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THE SAMPLE SIZE REQUIRED IN IMPORTANCE SAMPLING
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Stanford University

The goal of importance sampling is to estimate the expected value of a
given function with respect to a probability measure ν using a random sample
of size n drawn from a different probability measure μ. If the two measures
μ and ν are nearly singular with respect to each other, which is often the case
in practice, the sample size required for accurate estimation is large. In this
article, it is shown that in a fairly general setting, a sample of size approxi-
mately exp(D(ν ‖ μ)) is necessary and sufficient for accurate estimation by
importance sampling, where D(ν ‖ μ) is the Kullback–Leibler divergence of
μ from ν. In particular, the required sample size exhibits a kind of cut-off in
the logarithmic scale. The theory is applied to obtain a general formula for the
sample size required in importance sampling for one-parameter exponential
families (Gibbs measures).

1. Theory. Let μ and ν be two probability measures on a set X equipped with
some sigma-algebra. Suppose that ν is absolutely continuous with respect to μ. Let
ρ be the probability density of ν with respect to μ. Let X1,X2, . . . be a sequence of
X -valued random variables with law μ. Let f : X →R be a measurable function.
Suppose that our goal is to evaluate the integral

I (f ) :=
∫
X

f (y) dν(y).

The importance sampling estimate of this quantity based on the sample X1, . . . ,Xn

is given by

In(f ) := 1

n

n∑
i=1

f (Xi)ρ(Xi).

Sometimes, when the probability density ρ is known only up to a normalizing
constant, that is, ρ(x) = Cτ(x) where τ is explicit but C is hard to calculate, and
the following alternative estimate is used:

(1.1) Jn(f ) :=
∑n

i=1 f (Xi)τ (Xi)∑n
i=1 τ(Xi)

.
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It is easy to see that

E
(
In(f )

) =
∫
X

f (x)ρ(x) dμ(x) =
∫
X

f (y) dν(y).

Therefore, the expected value of In(f ) is the quantity I (f ) that we are trying to
estimate. However, In(f ) may have large fluctuations. The two main problems in
importance sampling are: (a) given μ, ν and f , to determine the sample size re-
quired for getting a reliable estimate, and (b) given ν and f , to find a sampling
measure μ that minimizes the required sample size among a given class of mea-
sures. We address the first problem in this paper.

A straightforward approach for computing an upper bound on the required sam-
ple size is to compute the variance of In(f ). Indeed, this is easy to compute:

Var
(
In(f )

) = 1

n

(∫
X

f (x)2ρ(x)2 dμ(x) − I (f )2
)

= 1

n

(∫
X

f (y)2ρ(y) dν(y) − I (f )2
)
.

(1.2)

The formula for the variance can be used, at least in theory, to calculate a sample
size that is sufficient for guaranteeing any desired degree of accuracy for the im-
portance sampling estimate. In practice, however, this number is often much larger
than what is actually required for good performance.

Sometimes the variance formula (1.2) is estimated using the simulated data
X1, . . . ,Xn. This estimate is known as the empirical variance. There is an inherent
unreliability in using the empirical variance to determine convergence of impor-
tance sampling. We will elaborate on this in Section 2.

We begin by stating our main theorems. Proofs are collected together in Sec-
tion 4. A literature review on importance sampling is given at the end of this Intro-
duction.

There are three main results in this article. The first theorem, stated below, says
that under a certain condition that often holds in practice, the sample size n re-
quired for |In(f ) − I (f )| to be close to zero with high probability is roughly
exp(D(ν ‖ μ)) where D(ν ‖ μ) is the Kullback–Leibler divergence of μ from ν.
More precisely, it says that if s is the typical order of fluctuations of logρ(Y )

around its expected value, then a sample of size exp(D(ν ‖ μ) + O(s)) is suffi-
cient and a sample of size exp(D(ν ‖ μ) − O(s)) is necessary for |In(f ) − I (f )|
to be close to zero with high probability. The necessity is proved by considering
the worst possible f , which as it turns out, is the function that is identically equal
to 1.

An immediate concern that the reader may have is that |In(f ) − I (f )| ≈ 0 may
not always be the desired criterion for convergence. If I (f ) is very small, then one
may want to have In(f )/I (f ) ≈ 1 instead. A necessary and sufficient condition
for this, when f is the indicator of a rare event, is given in Theorem 1.3 later in
this section.
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THEOREM 1.1. Let X , μ, ν, ρ, f , I (f ) and In(f ) be as above. Let Y be an
X -valued random variable with law ν. Let L = D(ν ‖ μ) be the Kullback–Leibler
divergence of μ from ν, that is,

L = D(ν ‖ μ) =
∫
X

ρ(x) logρ(x) dμ(x) =
∫
X

logρ(y) dν(y) = E
(
logρ(Y )

)
.

Let ‖f ‖L2(ν) := (E(f (Y )2))1/2. If n = exp(L + t) for some t ≥ 0, then

E
∣∣In(f ) − I (f )

∣∣ ≤ ‖f ‖L2(ν)

(
e−t/4 + 2

√
P

(
logρ(Y ) > L + t/2

))
.

Conversely, let 1 denote the function from X into R that is identically equal to 1.
If n = exp(L − t) for some t ≥ 0, then for any δ ∈ (0,1),

P
(
In(1) ≥ 1 − δ

) ≤ e−t/2 + P(logρ(Y ) ≤ L − t/2)

1 − δ
.

Note that Theorem 1.1 does not just give the sample size required to ensure that
In(f ) is close to I (f ) in the L1 sense; the second part of the theorem implies
that if we are below the sample size prescribed by Theorem 1.1, then for f ≡ 1,
there is a substantial chance that In(f ) is actually not close to I (f ). Such lower
bounds cannot be given merely by moment estimates. For example, lower bounds
on moments like E|In(f ) − I (f )| and Var(In(f )) imply nothing; In(f ) may be
close to I (f ) with high probability and yet E|In(f ) − I (f )| and Var(In(f )) may
be large. The second part of Theorem 1.1 gives an actual lower bound on the
sample size required to ensure that In(f ) is close to I (f ) with high probability, and
the first part shows that this lower bound matches a corresponding upper bound.
It is interesting that the sample size required for small L1 error turns out to be the
actual correct sample size for good performance.

As shown later in this section, it is fairly common that logρ(Y ) is concen-
trated around its expected value in large systems. In this situation, a sample of size
roughly exp(D(ν ‖ μ)) is both necessary and sufficient.

The second main result of this article, stated below, gives the analogous result
for the estimate Jn(f ). The conclusion is essentially the same.

THEOREM 1.2. Let all notation be as in Theorem 1.1 and let Jn(f ) be the
estimate defined in (1.1). Suppose that n = exp(L + t) for some t ≥ 0. Let

ε := (
e−t/4 + 2

√
P

(
logρ(Y ) > L + t/2

))1/2
.

Then

P

(∣∣Jn(f ) − I (f )
∣∣ ≥ 2‖f ‖L2(ν)ε

1 − ε

)
≤ 2ε.

Conversely, suppose that n = exp(L − t) for some t ≥ 0. Let f (x) denote the
function from X into R that is equal to 1 when logρ(x) ≤ L− t/2 and 0 otherwise.
Then I (f ) = P(logρ(Y ) ≤ L − t/2) but P(Jn(f ) 	= 1) ≤ e−t/2.
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Sometimes importance sampling is used to estimate the probabilities of rare
events under the target measure ν. Typically, the quantity of interest is ν(A), where
A is a rare event under ν but is not a rare event under μ. The method of estima-
tion is the same as before, that is, let 1A(x) be the function that is 1 if x ∈ A

and 0 otherwise, and let In(1A) be the importance sampling estimate of ν(A). The
difference with the previous setting is that when estimating ν(A), we are not sat-
isfied if |In(1A) − ν(A)| is small because ν(A) itself is a small number. Rather,
it is satisfactory if the ratio In(1A)/ν(A) is close to 1. It turns out that the sam-
ple size that is necessary and sufficient for this purpose is not exp(D(ν ‖ μ)),
but exp(D(νA ‖ μ)), where νA is the probability measure ν conditioned on the
event A. This is quantified by the following theorem, which is the third main result
of this paper.

THEOREM 1.3. Let all notation be as in Theorem 1.1. Let A be any event such
that ν(A) > 0 and let 1A be the indicator function of A, defined above. Let νA be
the measure ν conditioned on the event A, that is, for any event B ,

νA(B) := ν(A ∩ B)

ν(A)
.

Let ρA(x) := ρ(x)1A(x)/ν(A) be the probability density function of νA with re-
spect to μ. Let LA := D(νA ‖ μ). If n = exp(LA + t) for some t ≥ 0, then

E

∣∣∣∣In(1A)

ν(A)
− 1

∣∣∣∣ ≤ e−t/4 + 2
√
P

(
logρA(Y ) > LA + t/2 | Y ∈ A

)
.

Conversely, suppose that n = exp(LA − t) for some t ≥ 0. Then for any δ ∈ (0,1),

P

(
In(1A)

ν(A)
≥ 1 − δ

)
≤ e−t/2 + P(logρA(Y ) ≤ LA − t/2 | Y ∈ A)

1 − δ
.

