λβ) + O(e− 1

2 λ)√
β
λ
K1(2

√
λβ) + O(e− 1

2 λ)

=
√

β

λ

(
1 + 3

4
√

λβ
+ o

(
λ−1/2)) =

√
β

λ
+ 3

4λ
+ o

(
λ−1)

,

which together with (3.22) yields (3.20). For a further reference, let us state sepa-
rately

(3.28) c(λ) = 2

√
β

λ
K1(2

√
λβ) + O

(
e− 1

2 λ) =
√

πβ1/4

λ3/4 e−2
√

λβ(
1 + O

(
λ−1/2))

.
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In a similar manner, we derive as well

(3.29)

EX2
λ =

∫ 1
0 x2e−λx− β

x dx∫ 1
0 e−λx− β

x dx
= I3(λ) + O(e− 1

2 λ)

I1(λ) + O(e− 1
2 λ)

= β

λ

(
1 + 2√

λβ
+ o

(
λ−1/2))

,

which together with (3.27) yields

Var(Xλ) =
√

β

2λ3/2

(
1 + o(1)

)
.

This together with (3.22) implies (3.21). The proposition is proved. �

Next, we describe the asymptotic of λ = λ(N,F ) which solves (3.18).
In the following, we shall use “weak force” for both conditions “weak sub-

critical force” and “subcritical force”, while “strong force” will be used for both
“supercritical force” and “strong supercritical force”.

LEMMA 3.5. Assume that λ = λ(N,F ) is chosen so that (3.18) holds, that is,

(3.30)
N∑

k=1

EXk,λ = 1.

Then the following statements take place:

(a) Weak force. If 0 ≤ F < 4βN , then

(3.31) λ(N,F ) = β

(
1 − F

4βN

)2
N2 + O(N).

(b) Critical force. If F = 4βN , then λ(N,F ) < 0, and for some positive a

(3.32) 4βN + λ(N,F ) ≥ aN.

(c) Strong force. If F = F0N , where F0 > 4β , including F0 = F0(N) 
 1, then

(3.33) λ(N,F ) = −F − λ0 + o

(
1√
F

)
,

where λ0 = λ0(β,F0) is the unique solution to

(3.34)

∫ 1
0 xeλ0x− β

x dx∫ 1
0 eλ0x− β

x dx
= 1 −

√
4β

F0
.

REMARK 3.6. In the case (c) function λ0 = λ0(F0) is increasing in F0; in
particular, λ0(F0) → +∞ as F0 → ∞, but so that λ0(F0) = �(F

1/2
0 ).
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PROOF. Let us solve (3.30) when F ≥ 0. Recall that we denote here Xk,λ =
Xλk

, where λk = kF + λ. Observe that for any k and λ the value EXk,λ [see for-
mula (3.24)] is positive, and it is decreasing in λk , hence, in all parameters, k, F

and λ. Therefore, we have

N∑
k=1

EXk,λ ≥ NEXN,λ.

Assuming equation (3.30) holds, this implies

(3.35) 1 =
N∑

k=1

EXk,λ ≥ NEXN,λ.

Hence, if λ satisfies (3.30), and thus (3.35), we must have EXN,λ → 0, and thus

(3.36) NF + λ → ∞.

Using formula (3.20), we derive from (3.35)

(3.37) 1 =
N∑

k=1

EXk,λ ≥ N

(√
β

NF + λ
+ 3

4(NF + λ)

(
1 + o(1)

))
,

where o(1) → 0 as NF + λ → ∞.
Consider now separately different cases. We start with case (a) Weak force.
(a.1) Weak subcritical force. The bound in (3.37) tells us that if F = o(N) and

λ satisfies (3.18) then for some positive a

(3.38) λ ≥ aN2,

and, therefore, for all F ≥ 0 and all k ≥ 1

(3.39) λk = kF + λ ≥ aN2 → ∞.

Having this uniform in k bound, we can use (3.20) to derive

(3.40)
N∑

k=1

EXk,λ =
N∑

k=1

(√
β

kF + λ
+ 3

4(kF + λ)

(
1 + o(1)

))
,

where o(1) → 0 as N → ∞ uniformly in k due to (3.39). Hence, solving (3.30)
when F = o(N) is equivalent to finding the (unique) solution to

(3.41) 1 =
N∑

k=1

(√
β

kF + λ
+ 3

4(kF + λ)

(
1 + o(1)

))
.

As we argued above, if F = o(N) the solution to this equation satisfies (3.38) and,
therefore, equation (3.41) yields

(3.42) 1 =
N∑

k=1

√
β

kF + λ
+ O

(
1

N

)
.
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First, we note that when F = 0 (this case was considered in [17]) we get imme-
diately from (3.42) that

(3.43) λ(N,0) = βN2(
1 + O(1/N)

)
.

For any 0 < F = o(N), we derive from equation (3.42) and bound (3.38)

(3.44)

1 =
√

β

F

(∫ N

1

1√
x + λ

F

dx + O

(
1√

1 + λ
F

))
+ O

(
1

N

)

= 2
√

β
N − 1√

FN + λ + √
F + λ

+ O

(
1

N

)
.

It is straightforward to obtain the solution to the last equation [where F = o(N)]:

(3.45) λ(N,F ) = βN2
(

1 − F

4βN

)2
+ O(N).

(a.2) Subcritical force. Assume now that F = F0N for some positive F0. Taking
into account (3.20), first we derive for all λ ≥ 0

(3.46)
N∑

k=1

EXk,λ =
N∑

k=1

(√
β

kF + λ
+ 3

4(kF + λ)

(
1 + o(1)

))
,

where o(1) → 0 as N → ∞ uniformly in k due to the uniform bound

kF + λ ≥ F0N.

Using the fact that F = F0N , we get from (3.46)

(3.47)
N∑

k=1

EXk,λ =
N∑

k=1

√
β

kF0N + λ
+ min

{∣∣∣∣O
(

logN

N

)∣∣∣∣,
∣∣∣∣O

(
N

λ

)∣∣∣∣
}
,

from where similar to (3.44) we obtain

(3.48)

N∑
k=1

EXk,λ =
√

β

F0N

(∫ N

1

1√
x + λ

F0N

dx + O

(
1√

1 + λ
F0N

))
+R(N)

= 2
√

β
N − 1√

F0N2 + λ + √
F0N + λ

+ O

(
1√

F0N + λ

)
+R(N),

where we denoted

(3.49) R(N) = min
{∣∣∣∣O

(
logN

N

)∣∣∣∣,
∣∣∣∣O

(
N

λ

)∣∣∣∣
}

= o(1).

Observe that the principal term (when N → ∞) on the right in (3.48) decays
both in F0 and in λ; in particular, when λ = 0 it equals to√

4β

F0
.
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This yields that when 4β
F0

< 1 there is no positive solution λ to (3.30). On the other

hand, if 4β
F0

> 1 then the solution λ to (3.30) is positive, and moreover by (3.48), it

must be of order N2. Indeed, under the assumption that λ/N2 is strictly positive,
we have R(N) = O(N−1) and then the equations (3.30) and (3.48) give us

(3.50) 1 = 2
√

β
N√

F0N2 + λ + √
F0N + λ

(
1 + O

(
1

N

))
.

