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NASH EQUILIBRIA OF THRESHOLD TYPE FOR TWO-PLAYER
NONZERO-SUM GAMES OF STOPPING

BY TIZIANO DE ANGELIS!, GIORGIO FERRARI? AND JOHN MORIARTY !
University of Leeds, Bielefeld University and Queen Mary University of London

This paper analyses two-player nonzero-sum games of optimal stopping
on a class of linear regular diffusions with not nonsingular boundary be-
haviour [in the sense of It6 and McKean (Diffusion Processes and Their Sam-
ple Paths (1974) Springer, page 108)]. We provide sufficient conditions under
which Nash equilibria are realised by each player stopping the diffusion at
one of the two boundary points of an interval. The boundaries of this interval
solve a system of algebraic equations. We also provide conditions sufficient
for the uniqueness of the equilibrium in this class.

1. Introduction. Given a one-dimensional regular diffusion X = (X;);>0 on
an interval Z C R, we consider a two-player Dynkin game [15] in which player
i € {1, 2} chooses a stopping time t; in order to minimise the payoff J; (11, 12; x),
where

(11) jl (TI’ 172, X) = Ex[e_rr] Gl(Xfl)I]-{T1<T2} + e_rrle (th)]]-{tzftl}]v
(L.2) Ja(z1, 125 %) == Ex[e_rTZGZ(sz)]l{rzfr]} +e L2(X7:|)]1{r|<7:2}]»

taking into account the stopping time chosen by player j := 3 —i [here E, denotes
the expected value under the measure P, (-) = P(:|X¢ = x)]. In particular, we aim
to provide sufficient conditions for the existence and uniqueness of Nash equilibria
of the following threshold type:

(1.3) 7 =11 (x7), 7y =1(x3)  forsome xi < x3,
where, for x, z € Z, we define P, -a.s. the stopping times

T1(z):=inf{t > 0: X; <z} and
(1.4)
7(z) :=inf{t > 0: X; > z}.

Fori =1, 2, wereferto J; (], t5; x) as an equilibrium payoff. Our interest in such
equilibria is guided by the seminal paper [6], where equilibrium stopping times are
the hitting times of sets defined by free boundaries.
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In our game, the stopping cost for player i is equal to either G; (X,) or L; (X r].)
(continuously discounted at the rate r > 0), depending on who stops first. While
the existence and uniqueness of Nash equilibria are questions of fundamental in-
terest, it is also valuable to investigate the structure of equilibria under general
dynamics for X, a topic which has so far received relatively little rigorous mathe-
matical treatment. In particular, having established the existence of an equilibrium
structure such as (1.3) we may derive algebraic characterisations of the thresholds
[i.e., x| and x3 in (1.3)] enabling straightforward numerical evaluation of both the
equilibrium payoffs and stopping times.

1.1. Background and contribution. In this section, we briefly review the math-
ematical literature on Dynkin games (some of the economic literature will also be
recalled in Section 1.2.1) and place our contribution in this context.

Zero-sum Dynkin games, in which G| = —L; and G, = —L1, have a consid-
erable literature both in discrete and continuous time (see, for instance, [1, 2, 7,
10, 13, 17, 25-27, 36, 40, 42] and references therein) and in several papers the
structure of equilibria has been studied, beyond the question of their existence
and uniqueness. In contrast, the literature on nonzero-sum Dynkin games focuses
largely on the existence of Nash equilibria.

Such existence results have been given in both the discrete and the continu-
ous time settings, using a variety of sufficient conditions and methodologies. In
discrete time, the approaches applied include Tarski’s fixed-point theorem [29]
and martingale methods combined with a fixed-point theorem for monotone map-
pings [31]; see also [35] and [39]. In continuous time, the methodologies employed
include quasi-variational inequalities [33], the general theory of stochastic pro-
cesses [18] and the potential theory of Ray—Markov processes [9]; see also [20,
21, 27] and [28]. Beyond the question of existence, equilibrium payoffs (although
not strategies) are constructed by backward induction in [34]. Additional technical
questions arising in the continuous time setting, concerning appropriate notions of
subgame-perfect equilibrium, are considered in [38].

In the present paper, we take X to be a weak solution of a stochastic differen-
tial equation (SDE) on an interval Z = (x, X) and employ probabilistic methods so
that, unlike in analytical settings such as that of [6], the coefficients of this SDE
are only assumed to be continuous. We provide sufficient conditions on the func-
tions L; and G; for the existence of a Nash equilibrium whose strategies have the
structure (1.3), together with sufficient conditions for uniqueness of the equilib-
rium in this class. Our method is the following: we show that if player 1 stops at
the hitting time of a half-line (x, z1] then player 2’s best reply is the hitting time to
a half-line [z2,1, X) where z2,1 > z1 depends on z;. The same arguments produce
symmetric results if we start by letting player 2 stop at the hitting time of a half-
line [z2, X). The key point is then to show that there exists a fixed point, that is, a
couple of intervals (x, x{] and [x3,X) such that the corresponding hitting times
are the best replies to one another and (1.3) forms an equilibrium. To construct
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each player’s best reply to the opponent’s stopping rule, we draw on the geometric
characterisation of r-excessive mappings due to Dynkin [16] and later generalised
in [12].

Our work complements recent related work by Attard [5] (see also [4]), which
became available during the final drafting of the present paper. In [5], the structure
of Nash equilibria is studied for regular linear diffusions absorbed at either O or 1.
Here, instead, we consider regular linear diffusions on an interval Z C R killed
at a (possibly state-dependent) rate and cover all boundary behaviours which are
not nonsingular. The methodology in [5] differs from our approach, which is to
construct the solution by taking into account the geometry of the stopping cost
functions. In contrast in [5], the equilibrium payoffs are hypothesised to satisfy
the so-called double smooth-fit principle, according to which they are continu-
ously differentiable at the corresponding equilibrium stopping threshold x;. Based
on this principle, two coupled free boundary problems are formulated and solved
explicitly, producing functions # and v which can be verified as the equilibrium
payoffs of the game. In the present paper, we observe double smooth fit in some
equilibria (in particular see Section 3.1), but we also find equilibria outside this
setting (see Sections 3.2, 3.3 and 3.4). Finally, a more technical difference is that
due to the absorbing behaviour at O and 1, the main result in [5] (Theorem 4.1)
assumes that G;(0) = L;(0) and G;(1) = L;(1),i =1, 2 (here we use our notation
for the payoffs). We allow instead the limiting behaviour given in (2.10) and in
(2.18) below for G; and L;, respectively.

1.2. Outline of main results. In order to present the main results, we first note
properties of the underlying regular diffusion X. In general, the behaviour of the
process X at the boundaries of Z C R may be of several types [22] and we will as-
sume that the upper endpoint of Z is natural, while the lower one is not nonsingu-
lar: that is, either natural, exit-not-entrance or entrance-not-exit (see, for instance,
[8], Chapter 2, pages 18-20). For the unfamiliar reader, the terminology is ex-
plained in more detail in Section 2.2 where other analytical properties of X are
also addressed.

Beginning with the case of natural boundaries (which includes Brownian mo-
tion, geometric Brownian motion and the Ornstein—Uhlenbeck process), we estab-
lish sufficient conditions on G; and L; (see the next section for details) for the ex-
istence of a Nash equilibrium (7", 7;) of the threshold type (1.3). Under these con-
ditions, the smooth fit principle holds for the equilibrium payoff x — J; (7}, 73 x)
at the corresponding equilibrium threshold x;* (i.e., the payoff is continuously dif-
ferentiable at x*). These thresholds may therefore be characterised by a system of
algebraic equations. We then show that if the functions L; are assumed to have
appropriate smoothness, we may also provide sufficient conditions for the unique-
ness of the Nash equilibrium amongst strategies of the threshold type (1.3).