We would like to remark here that the upper bounds in Theorems 1.1, 1.2 and
1.3 may not be tight. The only purpose of these theorems is to give matching upper
and lower bounds on the sample size required for good performance of importance
sampling. No attempt was made to get optimal error bounds, especially of the type
that is relevant to practitioners.

Another remark is that in practice, μ is chosen depending on ν, to minimize the
required sample size. One potential use for our theorems is that they may be used
to choose μ by minimizing the Kullback–Leibler divergence of μ from ν among
some class of candidate measures. This point is elaborated in the literature review
at the end of this section.

Sometimes, however, μ is chosen depending on both ν and f . Since Theo-
rems 1.1 and 1.2 give bounds that depend only on the L2(ν) norm of f , they will
not be useful for choosing μ using fine properties of f . This is particularly prob-
lematic if f is something like the indicator of a rare event. This issue is partially
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addressed in Theorem 1.3, where f = 1A for some rare event A, and the required
sample size depends on μ, ν and the event A. Therefore, Theorem 1.3 can be used
for choosing μ depending on properties of both ν and f .

Let us now investigate the implications of our theorems in a few simple exam-
ples. More complex examples are given in later sections.

EXAMPLE 1.4 (Binomial distributions). Let μ = Binomial(N,p) and ν =
Binomial(N, r), where r > p. Then

logρ(x) = x log
r

p
+ (N − x) log

1 − r

1 − p
.

Let Y ∼ ν. Then L = E(logρ(Y )) = NH(r,p), where

H(r,p) = r log
r

p
+ (1 − r) log

1 − r

1 − p
.

Moreover, the standard deviation of logρ(Y ) is of order
√

N . Thus, the required
sample size is exp(NH(r,p) + O(

√
N)). On the other hand, a simple calculation

shows that if variance is used to determine sample size, the required size would be
exp(NV (r,p)), where

V (r,p) = log
(

r2

p
+ (1 − r)2

1 − p

)
.

By Jensen’s inequality, V (r,p) ≥ H(r,p). Figure 1 shows that graph of H(r,p)

versus the graph of V (r,p), as r varies and p is fixed at 1/2. This elementary ex-

FIG. 1. Let H and V be as in Example 1.4. The dotted line represents V (r,p) and the solid line
represents H(r,p). Here, p = 0.5 and r goes from 0.5 to 1 on the x-axis.
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ample demonstrates how using the variance can lead to unnecessarily large sample
sizes.

EXAMPLE 1.5 (Directed paths). Let X be the set of all monotone paths from
(0,0) to (n,n) in the two-dimensional lattice. Here, paths are only allowed to go
up and to the right. The target measure is the uniform distribution on all such paths.
Clearly, |X | = (2n

n

)
. The sampling measure μ in this example constructs a random

path γ as follows (this is known as sequential importance sampling): Choose one
of the two directions “up” or “right” with probability 1/2 until the walk hits the
top or right side of the n × n “box,” when the remainder of the walk is forced. If
T (γ ) is the first time the path hits the top or right side, then

μ(γ ) = 2−T (γ ).

Both the uniform distribution ν(γ ) = 1/
(2n

n

)
and μ(γ ) have the property that,

conditional on T (γ ) = j , the paths are uniformly distributed. Thus, distributional
questions are determined by the distribution of T (γ ).

The following proposition from Bassetti and Diaconis [4] shows that under the
sampling distribution μ, T (γ ) is usually about O(

√
n) from the maximum possi-

ble 2n − 1, but under the uniform distribution ν, T (γ ) is usually about O(1) away
from 2n − 1.

PROPOSITION 1.6. With the notation above:

(a) Under the importance sampling distribution μ,

μ
{
T (γ ) = j

} = 21−j

(
j − 1

n − 1

)
, n ≤ j ≤ 2n − 1.

(b) For n large and fixed positive x,

μ

{
2n − 1 − T (γ )√

n
≤ x

}
∼ 1

π

∫ x

0
e−y2/4 dy.

(c) Under the uniform distribution ν,

ν
{
T (γ ) = j

} = 2
(j−1
n−1

)
(2n

n

) , n ≤ j ≤ 2n − 1.

Further Eν(T (γ )) = (2 − 2
n+1)n.

(d) For n large and any fixed k,

ν
{
T (γ ) = 2n − 1 − k

} ∼ 1

2k+1 , 0 ≤ k < ∞.
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The quantity L of Theorem 1.1 is determined from ρ(γ ) = ν(γ )/μ(γ ) as

L = ∑
γ

ν(γ ) log
ν(γ )

μ(γ )

= − log

(
2n

n

)
+ log 2(2n

n

) ∑
γ

T (γ )

= − log

(
2n

n

)
+

(
2 − 2

n + 1

)
n log 2

= log
√

πn − 2 log 2 + O

(
1

n

)
.

Thus, eL ∼ √
πn/4, and moreover, logρ(γ ) has fluctuations of order 1 around its

mean. Thus, a sample size of order
√

n is necessary and sufficient for accuracy of
importance sampling in this example. The sufficiency was already observed using
variance computations in Bassetti and Diaconis [4]; the necessity is a new result.
Similar computations can be carried out for paths allowed to go left or right or up
(staying self avoiding) using results of Bousquet-Mélou [12].

EXAMPLE 1.7 (Estimating the probability of a rare event). As an example for
Theorem 1.3, fix N and p > 1/2 and let A = {j : Np ≤ j ≤ N}. Take ν to be the
Binomial(N,1/2) distribution. Let b(A;N,1/2) be the probability of A under ν.
Estimating b(A;N,1/2) by simple sampling from ν would be a crazy task; for
example, when N = 100 and p = 0.9, b(A;100,1/2) ≈ 0.676049 × 10−45, which
means that we would need roughly 1045 samples to directly estimate this prob-
ability. A standard importance sampling approach (Siegmund [54]) is to sample
X1,X2, . . . ,Xn from μ = Binomial(N, θ) for some θ and use

In(A) = 1

n

n∑
i=1

ν(Xi)

μ(Xi)
1A(Xi).

Theorem 1.3 shows that this will be accurate in ratio for n of order eLA . The
following proposition shows that when μ is Binomial(N, θ), θ = p minimizes
eLA , agreeing with the variance minimization in Siegmund [54]. When N = 100
and p = 0.9, eLA ≈ 1.723×1028 (still an impossible sample size, but much smaller
than 1045).

PROPOSITION 1.8. Fix N and p > 1/2 such that Np is an integer. Let μ

be the Binomial(N, θ) distribution, ν be the Binomial(N,1/2) distribution and
A = {j : Np ≤ j ≤ N}. Then the quantity LA of Theorem 1.3 is asymptoti-
cally minimized when θ = p, and with this choice of θ , LA is asymptotic to
−2N log(pp(1 − p)1−p) as N → ∞.
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Review of the literature. Our interest in this topic started with a question from
our colleague Don Knuth in [37]. He used sequential importance sampling to gen-
erate random self-avoiding paths starting at (0,0) and ending at (N,N) in a two-
dimensional N × N grid. For N = 10, he calculated the number of paths (about
1.6 × 1024), the average path length (92 ± 5) and the proportion of paths pass-
ing through (5,5) (81% ± 10%). He noticed huge fluctuations along the way and
wanted to know about the accuracy of his estimates. In the follow-up work Knuth
[38], exact computation showed surprising accuracy for his example. Basseti and
Diaconis [4] and Bousquet-Mélou [12] studied toy versions of Knuth’s problem
where exact calculations can be done; they confirm the extreme variability and
make the accuracy observed mysterious.

In our work, the choice of the proposal measure μ is considered fixed. A good
deal of the art of successful implementation of importance sampling consists in
a careful choice of μ, adapted to the problem under study. This is often done to
minimize the variance of the resulting estimate. Our work, especially the main
result of Section 2, suggests that the variance is a poor measure of accuracy for
these long tailed problems. Thus, there is work to be done, exploring ways of
adapting the many good ideas below, based on the variance, to minimizing the
Kullback–Leibler divergence.

Any book on simulation will treat importance sampling. We recommend Ham-
mersley and Handscomb [29], Srinivasan [55], Cappé, Moulines and Rydén [13]
and Liu [40]. To begin our review of the research literature, a classical choice of
the sampling measure μ for estimating I (f ) = ∫

f dν is to take dμ(x) propor-
tional to |f (x)|dν(x) (Kahn and Marshall [33]). Hesterberg [30] suggests using
a mixture of measures for μ with one component proportional to |f (x)| near its
maximum. This is closely related to the widely used method of umbrella sampling
(Torrie and Valleau [57]; nicely developed in Madras [42]). Owen and Zhou [48]
combine Hesterberg’s idea with control variates to give an attractive, practical ap-
proach. In later work, Owen and Zhou [47] suggest an adaptive version, attempting
to improve the proposed μ using previous sampling. This is based on the empirical
variance which means that our laments in Section 2 apply.

The idea of using L1 distance to measure performance of importance sampling
has appeared in a few prior instances. Two notable examples are Owen [49] and
Owen [50], where L1 error was used to compare the Monte Carlo and quasi-Monte
Carlo approaches to estimating singular integrands via importance sampling.