Solving this we derive the solution λ to (3.50),

(3.51) λ(N,F ) = βN2
(

1 − F0

4β

)2
+ O(N),

which is positive and of order N2 when F0 < 4β . Due to the uniqueness, this is
also the solution to (3.30) when F0 < 4β . This together with (3.45) and (3.43)
confirms statement (a) of the lemma.

(b) Critical force. When F = 4βN , the principal term on the right in (3.48) for
any λ ≥ 0 equals 1. Notice also that by (3.46) in this case we have for any λ ≥ 0

(3.52)

N∑
k=1

EXk,λ ≤
N∑

k=1

EXk,0 =
N∑

k=1

(√
β

k4βN
+ 3

4k(4βN)

(
1 + o(1)

))

= 1

2
√

N

N∑
k=1

1√
k

+ O

(
logN

N

)

<
1

2
√

N

(
1 +

∫ N+1

2

1√
x − 1

dx

)
+ O

(
logN

N

)

= 1 − 1

2
√

N
+ O

(
logN

N

)
< 1

for all large N . Hence, the solution λ to (3.30) when F = 4βN is negative.
Assume, λ < 0. Then as in (3.52),

(3.53)
N∑

k=2

EXk,λ ≥
N∑

k=2

EXk,0 ≥
N∑

k=2

√
β

k4βN
= 1 −

∣∣∣∣O
(

1√
N

)∣∣∣∣.
Therefore, if λ is a solution to (3.30) when F = 4βN , it must be negative, and it
should satisfy

(3.54) EX1,λ = O

(
1√
N

)
.

By the formula (3.24), this means that λ1 should satisfy

EX1,λ =
∫ 1

0 xe−λ1x− β
x dx∫ 1

0 e−λ1x− β
x dx

= O

(
1√
N

)
,
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implying that λ1 = F + λ → +∞. This together with the asymptotic (3.20) yields
that λ satisfies (3.54) if and only if for some positive a:

(3.55) F > F + λ = 4βN + λ ≥ aN.

Finally, using computations of (3.52) we check that if λ < 0 and satisfies (3.55)
then

N∑
k=2

EXk,λ =
N∑

k=2

(√
β

k4βN + λ
+ 3

4k(4βN)

(
1 + o(1)

))

<
1

2
√

N

N∑
k=1

1√
k

+ O

(
logN

N

)
< 1 − O

(
1√
N

)
.

This together with (3.53) confirms both holds, (3.54) and

N∑
k=2

EXk,λ = 1 − O

(
1√
N

)
.

Therefore, the solution λ to (3.30) is negative and satisfies (3.55). This proves
statement (b) of the lemma.

(c) Strong force. To prove (c), we assume that F = F0N > 4β . As we argued
above, the (unique) solution λ to (3.30) is negative in this case. Note first, that if

(3.56) −3

2
F0N < λ < 0,

then uniformly in k ≥ 2

kF + λ ≥ F0N/2 → ∞.

Therefore, for any −3
2F0N < λ < 0 we have similar to (3.40)

(3.57)
N∑

k=2

EXk,λ =
N∑

k=2

(√
β

kF + λ
+ 3

4(kF + λ)

(
1 + o(1)

))
,

where o(1) is uniform in k ≥ 2, which yields

(3.58)

N∑
k=2

EXk,λ = 2
√

β
N − 1√

F0N2 + λ + √
2F0N + λ

+ O

(
1√

2F0N + λ

)
+ O

(
logN

F0N

)

=
√

4β

F0
+ O

(
1√
F0N

)
.
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Hence, under assumption (3.56) equation (3.30) becomes

(3.59) 1 = EX1,λ +
√

4β

F0
+ O

(
1√
F0N

)
.

Set now

(3.60) λ = −F0N − λ0 + O

(
1√
F0N

)
,

where λ0 satisfies (3.34). Then by the definition (3.15) and equation (3.34)

(3.61) EX1,λ =
∫ 1

0 xe
λ0x− β

x
+O( 1√

F0N
)x

dx

∫ 1
0 e

λ0x− β
x
+O( 1√

F0N
)x

dx

= 1 −
√

4β

F0
+ O

(
1√
F0N

)
,

which yields as well the relation (3.59).
Supercritical force. When F0 > 4β is a constant, then λ0 is also of order con-

stant and, therefore,

0 > λ = −F0N − λ0 + O

(
1√
F0N

)
> −3

2
F0N,

which confirms (3.56).
Strong supercritical force. Consider F0 = F0(N) → ∞. Note that the function

on the left-hand side in (3.61) is increasing in λ0, and moreover

0 < 1 −
∫ 1

0 xeλ0x− β
x dx∫ 1

0 eλ0x− β
x dx

=
∫ 1

0 (1 − x)e−λ0(1−x)− β
x dx∫ 1

0 e−λ0(1−x)− β
x dx

= �
(
λ−1

0

)

as λ0 → ∞. This yields that solution λ0(F0) to (3.61) for all large F0 satisfies

0 < λ0 = �
(
F

1/2
0

)
,

implying as well that λ = −F0N − λ0 + O( 1√
F0N

) > −3
2F0N .

Hence, (3.60) yields statement (c) of the lemma. Lemma 3.5 and Remark 3.6
are proved. �

REMARK 3.7. It follows from (3.61) that if F0 = F0(N) is unbounded, that
is, when F 
 N , for the chosen λ we have X1,λ → 1, while

∑N
k=2 EXk,λ → 0 as

N → ∞.

COROLLARY 3.8. Assume λ = λ(N,F ) satisfies (3.30), that is, it is chosen as
in Lemma 3.5:
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(I) Weak force. If limN→∞ F/N = F0 < 4β , then there is a positive constant
C = C(β,F0) such that

(3.62) σ 2
N =

N∑
k=1

Var(Xk,λ) = C

N2

(
1 + o(1)

)
,

where for any k

(3.63) Var(Xk,λ) =
√

β

2(kF + β(1 − F0
4β

)2N2)3/2

(
1 + o(1)

) = O
(
N−3)

.

(II) Critical force. If limN→∞ F/N = 4β , then

(3.64)
N∑

k=1

Var(Xk,λ) = �
(
N−3/2)

,

where for any k

(3.65) Var(Xk,λ) =
√

β

2(kF + λ)3/2

(
1 + o(1)

)
,

where λ satisfies (3.32).
(III) Strong force. If limN→∞ F/N > 4β , then there is a positive constant C =

C(β) such that

(3.66)
N∑

k=2

Var(Xk,λ) = C

F 3/2

(
1 + o(1)

) = O
(
N−3/2)

,

where for any k ≥ 2

(3.67) Var(Xk,λ) =
√

β

2(k − 1)3/2F 3/2

(
1 + o(1)

)
,

while

(a) supercritical force: if limN→∞ F/N = F0 and F0 > 4β is a positive constant,
then

(3.68) Var(X1,λ) = σ(F0)
(
1 + o(1)

)
,

where σ(F0) is also some positive constant;
(b) strong supercritical force: if F 
 N , then

(3.69) Var(X1,λ) = O

((
N

F

)3/4)
.



