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DIFFUSION APPROXIMATIONS FOR CONTROLLED WEAKLY
INTERACTING LARGE FINITE STATE SYSTEMS

WITH SIMULTANEOUS JUMPS1

BY AMARJIT BUDHIRAJA AND ERIC FRIEDLANDER

University of North Carolina at Chapel Hill

We consider a rate control problem for an N -particle weakly interacting
finite state Markov process. The process models the state evolution of a large
collection of particles and allows for multiple particles to change state simul-
taneously. Such models have been proposed for large communication systems
(e.g., ad hoc wireless networks) but are also suitable for other settings such
as chemical-reaction networks. An associated diffusion control problem is
presented and we show that the value function of the N -particle controlled
system converges to the value function of the limit diffusion control problem
as N → ∞. The diffusion coefficient in the limit model is typically degen-
erate; however, under suitable conditions there is an equivalent formulation
in terms of a controlled diffusion with a uniformly nondegenerate diffusion
coefficient. Using this equivalence, we show that near optimal continuous
feedback controls exist for the diffusion control problem. We then construct
near asymptotically optimal control policies for the N -particle system based
on such continuous feedback controls. Results from some numerical experi-
ments are presented.

1. Introduction. We study a pure jump, weakly interacting, Markovian par-
ticle system in which jump rates can be dynamically modulated by a controller.
The stochastic system of interest describes the state evolution of a collection of
N particles where each particle’s state takes values in a finite set X. By a weak
interaction, we mean that the jump rates for a typical particle depend on the states
of the remaining particles through the empirical distribution of particle states. Sys-
tem dynamics will allow for multiple particles to change states simultaneously, but
there will be a fixed finite number of jump types. Such jump-Markov processes
have been proposed as models for ad hoc wireless networks [1] of the following
form. Consider a system of N finite capacity servers (particles/nodes). Jobs of K
different types, each with their own capacity requirement, arrive at each node at
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rate λk, k = 1, . . . ,K and are admitted if there is enough available capacity. All the
jobs in the system of type k have exponential residence time with mean τ−1

k . After
an exponential holding time with mean γ−1

k , a job of type k will attempt to switch
to another server which is chosen uniformly at random, and is admitted if there is
available capacity; otherwise, the job is lost. The state of a particle describes the
number of various types of jobs being processed at the server. Under conditions,
by classical results, the stochastic process of particle state empirical measures con-
verges to the solution of a d-dimensional ordinary differential equation (ODE) (cf.
[16]), where d = |X|. This ODE captures the nominal behavior of the system over
time as N becomes large.

Taking a different perspective, the analysis of such ODE is a natural starting
point for system design. By studying the mapping between system parameters and
solution sets of the ODE, one can identify parameter values that lead to desirable
system behavior over time, at least in the law of large number limit as determined
by the solution of the ODE. However, even when the system has been designed
to reproduce a certain targeted nominal behavior the actual stochastic process of
interacting particles may deviate significantly from the behavior determined by
the ODE. It then becomes of interest to study dynamic control algorithms that
modulate controllable system parameters to nudge the stochastic process closer
to its desired nominal behavior. In general, adjusting system parameters incurs a
cost, and thus there is a tradeoff between this and the cost for deviating from the
nominal behavior. A natural approach for analyzing this tradeoff is through an
optimal stochastic control formulation where the controller seeks to minimize a
suitable cost function which accounts for both types of costs noted above.

The goal of this work is to develop a systematic stochastic control framework
for studying optimal regulation of large, weakly interacting, pure jump Markov
processes that arise from problems in communication networks. Since the jump
rates in the system are of O(N), and in a typical system N is large, an exact anal-
ysis of this control problem becomes computationally intractable, and thus one
seeks a suitable approximate approach. The basic idea is to consider a sequence of
networks indexed by N such that the given physical system is embedded in this se-
quence for some fixed large value of N . A suitable asymptotic model, as N → ∞,
is used as a surrogate for the control problem in the N th network. The asymptotic
model taken here is based on diffusion approximations which give the limit be-
havior of fluctuations of the empirical measure process from its LLN limit. In an
uncontrolled setting, such diffusion limits can be derived from classical martingale
problem techniques [14, 17] that are also the starting point here for developing an
asymptotic framework for the study of the optimal stochastic control problem. Dif-
fusion approximation methods have been used extensively in stochastic network
theory, in particular they have been very useful in the study of critically loaded
stochastic processing networks (see [2, 3, 7, 8, 10, 13, 19, 23] and references
therein). In this context, diffusion processes arise as approximations for a fixed
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number of centered renewal processes with rates approaching infinity. Limit theo-
rems and the scaling regime considered in these works (number of nodes is fixed,
traffic intensity approaches 1) is quite different from the one where the number
of nodes (particles) approaches infinity that is considered here. In communication
systems that motivate study of such interacting processes, jumps correspond to ei-
ther an admission of a job to one of the N nodes in the system, transfer of a job
from one node to another node, or the completion/rejection of a job (and thus exit
from the system). We consider a formulation in which controls can make “small”
adjustments to the rate values in order to nudge the system toward its nominal state.
Specifically, the overall rate of jumps in the system is O(N) whereas the allowable
rate controls will be O(

√
N). Although the magnitude of control becomes negligi-

ble compared to the overall rate as N becomes large, in the diffusion scaling such
a control can lead to an appreciable improvement in performance (see Section 7
for some numerical results). In the law of large numbers limit the controlled and
uncontrolled systems both converge to the same nominal behavior as expected, but
the diffusion limit of the two systems will in general differ in the drift coefficient.
In particular, under suitable feedback controls the centered and normalized con-
trolled process will converge to a diffusion with a nonlinear (in state) drift term
whereas the uncontrolled process will converge to a time inhomogeneous Gauss–
Markov process. In terms of cost, one can consider various types of criteria, but
for simplicity we restrict ourselves to a finite time horizon cost where the running
cost is a sum of two terms. The first term is a continuous function, with at most
polynomial growth, of the state of the centered and normalized empirical measure,
and the second is a finite convex function of the (normalized) control.

Rather than attempting to look for an optimal control for the stochastic control
problem for a fixed value of N , that is, for the N th system, we instead focus on the
more tractable goal of asymptotic optimality. More precisely, we are interested in
constructing a sequence of control policies (indexed by N ) such that the cost asso-
ciated with the N th system under the N th control policy converges to the smallest
possible value as N → ∞. Analogous notions of asymptotic optimality are rou-
tinely used in heavy traffic analysis of queuing networks [2, 3, 7, 8, 10, 13, 19],
but in the current work they are introduced in a very different asymptotic regime.
The key ingredient in the approach is to formulate and analyze a closely related
stochastic control problem for diffusion processes. Roughly speaking, the state
process in the diffusion control problem is the asymptotic analogue of the cen-
tered and normalized empirical measure process as N → ∞. The control enters in
the drift of the diffusion process whereas the diffusion coefficient is a nonrandom
function of time. Our main result, Theorem 2.8, shows that the diffusion control
problem is a good approximation of the control problem for the N th system, when
N is sufficiently large. Specifically, this theorem says that the value function asso-
ciated with the control problem for the N th system converges to the value function
of the limit diffusion control problem. The key ingredients in the proof are Theo-
rems 4.1, 5.5 and 6.3. Theorem 4.1 gives the lower bound, namely it shows that the
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value function of the N th system, asymptotically as N → ∞, is bounded below by
the value function of the diffusion control problem. The key steps in the proof are
to establish suitable tightness properties of the sequence of scaled state and con-
trol processes and the characterization of the weak limit points. For the first step,
it is convenient to work with the relaxed control formulation (cf. [6, 19]) through
which one can view controls as elements of a tractable Polish space. The second
step proceeds via classical martingale problem techniques (cf. [11, 14, 22]). Theo-
rems 5.5 and 6.3 give the main steps needed for the complementary upper bound.
For this bound, the main idea is to show that for any fixed ε > 0, there exists an
ε-optimal continuous feedback control for the diffusion control problem (Theo-
rem 6.3), and that any such feedback control can be used to construct a sequence
of control policies for the interacting particle system such that the associated costs
converge to the cost under the feedback policy for the diffusion control problem
(Theorem 5.5). We begin, in Theorem 6.1, by arguing that for the diffusion control
problem the infimum over all admissible controls is the same as that over the class
of feedback controls. Proof of this proceeds via certain conditioning arguments
and PDE characterization results (cf. [6]) that allow the construction of a feedback
control associated with any given admissible control such that the cost correspond-
ing to the feedback control is no larger than that of the given admissible control.
The result says that one can find an ε-optimal control in the space of feedback
controls. Although any such control corresponds to a natural collection of control
policies for the sequence of N -particle systems, in order to prove the convergence
of associated costs, which once more is based on martingale problem methods,
we require additional regularity properties of the feedback control. The key step is
Theorem 6.3 that shows that for any feedback control g there exists a sequence of
continuous feedback controls {gn} for the limit diffusion control problem such that
the associated sequence of controlled diffusions converge weakly to the diffusion
under the feedback control g. The proof requires some estimates based on an ap-
plication of Girsanov’s theorem which, in turn, relies on the nondegeneracy of the
diffusion coefficient. Although the controlled diffusion that describes the asymp-
totic model is degenerate, we show that there is an equivalent formulation in terms
of a (d − 1)-dimensional controlled diffusion which is uniformly nondegenerate
under suitable assumptions. This equivalent representation, in addition to provid-
ing a feedback control of the desired form, is also key in proving weak uniqueness
for stochastic differential equations (SDE) describing limit state processes associ-
ated with feedback controls.

In Section 7, we will illustrate our approach through a numerical example. This
example is the controlled analogue of a model introduced in [1], and one can ap-
proach more general forms of this model along similar lines. The running cost
function we consider is quadratic in the normalized state and control processes.
The corresponding limit diffusion control problem in this case becomes the clas-
sical stochastic linear quadratic regulator (LQR) with time dependent coefficients
(see [12]). The optimal feedback control for the diffusion control problem can be
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given explicitly by solving a suitable Riccati equation. Our numerical results show
that implementation of the control policy based on the optimal feedback control
for the limit LQR to a system with N = 10,000 leads to an improvement of up to
15.5% on the cost for the uncontrolled system. A more detailed numerical analysis
of the implementation of such diffusion approximation based control schemes will
be presented elsewhere.

The paper is organized as follows. Section 2 presents the precise system of
weakly interacting pure jump processes considered here. We will also present key
assumptions and the main result of this work. Sections 2.1 and 2.2 describe the un-
controlled and controlled systems, respectively. Assumptions which ensure conver-
gence of the system to its fluid limit are introduced for both cases. Section 2.2 also
introduces the cost criteria that is considered in this work. Section 2.3 presents the
diffusion control problem that formally corresponds to the limit as N → ∞ of the
control problem for theN th system. The section also introduces the key nondegen-
eracy assumption (Condition 2.6) that is needed in order to obtain weak uniqueness
of SDE with feedback controls and existence of near optimal continuous feedback
controls. We also introduce our main assumptions on the controlled rate functions
(Conditions 2.4 and 2.5). In Section 2.4, we present our main result, namely The-
orem 2.8. Section 7 presents results from a numerical study. The remainder of this
work is devoted to proof of Theorem 2.8. In Section 3, we present a key tightness
result which is used both in the proof of the upper and lower bound. In Section 4
(see Theorem 4.1), we prove the lower bound that was discussed earlier in the In-
troduction. In preparation for the proof of the upper bound, we introduce the class
of feedback controls in Section 5. Sections 5.1 and 5.2 describe such controls for
the prelimit system and the limit diffusion model, respectively. Section 5.3 con-
structs a sequence of prelimit control policies from an arbitrary continuous feed-
back control for the diffusion control problem such that the cost for the particle
systems under the sequence of control policies converges to the cost of the corre-
sponding controlled diffusion. Finally, in Section 6, we show that the infimum of
the cost for the limit diffusion over all admissible controls is the same as that over
the class of feedback controls and that there exist continuous feedback controls
which are ε-optimal. The results from Sections 4, 5 and 6, (namely Theorems 4.1,
5.5 and 6.3) together give our main result, Theorem 2.8.

1.1. Notation. The following notation will be used. We will use the notation
{Xt } and {X(t)} interchangeably for stochastic processes. The space of probability
measures on a Polish space S, equipped with the topology of weak convergence,
will be denoted by P(S). For S valued random variables X, XN , N ≥ 1, conver-
gence in distribution of XN to X as N → ∞ will be denoted as XN ⇒ X. The
Borel σ -field on a Polish space S will be denoted as B(S). The space of func-
tions that are right continuous with left limits (RCLL) from [0, T ] to S will be
denoted as D([0, T ] : S) and equipped with the usual Skorohod topology. Sim-
ilarly, C([0, T ] : S) will be the space of continuous functions from [0, T ] to S,
equipped with the uniform topology.
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We will usually denote by κ, κ1, κ2, . . . , the constants that appear in various
estimates within a proof. The values of these constants may change from one proof
to another. Cardinality of a finite set A will be denoted as |A|. We will denote by
B(r) the L1 ball of radius r centered at the origin in some Euclidean space R

d .
The Euclidean norm of a d-dimensional vector or a d × d matrix will be denoted
as ‖ · ‖. The linear span of a set A ⊂ R

d will be denoted as SpA. The space of
continuous (resp., continuous and bounded) functions from metric space S1 to S2
will be denoted as C(S1 : S2) [resp., Cb(S1 : S2)]. When S2 = R we sometimes
abbreviate this notation and write C(S1) and Cb(S1). For a bounded function f :
S → R, ‖f ‖∞ .= supx∈S |f (x)|. The space of real valued continuous functions
defined on R

d whose first k ∈ N (resp., all) derivatives exist and are continuous will
be denoted C

k(Rd) [resp., C∞(Rd)]. We denote the subset of Ck(Rd) of functions
with compact support as C

k
c(R

d). Similarly, C1,2([0, T ] × R
d) denotes the space

of functions from (0, T )×R
d to R that are once continuously differentiable in the

time coordinate, twice continuously differentiable in the space coordinate, and are
such that the function and its derivatives can be continuously extended to [0, T ] ×
R
d . The space of m× n-dimensional matrices whose entries take values in a set S

will be denoted M
m×n(S). For M ∈ M

m×n(S), Mi,j will the denote that entry of
M which is in the ith row and j th column. The transpose of a matrix M will be
denoted as M ′ and trace of a square matrix M will be denoted as Tr(M). 1 and I
will denote the matrix of 1’s and the identity matrix, respectively, the dimension
of which will be context dependent. For a Polish space S we denote by M(S) the
space of all locally finite measures on S. This space will be equipped with the usual
vague topology, namely, the weakest topology such that for every f ∈ Cb(S) with
compact support,

ν �→
∫
S

f (u)ν(du), ν ∈M(S),

is continuous.

2. Problem formulation and main results. In this section, we will describe
the basic control problem of interest and give a precise mathematical formulation.
We begin by introducing the uncontrolled pure jump Markov process in Section 2.1
and recall a classical law of large numbers result for such systems. Section 2.2
will present the controlled system that we study and also our cost criteria. In Sec-
tion 2.3, we will introduce our main assumptions on the controlled rate matrices
and based on these assumptions introduce a control problem for diffusion pro-
cesses that can formally be regarded as the limit of control problems considered in
Section 2.2. Finally, in Section 2.4 we present our main result. This result says in
particular that a suitable near optimal diffusion control can be used to construct a
sequence of control policies for the particle system in Section 2.2 that are asymp-
totically near optimal. For a numerical example that illustrates the application of
the result, we refer the reader to Section 7 where we present a model from com-



210 A. BUDHIRAJA AND E. FRIEDLANDER

munication networks that is a controlled version of some models introduced in [1]
and which falls within the framework considered here.