Importance sampling is often used to do rare event simulation. Then it is nat-
ural to tilt the sampling distribution μ toward the region of interest. Siegmund
[54] gives an asymptotically principled approach to doing this, which has given
rise to much follow-up work, some of it quite deep mathematically. A unifying ac-
count of a variety of importance sampling algorithms for simulating the maxima of
Gaussian fields appears in Shi, Siegmund and Yakir [53]. A host of novel ways of
building importance sampling estimates for problems such as estimating the size
of the union of a collection of sets when the size of each is known is in Naiman
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and Wynn [46]. The work of Paul Dupuis with many coauthors is notable here.
Dupuis and Wang [25] and Dupuis, Spiliopoulos and Wang [24] are representative
papers with useful pointers to an extensive literature. Asmussen and Glynn [2] give
a textbook account of this part of the subject.

An important part of the literature adapts importance sampling from the case
of independent proposals considered here to use with a Markov chain generating
proposals. Madras and Piccioni [43] give a clear development as do the textbook
accounts of Robert and Casella [51] or Liu [40].

An important class of techniques for building proposal distributions is known
as sequential importance sampling. An early appearance of this to sampling self-
avoiding paths occurs in Rosenbluth and Rosenbluth [52]. For contingency ta-
ble examples, see Chen, Diaconis, Holmes and Liu [17]. For degree sequences of
graphs, see Blitzstein and Diaconis [11]. For time series and a general review, see
the textbook by Doucet, de Freitas and Gordon [23] or the survey of Chen and
Liu [18].

A relatively recent technique choosing the proposal distribution, which has been
particularly successful in the heavy-tailed setting, is a method based on Lyapunov
functions developed by Blanchet and Liu [9, 10], Blanchet and Glynn [7] and
Blanchet, Glynn and Leder [8].

One large related topic is the connection between importance sampling and par-
ticle filters. Roughly, when building a proposal μ sequentially, one begins with a
number N of starts. As the proposals are independently built up, some weights may
be much larger than others. One can generate N new proposals from the present
ones (say with probability proportional to weights). This will replicate some pro-
posals and kill of those with smaller weights. This resampling can be repeated
several times. The final weighted samples are used, in the usual way, to form im-
portance sampling estimates. This large enterprise can be surveyed in the textbooks
of Del Moral [19, 20] and Doucet, de Freitas and Gordon [23]. Work of Chan and
Lai [14, 15] harnesses martingale central limit theorems to get the limiting distri-
bution of these importance sampling methods in a variety of complex stochastic
models. The web page of Arnaud Doucet is extremely useful. A very clear recent
paper is Del Moral, Kohn and Patras [21].

Besides the broad classifications outlined above, importance sampling has a va-
riety of other applications that are harder to categorize. A recent example is the
paper by Efron [26] that suggests the use of importance sampling for generat-
ing from Bayesian posterior distributions. In this context, an interesting note is
that simulating from a Bayesian posterior by rejection sampling was investigated
by Freer, Mansinghka and Roy [27], who found a connection with the Kullback–
Leibler divergence that bears some similarities with the results of this paper.

Two other recent papers have similarities with our work. One is that of Hult and
Nyquist [32], who analyze the performance of importance sampling in the estima-
tion of probabilities of rare events using large deviation techniques. The Kullback–
Leibler divergence arises naturally in this work, due to its appearance in large
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deviation rate functions. The other is a paper of Agapiou, Papaspiliopoulos, Sanz-
Alonso and Stuart [1], who prove that |In(f )−I (f )| is small if n ≥ E(ρ(Y )) ≥ eL,
in the notation of our Theorem 1.1. This result is applied to a class of problems that
do not overlap with our set of examples, making [1] and this paper complementary
to each other.

2. Testing for convergence. The theory developed in Section 1, while the-
oretically interesting, is possibly not very useful from a practical point of view.
Determining D(ν ‖ μ) requires in-depth knowledge of not only the measure μ,
but also the usually much more complicated measure ν. It is precisely the lack of
understanding about ν that motivates importance sampling, so it seems pointless
to ask a practitioner to compute the required sample size by using properties of ν.

To determine whether the importance sampling estimate has converged, a com-
mon practice is to estimate Var(In(f )) by estimating the variance formula (1.2)
using the data from μ. One natural estimate is

vn(f ) := 1

n2

n∑
i=1

f (Xi)
2ρ(Xi)

2 − In(f )2

n
.

If this estimate is used, then importance sampling is declared to have converged
if for some n, vn(f ) turns out to be smaller than some pre-specified tolerance
threshold ε (see Robert and Casella [51]).

The following theorem shows that using vn(f ) as a diagnostic for convergence
of importance sampling is problematic, because for any given tolerance level ε,
there is high probability that the test declares convergence at or before a sample
size that depends only on ε and not on μ, ν or f . This is absurd, since convergence
may take arbitrarily long, depending on the problem.

THEOREM 2.1. Given any ε > 0, there exists n ≤ ε−221+ε−3
such that the

following is true. Take any μ and ν as in Theorem 1.1, and any f : X → R such
that ‖f ‖L2(ν) ≤ 1. Let vn(f ) be defined as above. Then P(vn(f ) < ε) ≥ 1 − 4ε.

Although the upper bound on n is very large, for example, for ε = 0.1 the upper
bound is roughly 2.14 × 10303, Theorem 2.1 gives a conceptual proof that using
vn(f ) for testing convergence of importance sampling is fundamentally flawed.
As the measures μ and ν get more and more singular with respect to each other
(which often happens as system size gets larger), importance sampling should take
longer to converge. A test that does not respect this feature cannot be a plausible
test for convergence. Incidentally, it is not clear whether the upper bound on n in
Theorem 2.1 can be improved to something more reasonable.

The ineffectiveness of the variance diagnostic is not hard to demonstrate in ex-
amples. One such examples are given below.
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FIG. 2. Estimated standard deviation
√

vn(f ) of In(f ), as n ranges from 1 to 106, and the actual
error |In(f ) − I (f )|. Here, μ = Binomial(100,0.5), ν = Binomial(100,0.7) and f ≡ 1.

EXAMPLE 2.2. In Example 1.4 with large N , vn(f ) stays extremely close to
zero for any realistic value of n because ρ(Xi) is very close to zero with high prob-
ability. But here we know that the actual convergence takes place at a sample size
that is exponentially large in N . For instance, consider μ = Binomial(100,0.5)

and ν = Binomial(100,0.7). Let f be the function that is identically equal to 1.
Figure 2 shows the plot of the estimated standard deviation

√
vn(f ) against n,

as n ranges from 1 to 106. The estimated standard deviation remains fairly small
throughout. However, since we know the actual value of I (f ) in this case (which is
1), it is easy to compute the actual error |In(f )− I (f )| and check that the variance
diagnostic is giving a false conclusion.

There are results in the literature that claim to show that the variance estimation
method gives a valid criterion for the convergence of importance sampling. How-
ever, what these results actually show is that if n is so large that the importance
sampling estimates are accurate, then vn(f ) is small. In other words, the smallness
of vn(f ) is a necessary condition for convergence of importance sampling, but not
a sufficient condition. For a diagnostic criterion to be useful, it needs to be both
necessary and sufficient for convergence.

In practice, vn(f ) is not usually the preferred diagnostic. Various self-normal-
ized versions of vn(f ) are used. It is possible that these more complicated esti-
mates are also problematic in the same way, but we do not have a proof. It would be
interesting to prove analogs of Theorem 2.1 for self-normalized diagnostic statis-
tics.

In view of Theorem 1.1, it is natural to consider estimates of the Kullback–
Leibler divergence as possible diagnostic tools for convergence. However, an in-
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spection of the proof of Theorem 2.1 indicates that such estimates are likely to
suffer from similar problems. The issue is that any diagnostic criterion that is it-
self dependent on the accuracy of an estimate obtained by importance sampling, is
unlikely to be effective as a measure of the efficacy of importance sampling.

We suggest the following alternative diagnostic that is not itself an importance
sampling estimate of any quantity. As usual, let μ be the sampling measure, ν be
the target measure, and ρ = dν/dμ. Let X1,X2, . . . be i.i.d. random variables with
law μ. Define qn := E(Qn), where

Qn := max1≤i≤n ρ(Xi)∑n
i=1 ρ(Xi)

.

The size of qn is our criterion for diagnosing convergence of importance sampling.
The general prescription is that if for some value of n the quantity qn is smaller
than some pre-specified threshold (say, 0.01), declare that n is large enough for im-
portance sampling to work. Note that the random variable Qn always lies between
0 and 1 and, therefore, qn ∈ [0,1]. Moreover, given any n, it is possible to estimate
qn up to any desired degree of accuracy by repeatedly simulating Qn and taking
an average, since qn = E(Qn) and Qn always lies between 0 and 1. Lastly, note
that for estimating qn using simulations in the above manner, it suffices to know
the density ρ up to an unspecified normalizing constant. Repeatedly calculating
Qn, however, may be computationally expensive if either n is too large or ρ is too
complex.