Analogous results are obtained in the case when the lower endpoint is either an
exit-not-entrance or an entrance-not-exit boundary, thus addressing Bessel pro-
cesses (depending on their parameters) and related processes such as the CIR
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(Cox—Ingersoll-Ross) and CEV (constant elasticity of variance) process. In these
settings, we also find equilibria in which one of the two players never stops, and
equilibria with a structure possibly more complex than (1.3) depending on the ini-
tial value of X (see Proposition 3.16).

We also indicate in Appendix A.3 the extension to a state dependent dis-
count factor. Other combinations of natural, exit-not-entrance and entrance-not-
exit boundaries may be addressed via the methods of this paper (indeed this is
immediate by symmetry when the lower boundary is natural and the upper one not
nonsingular).

1.2.1. Conditions on the problem data. We consider stopping costs L; and
G; fulfilling suitable assumptions of integrability and smoothness (cf. Definitions
2.3, 2.4). Moreover, they satisfy the sufficient conditions applied below, which are
motivated by the threshold type equilibrium structure (1.3). Fori = 1, 2, these are:

(@) L; <Gy,

(b) T1 NT, =@, where T'; denotes the closure of I'; := {x : (Lx — r)G;(x) > 0}
and Ly denotes the infinitesimal generator of X,

(c) the equation (Lx —r)G;(x) =0 has a single root.

In our setup, player i chooses a stopping time t;, or equivalently a pure strategy
(see, e.g., [38] for discussion on pure and mixed strategies in continuous time). Our
requirement (a) specifies that each player locally has an incentive to act second:
in the context of stopping games, this is a war of attrition (see, e.g., [32]). It is
worth mentioning here that in the opposite situation, in which L; > G;, each player
locally has an incentive to act first and the game belongs to the class of preemption
games; see, for example, [19] for a deterministic setting and [3, 41] for a stochastic
framework. In the literature on preemption games, equilibria are usually realised
in mixed rather than pure strategies. Requirement (a) is therefore reasonable in
a study of threshold-type strategies, which are pure strategies constructed from
hitting times.

Condition (b) addresses the cost functions G;, which are the costs for stopping
first. An argument using Dynkin’s formula, which is standard in optimal stopping
and is also provided in Appendix A.4, establishes that player i will not stop on the
set {x : (Lx — r)G;i(x) < 0}. Our requirement (b) therefore means that locally at
least one player is incentivised to wait rather than accepting the stopping cost. This
implies that the players do not stop simultaneously.

Motivated by the latter argument, let us temporarily fix the strategy of player i.
Then it is reasonable to suppose that if the function x — g;(x) ;= (Lx —r)G(x),
Jj =3 —1i, changes sign many times, the optimal strategy for player j (given player
i’s strategy) may involve several disjoint regions on which it is optimal to stop.
Since condition (c) ensures that the function g; changes sign at most once on Z,
this suggests that the optimal strategy for player j (given player i’s strategy) should
be to stop the process upon hitting a connected set. Indeed, this type of condition
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is commonly used in the literature on optimal stopping problems in order to ensure
that the solution is a stopping time of threshold type.

In principle, our techniques may also apply under conditions other than (a)—(c),
in which case equilibria with other structures can arise. This point is illustrated in
Section 3.4, where condition (b) is replaced by the following alternative:

(d) EitherI'y c T orI') C TI'y.

In this case, it is necessary to slightly generalise the structure of (1.3) as one of
the players may never stop. Such equilibria have been obtained in the economics
literature for instance by Murto [32] but in Section 3.4 we consider more general
specifications of the stochastic process X and of the stopping costs L; and G; than
those used in [32].

Note that the threshold type structure we study has some degree of overlap
with that of some zero-sum games of optimal stopping (see, e.g., [2]). However,
a characterisation of the equilibrium stopping thresholds in our game cannot be
achieved via methods usually employed for zero-sum games. Indeed, in this paper,
we deal with the joint optimisation of the coupled system of payoffs (1.1)—(1.2).
The latter reduces to a simpler problem with a single payoff in the zero-sum case.
From a PDE point of view, this can be understood by noticing that a zero-sum game
is usually associated to a variational inequality (see, e.g., [2]) whereas a nonzero-
sum game must be associated to a system of coupled variational inequalities (see,
e.g., [6]).

The rest of the paper is organised as follows. Section 2 introduces the nonzero-
sum Dynkin game, together with the dynamics and our assumptions and suffi-
cient conditions on the stopping costs. Existence and uniqueness results for Nash
equilibria of threshold type are proved in Section 3 for different combinations of
boundary behaviour. In Section 3.4, we consider slightly weaker assumptions on
the stopping costs. In the Appendix, we generalise our results to state dependent
discount factors and provide some auxiliary proofs.

2. Setting. We begin by formally stating the game presented in the Introduc-
tion and by providing a rigorous definition of a Nash equilibrium in Section 2.1.
Then we describe the class of diffusions involved in the optimisation (see Sec-
tion 2.2), whose analytical properties are finally used in Sections 2.3 and 2.4 to
characterise the class of stopping costs to be used in the game, that is, G;, L;,
i=1,2in(1.1) and (1.2).

2.1. The nonzero-sum Dynkin game. On a complete filtered probability space
(2, F, P) equipped with a filtration F = (F;);>¢ which satisfies the standard as-
sumptions, we consider a real-valued diffusion process X := (X;);>0. Its state
space is an interval Z C R and we denote the explosion time by

2.1) or:=infl{t >0: X, ¢ T).
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Further details concerning the diffusion X will be provided in the next section.
In order to formally introduce the two-player nonzero-sum game of stopping,
we denote

T := {7 : 7 is an F-stopping time and 7 < o7 a.s.},

and when no confusion may arise we also denote player 1 by P; and player 2 by P».
For a given 1, € T, player P; aims at minimising the payoff ) (z1, 72; x) in (1.1)
by optimally choosing their stopping time t; € 7. Analogously, given 71 € T, P>
chooses the stopping time 7o € 7 in order to minimise J>(t1, T2; x) in (1.2).

In order to cover the events w for which o7 (w) = 400, for any real-valued Borel
function f and any 7 € T, we set

(2.2) e f(Xo)Ljr=400} =0 P.-a.s. forall x € Z.

Before proceeding further, we provide the definition of Nash equilibrium.

DEFINITION 2.1. For x € Z, we say that a couple (71, 72) € T x T is a Nash
equilibrium for the two-player nonzero-sum game of optimal stopping, started at
x, if and only if

Ji(t1, 125 x) < J1(p, 125 x) VoeT,

(2.3)
Jo (11, 125 x) < Ja(71, P X) YoeT.

We also say that v; (x) := J;(t1, 12; x) is the corresponding equilibrium payoff for
the ith player. Further, if the couple (1, 12) is an equilibrium in the game started
at x for each x € Z, we simply say that (1, 72) is a Nash equilibrium.

2.2. The underlying diffusion. Let B = (B;);>0 be a one-dimensional stan-
dard Brownian motion on (€2, F, P) adapted to IF, then our diffusion X is defined
as follows. The triple (2, F, P), I, (X, B) is a weak solution of the stochastic dif-
ferential equation (SDE)

2.4) dX;=upuX,)dt +o(X;)dB;, Xo=x€el,

for some Borel-measurable functions @ : R — R and o : R — R to be specified.
To account for the dependence of X on its initial position, from now on we shall
write X* where appropriate and P, to refer to the probability measure such that
P.(-) =P(-|Xo = x), x € Z. Throughout the paper, we will equivalently use the
notation E[ f(X})] and Ex[ f(X;)], f : R — R Borel-measurable and integrable,
to refer to expectations under the measure P,.