2.1. Weakly interacting jump Markov process. Fix T ∈ (0,∞). All stochas-
tic processes in this work will be considered on the time horizon [0, T ]. Consider
a system of N particles where the state of each particle takes values in the set
X = {1, . . . , d}. The evolution of the system is described by an N -dimensional
pure jump Markov process XN(t)= {X1

N(t), . . . ,X
N
N (t)} where XiN(t) represents

the state of particle i at time t . The system allows multiple particles to change state
at a given time, but restricts such jumps to K transition types; in particular the kth
transition type can only affect at most nk particles, k ∈ K .= {1, . . . ,K}. The jump
intensity is state dependent, however, the state dependence is of the following spe-
cific form: Denoting for x ∈ X

N , the probability measure { 1
N

∑N
i=1 1{xi}(m)}m∈X

on X by {ζmN (x)}m∈X, the jump intensity at the instant t is a function of ζN(XN(t)).
The set of jumps and the corresponding transition rates can be described in terms
of the subset MN of Md×d(N0) consisting of all matrices with zeroes on the diag-
onal and with sum of all entries at most N , as follows. To any k ∈ K, we associate
a map 
kN : P(X)×MN →R+ such that for x ∈X

N,
kN(ζN(x),�)= 0 if

∑
i,j

�i,j > nk or
d∑
j=1

�i,j > Nζ
i
N(x), i = 1, . . . , d.(2.1)

Roughly speaking, 
kN(ζN(x),�) will give the rate of type k jumps (associated
with �) when the system is in state x ∈ X

N . A type k jump associated with � ∈
MN corresponds to �ij particles simultaneously jumping from state i to state j ,
for all i �= j and i, j = 1, . . . , d . Thus the first inequality in (2.1) says that at most
nk particles change states under a jump of type k, while the second inequality says
that a jump of type k can occur only when there are enough particles to participate
in it. In terms of 
kN , the overall rate of jumps of type k associated with �, when
the system is in state x ∈ X

N , is given as


kN
(
ζN(x),�

) d∏
m=1

⎛
⎜⎜⎝
NζmN (x)
d∑
j=1

�m,j

⎞
⎟⎟⎠

⎛
⎜⎜⎝

d∑
j=1

�m,j

�m,1, . . . ,�m,d

⎞
⎟⎟⎠

and such a jump takes a state x ∈ X
N to a state x̃ ∈X

N where

NζmN (x̃)=NζmN (x)+
d∑
i=1

�i,m −
d∑
j=1

�m,j , m= 1, . . . , d.

A more convenient description of this system is given through the pure jump
Markov process {μN(t)} where μN(t)

.= ζN(XN(t)) represents the empirical mea-
sure of the particle states. We will identify the space of probability measures,
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P(X), with the d-dimensional simplex, S .= {(x1, . . . , xd) ∈ R
d+|∑d

i=1 xi = 1}.
Similarly, we will identify PN(X), the space of all μ ∈ P(X) such that μ{j} ∈ 1

N
N

for all j ∈ X, with SN = S ∩ 1
N
N
d . Let, for k ∈ K,

�k
.=
{
(I, J ) ∈N

d
0 ×N

d
0 : ∑
x∈X
Ix = ∑

x∈X
Jx ≤ nk,

∑
x∈X

|Jx − Ix |> 0
}
,

and for ν = (I, J ) ∈�k let


(ν)=
(I, J ) .=
{
� ∈ MN

∣∣∣∣
d∑
j=1

�i,j = Ii,
d∑
i=1

�i,j = Jj , i, j = 1, . . . , d

}
.

The jumps of {μN(t)} are described as follows. For each k ∈ K and ν = (I, J ) ∈
�k , the empirical measure jumps from r �→ r + 1

N
eν with rate

�̄kN(r, ν)
.= ∑
�∈
(ν)


kN(r,�)

d∏
m=1

⎛
⎜⎜⎝
Nrm

d∑
j=1

�m,j

⎞
⎟⎟⎠

⎛
⎜⎜⎝

d∑
j=1

�m,j

�m,1, . . . ,�m,d

⎞
⎟⎟⎠ ,

where r = (rm)dm=1 ∈ SN , eν
.= ∑

x∈X(Jx − Ix)ex and ex is the unit vector in
R
d with 1 at the xth coordinate and 0 everywhere else. Thus a jump associated

with k ∈ K and ν ∈ �k corresponds to Ix particles in state x, x ∈ X, simultane-
ously jumping to new states such that Jy of the particles end up in state y, y ∈ X.
A succinct description of the evolution of the Markov process μN(t) is through its
infinitesimal generator which is given as

L̄Nf (r)= ∑
k∈K

∑
ν∈�k

�̄kN(r, ν)

[
f

(
r + 1

N
eν

)
− f (r)

]
, r ∈ SN.(2.2)

We will make the following assumption on the asymptotic behavior of the rates.

CONDITION 2.1. For all k ∈ K and ν ∈�k there exists a Lipschitz function
r �→ �k(r, ν) on S such that

lim sup
N→∞

sup
r∈SN

∣∣∣∣ 1

N
�̄kN(r, ν)− �k(r, ν)

∣∣∣∣ = 0.(2.3)

We now present a classical law of large numbers result that characterizes the
limit, μ(t), of the pure jump Markov process μN(t) as N → ∞. For a proof, we
refer the reader to Theorem 2.11 of [16].

PROPOSITION 2.2. Define

F(r)
.= ∑
k∈K

∑
ν∈�k

�k(r, ν)eν, r ∈ S.(2.4)
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Suppose that μN(0)→ μ0 in probability and Condition 2.1 holds, then μN(t)→
μ(t) uniformly on [0, T ], in probability, where μ(t) is the unique solution of the
ODE:

μ̇(t)= F (
μ(t)

)
, μ(0)= μ0.(2.5)

2.2. Controlled system. In this work, we will study a controlled version of the
Markov process introduced in Section 2.1. Roughly speaking, control action will
allow perturbations of the rate function �̄kN that are of O( 1√

N
). The goal of the

controller is to minimize a suitable finite time horizon cost. A precise mathematical
formulation is as follows. Let

�
.= ∑
k∈K

∣∣�k∣∣,(2.6)

� be a compact convex subset of R�, and �N = 1√
N
� for N ∈ N. �N will be the

control set in the N th system. Let {�kN(r, u, ν) : r ∈ SN,u ∈�N,k ∈ K, ν ∈�k}
be a collection of nonnegative real numbers. More precisely, (r, u) �→ �kN(r, u, ν)

is a map from SN×�N to R+ for eachN ∈ N, k ∈ K, ν ∈�k . These correspond to
the controlled rates in the N th system. We now introduce the controlled stochastic
processes associated with such controlled rates.

Fix N ∈ N and let (�N,FN,PN) be a probability space on which are de-
fined unit rate mutually independent Poisson processes {Nk,ν, k ∈ K, ν ∈�k}. The
processes {Nk,ν} will be used to describe the stream of jumps corresponding to
k ∈ K, ν ∈�k . Let UN be a �N -valued measurable process representing the rate
control in the system. Under control UN , the state process μN(·) is given by the
following equation:

(2.7) μN(t)= μN(0)+ 1

N

∑
k∈K

∑
ν∈�k

eνNk,ν
(∫ t

0
�kN

(
μN(s),U

N(s), ν
)
ds

)
.

In order for such a control to be admissible it should satisfy suitable nonanticipa-
tive properties. More precisely,UN is said to be an admissible control if, with some
filtration {FNt } on (�N,FN,PN), UN is {FNt }-progressively measurable, μN is
{FNt }-adapted, and {MNk,ν, k ∈ K, ν ∈�k} defined below are {FNt }-martingales

MNk,ν(t)
.= 1

N

(
Nk,ν

(∫ t
0
�kN

(
μN(s),U

N(s), ν
)
ds

)

−
∫ t

0
�kN

(
μN(s),U

N(s), ν
)
ds

)(2.8)

with quadratic variation processes 〈MNk,ν,MNk′,ν′ 〉t = δ(k,ν),(k′,ν′) 1
N2

∫ t
0 �

k
N(μN(s),

UN(s), ν) ds where δα,α′ equals 1 if α = α′ and 0 otherwise. We note that in gen-
eral such a filtration will depend on the control. We denote the set of all such
admissible controls as AN .
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For a UN ∈ AN , define the process

VN(s)=
√
N

(
μN(s)−μ(s)),(2.9)

where, as above, μN is the state process under control UN . We consider a cost
that is a function of the suitably normalized control action and the centered and
normalized state of the system given through the process {VN(·)}. Specifically,
we consider for N ∈ N, xN ∈ SN a “finite time horizon cost” associated with an
admissible control UN ∈ AN and initial condition xN as

JN
(
UN,vN

) .= E

∫ T
0

(
k1

(
VN(s)

) + k2
(√
NUN(s)

))
ds,(2.10)

where vN = √
N(xN −μ0), k2 ∈ C(�) is a nonnegative convex function, and k1 ∈

C(Rd) is a nonnegative function with at most polynomial growth, that is, there
exists a p > 1 and Ck1 ∈ (0,∞) such that k1(x) ≤ Ck1(1 + ‖x‖p) for all x ∈ R

d .
Define the corresponding value function to be

RN(vN)
.= inf
UN∈AN

JN
(
UN,vN

)
.

Computing an optimal control for the above problem for a givenN is, in general,
challenging and computationally intensive. It is therefore of interest to consider
approximate approaches. In the next section, we introduce some conditions on the
controlled rate matrices that will suggest a natural diffusion approximation for this
control problem.

2.3. Diffusion control problem. We now introduce our main assumptions on
the controlled rate matrices. The first two conditions make precise the requirement
that controlled rates are O( 1√

N
) perturbations of the nominal values given through

{�k, k ∈ K}. In particular, the first condition will ensure that the controlled pure
jump Markov process will converge to the same limit as the uncontrolled process
μN in Section 2.1 under the law of large number scaling.

CONDITION 2.3. With {�k(r, ν), k ∈ K, ν ∈�k, r ∈ S} as in Condition 2.1

lim sup
N→∞

sup
r∈SN

sup
u∈�N

∣∣∣∣ 1

N
�kN(r, u, ν)− �k(r, ν)

∣∣∣∣ = 0.(2.11)

We next introduce a strengthening of Condition 2.3 that will play a key role in
the proof of tightness of the sequence {VN } of controlled state processes.

CONDITION 2.4. There exists a C1 ∈ (0,∞) such that for every N ∈ N

(2.12) sup
u∈�N

sup
ξ∈SN(y)

√
N

∣∣∣∣ 1

N
�kN

(
1√
N
y + ξ, u, ν

)
− �k(ξ, ν)

∣∣∣∣ ≤ C1
(
1 + ‖y‖)

for all k ∈ K, ν ∈�k , and y ∈ B(2√
N)⊂ R

d where SN(y)= {ξ ∈ S : 1√
N
y+ ξ ∈

SN }.
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Taking y = 0 in (2.12) we see that Condition 2.4 implies that there exists a
C2 ∈ (0,∞) such that

sup
N≥1

sup
r∈SN

sup
u∈�N

1

N
�kN(r, u, ν)≤ C2(2.13)

for all k ∈ K, ν ∈�k . Note also that Condition 2.4 implies Condition 2.3.
The next condition will identify the drift term in our limit diffusion control

problem. Note that any u ∈� (or �N ) can be indexed by k ∈ K and ν ∈�k and
we will denote the corresponding entry by uk,ν .

CONDITION 2.5. There exist, for each k ∈ K, ν ∈ �k , bounded functions
hk1(ν, ·) : S →R and hk2(ν, ·) : S →R

d such that for u ∈�, ξ ∈ S , y ∈ R
d , with

Hk(y, ξ, u, ν)
.= hk1(ν, ξ)uk,ν + hk2(ν, ξ) · y,

we have for all compact A⊂ R
d ,

lim sup
N→∞

sup
u∈�

sup
y∈A

sup
ξ∈SN(y)

∣∣βNk (y, ξ, u, ν)∣∣ = 0,(2.14)

where for N ∈ N, k ∈ K, and ν ∈�k , we define βNk (·, ·, ·, ν) : Rd ×S ×�→R as

βNk (y, ξ, u, ν)
.= √
N

(
1

N
�kN

(
1√
N
y + ξ, 1√

N
u,ν

)
− �k(ξ, ν)

)

−Hk(y, ξ, u, ν),
if ξ ∈ SN(y) and 0 otherwise.

Define η : [0, T ] ×R
� →R

d and β : [0, T ] → R
d×d as

η(t, u)
.= ∑
k∈K

∑
ν∈�k

(
hk1

(
ν,μ(t)

)
uk,ν

)
eν and

β(t)
.= ∑
k∈K

∑
ν∈�k

eν
[
hk2

(
ν,μ(t)

)]′
.

(2.15)

Note that

(2.16)
∑
k∈K

∑
ν∈�k

Hk
(
y,μ(t), u, ν

)
eν = η(t, u)+ β(t)y, t ∈ [0, T ], y ∈ R

d .

Let a : [0, T ] → R
d×d be defined as

a(t)
.= ∑
k∈K

∑
ν∈�k

(
�k

(
μ(t), ν

))
eνe

′
ν.

The d×d matrix a(t) will be the square of the diffusion coefficient for the limit
controlled diffusion process. Note that a(t) is a singular matrix since eν · 1 = 0
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for all k ∈ K and ν ∈ �k . Let Q = [q1 . . . qd ], qk ∈ R
d , be a d × d orthogonal

matrix (i.e., QQ′ = Q′Q = I ) such that qd = 1√
d

1. Then, in view of the above
observation,

Q′a(t)Q=
(
α(t) 0

0 0

)
,(2.17)

where α(·) is a Lipschitz, nonnegative definite, (d − 1)× (d − 1) matrix valued
function. Let α1/2(t) be the symmetric square root of α(t). Since t �→ α(t) is
continuous so is t �→ α1/2(t) (see, e.g., [9]). Define

σ(t)
.=Q

[
α1/2(t) 0

0 0

]
Q′.(2.18)

The main goal of this paper is to show that an optimal control problem for
certain diffusion processes can be used to construct asymptotically near opti-
mal control policies for the sequence of controlled systems in Section 2.2. We
now introduce this diffusion control problem. Let (�,F,P, {Ft}) be a filtered
probability space with a d-dimensional {Ft }-Brownian motion {Wt }. We refer
to (�,F,P, {Ft}, {Wt }) as a system and denote it by �. Denote the collection
of Ft -progressively measurable, � valued processes as A(�). This collection
will represent the set of admissible controls for the diffusion control problem.
The initial condition v0 for our controlled diffusion process will lie in the set
Vd−1 = {x ∈ R

d |x · 1 = 0}. For U ∈ A(�) and v0 ∈ Vd−1, let V be the unique
pathwise solution of

V (t)= v0 +
∫ t

0
η
(
s,U(s)

)
ds +

∫ t
0
β(s)V (s) ds +

∫ t
0
σ(s) dW(s),(2.19)

where η,β are as introduced in (2.15) and σ is as in (2.18). Define the cost asso-
ciated with U ∈ A(�) and v0 ∈ Vd−1 as

J (U,v0)
.= E

∫ T
0

(
k1

(
V (s)

) + k2
(
U(s)

))
ds.(2.20)

The value function associated with the above diffusion control problem is

R(v0)
.= inf
�

inf
U∈A(�) J (U, v0),

where the outside infimum is taken over all possible systems �.
Although the matrix σ(t) is singular for each t , the following condition will

ensure that the dynamics of V restricted to a certain (d− 1)-dimensional subspace
is nondegenerate.