ONE-DIMENSIONAL COULOMB GAS 1269

PROOF. By (3.21), we have for λ = λ(N,F )

Var(Xk,λ) =
√

β

2(kF + λ)3/2

(
1 + o(1)

)
.

In case (I), we have λ = �(N2), thus (3.67) follows. Then using (3.21), we derive

(3.70)

N∑
k=1

Var(Xk,λ) =
N∑

k=1

√
β

2(kF + λ)3/2

(
1 + o(1)

)

= N

λ3/2

√
β

NF
λ

+ 1 +
√

NF
λ

+ 1

(
1 + o(1)

)

as λ → ∞, and the statement follows by Lemma 3.5.
Similarly, one treats the remaining cases, taking into account Lemma 3.5 and

also Remark 3.6. �

3.4. Central limit theorem (for the weak force case). Consider

SN,λ =
N∑

k=1

Xk,λ.

From now on, we assume that λ = λ(N,F ) is chosen so that ESN,λ = 1 (see
Lemma 3.5). We shall also use notation

Xk,λ = Xλk
,

where as above λk = kF + λ(N,F ).
Define a random variable

(3.71) ZN = SN,λ − 1√
Var(SN,λ)

= 1

σN

N∑
k=1

ξk,

where

ξk = Xk,λ − mk,λ,

and

mk,λ = EXk,λ, σN =
√

Var(SN,λ) =
√√√√ N∑

k=1

Var(Xk,λ).

For any random variable X denote φX and fX the characteristic function and
the density, correspondingly.

Following the method of [17], we shall prove that in the subcritical case [parts
(a) and (b) of Theorem 2.2] density fZN

converges to the Normal density. The
difference is that here we are dealing with nonidentically distributed random vari-
ables.
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LEMMA 3.9 (Central limit theorem). Assume Weak force:

lim
N→∞F/N = F0 < 4β,

and let λ = λ(N,F ) satisfy (3.18). Then

(3.72)
∣∣∣∣fZN

(x) − 1√
2π

e−x2/2
∣∣∣∣ ≤ O

(
N−1/2)

.

PROOF. First, we observe that by the assumptions of Lemma 3.9 the value
λ = λ(N,F ) is given by the statement (a) weak force of Lemma 3.5, which is

(3.73) λ = λ(N,F ) = β

(
1 − F0

4β

)2
N2 + O(N).

Consider now the uniform in x bound obtained with the Fourier inverse formula
for the densities

(3.74)
∣∣∣∣fZN

(x) − 1√
2π

e−x2/2
∣∣∣∣ ≤ 1√

2π

∫ ∞
−∞

∣∣φZN
(t) − e−t2/2∣∣dt.

We shall use the following result of Petrov [18].

LEMMA ([18], page 109). Let ξ1, . . . , ξN be independent random variables
with Eξk = 0 and E|ξk|3 < ∞. Define

(3.75) LN :=
∑N

k=1 E|ξk|3
σ 3

N

.

Then for all |t | ≤ 1
4LN

(3.76)
∣∣φZN

(t) − e−t2/2∣∣ ≤ 16LN

∣∣t3∣∣e−t2/3.

To make use of the bound (3.76), we have to show that LN is decreasing towards
zero as N → ∞.

PROPOSITION 3.10. Under assumptions of Lemma 3.9 (weak force), one has

(3.77) LN :=
∑N

k=1 E|ξk|3
σ 3

N

= O

(
1√
N

)
.

PROOF. Consider first for any fixed k

(3.78) E|ξk|3 = E|Xk,λ − mk,λ|3 =
∫ 1

0 |x − mk,λ|3e−λkx− β
x dx∫ 1

0 e−λkx− β
x dx

,
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where λk = λ + kF , and by (3.73) we have here λk → ∞ as N → ∞ for any k.
Recall that by Proposition 3.3,

(3.79) mk,λ =
√

β

λk

+ O

(
β

λk

)

when λk → ∞. Let us write here mk,λ = m(λk), and consider

(3.80) J (λ) :=
∫ 1

0 |x − m(λ)|3e−λx− β
x dx∫ 1

0 e−λx− β
x dx

for large λ. Let us define a function

(3.81) s(x) = λx + β

x
, x > 0.

Denote x0 the argument of the minimal value of s(x) for x > 0, which is

(3.82) x0 =
√

β

λ
,

where

(3.83) s(x0) = 2
√

βλ, s′(x0) = 0 and s′′(x0) = 2β

x3
0

= 2
λ3/2
√

β
.

Notice that x0 < 1 since λ → ∞ for all large N .
It is straightforward to compute that for any ε > −√

λx0 and for all large λ

(3.84) s

(
x0 + ε√

λ

)
≥ s(x0) +

√
λε2

√
β + |ε| .

Since s ′(x) < 0 if x < x0 and s′(x) > 0 if x > x0, the bounds (3.84) and (3.79)
imply for any 0 ≤ α ≤ 3 and 0 < ε < x0

√
λ = √

β

(3.85)

I (α) :=
∫ 1

0

∣∣x − m(λ)
∣∣αe−s(x) dx

=
∫ x0+ ε√

λ

x0− ε√
λ

|x − x0|αe−s(x) dx

+ αO

((
ε√
λ

)α−1 1

λ

)∫ 1

0
e−s(x) dx + e−s(x0)O

(
e
−

√
λε2

2(
√

β+|ε|) ).
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Next, for any ε = o(1) we derive using formulas (3.83) and (3.82):

(3.86)

∫ x0+ ε√
λ

x0− ε√
λ

|x − x0|αe−s(x) dx

= e−s(x0)
∫ x0+ ε√

λ

x0− ε√
λ

|x − x0|αe
− 1

2 s′′(x0)(x−x0)
2(1+O(

x−x0
x0

))
dx

= e−s(x0)
(
1 + O(ε)

)( 1√
s′′(x0)

)α+1

×
∫ ε√

λ

√
s′′(x0)(1+O(ε))

− ε√
λ

√
s′′(x0)(1+O(ε))

|x|αe− 1
2 x2

dx

= e−s(x0)
(
1 + O(ε)

)( 1√
s′′(x0)

)α+1(
1 + O

(
e− ε2s′′(x0)

4λ
))

×
∫ ∞
−∞

|x|αe− 1
2 x2

dx.

We can choose now

(3.87) ε = logλ

λ1/4 = O

(
logN√

N

)

[where the last equality is by (3.73)], so that (3.86) combined with (3.85) gives us

(3.88)

I (α) = e−s(x0)
(
1 + O(ε)

)( 1√
s′′(x0)

)α+1 ∫ ∞
−∞

|x|αe− 1
2 x2

dx

+ αO

(
(logλ)α−1

λ1+ α−1
2 + α−1

4

)
I (0) + e−s(x0)O

(
e
−

√
λε2

2(
√

β+|ε|) ).
Making use of the last formula with α = 3 and α = 0 in (3.80), and taking into

account (3.83) we derive for all λ

(3.89)

J (λ) = I (3)

I (0)
= c

(
1 + o(1)

)( 1√
s′′(x0)

)3
+ O

(
(logλ)2

λ2+ 1
2

)

= c
(
1 + o(1)

)( √
β

2λ3/2

)3/2
,

where

c = 1√
2π

∫ ∞
−∞

|x|3e− 1
2 x2

dx.