We denote by Z the closure of Z and assume that Z = (x, X) € R so that x and
X are (not necessarily finite) boundary points for X. The upper boundary point
X is assumed to be natural, whereas the lower one x is either natural, exit-not-
entrance or entrance-not-exit (see, for instance, Chapter 2, pages 18-20, of [8] for
a characterisation of the boundary behaviour of diffusions). We recall that x (or
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equivalently x) is natural if the process cannot start from there and when starting
from x € Z it cannot reach X (resp., x) in finite time; x is exit-not-entrance if the
process cannot start from x but can reach it in finite time (hence o7 < 400 with
positive probability); finally x is entrance-not-exit if the process can start from x
but it cannot reach it in finite time when started from x € Z.

For the coefficients of the SDE (2.4), we make the following assumption, which
will hold throughout the paper.

ASSUMPTION 2.2. The functions u and o are continuous in Z with ¢ > 0
inZ.

As a consequence of the above assumption, one has that for every y € Z there
exists &, > 0 such that

/HSO LEI®)] dé < +o00.
y

& o@®

The latter guarantees that (2.4) has indeed a weak solution that is unique in the
sense of probability law (up to the time oz; cf. [24], Chapter 5.5).

We now recall some basic analytical properties of diffusions, which are also
going to be used later on to characterise the functions G;, L; appearing as stopping
costs in the game [recall (1.1) and (1.2)]. We refer the reader to Chapter 2 of [8]
for a detailed exposition. Under Assumption 2.2, the diffusion process X is regular
in 7Z; that is, if

(2.5) T(y) :=inf{t > 0: X; = y}

one has P, (7(y) < o0) > 0 for every x and y in Z so that the state space cannot be
decomposed into smaller sets from which X cannot exit. The continuity of x and
o imply that the scale function has derivative

S’ (x) :=exp <—/x 21¢) d§>, xeZ,

. 02(8)
for any fixed reference point x,, € Z, and the speed measure has density
m'(x):= #, xel.
o 2(x)S'(x)

We define the infinitesimal generator Ly of X by
1
(Lxw)(x) = o (" (x) + p(ou' (), x €T,
for any u € C?(Z). Then, for fixed r > 0, under Assumption 2.2 there always ex-

ist two linearly independent, strictly positive solutions of the ordinary differential
equation Lxu = ru satisfying a set of boundary conditions based on the boundary
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behaviour of X (see, e.g., pages 18—19 of [8]). These functions span the set of so-
lutions of Lxu = ru and are uniquely defined up to multiplication if one of them
is required to be strictly increasing and the other one to be strictly decreasing. We
denote the strictly increasing solution ¥, and the strictly decreasing one ¢,. For
x,y €7 and t(y) as in (2.5), one has

Y (x)
- A
(2.6) Ex[e ™) =1""
dr(x) x>y
¢r(y)

We recall that the Wronskian

_ Yy ()@ (x) — ¢ ()Y (x)
S'(x) ’

is a positive constant and we introduce the Green function

Vrer(y)  x =y,

¢r(Yr(y)  x=y.

The latter can be used to obtain the representation formula for the resolvent

2.7 W xeT,

r(x,y):= wl. {

oz
(2.8) E, [./0 e_”f(X,)dt] = /If(y)r(x, y)m'(y)dy, xel,

which holds for any continuous function f : Z — R such that the integrals are
well defined. Moreover the following useful equations hold for any x <a <b <X
(cf. paragraph 10, Chapter 2 of [8]):

/ b / b
% — % = r/ v (y)m'(y)dy,

@ oL(b)  ¢L(a) ab
o S = eomeay.

2.3. Classes of stopping cost functions. In order to clarify the assumptions
concerning the stopping costs G;, L;, i = 1,2 appearing in (1.1) and (1.2) we
need first to introduce the class of functions below.

DEFINITION 2.3. Let A be the class of real valued functions H € C%(Z) such
that

2.10 li H =0 li H =0

(2.10) XI—IE_CE(X)_ ; xl_f)nf%(x)— ,
o1

(2.11) and Ex|:/ e”|h(Xt)|dt}<oo
0

for all x € 7 and with h(x) := (LxH — rH)(x).
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In this paper, elements of .4 will be often denoted by H and then the corre-
sponding lower case letter 4 will denote the function i (x) := (Lx H — r H)(x).

We provide some formulae for functions in .4 which will be useful in the rest of
the paper. Using Itd’s formula, (2.10) and standard localisation arguments one can
show that for H € A we have

oz
(2.12) H(x):—Ex[/ e_”h(X,)dt], xel.
0
Then applying the representation (2.8), we get the equivalent expression

Hex) = —w! [q» @ [ o @) dy
(2.13) *

#1060 [0 ) dy]

and straightforward calculations also give

(2.14) (g)@ - —%(g)/m [ * b (ORI () dy.

For our study, we also consider the following subsets of .A.

DEFINITION 2.4. We say that H € A lies in the class A; if 4(-) has a unique
zero at x, € Z and liminfy_., A(x) > 0 and limsup,_,; h(x) < 0. Alternatively,
we say that H € A if —H € A;.

Several proofs below use a geometric approach to optimal stopping which re-
quires the following change of variables. As in [12], equation (4.6), we define the
strictly increasing function

Yr(x)
or(x) ,

together with its inverse function F,~! and for any continuous real function H on
T we set

(2.15) Fr(x) = xeT,

A — o F () y >0,
(2.16) H(y):= (q’)r "
0 y=0.
In what follows (see for, e.g., Lemma 3.1) for H € A;,i = 1, 2, we denote
n = Fr(xp).
For the benefit of the unfamiliar reader, we provide in Appendix A.1 a proof of
the next well-known result (see also Section 6, page 192 in [12]).

LEMMA 2.5.  Let x1,x2 € L and set y; := Fy(x;), i = 1,2. Moreover, let H €
C*(ZT) and define H as in (2.16) and h := (Lx — r)H. Then

2.17) I:I(y) is strictly convex on (y1,y2) <=  h(x) > 0on (x1,x32).
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2.4. Sufficient conditions on the stopping costs and notation. Here, we formu-
late the statements (a), (b) and (c) of Section 1.2.1 in the above setting. We will
show in Section 3 that these conditions are sufficient for the existence of Nash
equilibria of threshold type (1.3). It is convenient to recall the notation T'; for the
closure of thesets I'; :={x e Z:(Lx —r)G;(x) >0},i =1, 2.

ASSUMPTION 2.6. (i) Fori =1,2, we have L;, G; € C(Z; R) with L; < G;
onZ;

(ii)) G1 € Ay and Gy € A withT 1 NTH = @;

(iii) for i = 1, 2, we have

i

L.
—l(x) <400 and limsup
r X—>X

(2.18) lim sup

X—>Xx

(x) < 4o0.

r

In fact, parts (i) and (ii) slightly refine conditions (a), (b) and (c) of Section 1.2.1,
since we now require the sign of (Ly — r)G; to be asymptotically nonzero at the
endpoints of Z. We have introduced condition (iii) to ensure the finiteness of the
game’s payoffs (see, e.g., [12]).

It is useful to introduce also some notation related to the above assumptions on
the stopping costs. We recall (2.16) and for i = 1,2 we set G; and L; to be the
transformations of G;, L;.