CONDITION 2.6. There exists a �∗ ⊂ ⋃
k∈K�

k such that Sp{eν : ν ∈ �∗}
equals Vd−1, and for every ν ∈�∗ there is a kν ∈ K such that ν ∈�kν and

κ(T )
.= inf
ν∈�∗ inf

0≤t≤T �
kν
(
μ(t), ν

)
> 0.
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The following lemma shows that under Condition 2.6, α is uniformly nonde-
generate on compact sets.

LEMMA 2.7. Under Condition 2.6, {α(t) : t ∈ [0, T ]} is a uniformly posi-
tive definite collection, namely, there exists a C(T ) ∈ (0,∞) such that x′α(t)x ≥
C(T )‖x‖2 for all x ∈ R

d−1 and 0 ≤ t ≤ T .

PROOF. We first show that the matrix G = ∑
ν∈�∗ eνe′ν satisfies, for some

CG ∈ (0,∞),
ξ ′Gξ ≥CG‖ξ‖2(2.21)

for all ξ ∈ Vd−1. For this, it satisfies to check that for any nonzero ξ ∈ Vd−1,
ξ ′Gξ > 0.

Suppose for some nonzero ξ ∈ Vd−1, ξ ′Gξ = 0. Since ξ ′Gξ = ∑
ξ∈�∗ |ξ · eν |2

and Sp{eν : ν ∈ �∗} = Vd−1, we must have ξ ⊥ Vd−1, but by assumption ξ is a
nonzero element of Vd−1, which is a contradiction. This proves (2.21).

Now for x ∈ R
d−1, letting x̂ = ( x

0
) ∈ R

d ,

x′α(t)x = x̂′Q′a(t)Qx̂ = (Qx̂)′a(t)(Qx̂).
Since 1 = √

dqd and x̂d = 0,

Qx̂ · 1 = (q1x̂1 + · · · + qdx̂d) · 1 = (q1x1 + · · · + qd−1xd−1) · 1 = 0.

Thus y =Qx̂ ∈Vd−1, and consequently for t ∈ [0, T ],
y′a(t)y = ∑

k∈K

∑
ν∈�k

(
�k

(
μ(t), ν

))
y′eνe′νy

≥ ∑
ν∈�∗

(
�k(ν)

(
μ(t), ν

))
y′eνe′νy ≥ κ(T )y′Gy ≥ κ(T )CG‖y‖2.

Thus

x′α(t)x ≥ κ(T )CG‖Qx̂‖2 = κ(T )CG‖x̂‖2 = κ(T )CG‖x‖2(2.22)

and the result follows. �

Since t �→ α(t) is Lipschitz, it follows from Lemma 2.7 that under Condi-
tion 2.6, t �→ α1/2(t) is Lipschitz as well (see Theorem 5.2.2 in [22]). Note from
(2.22), that x′α1/2(t)x ≥ (κ(T )CG)1/2‖x‖2 for all x ∈ R

d×d and t ∈ [0, T ]. In
particular,

sup
0≤t≤T

∥∥α−1/2(t)
∥∥<∞.(2.23)
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2.4. Main result. We now present the main result of this work. In Section 5,
we will show that for every measurable function g : [0, T ] ×R

d →� there exists
a system � and a Ug ∈ A(�) such that the corresponding controlled diffusion
process is a (time inhomogeneous) Markov process with generator

Lgf (t, x) .= ∇f (x) · [η(t, g(t, x)) + β(t)x]
+ 1

2
Tr

(
σ(t)D2f (x)σ ′(t)

)
, f ∈ C

∞
c

(
R
d),(2.24)

where ∇ and D2 are the gradient and the Hessian operators, respectively. Further-
more, as we will describe in Section 5, such a g also defines a control UNg in the
N th system, under which the state process μgN is a time inhomogeneous Markov
process [see (5.3)]. We refer to Ug and UNg as the feedback controls associated
with g for the diffusion control problem and the N th controlled system, respec-
tively. The following is the main result of this work. It says the following three
things: (i) the value functions of the N -particle control problem converge to that
of the diffusion control problem asN → ∞; (ii) for every ε > 0, there exists a con-
tinuous ε-optimal feedback control for the diffusion control problem; (iii) a near
optimal continuous feedback control for the diffusion control problem can be used
to construct a sequence of asymptotically near optimal controls for the systems
indexed by N .

THEOREM 2.8. Suppose Conditions 2.4, 2.5 and 2.6 hold. Let xN ∈ SN be
such that vN = √

N(xN − x0)→ v0 as N → ∞. Then:

(i) RN(vN)→R(v0) as N → ∞.
(ii) For every ε > 0, there is a continuous gε : [0, T ] ×R

d →� such that

J (Ugε , v0)≤R(v0)+ ε.
(iii) For any continuous g : [0, T ] × R

d → �, JN(UNg , vN)→ J (Ug, v0) as
N → ∞. In particular, with gε as in (ii),

R(v0)= lim
N→∞RN(vN)≤ lim

N→∞JN
(
UNgε , vN

) ≤R(v0)+ ε.

PROOF. The above result will be proved in three parts. First, in Theorem 4.1
we will show that for all vN, v0 as in the statement,

lim inf
N→∞ RN(vN)≥R(v0).

Next, Theorem 5.5 shows the first statement in (iii). Finally, in Theorem 6.3 we
prove part (ii) of the theorem.

Combining the above results, we see that for each ε > 0

lim sup
N→∞

RN(vN)≤ lim
N→∞J

(
UNgε , vN

) = J (Ugε , v0)≤R(v0)+ ε.
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Since ε > 0 is arbitrary, it follows immediately that lim supN→∞RN(vN)≤R(v0)

completing the proof of part (i) and also the second statement in (iii). �

Proof of Theorems 4.1, 5.5 and 6.3 are given in Sections 4, 5 and 6, respectively.
Section 7 of the paper will present an example that is a controlled analogue of
systems introduced in [1] as models for ad hoc wireless networks. We will verify
Conditions 2.4–2.6 for this example and describe how results from Theorem 2.8
can be used to construct a sequence of asymptotically near optimal control policies.

3. Tightness. In this section, we prove a tightness result which will be needed
in the proofs of Theorems 4.2 and 5.5. For u ∈�N , k ∈ K and ν ∈�k , we extend
the map r→ �kN(r, u, ν) to all of Rd by setting �kN(r, u, ν)= 0 if r /∈ SN .

For UN ∈ AN , define VN by (2.9) where μN is the controlled Markov pro-
cess corresponding to the system under control UN given as in (2.7). Define
γN : [0, T ] × R

d → R
d as γN(t, x)

.= μ(t) + 1√
N
x, for x ∈ R

d, t ∈ [0, T ] and

for φ ∈ C
2(Rd), s ∈ [0, T ], u ∈�N , and y ∈R

d define

LNu (φ, s, y)
.= ∑
k∈K

∑
ν∈�k

�kN
(
γN(s, y), u, ν

)[
φ

(
y + 1√

N
eν

)
− φ(y)

]

− √
NF

(
μ(s)

)∇φ(y).
(3.1)

For i = 1, . . . , d define φi(y) .= yi and denote the ith coordinate of eν and F by
eiν and F i , respectively. Let

b
i,u
N (s, y)

.= LNu
(
φi, s, y

) = ∑
k∈K

∑
ν∈�k

�kN
(
γN(s, y), u, ν

) 1√
N
eiν − √

NF i
(
μ(s)

)

= √
N

∑
k∈K

∑
ν∈�k

eiν

(
1

N
�kN

(
γN(s, y), u, ν

) − �k(μ(s), ν)),
where the second equality follows from the definition of F in Proposition 2.2.
Also, for i, j = 1, . . . , d let

a
i,j,u
N (s, y)

.= LNu
(
φiφj , s, y

) − yibj,uN (s, y)− yjbi,uN (s, y)

= ∑
k∈K

∑
ν∈�k

�kN
(
γN(s, y), u, ν

)( yi√
N
ejν + yj√

N
eiν + 1

N
eiνe

j
ν

)

− yi
√
NFj

(
μ(s)

) − yj
√
NF i

(
μ(s)

) − yibj,uN (s, y)− yjbi,uN (s, y)

= ∑
k∈K

∑
ν∈�k

�kN
(
γN(s, y), u, ν

) 1

N
eiνe

j
ν .

We write buN = (b1,u
N , . . . , b

d,u
N ) and auN = (ai,j,uN )i,j=1,...,d .
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Let

nK
.= 2 max

k∈K
nk.(3.2)

The following lemma gives a key bound needed for tightness.

LEMMA 3.1. Suppose Condition 2.4 holds. Then there exists C3 ∈ (0,∞)
such that for every N ∈ N and t ∈ [0, T ]

(∥∥bUN(t)N

(
t, VN(t)

)∥∥2 + Tr
(
a
UN(t)
N

(
t, VN(t)

))) ≤ C3
(
1 + ∥∥VN(t)∥∥2)

almost everywhere for every UN ∈ AN .

PROOF. It follows from (2.13) that for y ∈ B(2√
N) such that μ(t) ∈ SN(y),

u ∈�N and i = 1, . . . , d ,

a
i,i,u
N (t, y)= ∑

k∈K

∑
ν∈�k

�kN
(
γN(t, y), u, ν

) 1

N
eiνe

i
ν ≤ ∑

k∈K

∑
ν∈�k

C2e
i
νe
i
ν ≤ C2�n

2
K,

and from Condition 2.4,

b
i,u
N (t, y)

2 =
(∑
k∈K

∑
ν∈�k

eiν

√
N

(
1

N
�kN

(
γN(t, y), u, ν

) − �k(μ(t), ν)))2

≤
(∑
k∈K

∑
ν∈�k

∣∣eiν ∣∣C1
(
1 + ‖y‖))2

≤ (
C1�nK

(
1 + ‖y‖))2

≤ 2C2
1�

2n2
K
(
1 + ‖y‖2).

The result now follows on noting that VN(t) ∈ B(2√
N) and μ(t) ∈ SN(VN(t))

a.s. �

For N ≥ 1 and φ ∈ C
2(Rd), let ψN ∈ C

1,2([0, T ] ×R
d) be defined as

ψN(t, y)
.= φ(√N(

y −μ(t))), t ∈ [0, T ], y ∈ R
d .

Note that φ(x)=ψN(t, γN(t, x)). Using (2.7) and Dynkin’s formula,

φ
(
VN(t)

) =ψN (
t,μN(t)

)
=ψN (

0,μN(0)
) +

∫ t
0
LN
UN(s)

ψN
(
s,μN(s)

)
ds

+
∫ t

0

∂

∂s
ψN

(
s,μN(s)

)
ds +MN,φt ,

(3.3)
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where MN,φt is a locally square-integrable martingale and for u ∈ �N, (s, r) ∈
[0, T ] ×R

d ,

LNu ψN(s, r)
.= ∑
k∈K

∑
ν∈�k

�kN(r, u, ν)

[
ψN

(
s, r + 1

N
eν

)
−ψN(s, r)

]

= ∑
k∈K

∑
ν∈�k

�kN(r, u, ν)

[
φ

(√
N

(
r −μ(s)) + 1√

N
eν

)

− φ(√N(
r −μ(s)))].

Also, since μ̇(t)= F(μ(t)),
∂

∂s
ψN(s, r)= −√

NF
(
μ(s)

) · ∇φ(√N(
r −μ(s))).

This shows that the process VN is a D-semimartingale in the sense of Defini-
tion 3.1.1 of [14] with increasing function A(t) = t and the associated mapping
LN :C2(Rd)×R

d × [0, T ] ×�N →R (in the notation of [14]) defined as

LN(φ, y, t,ω) .= LN
UN(t,ω)

(φ, t, y),

where LNu is defined as in (3.1). Furthermore,

bNi (y, t,ω)
.= bi,UN(t,ω)(t, y), aNij (y, t,ω)

.= ai,UN(t,ω)N (t, y),

are the local coefficients of first and second order of the semimartingale VN in the
sense of Definition 3.1.2 of [14]. In particular, equation (3.3) combined with (3.1)
implies that

MNt
.= VN(t)− VN(0)−

∫ t
0

bN
(
VN(s), s,ω

)
ds(3.4)

is a d-dimensional locally square-integrable martingale.

DEFINITION 3.2. For x ∈ D([0, T ] : Rd) let jT (x)
.= sup0<t≤T ‖x(t) −

x(t−)‖ be the maximum jump size of x. We say a tight collection of
D([0, T ] :Rd)-valued random variables {XN }N∈N is C-tight if jT (XN)⇒ 0.

If XN,X are D([0, T ] : Rd)-valued random variables and XN ⇒ X then
P(X ∈ C([0, T ] : Rd)) = 1 if and only if {XN }N∈N is C-tight [5]. Using
Lemma 3.1, the following proposition follows directly from Lemma 3.2.2 and
Proposition 3.2.3 of [14].

PROPOSITION 3.3. Suppose Condition 2.4 holds. Define for N ∈ N,VN
through (2.9), where μN is defined as in (2.7) for some UN ∈ AN . Suppose
VN(0)= vN ∈ R

d and supN ‖vN‖<∞. Then

sup
N≥1

E sup
0≤t≤T

∥∥VN(t)∥∥2
<∞
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and the sequence {VN }N≥1 is a tight collection of D([0, T ] : Rd)-valued random
variables. Furthermore, the sequence is C-tight.

PROOF. Since bN and aN are the local coefficients of the semimartingale VN ,
the moment bound is immediate from the properties of buN and auN established
in Lemma 3.1 upon using Lemma 3.2.2 of [14]. Using this moment bound and
Lemma 3.1 once again, tightness follows from verifying Aldous’ tightness criteria
(cf. Theorem 2.2.2 in [14]) as in Proposition 3.2.3 of [14]. Also note that {VN } is
C-tight because jT (VN) ≤ 1√

N
�1/2nK where � and nK are as in (2.6) and (3.2),

respectively. �

REMARK 3.1. Proposition 3.3 in particular says that under Condition 2.4 μN
converges to μ in D([0, T ] :Rd).

4. Lower bound. In this section, we prove the following result.

THEOREM 4.1. Suppose Conditions 2.4, 2.5 and 2.6 hold. Let vn, v0 be as in
the statement of Theorem 2.8. Then

lim inf
N→∞ RN(vN)≥R(v0).

A key ingredient in the proof of Theorem 4.1 will be Theorem 4.2 which is
presented below. In order to formulate this, we first begin with some notation.
Note that the local martingaleMN in (3.4) takes the following explicit form:

MN(t)= √
N

∑
k∈K

∑
ν∈�k

eνM
N
k,ν(t), t ∈ [0, T ],(4.1)

where MNk,ν is as defined in (2.8). To see this, denote the right-hand side of (4.1)

as M̃N(t) and then, using (2.7), we can write

μN(t)= μN(0)+ 1

N

∑
k∈K

∑
ν∈�k

eν

∫ t
0
�kN

(
μN(s),U

N(s), ν
)
ds + 1√

N
M̃N(t).