This together with (3.78) and (3.80) immediately imply

(3.90) E|ξk|3 ≤ C

(
1

λk

)9/4
,

where C is some positive constant.
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Recall that λk = kF + λ, where λ ≥ bN2 for some positive b [see (3.73)].
Hence, bound (3.90) yields

(3.91)
N∑

k=1

E|ξk|3 ≤ O
(
N−7/2)

.

Finally, we note that by Corollary 3.8 (I) we have σ 2
N ≥ cN−2 for some positive

c, which implies σ 3
N ≥ c3/2N−3. The latter bound together with (3.91) yield the

statement of the proposition. �

Consider again the inequality (3.74). To apply the bound (3.76), we split the
integral in (3.74) into three parts (this is a standard procedure; see, e.g., [10]):∣∣∣∣fZN

(x) − 1√
2π

e−x2/2
∣∣∣∣

≤ 1√
2π

∫
|t |≤ 1

4LN

∣∣φZN
(t) − e−t2/2∣∣dt

+ 1√
2π

∫
|t |> 1

4LN

∣∣φZN
(t)

∣∣dt + 1√
2π

∫
|t |> 1

4LN

e−t2/2 dt.

Bounds (3.76) and (3.77) allow us to derive from here

(3.92)

∣∣∣∣fZN
(x) − 1√

2π
e−x2/2

∣∣∣∣
≤ O(LN) + 1√

2π

∫
|t |> 1

4LN

∣∣φZN
(t)

∣∣dt + O
(
e−1/LN

)

= O
(
N−1/2) + 1√

2π

∫
|t |> 1

4LN

∣∣φZN
(t)

∣∣dt.

Consider the remaining integral on the right in (3.92). Observe that by the defi-
nition (3.71),

(3.93)
∣∣φZN

(t)
∣∣ =

∣∣∣∣∣
N∏

k=1

φξk

(
t√
σ 2

N

)∣∣∣∣∣ =
N∏

k=1

∣∣∣∣φXk,λ

(
t√
σ 2

N

)∣∣∣∣.
We shall derive now how fast |φXk,λ

(t)| decays in |t |, as well as we shall get a
uniform bound

(3.94) sup
|t |> 1

4LN

∣∣∣∣φXk,λ

(
t√
σ 2

N

)∣∣∣∣ ≤ γ < 1,

for all k ≤ N and all large N , where γ is some constant.
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Consider

(3.95) φXk,λ
(t) =

∫ 1

0
eitxfXk,λ

(x) dx,

where by the definition (3.15)

(3.96) fXk,λ
(u) = fk,λ(u) = e− β

u
−(λ+Fk)u∫ 1

0 fk,λ(x) dx
, u ∈ [0,1],

is the density of Xk,λ. Using again notation

λk = λ + kF,

we shall write here

(3.97) fXk,λ
(u) = fλk

(u).

Formula (3.96) gives us

(3.98) f ′
λk

(u) = fλk
(u)

(
β

u2 − λk

)
,

which allows us to derive (integrating by parts) from (3.95)

(3.99)

∣∣φXk,λ
(t)

∣∣ ≤ 1

|t |
(
fλk

(1) +
∫ 1

0

∣∣f ′
λk

(u)
∣∣du

)

= 1

|t |
(
fλk

(1) +
∫ √

λk
β

0
f ′

λk
(u) dx −

∫ 1√
λk
β

f ′
λk

(u) dx

)

= 2

|t |f
(√

λk

β

)
= 2

|t |
e−2

√
βλk

c(λk)
,

where

c(λ) :=
∫ 1

0
e− β

u
−λu dx.

This together with (3.28) gives us

(3.100)
∣∣φXk,λ

(t)
∣∣ ≤ β−1/4

√
1

π

λ
3/4
k

|t |
(
1 + O

(
λ

−1/2
k

))
as λk → ∞. Recall that in (3.99) λk = λ + kF where F < 4βN and λ is given by
(3.73). Hence, there are positive constants a < A such that

aN2 < λk = λ + kF < AN2

uniformly in 1 ≤ k ≤ N . Therefore, (3.100) yields

(3.101)
∣∣φXk,λ

(t)
∣∣ < A1

N3/2

|t |
for some constant A1 > 0 uniformly in 1 ≤ k ≤ N .
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To prove (3.94), observe that LN = O(N−1/2) by Proposition 3.10, while σ 2
N =

O(N−2) by Corollary 3.8 (I) Weak force. Therefore,

1

4LN

√
σ 2

N

≥ BN3/2

for some B > 0, which yields

(3.102) sup
|t |> 1

4LN

∣∣∣∣φXk,λ

(
t√
σ 2

N

)∣∣∣∣ = sup
|s|> 1

4LN

√
σ2
N

∣∣φXk,λ
(s)

∣∣ ≤ sup
|s|>BN3/2

∣∣φXk,λ
(s)

∣∣.

Consider the last supremum. Bound (3.101) immediately implies that for all posi-
tive d

(3.103) sup
|s|>dN3/2

∣∣φXk,λ
(s)

∣∣ <
A1

d
.

Next, for any constant d > B we shall find an upper bound for

(3.104) sup
BN3/2<|s|<dN3/2

∣∣φXk,λ
(s)

∣∣ = sup
B<|b|<d

∣∣φXk,λ

(
bN3/2)∣∣.

Recall again that

(3.105) φXk,λ

(
bN3/2) = 1

c(λk)

∫ 1

0
e− β

u
−(λk−ibN3/2)u du.

Notice that when aN2 < λk < AN2 we have | arg(λk − ibN3/2)| < π/8 for any
real-valued constant b when N is large. Therefore, by Remark 3.4 we have here as
in (3.28)

(3.106)

∣∣∣∣
∫ 1

0
e− β

u
−(λk−ibN3/2)u du

∣∣∣∣
=

∣∣∣∣
∫ ∞

0
e− β

u
−(λk−ibN3/2)u du

∣∣∣∣ + O
(
e−λk

)

=
∣∣∣∣√πβ1/4 e−2

√
β(λk−ibN3/2)

(λk − ibN3/2)3/4

∣∣∣∣(1 + o(1)
) + O

(
e−λk

)

= √
π

β1/4

λ
3/4
k

e
−2

√
βλkRe(

√
1−ib N3/2

λk
)(

1 + o(1)
) + O

(
e−λk

)
.

Making use of

(3.107) Re(
√

1 − iε) = 1 + ε2

2
+ O

(
ε4)

, |ε| → 0,
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we derive from (3.106)

∣∣∣∣
∫ 1

0
e− β

u
−(λk−ibN3/2)u du

∣∣∣∣ = √
π

β1/4

λ
3/4
k

e
−2

√
βλk(1+b2 N3

2λ2
k

)(
1 + o(1)

) + O
(
e−λk

)
,

where o(1) is uniform in k ≤ N . Substituting this and (3.28) into (3.105), we get

∣∣φXk,λ

(
bN3/2)∣∣ = e

−√
βλkb

2 N3

λ2
k
(
1 + o(1)

) + O
(
e−λk/2)

.