DEFINITION 2.7 (Notation). Fori =1,2 and G; € A;, we define:

L. gi(x):=(Lx —r)Gi(x),x €L;

2. x; the unique point at which the sign of g;(x) changes and J; := F, (%;);
3. y; the unique stationary point of G; in (0, vi), whenever it exists.

Fori=1,2and L; € A;, we define:

4. Li(x):=Lx —-r)Li(x),x €L,
5. X; the unique point at which the sign of ¢; (x) changes and y; := F,(;);
6. y; the unique stationary point of L; in (0, y;), whenever it exists.

Notice that éi and ii as in Definition 2.7 have at most one stationary point in
(0, ;) and (0, y;), respectively, due to Lemma 2.5. Note also that in this setting

Flﬂfzzg = X <X

REMARK 2.8. For natural and entrance-not-exit boundaries, we have ¢, (x) 1
400 as x | x and ¥, (x) 1 +00 as x 1 X so that bounded functions G; satisfy
(2.10), for example. In the case of an exit-not-entrance boundary which is explored
in Section 3.3, however, (2.10) is more restrictive and so it is relaxed in the latter
section, yielding an additional term in (2.12) [cf. (3.41)]. We also note that all the
results in this paper remain true if in the definition of A the regularity of H is

weakened by requiring H € WI%)’COO @.
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3. Construction of Nash equilibria. In this section, we develop our exis-
tence and uniqueness results under different combinations of diffusion boundary
behaviour. We are then able to provide an algebraic characterisation of the optimal
thresholds, as a system of two equations in two unknowns (or reducing in special
cases to one equation in one unknown, with another threshold formally located
at one of the endpoints x and x). We begin in Section 3.1 under the assumption
that the endpoints x < X of Z are natural for X, then consider an entrance-not-
exit lower boundary x in Section 3.2 and an exit-not-entrance lower boundary in
Section 3.3.

3.1. The case of natural boundaries. When x and X are both natural boundary
points, we have (see paragraph 10, Section 2 of [8]):

lim v, (x) =0, lim ¢, (x) = o0,
x|x xlx

3.1
}}g Yr(x) = oo, }Cigd’r(x) =0,
Yl (x) . P (x)
CHTES B ST B
3.2) B B

/ /
im 2 oo im &
¥ §'(x) x1x §(x)
The following lemma provides geometric properties associated with the classes
A1, Ay of Definition 2.4, and is proved in the Appendix.

LEMMA 3.1. Let H € A, (resp., A>). Then H:

(1) is strictly convex (resp., concave) on (0, yp) and strictly concave (resp.,
convex) on (3, 00);
(ii) satisfies H(O+)=0and H' (0+) = —00 (resp., +00);
(iii) has a unique global minimum (resp., maximum) in (0,39,) and
limy o0 I:I(y) = +o00 (resp., —00); finally H is monotonic increasing (resp., de-
creasing) on (yp, +00).

In order to prove our main results, for i = 1,2 and u, v > 0 let us introduce the
functions:
(33) Li(u,v):=Giw) — Li(v) — Gj(w)(u — v).

THEOREM 3.2 (Existence of an equilibrium). Under Assumption 2.6, there
exists a solution (y{, y3) of the problem

L1(y1,y2) =0,

(3.4) Find (y1,y2) € (0,31) x (32,+00)  such that
Lo(y2, y1) =0.
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Writing x| := Fr_l(yi") € (x,X1) and x5 := Fr_l(yé‘) € (X2, %) and recalling (1.4),
the couple

(3.5) T =11 (x]), 5 = 12(x3)

is a Nash equilibrium.

PROOF. The proof is divided into three steps. In Step 1, we assume that P
picks a stopping time 7;(z) as defined in (1.4), for some z € (x, x;). We then
construct P»’s best reply, showing that it has the form t2(x2) as defined in (1.4),
for some x € (X, x) which depends on z. Step 2 reverses the roles of the two
players, and in Step 3 we combine these results to construct a Nash equilibrium.

Step 1 (Player 2’s best reply). Given P;’s choice t1(z) described above, P, is
faced with an optimal stopping problem of the form

(3.6)  inf Ex[e” Goa(X D) Ljrsn o) + L2(X, @) Mg ]

Setting ¢ := F,(z), it is shown in Proposition A.1 that if the equation
(3.7 L(-,8)=0

has a solution y>(¢) € (32, +00) (which is therefore unique), then the stopping
time 77 (x2) with

x2 = x2(2) := F7 N (32(2))

is optimal in (3.6). In the rest of this step, we prove existence and uniqueness of
the solution y;(¢) € (32, +00) to (3.7). A

Notice that ¢ € (0, 1), hence ¢ < ¥», and by strict concavity of G, on (0, 32)
one has

(3.8) GH(32) (G2 — ¢) < G2($2) — Ga(2).
By substituting the above inequality into (3.3), we get
(3.9) L2(52,8) > Ga(Z) — La(¢) > 0

[noting that G2 > L2 by (1) in Assumptlon 2.6]. Also, u — Lo(u, ) is decreasmg
for u € (2, +00) since Ez(u 0) = —G”(u)(u — ¢) < 0 by the convexity of G
and the fact that ¢ < y; < y» < u.

Next, we show that £, (u, ) — —o0 as u — +00. To this end, note that Gz is
decreasing on (3, +00) (Lemma 3.1), so

3.10)  lim [Gow) = Gy — )] < lim [Go(w) — Gy(uu].

Since 1:2 is bounded on (0, y1) (Assumption 2.6), from (3.3) it is now sufficient to
establish that the latter limit equals —oco
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The chain rule and (2.14) (taking H = G, and h = g;) give
A u Gy\', u [*
Grtwn=— () () == [ g gom @ ar
’ Hu¢%m>¢r( V=W S 08
Setting u = F,(s), s € Z, from (2.13) we obtain

(3.11) Gﬂm—éﬂmu=—w”/ﬂ%0Mﬂwﬁmdt

Fix § > 0. By the conditions on our stopping costs, the function g» is bounded
below on [X; + 8, X) by a constant g5 > 0. When s > X, + §, we split the integral
above on the intervals (x, X + 8] and [X; + 8, X), then use the bound on g, and
(2.9) to obtain that

Go(u) — Gh(u)u
(3.12)

wm_wm+&ﬂ
§'(s)  S'(x2+9)
which tends to —oo as s 1 X by (3.2). This completes Step 1.

As we will see in the proof of Proposition 3.4, equation (3.7) may be interpreted
as a geometric version of the so called smooth-fit equation for P,, which specifies
that (3.6) should be continuously differentiable in x across the optimal boundary
x3. From the arbitrariness of z € (x, 1) and a simple application of the implicit
function theorem, we obtain that the map z — x»(z) is continuous on (x, X1), or
equivalently y>(-) € C((0, y1)) (see, e.g., Theorem 10.2.1 on page 270 of [14]).

Step 2 (Player 1’s best reply) Similarly, suppose that P, picks z € (X2, x) and
decides to stop at time 72(z). Then P; is faced with an optimal stopping problem
of the form:

(313) -L-lg’;'Ex [e_rTGl (X-[)]].{r<1—2(z)} + Ll (X'Q(z))e_rTZ(Z):ﬂ.{rzrz(z)}].

X446
S—W”L/ﬁ_%UMﬂmﬂmdr+§<

r

It may be proven just as in Step 1 that [with ¢ := F,(z)] the equation
(3.14) Li1(,6)=0

has a unique solution y; (¢) € (0, y1). Notice by (3.14) that y; (¢) > 0 is guaranteed

in this setting, by observing that (A}/l (04) = —oo (see Lemma 3.1). Then an optimal
stopping time for P; is t1(x1) where the optimal boundary point is x; = x1(z) :=
F'(y1(2)) (see Appendix A.4.2).