From this and recalling the definition of μ from (2.7) and of Hk from Condi-
tion 2.5, we have the following representation for VN in terms of M̃N

VN(t)=
√
N

(
μN(t)−μ(t))

= vN + ∑
k∈K

∑
ν∈�k

eν

∫ t
0

√
N

(
1

N
�kN

(
μN(s),U

N(s), ν
)

− �k(μ(s), ν))ds + M̃N(t)(4.2)
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= vN + ∑
k∈K

∑
ν∈�k

eν

∫ t
0
Hk

(
VN(s),μ(s),

√
NUN(s), ν

)
ds

+
∫ t

0
ϑN(s) ds + M̃N(t),

where the error term ϑN is given as

ϑN(s)= ∑
k∈K

∑
ν∈�k

ϑNk,ν(s), ϑNk,ν(s)= eνβNk
(
VN(s),μ(s),

√
NUN(s), ν

)
,

and βNk is as in Condition 2.5. This proves (4.1).
Note that ϑN can be estimated as∥∥ϑN(s)∥∥ ≤ θN (

VN(s)
)
,(4.3)

where for y ∈R
d

θN(y)
.= (�)1/2nK sup

ξ∈SN(y)
sup
u∈�

∑
k∈K

∑
ν∈�k

∣∣βNk (y, ξ, u, ν)∣∣,
with � and nK as in (2.6) and (3.2), respectively. Condition 2.5 then implies

(4.4) sup
y∈A
θN(y)→ 0 as N → ∞

for all compact A. The above estimate will allow us to estimate the error term ϑN

in (4.2).
In order to have suitable tightness properties of the control processes, it will

be convenient to introduce the following collection of random measures. Define
M([0, T ] ×�) valued random variables mN as

mN(A×B)=
∫
A

1B
(√
NUN(s)

)
ds.(4.5)

Note thatmN can be disintegrated asmNs (du)ds, wheremNs (du)= δ√NUN(s)(du)
and δx is the Dirac measure at the point x. Then for s ∈ [0, T ],

Hk
(
VN(s),μ(s),

√
NUN(s), ν

)
=

∫
�
hk1

(
ν,μ(s)

)
uk,νm

N
s (du)+ hk2

(
ν,μ(s)

) · VN(s).
Thus the state equation (4.2) can be rewritten as

VN(t)= vN +
∫ t

0
ϑN(s) ds +MN(t)

+ ∑
k∈K

∑
ν∈�k

eν

∫ t
0

∫
�
hk1

(
ν,μ(s)

)
uk,νm

N
s (du)ds

+ ∑
k∈K

∑
ν∈�k

eν

∫ t
0
hk2

(
ν,μ(s)

) · VN(s) ds.

(4.6)
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Recall from Section 1.1 that M([0, T ] ×�) is the space of all finite measures on
[0, T ] ×� equipped with the usual weak convergence topology.

THEOREM 4.2. Suppose Conditions 2.4, 2.5 and 2.6 hold and let vN, v0 be as
in Theorem 2.8. Then:

(i) YN = {VN,MN,mN, ∫ ·
0 ϑ
N(s) ds}N≥1 is a tight collection of D([0, T ] :

R
2d)×M([0, T ] ×�)×C([0, T ] :Rd) valued random variables.

(ii)
∫ ·

0 ϑ
N(s) ds converges to 0 in probability in C([0, T ] : Rd).

(iii) (VN,MN)N≥1 is C-tight.
(iv) Suppose {YN } converges weakly along a subsequence to Y = (V ,M,m,0)

defined on a probability space (�∗,F∗,P∗). Then P
∗ a.s., the first marginal of m

is the Lebesgue measure on [0, T ]. Disintegrating m as

m(A×B)=
∫
A
mt(B)dt, A ∈ B

([0, T ]),B ∈ B(�),

define

Uk,ν(t)
.=
∫
�
uk,νmt (du), t ∈ [0, T ], k ∈ K, ν ∈�k.(4.7)

Let {Bd(t)} be a one-dimensional standard Brownian motion given on
(�∗,F∗,P∗) that is independent of Y . Let G◦

t = σ {Bd(s),V (s),M(s),
m([0, s] ×B) : s ≤ t,B ∈ B(�)} and Gt be the P

∗-completion of G◦
t . Then there is

a d-dimensional {Gt }-Brownian motion {W(t)},W = (W1, . . . ,Wd) such that the
following equation is satisfied:

V (t)= v0 +
∫ t

0
σ(s) dW(s)+ ∑

k∈K

∑
ν∈�k

eν

∫ t
0

∫
�
hk1

(
ν,μ(s)

)
Uk,ν(s) ds

+ ∑
k∈K

∑
ν∈�k

eν

∫ t
0
hk2

(
ν,μ(s)

) · V (s) ds

= v0 +
∫ t

0
η
(
s,U(s)

)
ds +

∫ t
0
β(s)V (s) ds +

∫ t
0
σ(s) dW(s).

(4.8)

PROOF. Tightness of {mN } as M([0, T ]×�)-valued random variables is im-
mediate since mN([0, T ] ×�)= T for all N and � is a compact set. C-tightness
of {VN } was proved in Proposition 3.3.

In order to verify the tightness of {MN }N≥1, we will use Theorem 2.3.2 of
[14] (see Theorem A.1 in the Appendix). According to this theorem, it suffices to
verify conditions [A] and [T1], given in Theorem A.1, for the sequence of quadratic
variation processes, {∑k∈K

∑
ν∈�k N〈MNk,ν〉}N≥1. Note that

∑
k∈K

∑
ν�k

N
〈
MNk,ν

〉
(t)= 1

N

∑
k∈K

∑
ν∈�k

∫ t
0
�kN

(
μN(s),U

N(s), ν
)
ds.
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Condition [A] and [T1] are now immediate on noting that Condition 2.4 implies
[see (2.13)]

1

N
�kN

(
μN(s),U

N(s), ν
) ≤ C2

almost surely for all N , k, ν, and s. Furthermore, {MN } is C-tight because
jT (M

N)≤ 1√
N
�1/2nK.

Finally, from (4.3), for δ > 0 we have that

P

[
sup

0≤s≤T

∥∥∥∥
∫ s

0
ϑN(u)du

∥∥∥∥> δ
]

≤ P

[
sup

0≤s≤T
θN

(
VN(s)

)
>
δ

T

]
.

Since {VN } is C-tight for every ε > 0, there exists some κ1 <∞ such that

P

[
sup

0≤s≤T
∥∥VN(s)∥∥> κ1

]
≤ ε

for all N ∈ N. Recalling (4.4), we see that there exists an N0 > 0 such that

sup
y:‖y‖≤κ1

θN(y)≤ δ

T

for all N ≥N0. Thus for all N ≥N0

P

[
sup

0≤s≤T

∥∥∥∥
∫ s

0
ϑN(u)du

∥∥∥∥> δ
]

≤ P

[
sup

0≤s≤T
θN

(
VN(s)

)
>
δ

T
, sup

0≤s≤T
∥∥VN(s)∥∥ ≤ κ1

]

+ P

[
sup

0≤s≤T
∥∥VN(s)∥∥> κ1

]

≤ ε.
Since ε > 0 is arbitrary, we conclude that {∫ ·

0 ϑ
N(s) ds} converges to 0 in proba-

bility in C([0, T ] :Rd). This concludes the proof of (i), (ii) and (iii).
Consider now (iv). Let Y be as in the statement of the theorem, namely YN

converges weakly along a subsequence to Y = (V ,M,m,0). The property that the
last component of Y must be 0 is a consequence of (ii). For notational convenience,
we label the subsequence once more by {N}. Recall the orthogonal matrix Q =
[q1 q2 . . . qd ] and function a : [0, T ] →R

d×d defined in Section 2.3 as well as the
function α1/2 : [0, T ] → R

(d−1)×(d−1) introduced above (2.18). Define (d − 1)-
and 1-dimensional processes M̂N and RN , respectively, as(

M̂N(t)

RN(t)

)
=Q′MN(t).(4.9)
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Note that

RN(t)= q ′
dM

N(t)= ∑
k∈K

∑
ν∈�k

1√
d

1′eνMNk,ν(t)= 0

since 1′eν = 0 for all k ∈ K, ν ∈�k .
We now show that M is a {Gt }-martingale. The Burkholder–Davis–Gundy in-

equality (see Theorem IV.48 of [20]) implies that there exists κ2 ∈ (0,∞) such that
for i = 1, . . . , d

sup
N∈N

E sup
0≤t≤T

(
MNi (t)

)4

≤ sup
N∈N

κ2N
2
∑
k∈K

∑
ν∈�k

E
[
MNk,ν

]2
T

= sup
N∈N

κ2
∑
k∈K

∑
ν∈�k

E

(
1

N
Nk,ν

(∫ T
0
�kN

(
μN(s),U

N(s), ν
)
ds

))2

≤ sup
N∈N

κ2
∑
k∈K

∑
ν∈�k

E

(
1

N
Nk,ν(NT C2)

)2
<∞,

(4.10)

where the first inequality on the last line is from (2.13). Thus{
sup

0≤t≤T
∥∥MN(t)∥∥2

}
N≥1

is uniformly integrable. Let k ∈ N and H : (Rd × R
d × R)k → R be a bounded

and continuous function. For 0 ≤ s ≤ t ≤ T and 0 ≤ t1 ≤ · · · ≤ tk ≤ s, we let
ξNi = (VN(ti),MN(ti),mNi (f )) and ξi = (V (ti),M(ti),mi(f )) where mNi (f ) =∫
�×[0,ti ] f (u)m

N
s (du)ds, mi(f )=

∫
�×[0,ti ] f (u)ms(du)ds and f ∈ Cb(�). Then

E
∗H(ξ1, . . . , ξk)

[
M(t)−M(s)] = lim

N→∞EH
(
ξN1 , . . . , ξ

N
k

)[
MN(t)−MN(s)]

= 0,

where the first equality follows from the uniform integrability property noted
above, and the second equality is a consequence of the martingale property of
MN [which is a consequence of (4.10)]. Combining this with the fact that Bd is a
Brownian motion independent of Y , it follows thatM is a {Gt }-martingale.

We now define the process which will converge to the Brownian motion driving
the limit diffusion. Recall that the matrix α1/2 is invertible and the property (2.23).
Define the (d − 1)-dimensional processes BN(t)= (BNi (t))d−1

i=1 as

BNi (t)=
d−1∑
j=1

∫ t
0
α

−1/2
ij (s) dM̂Nj (s),

where M̂N is as in (4.9). Since MN is a {FNt }-martingale, both M̂N and
BN are {FNt }-martingales as well. From the estimate in (4.10), it follows that
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{sup0≤t≤T ‖BN(t)‖2}N≥1 is uniformly integrable. Also note that for integers 1 ≤
i, j ≤ d − 1, the cross quadratic variation of BNi and BNj can be expressed as

〈
BNi ,B

N
j

〉
(t)=

d−1∑
m1=1

d−1∑
m2=1

∫ t
0
α

−1/2
im1

(s)α
−1/2
jm2

(s) d
〈
M̂Nm1

, M̂Nm2

〉
(s).

Note that for all t ∈ [0, T ]
〈
M̂Nm1

, M̂Nm2

〉
(t)= 〈

q ′
m1
MN,q ′

m2
MN

〉
(t)=

d∑
m3=1

d∑
m4=1

qm3m1qm4m2

〈
MNm3

,MNm4

〉
(t),

where 〈
MNm3

,MNm4

〉
(t)= ∑

k∈K

∑
ν∈�k

em3
ν e

m4
ν

1

N

∫ t
0
�kN

(
μN(s),U

N(s), ν
)
ds.

Thus〈
BNi ,B

N
j

〉
(t)=

∫ t
0

(
Q′σ(s)−1

× ∑
k∈K

∑
ν∈�k

1

N

(
�kN

(
μN(s),U

N(s), ν
)
eνe

′
ν

)(
σ(s)′

)−1
Q

)
ij

ds(4.11)

=
∫ t

0

(
Q′σ(s)−1a(s)

(
σ(s)′

)−1
Q

)
ij ds + εNij (t)= tIij + εNij (t),

where I is the d × d identity matrix,

εN(t)=
∫ t

0
Q′σ(s)−1

× ∑
k∈K

∑
ν∈�k

(
1

N
�kN

(
μN(s),U

N(s), ν
) − �k(μ(s), ν))eνe′ν(σ(s)′)−1

Qds

and εNij is the (i, j)th coordinate of εN . From Condition 2.4 and (2.23), we have

that E‖εN(t)‖ → 0 for all t as N → ∞.
Also it is easy to see that (cf. Theorem 2.2 of [18])

BN(·)⇒
∫ ·

0
α−1/2(s) dM̂(s)

.= B(·) in D
([0, T ] : Rd−1),

where
(
M̂
0

) =Q′M . Also since {sup0≤t≤T ‖BN(t)‖2}N≥1 is uniformly integrable,
we have from (4.11) that

E
∗(H(ξ1, . . . , ξk)[B(t)B ′(t)−B(s)B ′(s)− (t − s)I ])

= lim
N→∞E

(
H

(
ξN1 , . . . , ξ

N
k

)[
BN(t)

(
BN

)′
(t)−BN(s)(BN )′

(s)− (t − s)I ])
= lim
N→∞E

(
H

(
ξN1 , . . . , ξ

N
k

)
εN(t)

) = 0.
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Combining this with the fact that Bd is independent of Y , we see that B is a (d−1)-
dimensional continuous Gt -martingale with quadratic variation 〈B〉(t)= tI which
implies, by Lévy’s theorem, that B is a (d − 1)-dimensional {Gt }-Brownian mo-
tion. Since Bd is a Brownian motion independent of Y , it follows that Ŵ .=
(B,Bd)

′ is a d-dimensional {Gt }-Brownian motion. Also note that

M̂(t)=
∫ t

0
α1/2(s) dB(s).(4.12)

The final step of the proof is to show that V is a solution to (4.8) withW =QŴ .
Note that since Q is orthogonal, W is a d-dimensional {Gt }-Brownian motion as
well. From the definition of η and since eν · 1 = 0 for all k ∈ K, ν ∈�k ,Q′η takes
the form

Q′η(t, u)=
(
η̂(t, u)

0

)
.(4.13)

Similarly, from the expression for β and from (2.18) it follows that

Q′β(t)Q=
(
β̂(t) 0

0 0

)
, Q′σ(t)Q=

[
α1/2(t) 0

0 0

]
.(4.14)

Also since VN · 1 = 0 and v0 · 1 = 0, we have

Q′V =
[
V̂

0

]
, Q′v0 =

[
v̂0
0

]
.(4.15)

We first show that V̂ solves the (d − 1)-dimensional equation

(4.16) V̂ (t)= v̂0 +
∫ t

0
η̂(s, u)ms(du)ds +

∫ t
0
β̂(s)V̂ (s) ds +

∫ t
0
α1/2(s) dB(s).

Letting
[
V̂N
0

] .=Q′VN and using (4.6), we have

V̂N(t)= v̂N +
∫ t

0
η̂(s, u)mNs (du)ds +

∫ t
0
β̂(s)V̂N(s) ds +

∫ t
0
ϑ̂N(s) ds

+ M̂N(t),
where

[
v̂N
0

] = Q′vN and
[
ϑ̂N

0

] = Q′ϑN . Note that (V̂N , M̂N,mN, ϑ̂N) ⇒
(V̂ , M̂,m,0). Without loss of generality, we assume that the convergence holds
a.s.

Since mN →m, we have∫ t
0

∫
�
hk1

(
ν,μ(s)

)
uk,νm

N
s (du)ds→

∫ t
0

∫
�
hk1

(
ν,μ(s)

)
uk,νms(du)ds

and thus ∫ t
0
η̂(s, u)mNs (du)ds→

∫ t
0
η̂(s, u)ms(du)ds.(4.17)
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Similarly, it follows that∫ t
0
β̂(s) · V̂N (s) ds→

∫ t
0
β̂(s) · V̂ (s) ds.(4.18)

Combining (4.17) and (4.18) with (4.12), we see that V̂ satisfies (4.16). Recalling
the relation between (v̂0, V̂ , η̂, β̂, α

1/2) and (v0,V , η,β,σ )we see that V =Q[
V̂
0

]
is a solution of (4.8), where W =QŴ . This proves (iv), and thus completes the
proof of the theorem. �

We now apply the above result to prove Theorem 4.1 which shows that the limit
of the value of the optimal control problem for the N th system as N → ∞ can be
bounded from below by the value of the control problem for the limit diffusion.