This together with the assumption aN2 ≤ λk ≤ AN2 implies for any fixed con-
stant d

(3.108) sup
B<|b|<d

∣∣φXk,λ

(
bN3/2)∣∣ ≤ e

−√
β B2

A3/2
(
1 + o(1)

) + O
(
e−N ) ≤ γ < 1

for some positive γ and all large N uniformly in k.
Finally, choosing constant d large enough and combining bounds (3.108) and

(3.103) together with (3.102) we obtain claim (3.94).
Consider now the last integral in (3.92) taking into account (3.93):

(3.109)

∫
|t |> 1

4LN

∣∣φZN
(t)

∣∣dt =
∫
|t |> 1

4LN

N∏
k=1

∣∣∣∣φXk,λ

(
t√
σ 2

N

)∣∣∣∣dt

≤
(

max
3≤k≤N

sup
|t |> 1

4LN

∣∣∣∣φXk,λ

(
t√
σ 2

N

)∣∣∣∣
)N−2

×
∫
|t |> 1

4LN

2∏
k=1

∣∣∣∣φXk,λ

(
t√
σ 2

N

)∣∣∣∣dt.

Making use of the uniform bounds (3.94) and (3.101), we derive from here∫
|t |> 1

4LN

∣∣φZN
(t)

∣∣dt ≤ γ N−2
∫
|t |> 1

4LN

A2
1
N3

|t |2 dt ≤ γ NO
(
N3)

.

Substituting the last bound into (3.92) we get the statement of Lemma 3.9. �

COROLLARY 3.11. Under assumptions of Lemma 3.9 (weak force) one has

(3.110)

fSN,λ
(x) = 1√

2πσ 2
N

e
− (x−1)2

2σ2
N + O

(
N−1/2)

= 1√
2πσ 2

N

(
e
− (x−1)2

2σ2
N + O

(
N−3/2))

,
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as well as

(3.111) fS
N,k̂,λ

(x) = 1√
2πσ 2

N

(
e
− (x−1+EXk,λ)2

2σ2
N + O

(
N−3/2))

uniformly in 1 ≤ k ≤ N and x ∈R.

PROOF. Formula (3.110) follows immediately by Lemma 3.9 and formula
(3.71), while (3.111) follows by the same argument and Corollary 3.8 [(I) Weak
force]. �

REMARK 3.12. Observe that in the case of weak external force (i.e., F/N <

4β) result (3.110) together with (3.28) yield the exact asymptotic for the partition
function (3.19).

Now we turn to the proof of the statements of Theorem 2.2.

3.5. Proof of Theorem 2.2 in the subcritical phases (a) and (b). Assume that
F(N)/N = F0 < 4β . In this case, we have by Lemma 3.5 [(a) Weak force],

(3.112) λk = kF + λ = βN2 +
(
k − N

2

)
F + β

(
F

4β

)2
+ O(N).

Applying (3.17) and using the result of the last Corollary 3.11, we get

(3.113)

E

{
Xk

∣∣∣ N∑
i=1

Xi = 1

}
=

∫ 1

0
x

fk,λ(x)fS
N,k̂,λ

(1 − x)

fSN,λ
(1)

dx

=
∫ 1

0
xfk,λ(x)

(
e
− (x−EXk,λ)2

2σ2
N + O

(
N−3/2))

dx

=
∫ 1

0
xfk,λ(x)e

− (x−EXk,λ)2

2σ2
N dx + O

(
N−3/2)

EXk,λ.

Here, by Proposition 3.3,

(3.114) EXk,λ =
√

β

λk

+ O(1/λk),

and

(3.115) σ 2
N = CN−2(

1 + o(1)
)

for some positive C by Corollary 3.8 (I) (Weak force).
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Consider now the last integral in (3.113)

(3.116)

I(λk) =
∫ 1

0
xfk,λ(x)e

− (x−EXk,λ)2

2σ2
N dx

= 1

I1(λk, β) + O(e−λ/2)

∫ 1

0
xe−λkx− β

x e
−

(x−
√

β
λk

+O(1/λk))2

2σ2
N dx,

where we used notation (3.23). For all λ > cN2 and any positive constant a, we
have

(3.117)

I(λ) = 1

I1(λ,β) + O(e−λ/2)

×
(∫ a/

√
λ

0
xe−λx− β

x e
− (x−

√
β
λ

+O(1/λ))2

2σ2
N dx + O

(
e−a

√
λ/2))

.

Recall that by (3.25) and (3.26),

(3.118) I1(λ,β) =
√

β

λ

√
π(λβ)−1/4e−2

√
βλ(

1 + O(1/
√

λ)
)
.

Hence, choosing a = 8
√

β we get

O(e−a
√

λ/2)

I1(λ,β) + O(e−λ/2)
= O

(
e−√

βλ)
.

This together with (3.117) and observation that for all x ∈ [0, a/
√

λ],

e
− (x−

√
β
λ

+O(1/λ))2

2σ2
N = e

− (x−
√

β
λ

)2

2σ2
N e

O(1/λ)O(1/
√

λ)

2σ2
N = e

− (x−
√

β
λ

)2

2σ2
N eO(1/N)

gives us

(3.119)

I(λ) = 1

I1(λ,β) + O(e−λ/2)

×
∫ a/

√
λ

0
xe−λx− β

x e
− (x−

√
β
λ

)2

2σ2
N dx

(
1 + O

(
1

N

))
+ O

(
e−√

βλ)
.

Notice that in notation (3.82)

a/
√

λ = 8

√
β

λ
= 8x0.

Then using (3.84) and

ε = logλ

λ1/4
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[defined as in (3.87)], we obtain, taking into account (3.112),

∫ a/
√

λ

0
xe−λx− β

x e
− (x−

√
β
λ

)2

2σ2
N dx

=
∫
|x−x0|<ε/

√
λ
xe−λx− β

x e
− (x−

√
β
λ

)2

2σ2
N dx + O

(
e
−s(x0)−

√
λε2

2(
√

β+a)
)

=
∫
|x−x0|<ε/

√
λ
xe−λx− β

x dx

(
1 + O

(
ε2

λσ 2
N

))
+ O

(
e
−s(x0)−

√
λε2

2(
√

β+a)
)

=
(
x0 + O

(
ε√
λ

))(
1 + O

(
ε2

λσ 2
N

))∫
|x−x0|<ε/

√
λ
e−λx− β

x dx

+ O
(
e
−s(x0)−

√
λε2

2(
√

β+a)
)
,

which by (3.86) and (3.115) yields

(3.120)

∫ a/
√

λ

0
xe−λx− β

x e
− (x−

√
β
λ

)2

2σ2
N dx

= x0
(
1 + O(ε)

)
e−s(x0)

(
s′′(x0)

)−1/2√2π + O
(
e
−s(x0)−

√
λε2

2(
√

β+a)
)
.

Substituting this and formula (3.118) into (3.119), we derive that

(3.121) I(λ) =
√

β

λ

(
1+O

(
logN√

N

))
+O

(
e−√

βλ) =
√

β

λ

(
1+O

(
(logN)2

√
N

))
.