Again, the map z — x1(z) is continuous on (X, X) [or equivalently y;(-) €
C((92, +00))] by the implicit function theorem and arbitrariness of z.

Step 3 (A fixed point). With the continuous functions x> (-), x;(-) defined as in
Steps 1 and 2 respectively, suppose now that there exist two points x|, x5 € Z with
x] < x3 such that

(3.15) x5 = xa(xY),
(3.16) xf = x1(x3).
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Let us take 7" = 71(x]), 7} = 12(x3) and show that they form a Nash equilibrium
(Definition 2.1). Since Step 1 constructs P,’s best response to 7, over all stopping
times T € 7, we have from (3.15) that the lower inequality in (2.3) is satisfied.
Similarly, Step 2 implies that the upper inequality in (2.3) is satisfied, and so the
pair (t{, 7y) is a Nash equilibrium. In this step, we will therefore establish the
existence of x| < x7 satisfying (3.15)—(3.16).

We thus seek y; € (32, +00) such that £5(y3, y1(y3)) = 0. By the regularity
of G,, Ly and yj, we have u > L5(u, y;(#)) continuous on (37, +00). We con-
clude just as in (3.8) and (3.9) that £, (32, y1(32)) > 0. Since the point ¢ € (0, 31)
in (3.10) does not need to be constant for the latter inequality to hold, the proof
of Step 1 also gives that limy 40 £L2(u, y1(1)) = —00 and we conclude that
L>(-, y1(-)) has a root y;. From Step 1, we know that £5(-, y1(y5)) =0 has a
unique solution, denoted by y>(y1(y3)), hence y; = y2(y1(y3)). Therefore, setting
yi :=y1(y3), we have obtained a solution of (3.15)-(3.16) with x| := F;l(yi")
and x5 := F,‘l(y;‘). O

It is worth observing that if (yq, y2) € (0, y1) x (2, +00) is an arbitrary solution
of (3.4), then in particular y; is the unique solution of £ (-, y;) = 0in (3, +00) by
Step 1 in the proof above. Therefore, recalling (1.4) and Step 1, the stopping time
72(x2) with x, ;= F!(y7) is optimal in (3.6) when z = F~!(y;) =: x|. Analo-
gously, from Step 2 we find that 71(x1) is optimal in (3.13) when z = x; and,
therefore, the couple (71(x1), t2(x2)) forms a Nash equilibrium.

Conversely, suppose that a couple (z1(x1), 12(x2)), x1 < x2, forms a Nash equi-
librium in the class of threshold-type strategies (1.4). Then from Step 1, we
have that y; := F,(x2) must be the solution of £>(-, y;) =0 in (32, +00), with
y1 := F,(x1). Similarly, Step 2 implies that y; solves L (-, y2) =0 in (0, 31).

Therefore, we have established an equivalence which is summarised in the next
corollary.

COROLLARY 3.3. Let Assumption 2.6 hold. A couple (T1,7) := (t1(x1),
72(x2)), with x < x1 < x2 <X, forms a Nash equilibrium in the class of threshold-
type strategies (1.3) if and only if y1 = F,(x1) and y» = F.(x2) are a solution of
problem (3.4).

Next, we verify some analytical expressions associated to the equilibrium pay-
offs constructed above. We apply It6’s formula but note that direct calculations
involving the Laplace transforms of 7*, i =1, 2 (see Theorem 3.2) and the equi-
librium payoffs of the game would also suffice.

PROPOSITION 3.4. Let Assumption 2.6 hold and let (yi,y2) € (0,y1) X
(y2, +00) be a solution of (3.4). With x1, x2, T1, T2 as in Corollary 3.3, (T, T2)
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forms a Nash equilibrium. Moreover, the functions

G1(x) x < x1,
(3.17) vi(x) == {m1 ¥, (x) + g1y (x) x| <X <x2,
Ly(x) X > X2,
and
La(x) x < xi,
(3.18) v2(x) 1= ymayr(X) + @2¢r(x)  x1 <x <x2,
Ga(x) X > X2,
with
B S T T R TP
(3200 my:= (GZ/¢;F)((;C§)) : ;1;(2;?)()61)’ q = %(Xl) —maFy(x1),

coincide with the equilibrium payoffs of the two players, that is, vi(x) =
Ji (1, T2; x), i = 1,2. In particular, v € C(Z) with v| € WI%)’COO({, x2), vy € C(D)
with vy € Wli’coo (x1, x) and they solve:

(3.21) Lx —r)v;(x) =0, X1 <x<x,i=1,2,
(3.22) Lx —r)vi(x) >0, X <Xx<xip,

(3.23) Lx —r)va(x) >0, Xo <X <X,

(3.24) v, <Gi, xeZ,i=1,2.

PROOF. The fact that (7, 72) defines a Nash equilibrium follows from Corol-
lary 3.3. The rest of the proof is organised in three steps.

Step 1 (Regularity of v;). At this point, we recall the smooth change of variables
defined in (2.16), writing x = Fr_l(y). Applying this change of variables to v
in (3.17), the function y — 01(y) is a straight line on (y1, y»). The coefficients of
this straight line, given in (3.19), ensure that 9; is continuous on (0, 00), and hence
that vi € C(Z).

Further by the definition of £ in (3.3), it follows from the system (3.4) that the
gradient of this straight line is equal to the derivative of 6}1 at y;. We conclude that
U1 is continuously differentiable at y; or, equivalently, that vy is continuously dif-
ferentiable at x1. In this sense, equation (3.14) is a geometric version of the smooth
fit equation for vy. It follows immediately that v; is continuously differentiable on
(x, x2). Similarly by direct calculations and (3.17)—(3.18) we can check that v/

is indeed a locally bounded function on (x, x2), hence v € WI%)’COO (x, x2). We can
proceed in a similar way for v;.
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Step 2 (Free boundary problem). The equations (3.21), (3.22) and (3.23) follow
directly from the definition of v;, by recalling that ¢, and ¥, solve Lxu —ru =0,
and by the fact that x; < x| and xp > X;. For the final inequalities (the so-called
obstacle conditions), we refer again to the transformation (2.16). The transformed
function G is convex in (0, 91), it reaches its unique global minimum therein
and it is concave in (31, +00). By the 'smooth fit property established above at

y1 € (0, v1), it follows from 01(yy) = Ll(yz) < Gl(yz) that we must also have
0] < G1 on (y1, ¥2). Therefore, we have vi < G in (x,x3) and vy = L1 < G1 in
[x2, X). Symmetric arguments hold for v;.

Step 3 (Verification argument). Here, we show that indeed v;, i = 1, 2 coincide
with the equilibrium payoffs. As a byproduct, this step offers an alternative way of
showing that (71, 7,) is a Nash equilibrium, starting from the solution of (3.21)-
(3.24) (this is the original approach of [6]).

Let o € 7 be arbitrary. Then we have

~ o’/\‘fz
v1(x) = E [e—“““z)vl(Xm) - [ e ax - nue dr}
0

(3.25) <E e G1(X ) gty + e LI (X)) (52 5]
= Ji(o, 172; x).

Here, the first line follows from the It6—Tanaka formula (justified by the regular-
ity of v1) and a standard localisation argument, and the second line follows from
(3.17), (3.21), (3.22) and (3.24). In particular, setting o = 7| in (3.25) we obtain
v1(x) = J1(11, T2; x). Arguing similarly for vy yields the claimed equivalence of
v;, i = 1, 2 with the equilibrium payoffs. []

The application of It6’s formula in Step 3 of the latter proof also yields the
following (sub)-martingale property of the processes t > e ""v;(X;), i = 1,2.
This is the analogue in our game setting of the well-established (sub)-martingale
property in optimal stopping problems with minimisation over stopping times (see,
e.g., [37], Chapter 5, Section 2.3).