PROOF OF THEOREM 4.1. Let vN, v0 be as in the statement of the the-
orem. It suffices to show that for any sequence of admissible controls {UN },
lim infN→∞ JN(UN,vN) ≥ R(v0). Let UN ∈ AN , and mN be the correspond-
ing relaxed control defined as in (4.5). From the previous theorem, we have
that {(VN,MN,mN, ∫ ·

0 ϑ
N(s) ds)}N≥1 is tight, and thus every subsequence (also

denoted with the index N ) has a further subsequence {(VN�,MN�,mN�,∫ ·
0 ϑ
N�(s) ds)} such that(

VN�,M
N�,mN�,

∫ ·
0
ϑN�(s) ds

)
⇒ (V ,M,m,0).

Furthermore, equation (4.8) holds for the limit point (V ,M,m,0) with a {Gt }-
Brownian motionW where {Gt } is as in the statement of Theorem 4.2 and Uk,ν are
defined as in (4.7). It follows from Fatou’s lemma that

lim inf
�→∞ E

∫ T
0
k1

(
VN�(s)

)
ds ≥ E

∗
∫ T

0

∫
�
k1

(
V (s)

)
ds.

Another application of Fatou’s lemma shows

lim inf
�→∞ E

∫ T
0

∫
�
k2(u)m

N�
s (du)ds ≥ E

∗
∫ T

0

∫
�
k2(u)ms(du)ds

≥ E
∗
∫ T

0
k2

(
U(s)

)
ds,

where the second inequality follows on using Jensen’s inequality, relation (4.7)
and the assumed convexity of k2. Thus

lim inf
�→∞ JN�

(
UN�, vN

) = lim inf
�→∞ E

∫ T
0

(
k1

(
VN�(s)

) + k2
(√
N�U

N�(s)
))
ds

≥ E

∫ T
0

(
k1

(
V (s)

) + k2
(
U(s)

))
ds

≥R(v0),
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where the last inequality follows on noting that U = (Uk,ν)k∈K,ν∈�k ∈ A(�)
where �= (�∗,F∗,P∗, {Gt}). This completes the proof of the theorem. �

5. Feedback controls. In this section, we will introduce feedback controls,
UNg ∈AN and Ug ∈ A(�), associated with a measurable map g : [0, T ]×R

d →�

and prove that whenever g is continuous and vN → v0, we have, under suitable
conditions

JN
(
UNg , vN

) → J (Ug, v0).(5.1)

In Section 5.1 we introduce feedback controls for the N th system, whereas in
Section 5.2 we define feedback controls for the limit diffusion. For the latter case,
we argue, using the nondegeneracy of α(t) (under Condition 2.6), that there is a
unique weak solution of the corresponding stochastic differential equation. Finally,
in Section 5.3 we prove the convergence in (5.1) when g is a continuous map.

5.1. Feedback control in the N th system. Given a measurable function g :
[0, T ] × R

d → �, define for all k ∈ K, ν ∈ �k , functions �k,gN (·, ν) : SN ×
[0, T ] → R+ as

�
k,g
N (r, s, ν)

.= �kN
(
r,

1√
N
g
(
s,

√
N

(
r −μ(s))), ν).(5.2)

As with u ∈ �, g can be indexed by k ∈ K and ν ∈ �k with the corresponding
entry denoted as gk,ν . Define μgN through the right-hand side of (2.7) by replacing
UN(s) with

UNg (s)
.= 1√

N
g
(
s,

√
N

(
μ
g
N(s)−μ(s)

))
.

Then it can be checked that UNg ∈ AN and μgN is a time inhomogeneous Markov
process with generator

LNg f (s, r)
.=
K∑
k=1

∑
ν∈�k

�
k,g
N (r, s, ν)

[
f

(
s, r + 1

N
eν

)
− f (s, r)

]
(5.3)

for s ∈ [0, T ], r ∈ SN,f : [0, T ] × SN →R.

5.2. Diffusion feedback control. In this section, we introduce feedback con-
trols for the limit diffusion model. Fix v0 ∈ Vd−1.

DEFINITION 5.1. Let g : [0, T ] ×R
d →� be a measurable map. We say that

the equation{
dV (t)= η(t, g(t, V (t)))dt + β(t)V (t) dt + σ(t) dW(t),
V (0)= v0

(5.4)
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admits a weak solution if there exists a filtered probability space (�,F,P, {Ft}) on
which is given an {Ft }-Wiener process W and an Ft -adapted continuous process
V such that for all 0 ≤ t ≤ T ,

V (t)= v0 +
∫ t

0
η
(
s, g

(
s,V (s)

))
ds +

∫ t
0
β(s)V (s) ds +

∫ t
0
σ(s) dW(s)

almost surely. We say that (5.4) admits a unique weak solution if whenever there
are two sets of such spaces and processes denoted as (�i,F i ,Pi , {F it }, (Wi,V i)),
i = 1,2 then the probability law of V 1 is the same as that of V 2.

Given a weak solution V associated with the system �= (�,F,P, {Ft}, {Wt })
define Ug

.= g(·,V (·)) ∈ A(�). We refer to this control as the feedback control
(for the limit diffusion) associated with the map g.

THEOREM 5.2. Under Condition 2.6, there is a unique weak solution of (5.4).

PROOF. Suppose V is a weak solution of (5.4) on some system � =
(�,F,P, {Ft}, {Wt }). Recall the definition of V̂ , η̂, and β̂ from Section 4 [cf.
(4.13), (4.14), (4.15)]. Let Q′W .= (

B
W ∗

)
and note that B and W ∗ are indepen-

dent standard (d − 1)- and 1-dimensional Brownian motions, respectively. Define
ĝ : [0, T ] × R

d−1 →� as ĝ(t, v)= g(t,Q( v
0
)
) and let

(
v̂0
0

) =Q′v0. Note that V̂
is a solution of the (d − 1)-dimensional SDE

(5.5) V̂ (t)= v̂0 +
∫ t

0
η̂
(
s, ĝ

(
s, V̂ (s)

))
ds +

∫ t
0
β̂(s)V̂ (s) ds+

∫ t
0
α1/2(s) dB(s).

On the other hand, if V̂ is a solution of the SDE (5.5) on some filtered prob-
ability space (�,F,P, {Ft}), where B is a (d − 1)-dimensional {Ft } Brown-
ian motion, then as argued at the end of Theorem 4.2, by a suitable augmen-
tation of the space with a one-dimensional Brownian motion Bd , Q

[
V̂
0

]
is a

solution of the SDE (5.4), with Brownian motion W =Q[ B
Bd

]
. Since from (2.23)

supv∈Rd
∫ T

0 ‖α(s)‖−1‖η̂(s, ĝ(s, v))‖2 ds < ∞, a standard argument using Gir-
sanov’s theorem shows that (5.5) has a unique weak solution. From the one-to-one
correspondence between solutions of (5.5) and (5.4) noted above, it now follows
that there is a unique weak solution for (5.4). �

Recall the generator Lg in (2.24) associated with a measurable map g : [0, T ]×
R
d →�.

DEFINITION 5.3. Given v0 ∈ Vd−1, a d-dimensional stochastic process V on
some filtered probability space (�,F,P, {Ft}) will be called a solution to the mar-
tingale problem associated with (Lg, v0) if

φ
(
V (t)

) − φ(v0)−
∫ t

0
Lgφ

(
s,V (s)

)
ds

is a martingale for all φ ∈ C
∞
c (R

d) and V (0)= v0 almost surely.
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The first part of the following result is standard (cf. [22]) whereas the second
part is immediate from Theorem 5.2.

THEOREM 5.4. A process V is a weak solution of the SDE (5.4) if and only
if it is the solution to the martingale problem for (Lg, v0). In particular, under
Condition 2.6, there is a unique solution to the martingale problem for (Lg, v0).

5.3. Convergence under continuous feedback controls. Let g : [0, T ] ×R
d →

� be a continuous function and V g be the unique solution to (5.4) given on some
system �= (�,F,P, {Ft}, {Wt }). Define

V
g
N(t)=

√
N

(
μ
g
N(t)−μ(t)

)
.(5.6)

Recall that Ug(t) = g(t,V g(t)) ∈ A(�) and UNg (t) = 1√
N
g(t,V

g
N(t)) ∈ AN are

the controls associated with g for the limit diffusion and pre-limit system, respec-
tively. In this section, we will show that V gN converges in distribution to V g , in
D([0, T ] : Rd) and that JN(UNg , vN) converges to J (Ug, v0). Namely, we prove
the following result.

THEOREM 5.5. Suppose Conditions 2.4, 2.5 and 2.6 hold, and let vN, v0 be
as in Theorem 2.8, where xN = μgN(0). Then as N → ∞:

(i) V gN converges in distribution, in D([0, T ] : Rd), to V g where V g is the
unique solution to the martingale problem for (Lg, v0).

(ii) JN(U
g
N, vN)→ J (Ug, v0).

PROOF. First, consider (i). From Proposition 3.3, we have that {V gN } is C-tight
in D([0, T ] : Rd). Since g is continuous, the operator Lg defined in (2.24) maps
C

∞
c (R

d) to Cb([0, T ]×R
d). In view of this, the tightness of {V gN }, the uniqueness

established in Theorem 5.4, and Theorem 3.3.1 of [14], it suffices to show that for
all φ ∈ C

∞
c (R

d)

lim
N→∞

∫ T
0

E
N
∣∣LNg (

φ, s,V
g
N(s)

) −Lgφ
(
s,V

g
N(s)

)∣∣ds = 0,(5.7)

where Lg is an in (2.24) and LNg is defined by the right-hand side of (3.1), replacing

u with 1√
N
g(s,

√
N(s −μ(s))), namely

LNg (φ, s, y)
.= ∑
k∈K

∑
ν∈�k

�
k,g
N

(
γN(s, y), s, ν

)[
φ

(
y + 1√

N
eν

)
− φ(y)

]

− √
NF

(
μ(s)

)∇φ(y)
for φ ∈ C

∞
c (R

d), s ∈ [0, T ], y ∈ R
d where �k,gN is as in (5.2) [definition of �k,gN is

extended to all r ∈ R
d on setting �k,gN (r, s, ν)= 0 if r /∈ SN ]. We note that Theo-

rem 3.3.1 of [14] considers the setting of time-homogeneous diffusions, however,
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the proof carries over to the setting of time-inhomogeneous generators considered
here with minor modifications.

We now fix φ ∈ C
∞
c (R

d) and for all N ∈ N, k ∈ K, ν ∈ �k define functions
ϕNk,ν,1 : Rd → R+, ϕNk,ν,2 : [0, T ] × R

d → R+, and ANj : [0, T ] × R
d → R+ for

j = 1,2,3, as

ϕNk,ν,1(y)
.=
∣∣∣∣φ

(
y + 1√

N
eν

)
− φ(y)− 1√

N
e′ν∇φ(y)−

1

2N
e′νD2φ(y)eν

∣∣∣∣,
ϕNk,ν,2(s, y)

.= ∣∣βNk (
y,μ(s), g(s, y), ν

)∣∣
and

AN1 (s, y)
.= ∑
k∈K

∑
ν∈�k

�
k,g
N

(
γN(s, y), s, ν

)
ϕNk,ν,1(y),

AN2 (s, y)
.= ∑
k∈K

∑
ν∈�k

ϕNk,ν,2(s, y)
∣∣e′ν∇φ(y)∣∣,

AN3 (s, y)
.= 1

2

∑
k∈K

∑
ν∈�k

∣∣∣∣ 1

N
�
k,g
N

(
γN(s, y), s, ν

) − �k(μ(s), ν)∣∣∣∣∣∣e′νD2φ(y)eν
∣∣

for s ∈ [0, T ] and y ∈ R
d . Note that

Tr
(
a(t)D2φ

) = ∑
k∈K

∑
ν∈�k

�k
(
μ(t), ν

)
e′νD2φ(y)eν.

Adding and subtracting

1√
N

∑
k∈K

∑
ν∈�k

�
k,g
N

(
γN(s, y), s, ν

)
e′ν∇φ(y) and

1

2N

∑
k∈K

∑
ν∈�k

�
k,g
N

(
γN(s, y), s, ν

)
e′νD2φ(y)eν

from LNg (φ, s, y)−Lgφ(s, y), the triangle inequality yields
∣∣LNg (

φ, s,V
g
N(s)

) −Lgφ
(
s,V

g
N(s)

)∣∣
≤AN1

(
s,V

g
N(s)

) +AN2
(
s,V

g
N(s)

) +AN3
(
s,V

g
N(s)

)
.

We now consider the three terms on the right-hand side separately. First, con-
sider AN1 (s,V

g
N(s)). It follows from Taylor’s theorem and the fact that all deriva-

tives of φ are uniformly bounded that there exists κ1 ∈ (0,∞) such that

ϕNk,ν,1
(
V
g
N(s)

) ≤ 1

6
max‖α‖=3

sup
x∈Rd

∥∥Dαφ(x)∥∥ ×
∥∥∥∥ eν√
N

∥∥∥∥3
≤ κ1

N3/2 ,
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where the outside maximum is taken over all mixed derivatives of order 3. Then,
since 1√

N
V
g
N(s)+μ(s) ∈ SN , (2.13) implies

AN1
(
s,V

g
N(s)

) ≤ ∑
k∈K

∑
ν∈�k

�
k,g
N

(
γn

(
s,V

g
N(s)

)
, s, ν

) κ1

N3/2 ≤ κ2√
N

for all s ∈ [0, T ] and some κ2 ∈ (0,∞). It follows that∫ T
0

E
N
∣∣AN1 (

s,V
g
N(s)

)∣∣ds→ 0 as N → ∞.

Now consider AN2 (s,V
g
N(s)). From Condition 2.5, it follows that for κ3 > 0,

ε > 0,

P
N
[

sup
0≤s≤T

∥∥V gN(s)∥∥ ≤ κ3, ϕ
N
k,ν,2

(
s,V

g
N(s)

)
> ε

]
→ 0 as N → ∞.

Also the C-tightness of {V gN } implies that

sup
N

P
N
[

sup
0≤s≤T

∥∥V gN(s)∥∥> κ3

]
→ 0 as κ3 → ∞.

Combining these two observations, we see that

ϕNk,ν,2
(
s,V

g
N(s)

) → 0 in probability as N → ∞ for all s ∈ [0, T ].(5.8)

Next, from Conditions 2.4, 2.5, and noting that h1, h2 are bounded functions, we
see that there is a κ4 ∈ (0,∞) such that for all k ∈ K, ν ∈�k,N ≥ 1 and s ≥ 0

ϕNk,ν,2
(
s,V

g
N(s)

) ≤ κ4
(
1 + ∥∥V gN(s)∥∥) a.s.

From Proposition 3.3,

sup
N

E
N sup
t≤T

∥∥V gN(t)∥∥2
<∞.(5.9)

Thus {ϕNk,ν,2(s,V gN(s))} is uniformly integrable over [0, T ] ×� and so combining
this with (5.8), we have∫ T

0
E
N
∣∣ϕNk,ν,2(s,V gN(s))∣∣ds→ 0 as N → ∞.

Recalling the definition of AN2 , it follows from the fact that all derivatives of φ are
uniformly bounded that there exists κ5 ∈ (0,∞) such that, as N → ∞,∫ T

0
E
N
∣∣AN2 (

s,V
g
N(s)

)∣∣ds ≤ κ5
∑
k∈K

∑
ν∈�k

∫ T
0

E
N
∣∣ϕNk,ν,2(s,V gN(s))∣∣ds→ 0.
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Finally, consider AN3 (s,V
g
N(s)). It follows from Condition 2.4 and the bound-

edness of the derivatives of φ that there exists a κ6 ∈ (0,∞) such that

AN3
(
s,V

g
N(s)

) ≤ κ6

K∑
k=1

∑
ν∈�k

∣∣∣∣ 1

N
�
k,g
N

(
γN

(
s,V

g
N(s)

)
, s, ν

) − �k(μ(s), ν)∣∣∣∣
≤ κ6C1√

N

(
1 + ∥∥V gN(s)∥∥).