Why should one expect the smallness of the quantity qn to be a valid diag-
nostic criterion for convergence of importance sampling? First, let us hasten to
add the caveat that one can produce examples where it does not work. One such
example is the following: Take a large number N . Let μ be the uniform distri-
bution on {1,2, . . . ,N}. Let ν be the distribution that puts mass 1/2N on the
points 1,2, . . . ,N − 1, and mass (N + 1)/2N on the point N . Then ρ(x) = 1/2
for x = 1,2, . . . ,N − 1 and ρ(N) = (N + 1)/2. Under the sampling measure μ,
ρ = 1/2 with probability 1 − 1/N . Therefore, when 1 � n � N , the quantity
qn will be small; but convergence of importance sampling will not happen until
n � N .

In spite of the above counterexample, we expect that qn is a valid diagnostic for
many natural examples. This is made precise to a certain extent in the setting of
Gibbs measures by Theorem 3.5 in the next section. A general heuristic argument
for the effectiveness of the qn diagnostic, on which the proof of Theorem 3.5 is
based, can be described as follows.

Suppose that logρ is concentrated under ν, so that Theorem 1.1 applies, and the
sample size required for convergence of importance sampling is roughly eL, where
L = Eν(logρ). Take any n below this threshold. Let Mn := max1≤i≤n ρ(Xi). Since
ρ(X1), ρ(X2), . . . are i.i.d. random variables, it is easy to see that under mild con-
ditions, Mn ≈ a with high probability, where a solves

(2.1) nP
(
ρ(X1) ≥ a

) = 1.
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Next, let Sn := ∑n
i=1 ρ(Xi). Since Mn ≈ a, therefore,

Sn ≈
n∑

i=1

ρ(Xi)1{ρ(Xi)≤a}.

Therefore,

(2.2) E(Sn) ≈ nE
(
ρ(X1)1{ρ(X1)≤a}

) = nPν(ρ ≤ a) = nPν(logρ ≤ loga).

Now, Eν(logρ) = L > loga. Thus, Pν(logρ ≤ loga) is a large deviation proba-
bility. Therefore, under mild conditions, one may expect that

Pν(logρ ≤ loga) ≈ Pν(logρ ≈ loga).

Plugging this into (2.2), we get

E(Sn) ≈ nPν(logρ ≈ loga)

= nE
(
ρ(X1)1{ρ(X1)≈a}

)
= naP

(
ρ(X1) ≈ a

) ≤ naP
(
ρ(X1) ≥ a

)
.

Using the equation (2.1) to evaluate the last term, we get E(Sn)� a and, therefore,
Sn = O(a) by Markov’s inequality. Since Mn ≈ a, this shows that

qn = E

(
Mn

Sn

)
= 
(1),

where 
(1) means a quantity that is uniformly bounded away from zero as
n → ∞. The above heuristic shows that if n � eL and some appropriate condi-
tions hold, then qn = 
(1). In other words, smallness of qn should be a sufficient
condition for convergence of importance sampling. This sketch can be made rigor-
ous under certain circumstances. An instance of this is illustrated by Theorem 3.5
in the next section.

The smallness of qn is also a necessary condition for convergence of impor-
tance sampling. Unlike sufficiency, the necessity can be rigorously proved in full
generality.

THEOREM 2.3. Let all notation be as in Theorem 1.1. Let qn be defined as
above. Let εn := E|In(1) − 1|. Then

qn ≤ C max
{

1

n
,

log log(1/εn)

log(1/εn)

}
,

where C is a universal constant.

As mentioned above, this theorem shows that the smallness of qn is a necessary
condition for convergence of importance sampling (recalling that by Theorem 1.1,
convergence in L1 is equivalent to actual good performance); if εn is small, then
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FIG. 3. Performance of qn in Example 2.2, plotted against the natural logarithm of the sample size.

qn is forced to be small. This is, however, a conceptual theorem. The bound is too
poor to be applicable in practice, and the unspecified universal constant C can also
be too large for the theorem to have any practical relevance.

The performance of qn in Example 2.2 is depicted in Figure 3. The figure plots
the estimated standard deviation

√
vn(f ) and the statistic qn, against logn as n

ranges from 1 to 106. As in Figure 2, we see that the estimated standard error is
generally quite misleading and unstable. On the other hand, the statistic qn detects
the nonconvergence in small samples and is very stable. The estimation of qn was
based on a sample of size 500 for each n.

Another illustration is given in Figure 4, which investigates the performance of
qn for Knuth’s self-avoiding walks on a 10 × 10 grid, that was described in the
literature review part of Section 1. The plot shows the behavior of qn as n ranges
from 1 to 105. We see that qn is not too small (greater than 0.2) when n = 103, but
starts getting appreciably small around n = 104. When n = 105, qn is minuscule.

The random quantity Qn is closely related to some existing diagnostics in the
literature on sequential Monte Carlo (particle filters). It has the same form as the
∞-ESS statistic proposed by Huggins and Roy [31] in the context of sequential
Monte Carlo. Here, ESS stands for “Effective Sample Size,” a familiar concept in
the sequential Monte Carlo literature. There is a substantial body of work on the
efficacy of the effective sample size as a diagnostic tool, possibly beginning with
Liu and Chen [41] and Doucet, de Freitas and Gordon [23]. See Whiteley, Lee
and Heine [58] for some latest results. Huggins and Roy [31] established similar
properties for the ∞-ESS. It would be interesting to see whether analogs of these
results can be proved for the Qn and qn statistics proposed in this section.
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FIG. 4. Performance of qn for Knuth’s self-avoiding walks on a 10 × 10 grid. The values of qn,
denoted by the thick dots, were estimated from 31 simulations of Qn, which are depicted by the solid
lines. Picture courtesy of Marc Coram.

3. Importance sampling for exponential families (Gibbs measures). As in
Section 1, let X be a set equipped with some sigma-algebra. Let λ be a finite
measure on X that we shall call the “base measure.” Let H : X → R be a mea-
surable function, called the Hamiltonian, and let β ∈ R be a parameter, called the
inverse temperature. The exponential family distribution (Gibbs measure) Gβ on
X defined by the sufficient statistic (Hamiltonian) H at a parameter value (inverse
temperature) β is the probability measure on X that has probability density

Z(β)−1 exp
(−βH(x)

)
with respect to the base measure λ, where

Z(β) =
∫
X

exp
(−βH(x)

)
dλ(x)

is the normalizing constant, which is assumed to be finite. Let

F(β) := logZ(β).
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In physics parlance, the quantity −F(β)/β is known as the free energy of the
system at inverse temperature β .

Often, the normalizing constant Z(β) is hard to calculate theoretically. Impor-
tance sampling is used to estimate Z(β) in a variety of ways. See Gelman and
Meng [28] for a useful review. Lelièvre, Rousset and Stoltz [39] show the breadth
of this problem. One simple technique: Let β0 be an inverse temperature at which
we know how to generate a sample from the Gibbs measure. For example, β0 = 0
is often a good choice, because G0 is nothing but the base measure λ normalized
to have total mass one. The goal is to estimate Z(β) using a sample from Gβ0 .
Let X1, . . . ,Xn be an i.i.d. sample of size n from Gβ0 . The importance sampling
estimate of Z(β) based on this sample is the following:

Ẑn(β) := Z(β0)

n

n∑
i=1

exp
(−(β − β0)H(Xi)

)
.

It is easy to see that E(Ẑn(β)) = Z(β). The question is, how large does n need to
be, so that the ratio Ẑn(β)/Z(β) is close to 1 with high probability?

The following theorem shows that under favorable conditions, a sample of size
approximately exp(F (β0) − F(β) − (β0 − β)F ′(β)) is necessary and sufficient.
The proof, given in Section 4, is a simple consequence of Theorem 1.1 since
F(β0) − F(β) − (β0 − β)F ′(β) is actually the Kullback–Leibler divergence of
Gβ0 from Gβ . This theorem is a result for finite systems. A more general version
of this result that applies in the thermodynamic limit is given later in this section.

THEOREM 3.1. Let all notation be as above. Suppose that the Hamiltonian H

satisfies the condition that for some β ′ > |β|,∫
X

exp
(
β ′∣∣H(x)

∣∣)dλ(x) < ∞.

Then F is infinitely differentiable at β . Let

L := F(β0) − F(β) − (β0 − β)F ′(β)

and

σ := |β0 − β|
√

F ′′(β).

If n = exp(L + rσ ) for some r ≥ 0, then

E

∣∣∣∣ Ẑn(β)

Z(β)
− 1

∣∣∣∣ ≤ e−rσ/4 + 4

r
.

Conversely, if n = exp(L − rσ ) for some r ≥ 0, then for any δ ∈ (0,1),

P

(
Ẑn(β)

Z(β)
≥ 1 − δ

)
≤ e−rσ/2 + 4

(1 − δ)r2 .
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It is not difficult to verify by direct calculation that F ′′ is always nonnegative.
This implies, in particular, that F is convex. As a consequence of this feature, L

and σ are also nonnegative.
In standard examples, F , F ′ and F ′′ are all of the same order of magnitude, and

the magnitudes are large. Therefore, L is large and σ = O(
√

L), which implies
that the required sample size is concentrated in the logarithmic scale at exp(L +
O(

√
L)). The situation is illustrated through the following examples.