Recall that by (3.113) and (3.116)

E

{
Xk

∣∣∣ N∑
i=1

Xi = 1

}
= I(λk) + O

(
N−3/2)

EXk,λ,

which together with (3.121) and (3.114) yields

E

{
Xk

∣∣∣ N∑
i=1

Xi = 1

}
=

√
β

λk

(
1 + O

(
logN√

N

))
.

Substituting here (3.112), we derive

(3.122) E

{
Xk

∣∣∣ N∑
i=1

Xi = 1

}
=

√√√√ 1

N2 + (k − N
2 )F

β
+ F 2

16β2

(
1 + O

(
logN√

N

))
,
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which due to the identity (3.14) is equivalent to

(3.123)

E{YN−k+1 − YN−k}

= 1

N

√√√√ 1

1 + ( k
N

− 1
2) F

Nβ
+ F 2

16N2β2

(
1 + O

(
logN√

N

))
.

Finally, to derive the statements of Theorem 2.2 we have to apply the transfor-
mation (3.4) to the parameters β and F in the last formula. Notice that the ratio F

β

is invariant under the latter transformation, and so does the principal term on the
right in (3.123) [which yields formula (2.12)]. Hence, for all t > 0 the statement
(2.7) follows by (3.123) when F = o(N), while the statement (2.10) follows by
(3.123) when F = F0N for some 0 < F0 < 4β .

In a fashion similar to (3.113), consider

(3.124)

E

{(
Xk −

√
β

λk

)2 ∣∣∣ N∑
i=1

Xi = 1

}

=
∫ 1

0

(
x −

√
β

λk

)2 fk,λ(x)fS
N,k̂,λ

(1 − x)

fSN,λ
(1)

dx

=
∫ 1

0

(
x −

√
β

λk

)2
fk,λ(x)e

− (x−EXk,λ)2

2σ2
N dx + O

(
N−3/2)

Var(Xk,λ).

From (3.124), following the same strategy as we used deriving (3.121) from
(3.113), we get

(3.125) E

{(
Xk −

√
β

λk

)2 ∣∣∣ N∑
i=1

Xi = 1

}
= Var(Xk,λ)

(
1 + O

(
logN√

N

))
.

By the identity (3.14) this gives us

(3.126) Var(YN−k+1 − YN−k) = Var(Xk,λ)

(
1 + O

(
logN√

N

))
,

where by (3.21)

(3.127) Var(Xk,λ) =
√

β

2λ
3/2
k

(
1 + o(1)

)
as λk → ∞. Then taking into account (3.112), we derive

(3.128)

Var(YN−k+1 − YN−k)

=
√

β

2λ
3/2
k

(
1 + o(1)

)

= 1

2βN3(1 + ( k
N

− 1
2) F

βN
+ β( F

4βN
)2)3/2

(
1 + o(1)

)
.
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Finally, after the transformation (3.4) of the parameters in (3.128) we derive for
any t > 0 both statements (2.8) and (2.11) of the Theorem 2.2: (2.8) follows by
(3.128) when F = o(N), while (2.11) follows by (3.128) when F = F0N/t , and
in both cases β is replaced by β/t .

3.6. Proof of Theorem 2.2 in the supercritical phase (d). Let F/N = F0 be a
constant such that F0 > 4β . Consider first

(3.129) E

{
X1

∣∣∣ N∑
i=1

Xi = 1

}
=

∫ 1

0
x

f1,λ(x)f(SN−X1,λ),λ(1 − x)

fSN,λ
(1)

dx,

where by (3.15) and Lemma 3.5 (c) (Strong force)

(3.130) f1,λ(x) = e− β
x
+λ0x+o(1/

√
F0N)x

c

for some finite constant λ0, and normalizing factor c of order constant. Recall that
by (3.61) we have here

(3.131) EX1,λ = 1 −
√

4β

F0
+ O

(
1√
F0N

)
=: m1.

Let us write

�2 = SN − X1,λ =
N∑

k=2

Xk,λ.

Note that by Lemma 3.5 here E�2 = 1−m1, and by the Corollary 3.8 [(III) Strong
force] the variance of �2 decays as F−3/2, that is, as N−3/2. Therefore, although
we cannot apply the central limit theorem, some concentration results still hold.
Consider for α = 0,1,2, and any ε < m1/2

(3.132)

J (α) :=
∫ 1

0
xαf1,λ(x)f�2(1 − x)dx

=
∫
|x−m1|>ε

O(1)f�2(1 − x)dx

+ (
m1 + O(ε)

)α ∫
|x−m1|≤ε

f1,λ(x)f�2(1 − x)dx.

Note that here by Corollary 3.8 (III ) and Chebyshev’s inequality

(3.133)
∫
|x−m1|>ε

f�2(1 − x)dx = P
{∣∣�2 − (1 − m1)

∣∣ > ε
} = O

(
1

F 3/2ε2

)
,

while

(3.134)
∫
|x−m1|≤ε

f1,λ(x)f�2(1 − x)dx ≥ min|x−m1|≤ε
f1,λ(x)

(
1 − O

(
1

F 3/2ε2

))
,
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where min|x−m1|≤ε f1,λ(x) is bounded away from zero uniformly in ε < m1/2 [see
(3.131)]. Notice that (3.134) and (3.130) yield, in particular, that for some positive
δ(λ0, β),

(3.135) J (0) = fSN,λ
(1) > δ > 0.

Hence,

(3.136)
J (α) =

(
O

(
1

F 3/2ε2

)
+ (

m1 + O(ε)
)α)∫ 1

0
f1,λ(x)f�2(1 − x)dx

=
(
O

(
1

F 3/2ε2

)
+ (

m1 + O(ε)
)α)

fSN,λ
(1).

Making use of (3.136) (with α = 1) in (3.129), we derive

(3.137) E

{
X1

∣∣∣ N∑
i=1

Xi = 1

}
= m1 + O(ε) + O

(
1

F 3/2ε2

)
.

Choosing ε = 1/
√

N, we get from here

(3.138) E

{
X1

∣∣∣ N∑
i=1

Xi = 1

}
= m1 + O

(
1√
N

)
= 1 −

√
4β

F0
+ O

(
1√
N

)
,

where the last equality is by (3.131). This, by the identity (3.14), is equivalent to

E(YN − YN−1) = 1 −
√

4β

F0
+ O

(
1√
N

)
,

which after transformation (3.4), that is, β → β/t , F0 → F0/t , confirms (2.15).
In a similar fashion making use of (3.136) with α = 2 and taking into account

(3.138) we get for all positive ε < m1/2

Var(YN − YN−1) = E

{
(X1 − m1)

2
∣∣∣ N∑

i=1

Xi = 1

}
+ O

(
1√
N

)

= O

(
1

F 3/2ε2

)
+ O(ε) + O

(
1√
N

)
.

Choosing here again ε = 1/
√

N, we get

Var(YN − YN−1) = Var(YN−1) = O

(
1√
N

)
,

which confirms (2.16).
Next, we consider E{Xk | ∑N

i=1 Xi = 1} = E{Xk,λ | ∑N
i=1 Xi,λ = 1} for k > 1.

Recall that here

(3.139) λk = (k − 1)F − λ0 + o(1/
√

F),
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where by the assumption F = F0N , and by the Lemma 3.5 [(c) Strong force] λ0 =
λ0(F0) is some constant. Since λk → ∞ for all k ≥ 2, by Proposition 3.3, we have
here

(3.140) EXk,λ = mk =
√

β

λk

+ O

(
1

(k − 1)F

)
.