Using the moment bound in (5.9) once more, we have that∫ T
0

E
∣∣AN3 (

s,V
g
N(s)

)∣∣ds→ 0.

This proves (5.7), and thus completes the proof of part (i).
Now consider (ii). By a similar argument as in Theorem 4.2,

V
g
N(t)= vN +

∫ t
0
b
UNg (s)

N

(
s,V

g
N(s)

)
ds +MN(t) for all N ≥ 1,

where MN(t) is the local martingale in (4.1), with MNk,ν as in (2.8) with UN re-
placed by UNg . Recall p and Ck1 introduced below (2.10). By a similar estimate as
in (4.10) there exists κ7 ∈ (0,∞) such that

sup
N∈N

E sup
0≤t≤T

∥∥MNi (t)∥∥2p

≤ sup
N∈N

κ7N
p
∑
k∈K

∑
ν∈�k

E
[
MNk,ν

]p
T

= sup
N∈N

κ7
∑
k∈K

∑
ν∈�k

E

(
1

N
Nk,ν

(∫ T
0
�kN

(
μN(s),U

N(s), ν
)
ds

))p

≤ sup
N∈N

κ7
∑
k∈K

∑
ν∈�k

E

(
1

N
Nk,ν(NT C2)

)p
<∞,

(5.10)

where C2 is as in (2.13). Also, from Lemma 3.1,

∥∥bUNg (s)N

(
s,V

g
N(s)

)∥∥2p ≤ κ7
(
1 + ∥∥V gN(s)∥∥2p)

.(5.11)

Combining these two inequalities implies there exists a κ8 ∈ (0,∞) such that

E sup
0≤s≤t

∥∥V gN(s)∥∥2p ≤ κ8

(
1 +

∫ t
0
E sup

0≤u≤s
∥∥V gN(u)∥∥2p

ds

)
for all 0 ≤ t ≤ T .

Gronwall’s inequality then yields

sup
N∈N

E sup
0≤t≤T

∥∥V gN(t)∥∥2p ≤ sup
N∈N

κ8e
κ8T <∞
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and thus {supt≤T ‖V gN(t)‖p} is uniformly integrable. Recalling the definition of
JN in (2.10), it follows from this uniform integrability, part (i) of the theorem, the
compactness of �, and growth condition on k1 [see below (2.10)] that

E

∫ T
0

(
k1

(
V
g
N(t)

) + k2
(√
NUNg (t)

))
dt → E

∫ T
0

(
k1

(
V g(t)

) + k2
(
Ug(t)

))
dt,

upon noting that
√
NUNg (t) = g(t,V gN(t)),Ug(t) = g(t,V g(t)), and g is contin-

uous. Thus we have shown JN(UNg , vN)→ J (Ug, v0) which completes the proof
of (ii). �

6. Near optimal continuous feedback controls. In this section, we give the
final ingredient in the proof of Theorem 2.8, namely Theorem 6.3. This result says
that for every v0 ∈ Vd−1 and ε > 0 there is a continuous gε : [0, T ] × R

d → �

such that Ugε is an ε-optimal control for the diffusion control problem, that is,
J (Ugε , v0) ≤ R(v0) + ε. Recall from Section 2.4 that this result combined with
Theorems 4.1 and 5.5 proved earlier will complete the proof of Theorem 2.8. We
begin with a result that says that for every v0 ∈ Vd−1, the infimum of the cost
J (·, v0) over all controls is the same as that over all feedback controls. The proof
is similar to Theorem 4.2 in [6] which considers a time homogeneous setting, and
so we only provide a sketch.

Recall that for every measurable g : [0, T ]×Rd →� there is a (feedback) con-
trol Ug ∈ A(�) on some system�. Denote the family of all such feedback controls
as Afb. [This class depends on the initial condition v0 in (5.4) but we suppress this
in the notation.] Throughout this section, we will assume that Conditions 2.4–2.6
hold.

THEOREM 6.1. Fix v0 ∈ Vd−1. Then

R(v0)= inf
U∈Afb

J (U,v0).

PROOF. Suppose U ∈ A(�) is an admissible control on a system � =
(�,F,P, {Ft}, {Wt }). As in Section 4 [cf. (4.5)], we denote the correspond-
ing relaxed control by m. Let V (·) be the corresponding unique pathwise solu-
tion to (2.19). It suffices to show that there exists an admissible feedback con-
trol U∗ such that J (U∗, v0) ≤ J (U,v0). Define the probability measure νv0 ∈
P([0, T ] ×Vd−1 ×�) as∫

[0,T ]×Vd−1×�
f (t, x, u) dνv0(t, x, u)=

1

T
E

[∫ T
0

∫
�
f
(
t, V (t), u

)
mt(du)dt

]

for all f ∈ Cb([0, T ] ×Vd−1 ×�). Disintegrate νv0 as

νv0(dt dx du)= βv0(dt, dx)π(t, x)(du),
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where βv0 ∈ P([0, T ] × Vd−1) is the marginal distribution of νv0 on the first two
coordinates and π : [0, T ] × Vd−1 → P(�) is the corresponding regular condi-
tional law. Define g∗ : [0, T ] × R

d → � as g∗(t, x) = ∫
� uπ(t, Vd−1(x))(du)

where  Vd−1 : Rd → Vd−1 is the projection of R
d onto Vd−1. Let Ug∗ be the

feedback control associated with the map g∗ given on some system �∗ and let V ∗
be the corresponding state process given as the solution of (5.4) with g replaced
by g∗. Let for t ∈ [0, T ], πt .= π(t,V ∗(t)). For (t, z) ∈ [0, T ] ×Vd−1, r ∈ (0,∞)
and k̄r (v, u)

.= k1(v)∧ r + k2(u) define

φr(t, z)= E
∗
[∫ T
t

∫
�
k̄r

(
V ∗(s), u

)
πs(du)ds

∣∣∣V ∗(t)= z
]
,

Yr(t)=
∫ t

0

∫
�
k̄r

(
V (s), u

)
ms(du)ds + φr(t, V (t)).

It follows using the equivalent description of a weak solution of (5.4) in terms of
a (d − 1)-dimensional SDE with uniformly nondegenerate diffusion coefficient as
in the proof of Theorem 5.2 and classical PDE results (cf. Section III.4.2 of [4])
that φr solves the equation∫

�
k̄r(x,u)π(t, x)(du)+ ∂

∂t
φr(t, x)+ (Lg∗φr)(t, x)= 0,(6.1)

where Lg∗ is the generator for V ∗ given by the right-hand side of (2.24) with g
replaced by g∗. From the Itô–Krylov formula (cf. [15]), we have

E
[
Yr(t)

] −E
[
Yr(0)

] = E

∫ t
0

(∫
�
k̄r

(
V (s), u

)
ms(du)+ ∂

∂t
φr

(
s,V (s)

)

+ (L̂U(s)φr)(s,V (s))
)
ds,

(6.2)

where for u ∈�, L̂u is the “controlled generator” defined as

L̂uφr(t, x)= ∇xφr(t, x)(η(t, u)+ β(t)x) + 1

2
Tr

(
σ(t)D2φr(t, x)σ

′(t)
)
.

By the definition of π , and since u �→ L̂uφr(t, x) is linear we see that∫
�
(L̂uφr)(s, x)π(s, x)(du)= (Lg∗φ)(s, x), (s, x) ∈ [0, T ] ×Vd−1.

From this, it follows that

E

∫ t
0

(∫
�
k̄r

(
V (s), u

)
ms(du)+ (L̂U(s)φr)(s,V (s))

)
ds

= E

∫ t
0

(∫
�
k̄r

(
V (s), u

)
π
(
s,V (s)

)
(du)+ (Lg∗φr)

(
s,V (s)

))
ds.
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Thus (6.1) implies that the right-hand side of (6.2) is 0, and thus E[Yr(t)] =
E[Yr(0)] = φr(0, v0) for all t ∈ [0, T ]. From the convexity of k2, we see that

φr(0, v0)= E
∗
[∫ T

0

∫
�
k̄r

(
V ∗(s), u

)
πs(du)ds

]

≥ E
∗
[∫ T

0
k̄r (V

∗(s), g∗(s,V ∗(s)
)
ds

]
.= Jr(Ug∗, v0).

Using the monotone convergence theorem, it now follows that

J (U,v0)= lim
r→∞E

[
Yr(T )

] = lim
r→∞EYr(0)

= lim
r→∞φr(0, v0)≥ lim

r→∞Jr(Ug∗, v0)= J (Ug∗, v0).

The result follows. �

We will next show in Theorem 6.3 below that the above theorem can be strength-
ened in that the class Afb can be replaced by the smaller class Acfb of all contin-
uous feedback controls, that is, feedback controls for which that corresponding
map g is continuous. Recall the orthogonal matrix Q defined in Section 2.3. Fix
v0 ∈ Vd−1 and let g∗ : [0, T ] × R

d → � be a measurable map. Let Ug∗ be the
corresponding feedback control given on some system �= (�,F,P, {Ft}, {Wt })
and let V ∗ be the solution of (5.4) with g replaced by g∗ on the right-hand side.
Define the (d − 1)-dimensional process V̂ ∗ such that V ∗ =Q(

V̂ ∗
0

)
and the map

ĝ∗ : [0, T ] ×R
d−1 →� as ĝ∗(t, v)= g∗(t,Q

( v
0
)
) for v ∈ R

d−1. Then

V̂ ∗(t)= v̂0 +
∫ t

0
η̂
(
s, ĝ∗(s, V̂ ∗(s)

))
ds +

∫ t
0
β̂(s)V ∗(s) ds

+
∫ t

0
α1/2(s) dŴ (s),

(6.3)

where η̂, β̂ , and α are as in (4.13), (4.14) and (2.17), respectively. In addition,
v0 =Q(

v̂0
0

)
and Q′W = (

Ŵ
Bd

)
. Define ! ∈ P([0, T ] ×R

d−1) as

!(A)
.= c̄

∫
A
e−

(‖x‖2+t2)
2 dx dt(6.4)

for A ∈ B([0, T ] ×R
d−1) where c̄ is a normalizing constant. We denote by B̄ the

Lebesgue σ -field on [0, T ] × R
d−1, namely the completion of B([0, T ] × R

d−1)

with respect to the Lebesgue measure.

LEMMA 6.2. For each n ∈ N there exists a B̄-measurable function ĝn :
[0, T ] × R

d−1 → � and compact sets An ∈ B([0, T ] × R
d−1) such that ĝn is
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continuous and

(6.5)
{
(s, v) ∈ [0, T ]×R

d−1 : ĝ∗(s, v) �= ĝn(s, v)} ⊂Acn and !
(
Acn

) ≤ 1

2n+1 .

PROOF. From Lusin’s theorem (cf. Theorem 2.24 of [21]) for each n ∈ N

there exists a continuous function ĝ′
n : [0, T ] × R

d−1 → R
� such that (6.5) is sat-

isfied. Since � is a closed convex set, there is a continuous map  � : R� → �

such that  �(u)= u for all u ∈�. Define ĝn : [0, T ] × R
d−1 →� as ĝn(s, v)=

 �(ĝ
′
n(s, v)). The result now follows on noting that{

(s, v) : ĝn(s, v)= ĝ∗(s, v)
} ⊃ {

(s, v) : ĝ′
n(s, v)= ĝ∗(s, v)

}
. �

Let {vn} ⊂ Vd−1 be such that vn → v0 and let �n = (�n,Fn, {Fnt },Pn, {Wn})
be a system on which the process V n is the unique (weak) solution to

V n(t)= vn +
∫ t

0
η
(
s, gn

(
s,V n(s)

))
ds +

∫ t
0
β(s)V n(s) ds

+
∫ t

0
σ(s) dWn(s),

(6.6)

where gn : [0, T ]×Vd−1 →� is the continuous function defined as gn(s,Q
( v

0
)
)=

ĝn(s, v), v ∈ R
d−1. We can extend gn continuously to [0, T ] ×R

d as before using
the projection map  Vd−1 . Defining V̂ n as Q′V n = (

V̂ n

0

)
, we can write

V̂ n(t)= v̂n +
∫ t

0
η̂
(
s, ĝn

(
s, V̂ n(s)

))
ds +

∫ t
0
β̂(s)V̂ n(s) ds +

∫ t
0
α1/2(s) dŴn(s),

where Q′vn = (
v̂n
0

)
and Ŵn is a (d − 1)-dimensional Brownian motion.

THEOREM 6.3. Given v0 ∈ Vd−1, let V ∗ be as introduced in (6.3). Let vn, gn
and {V n} be as introduced above. Then V n ⇒ V ∗ as a sequence of C([0, T ] :Rd)-
valued random variables.

PROOF. It suffices to show that V̂ n ⇒ V̂ ∗. Let G = R
d−1 × � and define

mn ∈ M([0, T ] ×G) as

mn(A×B ×C) .=
∫ T

0
1A(s)1B

(
V̂ n(s)

)
1C

(
ĝn

(
s, V̂ n(s)

))
ds,

where A ∈ B([0, T ]),B ∈ B(Rd−1),C ∈ B(�). Since u �→ η̂(s, u) is a linear func-
tion and

∫ t
0 ĝn(s, V̂

n(s)) ds = ∫ t
0 um

n(ds dv du), V̂ n(t) can be expressed as

V̂ n(t)= v̂n +
∫ t

0
η̂(s, u)mn(ds dv du)+

∫ t
0
β̂(s)V̂ n(s) ds +

∫ t
0
α1/2(s) dŴn(s).
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We can disintegrate mn as mnt (dv du)dt , where mnt (dv du) = δ
V̂ n(t)

(dv) ×
δ
ĝn(t,V̂ n(t))

(du) and δx is the Dirac measure at the point x. From the bounded-

ness of η̂, β̂ and α1/2, we get by a standard application of Gronwall’s inequality
that for some C ∈ (0,∞)
(6.7) E

[
V̂ n(t)

] ≤ C(1 + v̂n)eCt for all n ∈N, t ∈ [0, T ].
Using this moment bound and a similar bound on the increments of V̂ n, we have
that {V̂ n} is a tight sequence of C([0, T ] : Rd−1)-valued random variables. Now
the tightness of {mn} as a sequence of M([0, T ] ×G)-valued random variables is
immediate since the first marginal is the Lebesgue measure (i.e.,mn([0, t)×G)= t
for all t ∈ [0, T ]), {V̂ n} is tight, and � is compact. Also, the tightness of {Ŵn}
as a sequence of C([0, T ] : Rd−1)-valued random variables is immediate since
Ŵn is a standard Brownian motion for each n. Therefore, {V̂ n, Ŵ n,mn} is a tight
collection of C([0, T ] : R2(d−1))×M([0, T ] ×G)-valued random variables.