EXAMPLE 3.2 (Independent spins). Take some N ≥ 1 and let X = {−1,1}N .
Let λ be the counting measure on this set, and for x = (x1, . . . , xN) ∈ X , let

H(x) = −
N∑

i=1

xi.

The Gβ is nothing but the joint law of N i.i.d. random variables that take value 1
with probability eβ/(eβ +e−β) and −1 with probability e−β/(eβ +e−β). A simple
computation gives Z(β) = 2N(coshβ)N . Therefore,

F(β) = N log coshβ + N log 2.

Thus, for any given β0 and β ,

L = N log
coshβ0

coshβ
− N(β0 − β) tanhβ

and

σ = 4
√

N |β0 − β| sechβ.

Therefore, L is typically of order N and σ is typically of order
√

N .

EXAMPLE 3.3 (1D Ising model with periodic boundary). As in the previous
example, let X = {−1,1}N and let λ be the counting measure on this set. For
x = (x1, . . . , xN) ∈ {−1,1}N , let

H(x) = −J

N∑
i=1

xixi+1 − h

N∑
i=1

xi,

where J ≥ 0, h ∈ R, and xN+1 in the first sum stands for x1. This is the Hamil-
tonian for the one-dimensional Ising model for a system of N spins with peri-
odic boundary. The parameters J and h are traditionally known as the coupling
constant and the strength of the external magnetic field. The partition function
of this model is easily computed by the transfer matrix method (see Baxter [5]):
Z(β) = Tr(V (β)N), where V (β) is the 2 × 2 matrix[

eβ(h+J ) e−βJ

e−βJ e−β(h−J )

]
.
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In other words, if λ1(β) and λ2(β) are the two eigenvalues of this matrix (arranged
such that |λ1| ≥ |λ2|), then

Z(β) = λ1(β)N + λ2(β)N .

Consequently,

F(β) = log
(
λ1(β)N + λ2(β)N

)
.

It is not hard to verify that

λ1(β) = eβJ coshβh +
√

e2βJ (sinhβh)2 + e−2βJ

and

λ2(β) = eβJ coshβh −
√

e2βJ (sinhβh)2 + e−2βJ .

Using these formulas, it is easy to write down explicit formulas for L and σ for
any given β and β0, and compute a(β0, β) and b(β0, β) such that as N → ∞,
L ∼ Na(β0, β) and σ ∼ √

Nb(β0, β).

Examples 3.2 and 3.3 demonstrate how Theorem 3.1 can be applied to calculate
the sample size required for importance sampling in statistical mechanical models.
However, these examples required exact computations in finite systems, which is
rarely possible in complex models. Our next theorem deals with a generic sequence
of models that converge to a limit. Exact computations are assumed to be possible
only in the limit.

Let {XN }N≥1 be a sequence of spaces equipped with sigma-algebras and finite
measures {λN }N≥1. For each N , let HN : X → R be a measurable function, and
for each β ∈ R let GN,β be the probability measure that has probability density
proportional to exp(−βHN(x)) with respect to λN . Let

ZN(β) :=
∫
XN

exp
(−βHN(x)

)
dλN(x)

be the normalizing constant of GN,β , and assume that these quantities are finite.
Let

FN(β) := logZN(β).

Let {LN }N≥1 be a sequence of numbers tending to infinity, and let

p(β) := lim
N→∞

FN(β)

LN

whenever the limit exists and is finite. For a suitable choice of LN depending on
the situation, the function p(β) is sometimes referred to as the thermodynamic
limit (or the thermodynamic free energy) of the sequence of systems described
above. The thermodynamic limit is said to have a kth order phase transition at an
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inverse temperature β if the first k − 1 derivatives of p are continuous at β but the
kth derivative is discontinuous at β .

Fix two inverse temperatures β0 and β such that β0 < β . The goal is to estimate
FN(β) using importance sampling with a sample of size n from the Gibbs measure
GN,β0 , and determine how fast n needs to grow with N such that the ratio of this
estimate and the true value tends to one as N → ∞. Recall that the importance
sampling estimate of ZN(β) is

Ẑn,N(β) = ZN(β0)

n

n∑
i=1

exp
(−(β − β0)HN(Xi)

)
,

where X1, . . . ,Xn are i.i.d. draws from GN,β0 . The following theorem identifies
the sample size required for good performance of the above estimate as long as the
system does not exhibit a first-order phase transition at β in the thermodynamic
limit.

THEOREM 3.4. Let all notation be as above. Let {LN }N≥1 be a sequence of
constants such that the thermodynamic free energy p exists and is differentiable in
a neighborhood of β , and exists at β0. Assume that the derivative p′ is continuous
at β , and that there exists a finite constant C such that for all N and all x ∈ XN ,
|HN(x)| ≤ CLN . Suppose that the sample size n = n(N) grows with N in such a
way that L−1

N logn converges to a limit b ∈ [0,∞], and let

q(β) := p(β0) − p(β) − (β0 − β)p′(β).

Then the following conclusions hold:

(i) If b > q(β), then Ẑn,N(β)/ZN(β) → 1 in probability as N → ∞.
(ii) If b < q(β), then Ẑn,N(β)/ZN(β) 	→ 1 in probability as N → ∞.

(iii) If b = q(β) and p′ is not constant in any neighborhood of β , then
L−1

N log Ẑn,N(β) → p(β) in probability as N → ∞. Note that this is a weaker
version of the conclusion of part (i).

Theorem 3.4 has potentially much wider applicability than Theorem 3.1, since
thermodynamic limits are known in many important statistical mechanical sys-
tems. Classical examples from statistical physics include the 2D Ising model,
the six and eight vertex models and many others (see Baxter [5] and McCoy
[44]). Recently, a variety of exponential random graph models have been explicitly
“solved” (see Chatterjee and Diaconis [16], Kenyon, Radin, Ren and Sadun [35],
Kenyon and Yin [36] and Bhattacharya, Ganguly, Lubetzky and Zhao [6]). Similar
progress has been made for nonuniform distributions on permutations (see Starr
[56], Mukherjee [45] and Kenyon, Kral, Radin and Winkler [34]). All of these
models provide examples for our theory.

The main strength of Theorem 3.4 is also its main weakness: While it gives a
definitive answer for exactly solvable models, the theorem is not useful for systems
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that are not exactly solvable in a thermodynamic limit. As discussed in Section 2,
what a practitioner really wants is a diagnostic test that will confirm whether im-
portance sampling has converged. Interestingly, it turns out that the use of the
alternative diagnostic test proposed in Section 2 can be partially justified in the
setting of Theorem 3.4, under one additional assumption. The extra assumption
is that the system has no first-order phase transition at any point between β0 and
β , strengthening the assumption made in Theorem 3.4 that there is no first-order
phase transition at β .

Take β0 and β such that β0 < β . Recall the quantities Qn and qn defined in
Section 2. Since there are two parameters n and N involved here, we will write
qn,N and Qn,N instead of qn and Qn. Then note that

Qn,N = max1≤i≤n exp(−(β − β0)HN(Xi))∑n
i=1 exp(−(β − β0)HN(Xi))

,

and qn,N = E(Qn,N). [Note that qn,N has nothing to do with q(β).] The following
theorem shows that if n is large enough (depending on N ) for the importance
sampling to work, then qn,N is exponentially small in LN . Otherwise, it is not
exponentially small.

THEOREM 3.5. Let all notation and assumptions be as in Theorem 3.4. Addi-
tionally, assume that there is an open interval I ⊇ [β0, β] such that the thermody-
namic free energy p is well defined and continuously differentiable in I , and that
p′ is not constant in any nonempty open subinterval of I . Then:

(i) If b ≤ q(β), then

lim
N→∞

logqn,N

LN

= 0.

Moreover, L−1
N logQn,N → 0 in probability as N → ∞.

(ii) If b > q(β), then

lim sup
N→∞

logqn,N

LN

< 0.

Moreover, there exists c < 0 such that P(L−1
N logQn,N ≤ c) → 1 as N → ∞.

In particular, if n grows with N so fast that qn,N decays to zero like a negative
power of LN , then the estimated free energy L−1

N log Ẑn,N(β) converges to the
correct limit p(β) in probability.

Incidentally, the binomial distribution, as well as more complicated systems like
Knuth’s self-avoiding paths, can be put into the framework of Theorem 3.5 by an
appropriate choice of the Hamiltonian and the inverse temperatures β0 and β , so
that the system at inverse temperature β0 gives the sampling distribution and the
system at inverse temperature β gives the target distribution. The main theoretical
question would be to prove the absence of a phase transition between β0 and β .
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4. Proofs. PROOF OF THEOREM 1.1. Suppose that n = eL+t and let a :=
eL+t/2. Let h(x) = f (x) if ρ(x) ≤ a and 0 otherwise. Then∣∣In(f ) − I (f )

∣∣ ≤ ∣∣In(f ) − In(h)
∣∣ + ∣∣In(h) − I (h)

∣∣ + ∣∣I (h) − I (f )
∣∣.