COROLLARY 3.5. Let (71, Ty) be as in Proposition 3.4 and v;, i = 1,2 the
related equilibrium payoffs for the two players. Fori, j =1,2,i # j,and t > 0 set

(3.26) Y/ :=e (X)), G;'::e—”Gl-(X,), Li:=e "Li(X,).

Then (Y ) >0 IS a continuous submartingale, (Y! )i>0 IS a continuous mar-

l‘/\‘[ /\‘[

tingale, Yl < Gl for all t > 0 and Y;M‘ = G’r, {f<#) T LI,]l{,inj} [notice that
i j i j

P.(T1 = 1) =0forall x € T].

Our nonzero-sum game may have multiple Nash equilibria but we now provide
sufficient conditions under which the equilibrium of Theorem 3.2 is unique in the
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class (1.3). For this, we will consider the auxiliary problem

(3.27) inf Ex[e " Ga(Xy)],  xel,
teT

which corresponds to the optimal stopping problem for P, if P; decides never to
stop. The proof of the next lemma is standard and we provide it in Appendix A.2.

LEMMA 3.6. There is a unique solution y5° in (y2,400) of (A}’z(y)y -
Gz(y) = 0. Setting x5° := F;l(ygo) > Xp and recalling (1.4), the stopping time
7,° := 12(x3°) is an optimal stopping time for (3.27).

Let y{° be the unique y € (0, y1) that solves £;(-, y3°) = 0, whose existence
we know from Step 2 in the proof of Theorem 3.2. Then the latter arguments also
give us the next corollary.

COROLLARY 3.7. Set x{° := Fr_l(yloo) < X1. Then t{° := 11 (x{°) [see (1.4)]
provides the best reply of Py when P, stops at t,°.

For future reference, it is worth recalling that the optimal stopping problem for
P1 when P, stops at 75° is

(3.28) inf Ecfe™ GiI(X0) ey T LiXeg)lpeage]. el

Recalling y;, i = 1, 2, from Definition 2.7 we are now ready to state our unique-
ness result.

THEOREM 3.8 (Uniqueness of the equilibrium). Let Assumption 2.6 hold and
let us also assume:

1) LieA;,i=1,2.
i) %2> 9.
(i) G < Li(3).
Then problem (3.4) has a unique solution. Writing x = F,_l(y;"), i =1,2, then
(x}, x3) is the unique couple such that (t1(x7), ©2(x3)) as in (1.3) constitutes a
Nash equilibrium for the game.

PROOF. The main idea of the proof is to show that the functions ¢ — y;(¢)
for i = 1,2 found in the proof of Theorem 3.2 are monotonic, respectively, in-
creasing and decreasing, so that they intersect at most once and (3.15)—(3.16) has
a unique solution. Uniqueness of the equilibrium [in the class (1.3)] then follows
by Corollary 3.3. We adopt the notation of Theorem 3.2 and observe that under the
additional regularity assumptions on L; the implicit function theorem implies that
yi(-) € C1(O;) withi = 1,2 and Oy := (32, +00), O1 := (0, $1). In fact, denoting
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by 0 L; the partial derivative of £; with respect to the kth variable k = 1, 2, the
implicit function theorem gives

b Li

5.z, i1(0:¢)

_ _Gloi) - Li©)
Gl i©) =¢)

Step 1 (y2 is monotonic decreasing). First, we want to prove that yo(-) de-

creases monotonically on O;. For ¢ € O3, it holds y2(¢) > y2 > ¢. Hence, by
Lemma 3.1(i) we have G”(yz(g“))(yz(;) — ) > 0 because Gz is convex, and

G/z(yz(g“)) <0 byALemma 3.1(iii). By assumption (ii), we also have Lz(g“) >0

for ¢ € O,, since L; is increasing on (0, y,) by Lemma 3.1. Therefore, we have
from (3.29) that y, is decreasing on O; as claimed. From Lemma 3.6, we find the
maximum value y;(0+) = y5°.

Since the optimal boundaries constructed in Theorem 3.2 have the fixed-point
property that y|' = y1(y2(y])) [cf. (3.15)—(3.16)], it is sufficient to show mono-
tonicity of ¢ > y1(¢) on the interval ¢ € (32, y5°), which contains the range of
¥2(+). This is done in the next step.

Step 2 (y1 is monotonic increasing). Taking ¢ € Oy, we have yi(¢) € O and
by (i) of Lemma 3.1 we have G’l/(yl (€)1 (;) —¢) < 0. Corollary 3.7 and Step 2

yi() =
(3.29)

{EO[,iI],Z.

in the proof of Theorem 3.2 justify setting y° = y1(y5°). Hence, we can write
G’ 1 () = G/ (y7°) and since we are assuming G/ () < L’ (»5°), then
(3.30) 1(»2°) > 0.

Let us now study the sign of the function U : (32, y5°) — R, where U(¢) :=
(A}/l (y1(¢)) — i/l (¢). Assume that U has a zero at ¢ or, equivalently, that
y1(¢7) =0. Then since L1(y1(¢{), ¢{) =0 [cf. (3.3)] and U(gy) = 0, there is a
straight line which is tangent both to il ,at ¢y, and to él, at y1(¢y). Since il 18
convex for y < y; and L1 <Gyitis easy to see that we must have ¢ > y, other-

wise the tangent would lie below L1 on (0, ¢{) and violate L1 < G1 at y1(¢7).
Now we claim that if such ¢’ exists, then

(3.31) U>0 and y; <0  on(¢], ).

Since the latter inequality would contradict (3.30), it would then follow that yi )
must be strictly positive on (32, y5°).

Hence, to conclude it remains to prove (3.31). For this, we use yi (¢7) =0and
observe that

(3.32) U'(£f) = (G ()1 (©) = LY (@) lg=co = =L (¢7) > 0,

since ¢{{ > y1. Hence, U may only equal zero with strictly positive derivative, so
it has at most one zero ¢{ and then (3.31) holds.
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Step 3 [Uniqueness of the solution to (3.4)]. From Theorem 3.2, we know that
there exists (yf, ;) € O2 x Op such that y3 = y>(y{) and y{ = yi(y5). The
monotonicity of both y1 and y, obtained above implies that this pair is unique
in O, x O1, and hence there is a unique solution to (3.4). [

3.2. The case of an entrance-not-exit boundary. In this section, we extend the
methodology developed above to the case when x is an entrance-not-exit boundary
and X is a natural boundary for X. This setting includes, for example, certain CIR
and Bessel processes (see, for instance, [23]). For the fundamental solutions ¢,
and v, we have that (3.1), (3.2), (2.9) continue to hold if we replace (see [8],
Section 2, paragraph 10)

(3.33) lim () = 0 by lim . (x) > 0.
(3.34) im Y — oo by im &P L
xyx S’(x) xx §'(x)

This setting is adopted in the remainder of this section. We first examine the
geometric properties associated with the classes A1, A3, as was done previously
in Lemma 3.1, under the new boundary behaviour for x. The asymptotic behaviour
of H as y 1 400 is exactly the same as in Lemma 3.1 since the upper endpoint
of 7 is again natural. Notice as well that H(O0+)=0 by definition of A4; and that
H'(04) always exists by convexity or concavity. Compared to Lemma 3.1, the
difference in the present setting is that functions in .4; and .4; may now have a
finite derivative at zero with either negative or positive sign.