Suppose {V̂ n, Ŵ n,mn} converges along a subsequence (also denoted {n}) to a
process, {V̂ , Ŵ ,m}. Let (�′,F ′,P′) be the probability space on which the limit
processes are defined. Then Ŵ is a P

′-Brownian motion and using the continuity
of η̂, β̂ and α1/2 we see that (V̂ , Ŵ ,m) satisfy

V̂ (t)= v̂0 +
∫ t

0
η̂(s, u) dm(ds dv du)+

∫ t
0
β̂(s)V̂ (s) ds +

∫ t
0
α1/2(s) dŴ (s)

P
′-almost surely.
Define F ′

t = σ {V̂s, Ŵs,m([0, s]×A) : 0 ≤ s ≤ t,A ∈ B(G)}. It is easy to check
that {Ŵt } is a {F ′

t }-martingale. Indeed, let k ∈ N and H : (R2(d−1) × R)k → R

be a bounded and continuous function. Define Zt .= (V̂t , Ŵt ,m(t, f )) and Znt
.=

(V̂ nt , Ŵ
n
t ,m

n(t, f )), where f ∈ Cb(G) and ν(t, f ) = ∫ t
0 f (v,u)ν(ds dv du) for

ν =m,mn. Then for s ≤ t ≤ T and 0 ≤ t1 ≤ · · · ≤ tk ≤ s,
E

′H(Zt1, . . . ,Ztk )[Ŵt − Ŵs] = lim
n→∞E

nH
(
Znt1, . . . ,Z

n
tk

)[
Ŵnt − Ŵns

] = 0,

where the second equality uses the fact that Ŵn is a {Fnt }-Brownian motion and
Znt is {Fnt }-adapted. This proves that (Ŵt ) is an {F ′

t }-martingale.
Note that m,mn can be disintegrated as

m(ds dv du)=ms(dv du)ds, mn(ds dv du)=mns (dv du)ds.
We will now argue that for all t ∈ [0, T ],∫ t

0

∫
G
ums(dv du)ds =

∫ t
0
ĝ∗(s, V̂ (s))ds a.s. P′.(6.8)

Note that (6.8), the linearity of η̂ in u, together with the weak-uniqueness of so-
lutions to (6.3) (which was established in Section 5) completes the proof of the
theorem.
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Note that for any f ∈ Cb(R
d−1) we have

∫ t
0
∫
G f (v)m

n
s (dv du)ds =∫ t

0 f (V̂
n(s)) ds. Since (mn, V̂ n)⇒ (m, V̂ ), we have for any such f :∫ t

0

∫
G
f (v)ms(dv du)ds =

∫ t
0
f
(
V̂ (s)

)
ds for all t ∈ [0, T ], a.s. P′.

Denote by m̂it , i = 1,2 the marginal of mt on its ith coordinate. Then the above
display can be rewritten as∫ t

0

∫
Rd−1

f (v)m̂1
s (dv) ds =

∫ t
0
f
(
V̂ (s)

)
ds

for t ∈ [0, T ], a.s. P′, for every f ∈Cb
(
R
d−1 :R)

.
This shows that

m̂1
t (dv)= δV̂ (t)(dv),

[
λ⊗ P

′] a.e.
(
t,w′),(6.9)

where λ is the Lebesgue measure on [0, T ].
Recall the definition of An from Lemma 6.2 and ! from (6.4). Define Bn

.=⋂∞
m=n An. Then

!(Bn)≥ 1 − 1

2n
for all n≥ 1

and ĝ∗(s, v) = ĝn(s, v) = ĝn+1(s, v) = · · · for all (s, v) ∈ Bn. Since {v̂n} is
bounded, we have from the moment bound in (6.7) that for every ε > 0, there
is a compact F ⊂ R

d−1 such that

sup
n∈N

sup
0≤t≤T

P
n[V̂ n(t) ∈ Fc] ≤ ε

2
.(6.10)

Note that this says in particular that {v̂n} ⊂ F . For t ∈ [0, T ] and v ∈ R
d−1, let

p(t, v, z) be the transition probability density of the Gaussian random variable
V̂ v0 (t) given as the solution of the SDE

V̂ v0 (t)= v +
∫ t

0
β̂(s)V̂ v0 ds +

∫ t
0
α1/2(s) dŴ (s).

It is easy to see that there exists a function 
 : [0, T ] → R+ and κ ∈ (0,∞) such
that

(6.11) sup
v,z∈F

p(t, v, z)≤
(t), t ∈ [0, T ], and
∫ T

0
e−κ/t
(t) dt <∞.

Using the boundedness of η̂ and α−1/2, Girsanov’s theorem, and the Cauchy–
Schwarz inequality we see that there exists a θ ∈ (0,∞) such that for any bounded
measurable f : [0, T ] ×R

d−1 →R and t ∈ [0, T ]

E
n

∣∣∣∣
∫ t

0
f
(
s, V̂ n(s)

)
ds

∣∣∣∣ ≤ θ
[
E

′
(∫ t

0
f
(
s, V̂

vn
0 (s)

)2
ds

)]1/2
.(6.12)
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Since e−κ/sψ(s)1F (v) dv ds is a finite measure on [0, T ]×R
d−1 that is absolutely

continuous with respect to !, we have for any ε > 0 a n0 ∈ N such that

∫ T
0

∫
Rd−1

1Bcn0
(s, v)e−κ/s1F (v)
(s) dv ds <

ε2

4θ2 .(6.13)

Together with (6.11), (6.13) implies

E
′
∫ T

0
e−κ/s1Bcn0

(
s, V̂ v0 (s)

)
1F

(
V̂ v0 (s)

)
ds <

ε2

4θ2(6.14)

for all v ∈ F . From (6.10), (6.12) and (6.14), we have

E
n
∫ T

0
e−κ/2s1Bcn0

(
s, V̂ n(s)

)
ds

< E
n
∫ T

0
1F

(
V̂ n(s)

)
e−κ/2s1Bcn0

(
s, V̂ n(s)

)
ds + ε

2

≤ θ
[
E

′
(∫ T

0
1F

(
V̂
vn
0 (s)

)
e−κ/s1Bcn0

(
s, V̂

vn
0 (s)

)
ds

)]1/2
+ ε

2

≤ ε.

(6.15)

Denote by m̂n,it the marginal of mnt on the ith coordinate for i = 1,2. Then, for
any n≥ n0, t ∈ [0, T ], f ∈ C(�), and h ∈ C([0, T ])∫ t

0

∫
G
e−κ/2sh(s)f (u)mns (dv du)ds

=
∫ t

0

∫
Rd−1

e−κ/2sh(s)f
(
ĝn(s, v)

)
m̂n,1s (dv) ds

=
∫ t

0

∫
Rd−1

1Bn0
(s, v)e−κ/2sh(s)f

(
ĝn0(s, v)

)
m̂n,1s (dv) ds

+
∫ t

0

∫
Rd−1

1Bcn0
(s, v)e−κ/2sh(s)f

(
ĝn(s, v)

)
m̂n,1s (dv) ds,

where the second equality follows on noting that for (s, v) ∈ Bn0 , ĝn(s, v) =
ĝn0(s, v) when n≥ n0. Thus∣∣∣∣

∫ t
0

∫
G
e−κ/2sh(s)f (u)mns (dv du)ds

−
∫ t

0

∫
Rd−1

e−κ/2sh(s)f
(
ĝn0(s, v)

)
m̂n,1s (dv) ds

∣∣∣∣
≤ 2‖f ‖∞‖h‖∞

∫ t
0

∫
Rd−1

1Bcn0
(s, v)e−κ/2sm̂n,1s (dv) ds.

(6.16)
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It follows from (6.15) that the expectation of (6.16) is bounded above by
2‖f ‖∞‖h‖∞ε and thus, letting n→ ∞,

E
′
∣∣∣∣
∫ t

0

∫
G
e−κ/2sh(s)f (u)ms(dv du)ds

−
∫ t

0

∫
Rd−1

e−κ/2sh(s)f
(
ĝn0(s, v)

)
m̂1
s (dv) ds

∣∣∣∣
≤ 2‖f ‖∞‖h‖∞ε.

Therefore, since ĝn0(s, v)= ĝ∗(s, v) on Bn0 ,

E
′
∣∣∣∣
∫ t

0

∫
G
e−κ/2sh(s)f (u)ms(dv du)ds

−
∫ t

0

∫
Rd−1

e−κ/2sh(s)f
(
ĝ∗(s, v)

)
m̂1
s (dv) ds

∣∣∣∣
≤ 2‖f ‖∞‖h‖∞

[
ε+E

′
∫ t

0

∫
Rd−1

1Bcn0
(s, v)e−κ/2sm̂1

s (dv) ds

]
.

Since Bcn0
is open, it then follows from (6.15)

E
′
∫ t

0

∫
Rd−1

1Bcn0
(s, v)e−κ/2sm̂1

s (dv) ds

≤ lim inf
n→∞ E

n
∫ t

0

∫
Rd−1

1Bcn0
(s, v)e−κ/2sm̂n,1s (dv) ds ≤ ε.

Letting ε→ 0 we have for all t ∈ [0, T ], h ∈ C([0, T ]), f ∈ C(�) that∫ t
0

∫
G
e−κ/2sh(s)f (u)ms(dv du)ds

=
∫ t

0

∫
Rd−1

e−κ/2sf
(
ĝ∗(s, v)

)
m̂1
s (dv) ds a.e. P′.

Combined with (6.9) this implies that

ms(dv du)= δV̂ (s)(dv)δĝ∗(s,V̂ (s))(du),
[
λ× P

′] a.e.
(
s,w′).

This proves (6.8) and, as argued previously, completes the proof of the theorem.
�

7. Example. The following class of models is studied in [1]. Consider a sys-
tem consisting of N identical servers (nodes) of capacity C ∈ N and K different
classes of jobs each with its own capacity requirement Ak ∈ N, k ∈ {1, . . . ,K}.
External jobs of type k arrive at each server with rate λk . A job of type k remains
at a given node for an exponential holding time with mean γ−1

k before attempting
to move to another randomly chosen node. If the server has available capacity it
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accepts the job, otherwise the job is rejected and exits the system. If not rejected
first, a type k job remains in the system for an exponential amount of time with
mean τ−1

k before leaving the system. We make the usual assumptions of mutual in-
dependence, in particular a.s. at most one job may arrive, switch nodes, or exit the
system at a given time, but note that such an event may correspond to the change
in state of multiple servers.

For the discussion below, for simplicity, we consider the case where there are
only two classes of jobs. In the notation of the current paper, the state process
XN(t)= {X1

N(t), . . . ,X
N
N (t)} is the pure jump Markov process whereXiN(t) takes

values in

X = {
(j, i) ∈N0 ×N0 : jA1 + iA2 ≤ C}

.

Let, as before, d = |X|,S = P(X), and SN = P(X) ∩ 1
N
N
d . The empirical mea-

sure process, μN(t) ∈ SN , is a d-dimensional pure jump Markov process where
μ
j,i
N (t)= 1

N

∑N
k=1 1{XkN(t)}((j, i)) represents the proportion of nodes with exactly

j and i jobs of type 1 and 2, respectively. We suppose that μN(0) = xN a.s. for
some deterministic xN ∈ SN such that xN → x0 as N → ∞ and xj,i0 > 0 for all
(j, i) ∈ X. Also suppose that vN

.= √
N(xN −x0)→ v0 as N → ∞. The rate func-

tion �̄kN associated with this system is described in [1] but we present it below in
our notation for completeness. Jobs can enter or leave the system or switch nodes
which means that there are three transition types for each class of job. Thus the set
K of different jump types can be represented as K = {Ei,Li,Ci : i = 1,2} where
nEi = nLi = 1 and nCi = 2 for i = 1,2. Let for (j, i) ∈ X, êj,i = (δ(j,i),(k,�))(k,�)∈X
be the d-dimensional vector which is 1 for entry (j, i) and 0 for all other entries.
The sets corresponding to the possible jumps of each type are

�E
1 = {

(êj,i , êj+1,i) : (j, i) ∈ SE1}
, �E

2 = {
(êj,i , êj,i+1) : (j, i) ∈ SE2}

,

�L
1 = {

(êj,i , êj−1,i) : (j, i) ∈ SL1}
, �L

2 = {
(êj,i , êj,i−1) : (j, i) ∈ SL2}

,

�C
1 =�L1 ∪ {

(êj,i + êj ′,i′, êj−1,i + êj ′+1,i′) : (j, i, j ′, i ′
) ∈ SC1}

,

�C
2 =�L2 ∪ {

(êj,i + êj ′,i′, êj,i−1 + êj ′,i′+1) : (j, i, j ′, i ′
) ∈ SC2}

,

where SE
1 = {(j, i) ∈ X : (j + 1, i) ∈ X} and SE

2
, SL

1
, SL

2
, SC

1
, SC

2
are defined

similarly.
Let r ∈ SN . The rate of jumps corresponding to a job arriving at a node with

j and i jobs of classes 1 and 2, respectively, is equal to the number of nodes in
this configuration multiplied by the rate at which jobs enter the system. Namely,
the rate �̄kN(r, ν) when ν = (êj,i , êj+1,i) ∈ �k and k = E1 is Nrj,i × λ1, and
similarly �̄kN(r, ν) = Nrj,i × λ2, ν = (êj,i , êj,i+1) ∈ �k, k = E2. The rate of de-
partures is given similarly but, since all jobs are processed simultaneously, we
need to multiply the processing rate by the number of jobs at a given node.



244 A. BUDHIRAJA AND E. FRIEDLANDER

Specifically, �̄kN(r, ν) = j × Nrj,i × τ1 for ν = (êj,i , êj−1,i) ∈ �k, k = L1 and
�̄kN(r, ν)= i ×Nrj,i × τ2 for ν = (êj,i , êj,i−1) ∈�k, k = L2. When jobs attempt
to change nodes there are two possible outcomes (successful and unsuccessful
switching) which we will consider separately. The case in which a job successfully
switches nodes is analogous to a job leaving the system but rates are multiplied by
the proportion of nodes in the configuration to which the job is switching. Thus
for a job switching from a node with j and i jobs to a node with j ′ and i ′ jobs (of

types 1 and 2, respectively) we have �̄kN(r, ν)= j×Nrj,i×γ1 × Nrj
′,i′

N−1 where ν =
(êj,i+ êj ′,i′, êj−1,i+ êj ′+1,i′) ∈�k, k = C1 and �̄kN(r, ν)= i×Nrj,i×γ2 × Nrj

′,i′
N−1

for ν = (êj,i + êj ′,i′, êj,i−1 + êj ′,i′+1) ∈ �k, k = C2. Next, consider unsuccess-
ful switches. Recall that if a job attempts to switch to a node at which there is
not enough room, then the job is rejected from the system. The rate at which
such jumps occur is, again, analogous to the previous scenario except we instead
multiply by the proportion of nodes without enough room for the job attempting
to move. Let rCi be the proportion of nodes without enough room to accommo-
date a job of type i [i.e., nodes in states (i ′, j ′) with (j ′A1 + i′A2 + Ai > C)].
Then �̄kN(r, ν) = j × Nrj,i × γ1 × NrC1

N−1 for ν = (êj,i , êj−1,i) ∈ �k, k = C1 and

�̄kN(r, ν)= i ×Nrj,i × γ2 × NrC2
N−1 for ν = (êj,i , êj,i−1) ∈�k, k = C2.

With the above definition of �̄kN , the generator of {μN(t)} is as given by (2.2).
�k is defined to be the limit of �̄kN which is simply given as

(7.1) �k(r, ν)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

clj × rj,i × γ1 × rj ′,i′ for ν = (êj,i + êj ′,i′,
êj−1,i + êj ′+1,i′) ∈�k, k = C1,

i × rj,i × γ2 × rj ′,i′ for ν = (êj,i + êj ′,i′,
êj,i−1 + êj ′,i′+1) ∈�k, k =C2,

j × rj,i × γ1 × rC1 for ν = (êj,i , êj−1,i) ∈�k,
k =C1,

i × rj,i × γ2 × rC2 for ν = (êj,i , êj,i−1) ∈�k,
k =C2,

�̄k1(r, ν) otherwise

for r ∈ S . Clearly, �k(·, ν) is Lipschitz for all k ∈ K, ν ∈�k and (2.3) is satisfied
so Condition 2.1 holds in this example. From Proposition 2.2, we then have that
μN(t)→ μ(t) uniformly on [0, T ] where μ̇(t) = F(μ(t)) and F is as in (2.4),
with �k as defined above.