First, note that by the Cauchy–Schwarz inequality,
∣∣I (h) − I (f )

∣∣ ≤ E
(∣∣f (Y )

∣∣;ρ(Y ) > a
) ≤ ‖f ‖L2(ν)

√
P

(
ρ(Y ) > a

)
.

Similarly,

E
∣∣In(f ) − In(h)

∣∣ ≤ E
∣∣ρ(X1)f (X1) − ρ(X1)h(X1)

∣∣
= E

(∣∣f (Y )
∣∣;ρ(Y ) > a

)
≤ ‖f ‖L2(ν)

√
P

(
ρ(Y ) > a

)
.

Finally, note that

E
∣∣In(h) − I (h)

∣∣ ≤
√

Var
(
In(h)

)

=
√

Var(ρ(X1)h(X1))

n

≤
√
E(ρ(X1)2h(X1)2)

n

≤
√

aE(ρ(X1)f (X1)2)

n

= ‖f ‖L2(ν)

√
a

n
.

Combining the upper bounds obtained above, we get the first inequality in the
statement of the theorem.

Next, suppose that n = eL−t and let a = eL−t/2. Markov’s inequality gives

(4.1) P
(
ρ(X1) > a

) ≤ E(ρ(X1))

a
= 1

a
.

Also,

E
(
ρ(X1);ρ(X1) ≤ a

) = P
(
ρ(Y ) ≤ a

)
.

Thus,

P
(
In(1) ≥ 1 − δ

)
≤ P

(
max

1≤i≤n
ρ(Xi) > a

)
+ P

(
1

n

n∑
i=1

ρ(Xi)1{ρ(Xi)≤a} ≥ 1 − δ

)
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≤
n∑

i=1

P
(
ρ(Xi) > a

) + 1

1 − δ
E

(
1

n

n∑
i=1

ρ(Xi)1{ρ(Xi)≤a}
)

≤ n

a
+ P(ρ(Y ) ≤ a)

1 − δ
.

This completes the proof of the second inequality in the statement of the theorem.
�

PROOF OF THEOREM 1.2. Suppose that n = eL+t and let a = eL+t/2. Let

b :=
√

a

n
+ 2

√
P

(
ρ(Y ) > a

)
.

Then by Theorem 1.1, for any ε, δ ∈ (0,1),

P
(∣∣In(1) − 1

∣∣ ≥ ε
) ≤ b

ε

and

P
(∣∣In(f ) − I (f )

∣∣ ≥ δ
) ≤ ‖f ‖L2(ν)b

δ
.

Now, if |In(f ) − I (f )| < δ and |In(1) − 1| < ε, then

∣∣Jn(f ) − I (f )
∣∣ =

∣∣∣∣In(f )

In(1)
− I (f )

∣∣∣∣
≤ |In(f ) − I (f )| + |I (f )||1 − In(1)|

In(1)

<
δ + |I (f )|ε

1 − ε
.

Taking ε = √
b and δ = ‖f ‖L2(ν)ε completes the proof of the first inequality in

the statement of the theorem. Note that if ε turns out to be bigger than 1, then the
bound is true anyway.

Next, suppose that n = eL−t and let a = eL−t/2. Let f (x) = 1 if ρ(x) ≤ a and
0 otherwise. Then I (f ) = P(ρ(Y ) ≤ a) and by (4.1),

P
(
Jn(f ) 	= 1

) ≤
n∑

i=1

P
(
ρ(Xi) > a

) ≤ n

a
.

This completes the proof of the theorem. �

PROOF OF THEOREM 1.3. Let

Kn := In(1A)

ν(A)
= 1

n

n∑
i=1

ρA(Xi).
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Suppose that n = eL+t and let a = eL+t/2. Applying Theorem 1.1 with ρ replaced
by ρA, this gives

E|Kn − 1| ≤
√

a

n
+ 2

√
P

(
ρA(Y ) > a | Y ∈ A

)
,

which is the first assertion of the theorem. The second claim follows similarly. �

PROOF OF PROPOSITION 1.8. Let

Z = 1

2N

∑
Np≤j≤N

(
N

j

)
,

so that

νA(j) =
(N
j

)
2NZ

1A(j).

To explore the choice of sampling distribution let μ be the Binomial(N, θ) distri-
bution for fixed 1/2 < θ < 1. Then

LA = D(νA‖μ) = ∑
j

log
(
νA(j)/μ(j)

)
νA(j)

= − 1

2NZ

∑
Np≤j≤N

log
(
2NZθj (1 − θ)N−j )(N

j

)

= − log
(
2NZ(1 − θ)N

) − log(θ/(1 − θ))

2NZ

∑
Np≤j≤N

j

(
N

j

)
.

An identity of de Moivre (see Diaconis and Zabell [22]) shows that for any k,
0 ≤ k ≤ N ,

1

2N

∑
k≤j≤N

(
N

j

)(
j − N

2

)
= k

2
b(k;N,1/2).

Thus, since Np is an integer,

LA = − log
(
2NZ(1 − θ)N

) − log
(
θ/(1 − θ)

)(Np

2Z
b(Np;N,1/2) + N

2

)
.

To approximate Z, use an inequality of Bahadur [3], specialized here: Let

R = 1

2
b(Np;N,1/2)

Np + 1

Np + 1 − (N + 1)/2
.

Then

1 ≤ R

Z
≤ 1 + x−2,
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where

x = Np − N/2√
N/4

.

For large N and p fixed, this gives

Z ∼ b(Np;N,1/2)
p

2p − 1
.

Stirling’s formula gives

2Nb(Np;N,1/2) ∼ (pp(1 − p)1−p)N√
2πNp(1 − p)

.

Putting these approximations into LA, we get

LA ∼ −N log
(
pp(1 − p)1−p(1 − θ)

(
θ/(1 − θ)

)p)
.

The right-hand side, as a function of θ , is minimized when θ = p. Plugging this in
gives the claim. �

PROOF OF THEOREM 2.1. Let X be a random variable with law μ. Then note
that

1 = E
(
ρ(X)

) =
∫ ∞

0
P

(
ρ(X) ≥ t

)
dt

≥
∞∑

k=0

∫ 2k+1

2k
P

(
ρ(X) ≥ t

)
dt.

Therefore, for any l ≥ 0,

min
0≤k≤l

∫ 2k+1

2k
P

(
ρ(X) ≥ t

)
dt ≤ 1

l + 1

l∑
k=0

∫ 2k+1

2k
P

(
ρ(X) ≥ t

)
dt ≤ 1

l + 1
.

Thus, there exists k ≤ l such that
∫ 2k+1

2k
P

(
ρ(X) ≥ t

)
dt ≤ 1

l + 1
.

Fixing l, take any such k. The above inequality implies that there exists t ∈
[2k,2k+1] such that

P
(
ρ(X) ≥ t

) ≤ 1

(l + 1)2k
.

Now take any ε > 0. Let l = [1/ε3], where [1/ε3] is the integer part of 1/ε3. Then
there exists k ≤ l and t ∈ [2k,2k+1] such that the above inequality is satisfied. Let
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n = [t/ε2] + 1. Then

P

(
max

1≤i≤n
ρ(Xi) ≥ ε2n

)
≤ nP

(
ρ(X) ≥ ε2n

)
≤ nP

(
ρ(X) ≥ t

)
≤ n

(l + 1)2k
≤ ε3n

2k
≤ ε(t + 1)

2k
≤ ε(2k+1 + 1)

2k
≤ 3ε.

Consequently, for this n,

P
(
vn(f ) ≥ ε

) ≤ P

(
1

n2

n∑
i=1

f (Xi)
2ρ(Xi)

2 ≥ ε

)

≤ P

(
max

1≤i≤n
ρ(Xi) ≥ ε2n

)
+ P

(
1

n

n∑
i=1

f (Xi)
2ρ(Xi) ≥ 1

ε

)

≤ 3ε + εE

(
1

n

n∑
i=1

f (Xi)
2ρ(Xi)

)

= 3ε + εE
(
f (X)2ρ(X)

) = 3ε + ε‖f ‖2
L2(ν)

.

To complete the proof, note that n ≤ ε−2t ≤ ε−22k+1 ≤ ε−22l+1 ≤ ε−221+ε−3
. �

PROOF OF THEOREM 2.3. Since 0 ≤ Qn ≤ 1, therefore,

qn = E(Qn) ≤ qn

2
+ P

(
Qn ≥ qn

2

)

= qn

2
+ P

(
Mn ≥ qnSn

2

)

≤ qn

2
+ P

(
Sn <

n

2

)
+ P

(
Mn ≥ qnn

4

)

≤ qn

2
+ 2εn + P

(
Mn ≥ qnn

4

)
.

Suppose that

(4.2) εn ≤ qn

8
.

Then by the previous display,

(4.3) P

(
Mn ≥ qnn

4

)
≥ qn

4
.