LEMMA 3.9. (i) If H € Ay, then H is convex on (0, $) and concave on
(¥n, 00). Moreover, H(O+) =0, limy_, H(y) 400 and H is monotonic in-
creasing on (Jp, +00).

In addition if H (0+) <0, then H has a unique global minimum in (0, yj,).

(i) If H € Ay, then H is concave on (0, 31) and convex on (3y,, o). Moreover,
I-AI(O—i—) =0, limy_, I:I(y) = —o0 and H is monotonic decreasing on (yj,, +00).

In addition if H'(0+) > 0, then H has a unique global maximum in (0, yp,).

Notice that by (ii) of Lemma 3.9, Lemma 3.6 continues to hold. We now exam-
ine the effect of the modified geometry on the remaining results.

In the case that CAi'l (04) = —o0, all geometrical considerations are identical to
those of the setting of Section 3.1 and so the proof of the next result is the same as
that of Theorem 3.2.

PROPOSITION 3.10. If (A;/l (0+) = —o0, then Theorem 3.2 continues to hold
when x is an entrance-not-exit boundary.
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Next, we analyse cases in which é/l (0+) € (—o00,0). First, we establish the
existence of equilibria having a degenerate version of the threshold type struc-
ture (1.3), in the sense that we formally take x| = x.

PROPOSITION 3.11. Let Assumption 2.6 hold, let G/l (0+) < 0 and recall
7,° 1= 12(x5°) from Lemma 3.6. Then (400, 15°) is a Nash equilibrium if and
only if
Li(y°) 4

1920 - &0

b))

(3.35)
with y5° = F,(x3°).

PROOF. Step 1 (Sufficiency). Suppose (3.35) holds and let P, choose the stop-
ping time 7;° which is optimal in problem (3.27), so that P, is faced with solving

(3.28). Due to condition (3.35), the largest convex function W; dominated by Gl
on [0, y3°] such that W (y) = f,l (v), for y > y3°, describes the value function (see
details in Appendix A.4). This Wj is given by the straight line starting from the ori-
gin and passing through (y5°, L (¥5°)). Therefore, due to strict convexity of G at
zero, Py’s best reply to 75° is the stopping time 71 (x) = inf{r > 0: X; = x} = +00
a.s. (since the entrance-not-exit boundary x is unattainable in finite time). Since
tfo is also P>’s best reply to 71(x), we have a Nash equilibrium.

Step 2 (Necessity). We show necessity by contradiction. Suppose that (400, 75°)
is a Nash equilibrium and that (3.35) does not hold.

Let P, choose the stopping time 7;7° so that Py must solve (3.28). Since (3.35)
does not hold, it is not possible to draw a straight line joining the origin to
(v5°, il(ygo)) and lying below G on (0, ¥5°). This line would be P;’s payoff
for never stopping, therefore, 71 = 400 cannot be a best reply. [

The above proposition shows that the construction of Theorem 3.2 may break
down in some cases, due to the geometry of G1. Hence, in our present setting
establishing the existence of an equilibrium requires different conditions on the
cost functions, such as those in the next proposition [and indeed there may be
cases where no equilibrium can be found in our class of strategies (1.3)].

PROPOSITION 3.12. Let
Ly (y3°

y2°

<0

(3.36) —00 < G} (0+4) <

and assume limy_, il (y) > —o0 and yr < ¥», where
(3.37)  yr:=sup{y>0:G,0+)y=Li(y)}  with sup@ =0,

then Theorem 3.2 continues to hold when x is an entrance-not-exit boundary.
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PROOF. Since é’l (0+)y does not cross I:l(y) for y > yr, it must be that

L (y) — (A;’l (04)y is either strictly positive or strictly negative for y > yr. How-
ever, the latter would violate (3.36), since yé’o > y» > yr, and hence is impossible.
Then we must have I:l(y) — CA}’I (04+)y > 0 for y > ¥,. Hence, by strict convex-
ity of G in (0, y1) and a simple geometric argument, for £ > ¥, one can always
construct a unique straight line passing through (¢, L1(¢)) and tangent to G at a
point of (0, y1). Thus, £(-, ¢) has a unique root y;(¢) € (0, y1) for each ¢ > 5.

This argument shows that Step 2 of the proof of Theorem 3.2 may be carried
out in the present setting. Step 1 is analogous, and Step 3 follows. [

Under the assumptions of Proposition 3.12, we notice that Corollary 3.3 and
Proposition 3.4 continue to hold, that is, any solution of (3.4) leads to a Nash equi-
librium of threshold type and to the related analytical properties of the equilibrium
payoffs.

REMARK 3.13. 1. It is important to notice that for the existence of an equi-
librium we have not examined whether or not L2 and Gg have maxima (see the
proof of Theorem 3.2). Instead, the existence of these maxima and their position
is used in Theorem 3.8 to establish uniqueness of the equilibrium. In the current
setting, L, and G, have maxima if and only if L »(0+) > 0 and G/ »(0+) > 0.
Therefore, assuming the latter along with condltlons of Proposition 3. 12 we have
that Theorem 3.8 holds.

2. Even though ¢, (x) 1 400 as x | x, when x is an entrance-not-exit boundary
condition (2.10) may become more restrictive. For instance, for a Bessel process
with index v = 1/2 (i.e., dimension § = 3) one has ¢, (x) ~ 1/x as x — 0 (see
[8] Appendix 2, pages 638 and 654). In this case, we may relax (2.10) for G| by
requiring

.Gy

lim —(x) = Ag, € (—00, +00).

xyx ¢r
All the above arguments can then be adapted to establish the existence and unique-
ness results for Nash equilibria. We omit further details here because in the next
section we analyse a similar situation in the case when x is an exit-not-entrance
boundary and (2.10) becomes a serious restriction.

3.3. The case of an exit-not-entrance boundary. Here, we extend the analysis
carried out in the previous two sections by addressing the case of a diffusion with
a lower exit-not-entrance boundary x and an upper natural boundary x. We sketch
most proofs, drawing out key differences with the previous arguments.

Equations (3.1), (3.2) and (2.9) continue to hold if we replace

(3.38) limqbr (x) =400 by lim(ﬁr (x) < +o0,

- w/f(x) —0 by lim 1/f()
xlx S'(x) xlx S/(x)

(3.39)
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This setting is adopted in the remainder of this section.

We see that ¢, (x+) is now finite so that imposing (2.10) on the stopping costs
requires them to vanish at x (recall that ¢, is positive). Hence, from now on we
shall relax the definition of the set .4 by replacing the condition (2.10) with

. H
(3.40) lim —(x) = Ag
xix @r

for some Ay € R depending on H. For any H € A Dynkin’s formula, standard
localisation and (2.8) give

H) = Ay () — W [c/» @ [ o @) dy
(3.41) n

F9r [ eI o) dy]

and for (H /¢,) (x) we have the same expression as in (2.14).

The geometric implications of the present setting are as follows. Since
limy | (¢,/S")(x) = —oo as in the natural boundary case, one can prove as in
Lemma 3.1 that

HeA = H(O+)=-00 and

(3.42) R
HeA = H(0+)=+c0.

Thanks to the latter observation one has that, under the new definition of A,
Lemma 3.1 in the same form with only the exception of the lower boundary con-
ditions: now indeed we have H(0+) = Ap. As one may expect, the sign of Ag,
plays a crucial role in determining the existence of Nash equilibria. We study the
two possible cases below, while we always assume Ag, > 0 for simplicity.

PROPOSITION 3.14. If Ag, <0, then Theorem 3.2 holds when x is an exit-
not-entrance boundary.