The density of Xk,λ is

(3.141) fk,λ(x) = e− β
x
−λkx∫ 1

0 e− β
x
−λkx dx

= e− β
x
−λkx

I1(λk, β) + O(e−λk/2)
,

where we used notation from (3.23). Using (3.25) with (3.26) and also bound
(3.84), we derive

(3.142) max
x:|x−mk |>ε/

√
λk

fk,λ(x) ≤ O
(
e
−

√
λkε2

2(
√

β+ε)
)
.

Let us write here

�2,k̂
= �2 − Xk,λ,

whose density we denote f�2,k̂
. In these notations, we have

(3.143)

E

{
Xk

∣∣∣ N∑
i=1

Xi = 1

}

= 1

fSN,λ
(1)

∫ 1

0

(∫ z

0
xfk,λ(x)f1,λ(z − x)dx

)
f�2,k̂

(1 − z) dz.

Consider now for α = 0,1

gα(z) =
∫ z

0
xαfk,λ(x)f1,λ(z − x)dx.

Using bound (3.142), we derive first for any positive ε = o(1) < 1 and z > mk +
ε/

√
λk

(3.144)

g1(z) =
(
mk + O

(
ε√
λk

))∫
|x−mk |<ε/

√
λk

fk,λ(x)f1,λ(z − x)dx

+ O
(
e
−

√
λkε2

2(
√

β+1)
)

=
(
mk + O

(
ε√
λk

))(
g0(z) − O

(
e
−

√
λkε2

2(
√

β+1)
)) + O

(
e
−

√
λkε2

2(
√

β+1)
)

=
(
mk + O

(
ε√
λk

))
g0(z) + O

(
e
−

√
λkε2

2(
√

β+1)
)
.
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On the other hand, for all z ≤ mk + ε/
√

λk it holds by (3.130) that

(3.145) gα(z) ≤ zα max
0<x<z

f1,λ(x) = O
(
zα+1)

,

as z → 0. With a help of the last bound and (3.144), consider the integral in
(3.143):

(3.146)

∫ 1

0
g1(z)f�2,k̂

(1 − z) dz

=
∫ mk+ε/

√
λk

0
O

(
z2)

f�2,k̂
(1 − z) dz

+
∫ 1

mk+ε/
√

λk

(
O

(
e
−

√
λk

2(
√

β+1)
ε2)

+
(
mk + O

(
ε√
λk

))
g0(z)

)
f�2,k̂

(1 − z) dz

= O
(
m2

k

) + O
(
e
−

√
λk

2(
√

β+1)
ε2)

+
(
mk + O

(
ε√
λk

))(∫ 1

0
g0(z)f�2,k̂

(1 − z) dz − O(mk)

)

= O
(
m2

k

) + O
(
e
−

√
λk

2(
√

β+1)
ε2) +

(
mk + O

(
ε√
λk

))
fSN,λ

(1).

Choosing

ε = logN

λ
1/4
k

,

allows us to derive from (3.146) and (3.143) [take into account (3.135)] that

(3.147) E

{
Xk

∣∣∣ N∑
i=1

Xi = 1

}
= mk + O

(
logN

λ
3/4
k

)
.

This by the identity (3.14) [and formula (3.140)] is equivalent to

(3.148)

E(YN+1−k − YN−k) = mk + O

(
logN

λ
3/4
k

)

=
√

β

(k − 1)F − λ0
+ O

(
logN

(kN)3/4

)
,
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where λ0 by Lemma 3.5 (c) satisfies

(3.149)

∫ 1
0 xeλ0x− β

x dx∫ 1
0 eλ0x− β

x dx
= 1 −

√
4β

F0
.

Hence, after transformation (3.4) we get from (3.148)

(3.150) E(YN+1−k − YN−k) =
√

β

(k − 1)F − tλ0(t)
+ O

(
logN

(kN)3/4

)
,

where λ0(t) is the solution to (3.149) but with the parameters transformed accord-
ing to (3.4), that is, λ0(t) is the solution to (2.19). This confirms (2.17).

Consider now for k ≥ 2

(3.151)

E

{
(Xk − mk)

2
∣∣∣ N∑

i=1

Xi = 1

}

= 1

fSN,λ
(1)

∫ 1

0

(∫ z

0
(x − mk)

2fk,λ(x)f1,λ(z − x)dx

)

× f�2,k̂
(1 − z) dz.

Using again the same argument as above in (3.144), first we derive for any positive
ε = o(1) < 1 and z > mk + ε/

√
λk

(3.152)

G(z) :=
∫ z

0
(x − mk)

2fk,λ(x)f1,λ(z − x)dx

= O

(
ε2

λk

)∫
|x−mk |<ε/

√
λk

fk,λ(x)f1,λ(z − x)dx + O
(
e
−

√
λkε2

2(
√

β+1)
)

= O

(
ε2

λk

)
g0(z) + O

(
e
−

√
λkε2

2(
√

β+1)
)
.

On the other hand, for all z ≤ mk + ε/
√

λk it holds by (3.130)

(3.153) G(z) ≤ O
(
z2)

max
0<x<z

f1,λ(x) = O
(
z3)

as z → 0.
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Then [similar to (3.146)] we derive using (3.152) in combination with (3.153) and
(3.145) that

(3.154)

∫ 1

0
G(z)f�2,k̂

(1 − z) dz

=
∫ mk+ε/

√
λk

0
O

(
z3)

f�2,k̂
(1 − z) dz

+
∫ 1

mk+ε/
√

λk

(
O

(
e
−

√
λk

2(
√

β+1)
ε2) + O

(
ε2

λk

)
g0(z)

)
f�2,k̂

(1 − z) dz

= O
(
m3

k

) + O
(
e
−

√
λk

2(
√

β+1)
ε2)

+ O

(
ε2

λk

)(∫ 1

0
g0(z)f�2,k̂

(1 − z) dz − O(mk)

)

= O
(
m3

k

) + O
(
e
−

√
λk

2(
√

β+1)
ε2) + O

(
ε2

λk

)
fSN,λ

(1).

Substituting the last formula with

ε = logN

λ
1/4
k

,

into (3.151), and taking into account (3.135) we obtain

E

{
(Xk − mk)

2
∣∣∣ N∑

i=1

Xi = 1

}
= O

(
(logN)2

λ
3/2
k

)
.

This together with (3.147) yields as well

Var

{
Xk

∣∣∣ N∑
i=1

Xi = 1

}
= O

(
(logN)2

λ
3/2
k

)
,

which by the identity (3.14) is equivalent to

(3.155) Var(YN+1−k − YN−k) = O

(
(logN)2

λ
3/2
k

)
= O

(
(logN)2

(kF0N)3/2

)
,

for all k ≥ 2, where the last equality is due to (3.139). Hence, (3.155) after trans-
formation (3.4) yields (2.18).