Now suppose that the arrival rates λi, i = 1,2 can be modulated by exercising
an additive control with values in 1√

N
[−D,D],D <∞, i = 1,2. One can also

consider control of any of the other parameters {τi, γi : i = 1,2} but for simplicity
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we will only consider the control of the arrival rates. Let

�= {
u ∈R

�1 × {0}�−�1 |uj = u∗
1 ∈ [−D,D], j = 1, . . . ,

∣∣�E1 ∣∣,
uk = u∗

2 ∈ [−D,D], k = ∣∣�E1 ∣∣ + 1, . . . ,
∣∣�E2 ∣∣},(7.2)

where �= ∑2
i=1(|�Ei | + |�Li | + |�Ci |) and �1 = ∑2

i=1 |�Ei |. The controls will
take values in �N = 1√

N
�. For a u ∈� or �N let u∗

1 refer to the value of the first

|�E1 | coordinates and u∗
2 refer to the value of the next |�E2 | coordinates. Define

the controlled rate function as

(7.3) �kN(r, u, ν)=
⎧⎪⎨
⎪⎩
Nrj,i × (

λ1 + u∗
1

)
for k =E1, ν = (êj,i , êj+1,i) ∈�E1

,

Nrj,i × (
λ2 + u∗

2

)
for k =E2, ν = (êj,i , êj,i+1) ∈�E2

,

�̄kN(r, ν) otherwise,

where u ∈�N . Since controls in �N are O( 1√
N
), Condition 2.3 is easily seen to

be satisfied for the example.
From our assumption that xj,i0 > 0 for all (j, i) ∈ X, it follows that μj,it > 0 for

all (j, i) ∈ X and 0 ≤ t ≤ T . Using this and the form of �k given in (7.1), it is
then easy to check that Condition 2.6 is satisfied. Similarly, our assumption on the
initial conditions in Theorem 2.8 is satisfied as well. Recalling the definitions of
�kN and �k in (7.3) and (7.1), respectively, we see that there exists a κ ∈ (0,∞)
such that for all y ∈ B(2√

N),u ∈�N, ξ ∈ SN(y)
√
N

(
1

N
�kN

(
1√
N
y + ξ, u, ν

)
− �k(ξ, ν)

)
≤ κ(1 + ‖y‖)

and, therefore, Condition 2.4 is satisfied. For k ∈ K, ν ∈�k define hk1(ν, ·) : S →
R as

hk1(ν, r)=
⎧⎪⎨
⎪⎩
rj,i for k =E1, ν = (êj,i , êj+1,i) ∈�E1

,

rj,i for k =E2, ν = (êj,i , êj,i+1) ∈�E2
,

0 otherwise

and hk2(ν, ·) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1 × ej,i for k =E1, ν = (êj,i , êj+1,i) ∈�E1
,

λ2 × ej,i for k =E2, ν = (êj,i , êj,i+1) ∈�E2
,

j ×μ1 × ej,i for k =L1, ν = (êj,i , êj−1,i) ∈�L1
,

i ×μ2 × ej,i for k =L2, ν = (êj,i , êj,i−1) ∈�L2
,

j × γ1 × (
rj,i × ej ′,i′ + rj ′,i′ × ej,i) for ν = (êj,i + êj ′,i′,

êj−1,i + êj ′+1,i′) ∈�k, k = C1,

i × γ2 × (
rj,i × ej ′,i′ + rj ′,i′ × ej,i) for ν = (êj,i + êj ′,i′,

êj,i−1 + êj ′,i′+1) ∈�k, k =C2,

j × γ1 × (
rj,i × e1

C + rC1 × ej,i) for ν = (êj,i , êj−1,i) ∈�k, k = C1,

i × γ2 × (
rj,i × e2

C + rC2 × ej,i) for ν = (êj,i , êj,i−1) ∈�k, k =C2.
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DefiningHk,βNk as in Condition 2.5 with hk1 and hk2, we see that (2.14) is satisfied,
and thus Condition 2.5 holds for the example.

We now introduce the following finite time horizon cost:

(7.4) JN
(
UN,vN

) = E

∫ T
0

(∥∥VN(t)∥∥2 + α∥∥√NUN(t)∥∥2)
dt, UN ∈ AN,

where α ∈ (0,∞). The cost function penalizes both the deviation from the nom-
inal behavior and exercising rate control. Note that this cost function satisfies the
condition introduced below (2.10). We have thus verified all the conditions needed
for Theorem 2.8 and from this result it follows that a near optimal continuous
feedback control for the diffusion control problem can be used to construct an
asymptotically optimal sequence of control policies for this system. The diffusion
control problem here takes the same form as (2.20) with η and β as in (2.15) and
σ as in (2.18) with cost given as

J (U,v0)= E

∫ T
0

(∥∥V (t)∥∥2 + α∥∥U(t)∥∥2)
dt, U ∈ A(�).(7.5)

This is the classical stochastic linear-quadratic regulator problem which has been
well studied (cf. [12]). Replacing [−D,D] with R in the definition of the control
set in (7.2), the optimal control for the limit stochastic LQR is given in feedback
form as follows:

u∗(s, y)= −B ′(s)K∗(s)V (s),

where B is defined in terms of {hk1, k ∈ K} via the relation η(t, u)= B(t)u and K∗
solves an appropriate Riccati equation (see [12]). For implementing this feedback
control for the prelimit system, we truncate u∗ suitably; such a modification, in
practice, has little to no effect for large N . We construct UNg as in Section 2.4, by

taking UNg (t)=
√
Nu∗(t,VN(t)).

We now present our numerical results. The above control policy was imple-
mented (for α = 0.01 and 0.001) on Ntrials = 128 different realizations of the
stochastic process with the following parameters N = 10,000, T = 10, C = 6,
A1 = 1,A2 = 1, λ1 = 1, λ2 = 1, τ1 = 1, τ2 = 1, γ1 = 1, γ2 = 1. We also simulate
128 realizations of the corresponding uncontrolled system. Table 1 shows the av-
eraged cost over the 128 simulations for the controlled and uncontrolled systems.

TABLE 1
Cost over 128 Simulations

Uncontrolled Controlled with α = 0.01 Controlled with α = 0.001

Deviation cost 8.9556 8.1271 7.5649
Control cost 0 0.01 × 25.37 0.001 × 256.8

Total cost 8.9556 8.3809 7.8217
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The control policy based on the optimal feedback control for the stochastic LQR
leads to a reduction in cost of 12.7% for α = 0.01 and 15.5% for α = 0.001. The
deviations from the nominal values under the controlled and uncontrolled systems
are computed by calculating the average

1

Ntrials

Ntrials∑
i=1

∫ T
0

∥∥VN(s)∥∥2
ds

for the two systems and the cost of exercising control is computed by the average,

α × 1

Ntrials

Ntrials∑
i=1

∫ T
0

∥∥√NUN(t)∥∥2
ds.

The deviations are smaller for the controlled system as expected. In general, one
can achieve higher reduction in such deviations by decreasing the parameter α in
the cost function. In practice, the tuning parameter α suitably balances the cost of
deviating from the nominal values and the cost for exercising control.

APPENDIX: AUXILIARY RESULTS

A.1. Conditions [A] and [T1] of [14]. For the sake of the reader’s con-
venience, we present Theorem 2.3.2 and Conditions [A] and [T1] of [14]. Let
{Mn} be a sequence of R

k-valued processes which are RCLL (right continuous
with left limit) locally square-integrable martingales, defined on their own fil-
tered probability space {(�n,Fn, (Fnt ),Pn)}. Consider the following two condi-
tions for a sequence of k-dimensional RCLL processes {XN }, with XN defined on
(�n,Fn, (Fnt ),Pn).

[A] For each ε > 0, η > 0 there exists a δ > 0 and n0 ∈ N with the property
that for every family of stopping times {τn}n∈N (τn being an Fn-stopping time on
�n) with τn ≤ T − δ,

sup
n≥n0

sup
θ≤δ
P n

{∥∥Xnτn −Xnτn+θ
∥∥ ≥ η} ≤ ε.

[T1] For every t in some dense subset of [0, T ], {Xnt }n∈N is a tight sequence of
R
k valued random variables.

THEOREM A.1 [Theorem 2.3.2 of [14] (Rebolledo)]. Let

〈
Mn

〉 .= k∑
i=1

〈
Mni ,M

n
i

〉

be the predictable quadratic variation process associated with the k-dimensional
local martingaleMn. Then if the sequence {〈Mn〉}n∈N of R-valued stochastic pro-
cesses satisfies condition [A], the same condition holds for the sequence {Mn}n∈N
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of Rk-valued stochastic processes. Furthermore, if {〈Mn〉}n∈N satisfies [T1] then
the same condition holds for {Mn}n∈N. In particular, if {〈Mn〉}n∈N satisfies [A]
and [T1], the sequence {{〈Mni ,Mni 〉, i = 1, . . . , k}}n∈N and {Mn}n∈N are tight in
D([0, T ] : Rk).

REFERENCES

[1] ANTUNES, N., FRICKER, C., ROBERT, P. and TIBI, D. (2008). Stochastic networks with mul-
tiple stable points. Ann. Probab. 36 255–278. MR2370604

[2] ATAR, R. (2005). A diffusion model of scheduling control in queueing systems with many
servers. Ann. Appl. Probab. 15 820–852. MR2114991

[3] BELL, S. L. and WILLIAMS, R. J. (2001). Dynamic scheduling of a system with two paral-
lel servers in heavy traffic with resource pooling: Asymptotic optimality of a threshold
policy. Ann. Appl. Probab. 11 608–649. MR1865018

[4] BENSOUSSAN, A. (1982). Stochastic Control by Functional Analysis Methods. Studies in
Mathematics and Its Applications 11. North-Holland, Amsterdam. MR0652685

[5] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
MR1700749

[6] BORKAR, V. S. (1989). Optimal Control of Diffusion Processes. Pitman Research Notes in
Mathematics Series 203. Longman Scientific & Technical, Harlow. MR1005532

[7] BUDHIRAJA, A. and GHOSH, A. P. (2012). Controlled stochastic networks in heavy traffic:
Convergence of value functions. Ann. Appl. Probab. 22 734–791. MR2953568

[8] BUDHIRAJA, A., GHOSH, A. P. and LEE, C. (2011). Ergodic rate control problem for single
class queueing networks. SIAM J. Control Optim. 49 1570–1606. MR2817491

[9] CHEN, Z. and HUAN, Z. (1997). On the continuity of themth root of a continuous nonnegative
definite matrix-valued function. J. Math. Anal. Appl. 209 60–66. MR1444511

[10] DAI, J. G. and LIN, W. (2008). Asymptotic optimality of maximum pressure policies in
stochastic processing networks. Ann. Appl. Probab. 18 2239–2299. MR2473656

[11] ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes: Characterization and Conver-
gence. Wiley, New York. MR0838085

[12] FLEMING, W. H. and RISHEL, R. W. (1975). Deterministic and Stochastic Optimal Control.
Applications of Mathematics 1. Springer, Berlin. MR0454768

[13] HARRISON, J. M. (1988). Brownian models of queueing networks with heterogeneous cus-
tomer populations. In Stochastic Differential Systems, Stochastic Control Theory and Ap-
plications (Minneapolis, Minn., 1986). IMA Vol. Math. Appl. 10 147–186. Springer, New
York. MR0934722

[14] JOFFE, A. and MÉTIVIER, M. (1986). Weak convergence of sequences of semimartingales
with applications to multitype branching processes. Adv. in Appl. Probab. 18 20–65.
MR0827331

[15] KRYLOV, N. V. (2009). Controlled Diffusion Processes. Stochastic Modelling and Applied
Probability 14. Springer, Berlin. MR2723141

[16] KURTZ, T. G. (1970). Solutions of ordinary differential equations as limits of pure jump
Markov processes. J. Appl. Probab. 7 49–58. MR0254917

[17] KURTZ, T. G. (1971). Limit theorems for sequences of jump Markov processes approximating
ordinary differential processes. J. Appl. Probab. 8 344–356. MR0287609

[18] KURTZ, T. G. and PROTTER, P. (1991). Weak limit theorems for stochastic integrals and
stochastic differential equations. Ann. Probab. 19 1035–1070. MR1112406

[19] KUSHNER, H. J. (2001). Heavy Traffic Analysis of Controlled Queueing and Communication
Networks. Applications of Mathematics (New York): Stochastic Modelling and Applied
Probability 47. Springer, New York. MR1834938

http://www.ams.org/mathscinet-getitem?mr=2370604
http://www.ams.org/mathscinet-getitem?mr=2114991
http://www.ams.org/mathscinet-getitem?mr=1865018
http://www.ams.org/mathscinet-getitem?mr=0652685
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=1005532
http://www.ams.org/mathscinet-getitem?mr=2953568
http://www.ams.org/mathscinet-getitem?mr=2817491
http://www.ams.org/mathscinet-getitem?mr=1444511
http://www.ams.org/mathscinet-getitem?mr=2473656
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=0454768
http://www.ams.org/mathscinet-getitem?mr=0934722
http://www.ams.org/mathscinet-getitem?mr=0827331
http://www.ams.org/mathscinet-getitem?mr=2723141
http://www.ams.org/mathscinet-getitem?mr=0254917
http://www.ams.org/mathscinet-getitem?mr=0287609
http://www.ams.org/mathscinet-getitem?mr=1112406
http://www.ams.org/mathscinet-getitem?mr=1834938


CONTROLLED WEAKLY INTERACTING SYSTEMS 249

[20] PROTTER, P. E. (2005). Stochastic Integration and Differential Equations, 2nd ed. Stochastic
Modelling and Applied Probability 21. Springer, Berlin. MR2273672

[21] RUDIN, W. (1986). Real and Complex Analysis, 3rd ed. McGraw-Hill, New York.
[22] STROOCK, D. W. and VARADHAN, S. R. S. (2006). Multidimensional Diffusion Processes.

Springer, Berlin. MR2190038
[23] WHITT, W. (2002). Stochastic-Process Limits: An Introduction to Stochastic-Process Limits

and Their Application to Queues. Springer, New York. MR1876437

DEPARTMENT OF STATISTICS AND

OPERATIONS RESEARCH

UNIVERSITY OF NORTH CAROLINA

CHAPEL HILL, NORTH CAROLINA 27599
USA
E-MAIL: budhiraj@email.unc.edu

ebf2@live.unc.edu

http://www.ams.org/mathscinet-getitem?mr=2273672
http://www.ams.org/mathscinet-getitem?mr=2190038
http://www.ams.org/mathscinet-getitem?mr=1876437
mailto:budhiraj@email.unc.edu
mailto:ebf2@live.unc.edu

	Introduction
	Notation

	Problem formulation and main results
	Weakly interacting jump Markov process
	Controlled system
	Diffusion control problem
	Main result

	Tightness
	Lower bound
	Feedback controls
	Feedback control in the Nth system
	Diffusion feedback control
	Convergence under continuous feedback controls

	Near optimal continuous feedback controls
	Example
	Appendix: Auxiliary results
	Conditions [A] and [T1] of joffe1986weak

	References
	Author's Addresses