Let k := [8/qn] and l := [n/k]. For 1 ≤ j ≤ k, define

Mn,j := max
(j−1)l+1≤i≤j l

ρ(Xi).
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Then for any x ≥ 0,

P(Sn ≥ kx) ≥ P(Mn,j ≥ x for all 1 ≤ j ≤ k)

= (
P(Mn,1 ≥ x)

)k
= (

1 − (
P

(
ρ(X1) < x

))l)k
= (

1 − (
P(Mn < x)

)l/n)k
= (

1 − (
1 − P(Mn ≥ x)

)l/n)k
.

Since k ≤ 8/qn and l ≥ n/k − 1 ≥ qnn/8 − 1, this gives

P(Sn ≥ kx) ≥ (
1 − (

1 − P(Mn ≥ x)
)qn/8−1/n)8/qn .

Suppose that

(4.4)
1

n
≤ qn

16
.

Then the previous equation gives

P(Sn ≥ kx) ≥ (
1 − (

1 − P(Mn ≥ x)
)qn/16)8/qn .

Taking x = qnn/4, assuming (4.2) and (4.4), and using (4.3), gives

P(Sn ≥ 2n) ≥ (
1 − (1 − qn/4)qn/16)8/qn.

Now note that 1 − (1 − y)y/4 is asymptotic to y2/4 as y → 0, and is positive
everywhere in the interval (0,1). Therefore, there is a positive constant C1 such
that 1 − (1 − y)y/4 ≥ C1y

2 for all y ∈ [0,1]. Using this in the above inequality
gives

P(Sn ≥ 2n) ≥ e−8q−1
n log(C2/qn),

where C2 is a universal constant. By Markov’s inequality, P(Sn ≥ 2n) ≤ εn. There-
fore,

e−8q−1
n log(C2/qn) ≤ εn.

This shows that as εn → 0, qn must also tend to zero. Using this and the mono-
tonicity of the map x �→ (logx)/x for x ≥ e, it is easy to show that

qn ≤ C3 log log(1/εn)

log(1/εn)
,

where C3 is a universal constant. Note that this holds under (4.2) and (4.4). The
maximum in the statement of the theorem accounts for these constraints. �
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PROOF OF THEOREM 3.1. By the integrability condition on H and the dom-
inated convergence theorem, it is easy to see that F is infinitely differentiable.
Moreover, if Y is a random variable with law Gβ , then

(4.5) F ′(β) = −E
(
H(Y)

)
and

(4.6) F ′′(β) = Var
(
H(Y)

)
.

The probability density of Gβ with respect to Gβ0 is

ρ(x) = Z(β0)

Z(β)
exp

(−(β − β0)H(x)
)
.

Therefore,

Ẑn(β)

Z(β)
= 1

n

n∑
i=1

ρ(Xi).

In the notation of Theorem 1.1, this is nothing but In(1). Now note that if Y ∼ Gβ ,
then by (4.5) and (4.6),

E
(
logρ(Y )

) = F(β0) − F(β) − (β − β0)E
(
H(Y)

)
= F(β0) − F(β) − (β0 − β)F ′(β) = L

and

Var
(
logρ(Y )

) = (β0 − β)2 Var
(
H(Y)

) = (β0 − β)2F ′′(β) = σ 2.

The proof is now easily completed by an application of Theorem 1.1, together
with Chebychev’s inequality for bounding the tail probabilities occurring in the
statement of Theorem 1.1. �

PROOF OF THEOREM 3.4. Let ρN be the probability density of GN,β with
respect to GN,β0 . As in the proof of Theorem 3.1, we have

(4.7) logρN(x) = FN(β0) − FN(β) − (β − β0)HN(x).

For each γ , let YN,γ be a random variable with law GN,γ . A simple computation
shows that for any bounded measurable function φ :R →R,

d

dγ
E

(
φ

(
HN(YN,γ )

)) = Cov
(
φ

(
HN(YN,γ )

)
,HN(YN,γ )

)
.

It is an easy fact that if X is a real-valued random variable and f and g are two
increasing functions, then Cov(f (X), g(X)) ≥ 0. From this and the above identity,
it follows that for any bounded increasing function φ,

d

dγ
E

(
φ

(
HN(YN,γ )

)) ≥ 0.
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In particular, for any t ∈ R, P(HN(YN,γ ) ≥ t) is an increasing function of γ . This
is an important observation that will be used below.

Take any γ such that p is well defined and differentiable in an open neighbor-
hood of γ . Note that FN is a convex function, since F ′′

N is nonnegative by (4.6).
Therefore, for any h > 0,

F ′
N(γ ) ≤ FN(γ + h) − FN(γ )

h
.

Consequently, if h is small enough, then

lim sup
N→∞

F ′
N(γ )

LN

≤ p(γ + h) − p(γ )

h
.

Taking h → 0, we get

lim sup
N→∞

F ′
N(γ )

LN

≤ p′(γ ).

Similarly,

lim inf
N→∞

F ′
N(γ )

LN

≥ p′(γ ).

This proves that for all γ in an open neighborhood of β ,

lim
N→∞

F ′
N(γ )

LN

= p′(γ ).

Using the monotonicity of F ′
N and p′ and the continuity of p′ at β , it is easy to

conclude from the above identity that for any sequence γN → β ,

(4.8) lim
N→∞

F ′
N(γN)

LN

= p′(β).

By (4.5), note that for any γ∣∣F ′
N(γ )

∣∣ = ∣∣E(
HN(YN,γ )

)∣∣ ≤ CLN.

Therefore, ∫ β+L
−1/2
N

β
F ′′

N(γ ) dγ = F ′
N

(
β + L

−1/2
N

) − F ′
N(β) ≤ 2CLN.

Thus, there exists γN ∈ [β,β + L
−1/2
N ] such that

(4.9) F ′′
N(γN) ≤ 2CL

3/2
N .

Since LN → ∞, therefore, γN → β . Hence by (4.5), (4.6), (4.8) and (4.9),

(4.10) lim
N→∞E

(−HN(YN,γN
)

LN

)
= lim

N→∞
F ′

N(γN)

LN

= p′(β)
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and

lim
N→∞ Var

(−HN(YN,γN
)

LN

)
= lim

N→∞
F ′′

N(γN)

L2
N

= 0.

This implies that −HN(YN,γN
)/LN → p′(β) in probability. Therefore, by our pre-

vious observation about the monotonicity of tail probabilities,

lim
N→∞P

(−HN(YN,β)

LN

≥ p′(β) + δ

)
= 0

for any δ > 0. In a similar manner, one can show that

lim
N→∞P

(−HN(YN,β)

LN

≤ p′(β) − δ

)
= 0.

Thus, −HN(YN,β)/LN → p′(β) in probability. Consequently,

logρN(YN,β)

LN

→ p(β0) − p(β) − (β0 − β)p′(β) = q(β)

in probability. The proofs of parts (i) and (ii) are now easily completed by applying
Theorem 1.1. To prove part (iii), take any γ ∈ (β0, β). Since p′ is nonconstant in
any neighborhood of β and p′ is an increasing function due to the convexity of p,
therefore p′(γ ) < p′(β). Thus, by the convexity of p,

q(β) − q(γ ) = (β − β0)
(
p′(β) − p′(γ )

) + (β − γ )p′(γ ) + p(γ ) − p(β)

≥ (β − β0)
(
p′(β) − p′(γ )

) + (β − γ )
(
p′(γ ) − p′(β)

)
= (γ − β0)

(
p′(β) − p′(γ )

)
> 0.

(4.11)

By part (i) of the theorem, this implies that if b = q(β), then

Ẑn,N(γ )

ZN(γ )
→ 1

in probability and, therefore,

(4.12)
log Ẑn,N(γ )

LN

→ p(γ )

in probability. Now note that for any β ′,∣∣∣∣ d

dβ ′ log Ẑn,N

(
β ′)∣∣∣∣ =

∣∣∣∣
∑n

i=1 HN(Xi) exp(−(β ′ − β0)HN(Xi))∑n
i=1 exp(−(β ′ − β0)HN(Xi))

∣∣∣∣ ≤ CLN.

Therefore

(4.13)
∣∣log Ẑn,N(β) − log Ẑn,N(γ )

∣∣ ≤ CLN(β − γ ).

Since γ is an arbitrary point in (β0, β), it is now easy to complete the proof of part
(iii) using (4.12), (4.13) and the continuity of p. �
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PROOF OF THEOREM 3.5. Suppose that {WN }N≥1 is a sequence of real-
valued random variables and c is a real number. In this proof, we will use the
notation

P- lim inf
N→∞ WN ≥ c

to mean that for any ε > 0, limN→∞ P(WN ≥ c − ε) = 1. Similarly,
P- lim supN→∞ WN ≤ c means that for any ε > 0, limN→∞ P(WN ≤ c + ε) = 1,
and P- limN→∞ WN = c means that both of these hold, that is, WN → c in proba-
bility.

First, suppose that b ≤ q(β). Since p has no interval of linear behavior in the
interval I , therefore, the convexity of p implies that p′ is strictly increasing in I .
From this and a variant of (4.11), it is easy to see that in the interval I ∩ [β0,∞),
q is continuous and strictly increasing. Moreover, q(β0) = 0. It follows that for
any a ∈ [0, q(β)], there exists γ ∈ [β0, β] such that q(γ ) = a. Therefore, since
b ≤ q(β), therefore b = q(γ ) for some γ ∈ [β0, β]. Suppose that γ > β0. Then by
part (i) and part (iii) of Theorem 3.4,

P- lim
N→∞

1

LN

log

(
n∑

i=1

exp
(−(γ − β0)HN(Xi)

))

= q(γ ) + p(γ ) − p(β0) = (γ − β0)p
′(γ ).