3.7. Proof of Theorem 2.2 in the critical phase (c). Let F = 4βN . Then simi-
lar to the previous case, we consider for any 1 ≤ k ≤ N

(3.156) E

{
Xk

∣∣∣ N∑
i=1

Xk = 1

}
=

∫ 1

0
x

fk,λ(x)fS
N,k̂,λ

(1 − x)

fSN,λ
(1)

dx.
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Here, as in (3.141),

(3.157) fk,λ(x) = e− β
x
−λkx

I1(λk, β) + e−λk/2 ,

with λ defined in Lemma 3.5 [(b) Critical force], so that

λ1 = 4βN + λ ≥ aN,

and for all k ≥ 2

(3.158) λk = 4βNk + λ > 4βN(k − 1) > 4βN.

Thus, by Proposition 3.3 we have here

(3.159) mk = EXk,λ =
√

β

λk

(
1 + o(1)

) =
√

1

4N(k − 1) + �(N)

(
1 + o(1)

)
where o(1) is uniform in k (since λk → ∞ inform in k).

Using bound (3.142), we derive [as in (3.144)] for any positive ε = o(1) < 1,

(3.160)

∫ 1

0
xfk,λ(x)fS

N,k̂,λ
(1 − x)dx

=
∫
|x−mk |>ε/

√
λk

xfk,λ(x)fS
N,k̂,λ

(1 − x)dx

+
∫
|x−mk |≤ε/

√
λk

xfk,λ(x)fS
N,k̂,λ

(1 − x)dx

= O
(
e
−

√
λkε2

2(
√

β+1)
) +

(
mk + O

(
ε√
λk

))(
fSN,λ

(1) − O
(
e
−

√
λkε2

2(
√

β+1)
))

=
(
mk + O

(
ε√
λk

))
fSN,λ

(1) + O
(
e
−

√
λkε2

2(
√

β+1)
)
.

Choose

ε = logN

λ
1/4
k

,

and substitute (3.160) with this value into (3.156) [taking into account (3.135)].
This gives us

(3.161) E

{
Xk

∣∣∣ N∑
i=1

Xi = 1

}
= mk + O

(
logN

λ
3/4
k

)
,
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which by the identity (3.14) [and formula (3.159)] is equivalent to

(3.162)

E(YN+1−k − YN−k) = mk + O

(
logN

λ
3/4
k

)

=
√

β

(k − 1)F + �(N)
+ O

(
logN

(kN)3/4

)
.

Hence, applying here transformation (3.4) we confirm (2.13).
Next, under the condition F = 4βN , consider

(3.163) E

{
(Xk − mk)

2
∣∣∣ N∑

i=1

Xk = 1

}
=

∫ 1

0
(x − mk)

2
fk,λ(x)fS

N,k̂,λ
(1 − x)

fSN,λ
(1)

dx.

With exactly same argument as we derived (3.160), we get

(3.164)

∫ 1

0
(x − mk)

2fk,λ(x)fS
N,k̂,λ

(1 − x)dx

= O
(
e
−

√
λkε2

2(
√

β+1)
) + O

(
ε2

λk

)(
fSN,λ

(1) − O
(
e
−

√
λkε2

2(
√

β+1)
))

= O

(
ε2

λk

)
fSN,λ

(1) + O
(
e
−

√
λkε2

2(
√

β+1)
)
.

Setting here ε = logN

λ
1/4
k

and using the result in (3.163), we obtain

E

{
(Xk − mk)

2
∣∣∣ N∑

i=1

Xk = 1

}
= O

(
(logN)2

λ
3/2
k

)
,

which together with (3.161) gives us as

Var

{
Xk

∣∣∣ N∑
i=1

Xk = 1

}
= O

(
(logN)2

λ
3/2
k

)
= O

(
(logN)2

(kN)3/2

)
,

where the last equality is due to (3.158). This by the identity (3.14) is equivalent
to

Var(YN+1−k − YN−k) = O

(
(logN)2

(kN)3/2

)
,

and thus (2.14) follows after transformation (3.4).

3.8. Proof of Theorem 2.2 in the supercritical phase (e). Finally, assume that
F 
 N . Consider

(3.165) E

{
X1

∣∣∣ N∑
i=1

Xk = 1

}
=

∫ 1

0
x

f1,λ(x)f�2(1 − x)

fSN,λ
(1)

dx,
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where �2 := SN,λ − X1,λ. In (3.165),

(3.166) f1,λ(x) = e−λ1x− β
x∫ 1

0 e−λ1x− β
x dx

= e−(λ+F)x− β
x∫ 1

0 e−(λ+F)x− β
x dx

,

where by Lemma 3.5 [(c) Strong force] and Remark 3.6,

(3.167) 0 < −λ1 = −(λ + F) = λ0 + O

(
1√
F

)
= �

(
(F/N)1/4) → +∞.

Recall also that by (3.61)

(3.168) EX1,λ = 1 −
√

4βN

F
+ O

(
1√
F

)
,

while

ε := E�2 =
√

4βN

F
,

and by Corollary 3.11 part (III)

(3.169) Var(�2) = O

(
1

F 3/2

)
.

Let us rewrite the expectation in (3.165) as follows:

(3.170) E

{
X1

∣∣∣ N∑
i=1

Xk = 1

}
= 1 − 1

fSN,λ
(1)

∫ 1

0
xf�2(x)f1,λ(1 − x)dx.

Then we obtain a simple bound

(3.171)

∫ 1

0
xf�2(x)f1,λ(1 − x)dx

=
∫ 2ε

0
xf�2(x)f1,λ(1 − x)dx +

∫ 1

2ε
xf�2(x)f1,λ(1 − x)dx

≤ 2εfSN,λ
(1) + max

0<y<1−2ε
f1,λ(y)P{�2 > 2ε},

where by (3.166) and (3.167)

(3.172) max
0<y<1−2ε

f1,λ(y) = O
(|λ1|e−ε|λ1|) = O(1/ε),

and by Chebyshev’s inequality and (3.169),

P{�2 > 2ε} ≤ Var(�2)

ε2 = O

(
1

F 3/2ε2

)
.
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Substituting the last bounds into (3.171), we derive taking into account (3.135)

∫ 1

0
xf�2(x)f1,λ(1 − x)dx = O(ε) + O

(
1

F 3/2ε3

)
= O

(√
N

F

)
+ O

(
N−3/2)

.

Making use of the last formula and (3.135), we obtain from (3.170)

(3.173) E

{
X1

∣∣∣ N∑
i=1

Xk = 1

}
= 1 − O

(√
N

F
+ N−3/2

)
.

This by the identity (3.14) is equivalent to

(3.174) E(YN − YN−1) = 1 − O

(√
N

F
+ N−3/2

)
.

Following exactly same approach, we also derive

(3.175)

E

{
(X1 − 1)2

∣∣∣ N∑
i=1

Xk = 1

}

= 1

fSN,λ
(1)

∫ 1

0
x2f�2(x)f1,λ(1 − x)dx

= O
(
ε2) + O

(
1

F 3/2ε3

)
= O

(
N

F

)
+ O

(
N−3/2)

.

This together with the identity (3.14) and (3.173) gives us

(3.176) Var(YN−1) = O

(
N

F
+ N−3/2

)
.

Bounds (3.174) and (3.176) confirm, correspondingly both statements of Theo-
rem 2.2 in the phase (e).

The theorem is proved.
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