(4.14)

Let UN(γ ) denote the left-hand side of (4.14), without the limit. Using the posi-
tivity of the second derivative, it is easy to see that UN is a convex function of γ .
Take any γ ′ ∈ (β0, γ ). Then by the convexity of UN , we have

max1≤i≤n(−HN(Xi))

LN

≥ 1

LN

∑n
i=1(−HN(Xi)) exp(−(γ − β0)HN(Xi))∑n

i=1 exp(−(γ − β0)HN(Xi))

= U ′
N(γ )

≥ UN(γ ) − UN(γ ′)
γ − γ ′ .

Now let N → ∞ on both sides and apply (4.14), and then let γ ′ → γ on the right.
This gives

(4.15) P- lim inf
N→∞

max1≤i≤n(−HN(Xi))

LN

≥ p′(γ ).

Next, note that

log

(
n∑

i=1

exp
(−(β − β0)HN(Xi)

))
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≤ (β − γ ) max
1≤i≤n

(−HN(Xi)
) + log

(
n∑

i=1

exp
(−(γ − β0)H(Xi)

))
.

By (4.14) and (4.15), this implies that

(4.16) P- lim sup
N→∞

− logQn,N

LN

≤ 0.

Note that this inequality was proved under the assumption that γ > β0. Next, sup-
pose that γ = β0. Observe the easy inequality

log

(
n∑

i=1

exp
(−(β − β0)HN(Xi)

)) ≤ (β − β0) max
1≤i≤n

(−HN(Xi)
) + logn.

From this and the fact that L−1
N logn → q(β0) = 0, it follows that (4.16) holds

even if γ = β0. Next, note that we trivially have

log

(
n∑

i=1

exp
(−(β − β0)HN(Xi)

)) ≥ log
(

max
1≤i≤n

exp
(−(β − β0)HN(Xi)

))

which is same as

(4.17) P- lim inf
N→∞

− logQn,N(β)

LN

≥ 0.

Equations (4.16) and (4.17) prove that if b ≤ q(β), then L−1
N logQn,N → 0 in

probability. Next, note that Qn,N ∈ [0,1], which implies that E(Qn,N) ∈ [0,1],
and hence

(4.18)
logE(Qn,N)

LN

≤ 0.

On the other hand, Jensen’s inequality gives

(4.19)
logE(Qn,N)

LN

≥ E(logQn,N)

LN

.

It is not difficult to see that since |HN | ≤ CLN and L−1
N logn → b < ∞, therefore,

the random variable |L−1
N logQn,N | is bounded by a nonrandom constant that does

not vary with N . Since we already know that

L−1
N logQn,N → 0

in probability, this shows that

lim
N→∞

E(logQn,N)

LN

= 0.

Combining this with (4.18) and (4.19), we get

lim
N→∞

logE(Qn,N)

LN

= 0.
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This completes the proof of part (i) of the theorem. Next, suppose that b > q(β).
Then note that by Theorem 3.4,

(4.20) P- lim
N→∞

ZN(β0)

nZN(β)

n∑
i=1

exp
(−(β − β0)HN(Xi)

) = 1.

Next, let

MN := max
1≤i≤n

exp
(−(β − β0)HN(Xi)

)
.

Since p is continuously differentiable in the interval I and p′ is strictly increasing,
therefore, there exists γ ∈ I ∩ (β,∞) such that b > q(γ ). If MN > exp(LN(β −
β0)p

′(γ )), then

MN ≤
n∑

i=1

exp
(−(β − β0)HN(Xi)

)
1{−HN(Xi)>LNp′(γ )} =: M ′

N.

Therefore,

(4.21) MN ≤ max
{
exp

(
LN(β − β0)p

′(γ )
)
,M ′

N

}
.

Define

(4.22) RN := ZN(β0)M
′
N

nZN(β)
.

Note that if Y is a random variable with law GN,β , then for any θ > 0,

E(RN) = E

(
ZN(β0)

ZN(β)
exp

(−(β − β0)HN(X1)
)
1{−HN(X1)>LNp′(γ )}

)

= P
(−HN(Y ) > LNp′(γ )

)
≤ e−θLNp′(γ )

E
(
e−θHN(Y ))

= exp
(−θLNp′(γ ) + FN(β + θ) − FN(β)

)
.

(4.23)

Let

c(θ) := p(β + θ) − p(β) − θp′(γ ),

and choose θ = (γ − β)/2. Then by the strict convexity of p in I ,

(4.24) c(θ) ≤ θ
(
p′(β + θ) − p′(γ )

)
< 0.

By (4.23) and Markov’s inequality,

P

(
logRN

LN

≥ c(θ)

2

)
≤ e−LNc(θ)/2

E(RN)

≤ exp
(
−LNc(θ)

2
− θLNp′(γ ) + FN(β + θ) − FN(β)

)
.
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Taking logarithm on both sides, dividing by LN and sending N → ∞, we get

(4.25) lim sup
N→∞

1

LN

logP
(

logRN

LN

≥ c(θ)

2

)
< 0.

In particular,

(4.26) P- lim sup
N→∞

logRN

LN

≤ c(θ)

2
.

Next, note that

lim
N→∞

1

LN

log
(

ZN(β0)

nZN(β)
exp

(
LN(β − β0)p

′(γ )
))

= p(β0) − p(β) − b + (β − β0)p
′(γ )

≤ q(γ ) − b.

(4.27)

From (4.21), (4.26) and (4.27), we get

(4.28) P- lim sup
N→∞

1

LN

log
(

ZN(β0)MN

nZN(β)

)
≤ max

{
q(γ ) − b,

c(θ)

2

}
.

By combining (4.20), (4.28), (4.24) and the fact that q(γ ) < b, this shows that
there exists c < 0 such that P(L−1

N logQn,N ≤ c) → 1 as N → ∞.
Next, let

VN := ZN(β0)

nZN(β)

n∑
i=1

exp
(−(β − β0)HN(Xi)

)
.

Then VN is nothing but the importance sampling estimate In(1) when the sampling
measure is GN,β0 and the target measure is GN,β . In this setting, we have already
seen in the proof of Theorem 3.4 that the quantity L of Theorem 1.1 is asymptotic
to LNq(β) [to see this, simply combine equations (4.7) and (4.10)]. Combined
with the fact that L−1

N logn → b, this implies that the quantity t of Theorem 1.1 is
asymptotic to LN(b − q(β)) in the present setting.

Next, let Y ∼ GN,β and ρN be the probability density of GN,β with respect
to GN,β0 . The formula (4.7) implies that logρN(Y ) is asymptotic to LN(p(β0) −
p(β)) − (β − β0)HN(Y ). Combining all of these observations and applying The-
orem 1.1, it follows that there is a positive constant c (which may depend on β , β0
and b) such that for all large enough N ,

E|VN − 1| ≤ e−cLN +
√
P

(−HN(Y ) ≥ LN

(
p′(β) + c

))
.

Take any θ > 0. Then

P
(−HN(Y ) ≥ LN

(
p′(β) + c

)) ≤ e−θLN(p′(β)+c)
E

(
e−θHN(Y )).

It is easy to see that logE(e−θHN(Y )) is asymptotic to LN(p(β +θ)−p(β)). Thus,
the logarithm of the right-hand side in the above display is asymptotic to −θcLN +
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LN(p(β +θ)−p(β)−θp′(β)). Since p′ is continuous in a neighborhood of β , we
can choose a θ small enough so that θc > p(β + θ) − p(β) − θp′(β). Therefore,
there exists C1 > 0 such that P(−HN(Y ) ≥ LN(p′(β)+ c)) ≤ e−C1LN for all large
enough N . Combining these steps, we see that there is a positive constant C2 such
that E|VN − 1| ≤ e−C2LN for all large N , and hence

(4.29) P(VN < 1/2) ≤ 2e−C2LN .

Now note that by (4.21),

(4.30) Qn,N ≤ max{SN,RN }
VN

,

where RN is defined in (4.22) and

SN := ZN(β0)

nZN(β)
exp

(
LN(β − β0)p

′(γ )
)
.

Recall that by (4.25), there are positive constants C3 and C4 such that for all large
enough N ,

(4.31) P
(
RN ≥ e−C3LN

) ≤ e−C4LN .

Since Qn,N ∈ [0,1], (4.29), (4.30) and (4.31) imply that

E(Qn,N) ≤ P(VN < 1/2) + P
(
RN ≥ e−C3LN

) + 2 max
{
SN, e−C3LN

}
≤ 2e−C2LN + e−C4LN + 2 max

{
SN, e−C3LN

}
.

However, we have already seen in (4.27) that there is a constant C5 > 0 such that
SN ≤ e−C5LN for all large enough N . Thus,

lim sup
N→∞

L−1
N logE(Qn,N) < 0.

This completes the proof of the theorem. �
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