PROOF. Condition (3.42) implies that the construction of an equilibrium fol-
lows as in the proof of Theorem 3.2 up to trivial adjustments. [J

We now consider Ag, > 0 but with the additional requirement
(3.43) inf G1(x) <O0.
xel

In this case, from the above mentioned geometry of G; there exists a unique
straight line passing through the origin and tangent to G ;. We denote the tangency
point by (ys, G1(ys)) so that yg € (0, y1) is the unique solution of

(3.44) G1(ys) = ysG' (vs).

Repeating arguments as in the proof of Proposition 3.11, up to straightforward
modifications, we obtain a similar result.
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PROPOSITION 3.15.  Let Ag, > 0 and assume (3.43). Let Assumption 2.6 hold
with (3.40) in place of (2.10). Let also t;° = 12(x5°) be optimal for (3.27). Then
(01, 15°) is a Nash equilibrium if and only if
L1(y5°)

3

(3.45) G (ys) >
with y5° = Fp(x5°).

We now introduce

(3.46)  $r:=suply > ys,G(ys)y=Li(y)}  with sup@ = ys,

which will play a similar role to yr in the previous section. Before stating the next
result, we recall that since G, is concave to the left of X, an optimal boundary for
P, will never lie in (x, x3) (see Step 1 in the proof of Theorem 3.2).

PROPOSITION 3.16. Assume that Ag, > 0, that (3.43) holds and
L3

< 0.
y3°

(3.47) G'(ys) <

Assume also that yr < y» and limy_wol:l(y) > —00. Set x5 = F,‘l(ys) and
os :=inf{t > 0: X; > x5} A oz, then with (3.40) in place of (2.10) in Assump-
tion 2.6 one has:

(a) the couple (os,+00) is a Nash equilibrium for the game started at x €
(x, xs1;

(b) the couple (1], 1}
started at x > xg.

) of Theorem 3.2 is a Nash equilibrium for the game

PROOF. We omit details of the proof which involve the repetition of argu-
ments employed several times above. In terms of the problem geometry, the only
difference in the present case is that for any yo > , the largest convex function
W1 dominated by G1 and passing through (yo, Ll(yo)) has at most two straight
portions: (i) the usual one connecting Ll(yo) to G1 via the smooth-fit equation
L1(y1(y0), y0) = 0 and (ii) the straight line rg(y) := G’l(ys)y for y € [0, ys].
Proposition A.3 shows that W; provides P;’s minimal expected cost in this set-
ting.

. If x € (x, xs], then with probability one P; stops prior to P, at time o, because
G, is concave on [0, ys]. Hence, (a) holds, because stopping in finite time can only
increase P»’s expected cost. On the other hand, (b) is obtained as in the proof of
Theorem 3.2. [

In the setting of Proposition 3.16, for each x the additional assumptions of The-
orem 3.8 are again sufficient for the uniqueness of the equilibria we have obtained.
Similarly, they are also sufficient in the case Ag, <0.
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We also remark that for Ag, < 0, Corollary 3.3 and Proposition 3.4 hold in the
same form whereas for Ag, > 0 they hold in a slightly more complex form. We
provide a full statement for completeness but skip the proof as it is the same as the
original one up to minor adjustments.

PROPOSITION 3.17. Let all the assumptions of Proposition 3.16 hold. Let
(y1, y2) € (0, ¥1) X (32, +00) be a solution of (3.4) and for x; := F;l(y,'), i=1,2
set

(3.48) 71 :=11(x1), 77 1= 12(x2).

Then the couple (1, T2) is a Nash equilibrium for the game started at x € [xg,X)
whereas the couple (o5, +00) is a Nash equilibrium for the game started at x €
(x, x5).

Moreover, the equilibrium payoffs of the two players, that is, vi(x) =
Ji(T1, T2; x), i = 1,2, are given by the functions

p1yr(x) X <x <uxg,
< <
(3.49) o1 () o= ] G1) rS =4 =4
my,(x) + g1, (x) X1 <X <Xx2,
Li(x) X > X2,
and
P2y (x) X <x<Xxs,
L <x<
(3.50) oy () = 1 E200) rs =4 =4
may,(x) + g2, (x) X1 <X < X2,
Go(x), X > X2,

with m;, q;, i = 1,2 as in Proposition 3.4, p1 := G1(xs)/V¥,(xs) and py :=

Ly(xs)/Vr(xs). Also vy € C(Z) with v| € WI%)’COO(& x2) and vy € C(Z) with
2,00 —

vy € Wi (x1, X).

3.4. Analternate sufficient condition. In this section, we consider similar pref-
erences for the two players, in the sense that both stopping cost functions are drawn
from the class A (or both drawn from .43). This implies that we must necessarily
drop part (ii) of Assumption 2.6. Throughout the section, we assume again that x
is natural and x is either natural or entrance-not-exit. We will refer below to the
stopping problems

(3.51) infE,[e 7 Gi(X,)]. =12

PROPOSITION 3.18. Let (i) and (iii) of Assumption 2.6 hold. Assume now
that G1, G € Ay, with inf,c7 G;(x) < 0. Then, recalling (1.4), there exist xi’ el,
i = 1,2 such that ,ol.l’oO =T (xlf), i = 1,2 are optimal for (3.51).

Moreover, in the game (1.1)—(1.2) we have:
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1. ifxi > xé, then the couple (,011’00, +00) realises a Nash equilibrium;
2. if x| < x}, then the couple (+00, p21’°°) realises a Nash equilibrium;

3. if x| = x}, then both the couples (pll’oo, 4-00) and (+00, ,021’00) realise Nash
equilibria.

PROOF. Fori = 1,2, the existence of x/ may be easily verified since (3.51) is
an optimal stopping problem of the type studied in [12] [notice that inf,c7 G; (x) <
0, i = 1,2 guarantees that the trivial choice p = +00, Py-a.s. is not optimal
in (3.51)]. The geometric solution method described therein may therefore be ap-
plied, namely the construction of the largest nonpositive convex function domi-
nated by G;. Under the current assumptions, G; has a unique negative minimum
aty; € (0, y;) (recall Definition 2.7). It follows that the stopping sets for problems
(3.51) are of the form (x, x;] with x; := F1(y;) for i =1,2. Note that a sepa-
rate verification argument is not required in this case, since the sufficiency of this
construction is proved in [12].

Next, we establish the equilibria. We only consider the case x| > x} as the other

ones are analogous. Let us start by assuming that P; stops at ,011’°° and analyse
P>’s best reply. When the game is started at x < xi, P> can either stop and incur a
cost G>(x), or continue (i.e., picking any 7, > 0) and incur a cost L,(x). Hence,
the payoff for P, is Lo(x)1{z,~0) + G2(x)1{z,—0}, Which is clearly minimised by
choosing 7o > 0 a.s., since Ly < G». Hence, .72(,011’00, 73, x) = Lo (x) for all x <
xi and any 1 > 0, and in particular this is true for 7, = +o00.

Now for x > xi, P is faced with the optimisation problem

. _ _ . Loo
(3.52)  u(@):=infEx[e ™ Ga(Xo)L,_ ooy + ¢ La(X o)y, ooy |

}

Noticing that G, /¢, has the same monotonicity properties as G (Appendix A.1),
and that the game is terminated by Py if X hits x] it is clear that

SN 3 () PSR AT,

22x)\ @r

G2 _
= (%) (xi)Ex I:e rr(br(Xf)]].{rSpll,oo}:I.

Since also Ly < G, and (e~ "¢, (X,));>0 is a martingale, we obtain the following
lower bound:

u(x) > irrlf<<%)(x;)5x [e—”@(xr)n{rspll,w}]

r

353  + (%)( DE[e™ g (x pll,oo)ﬂ{wll,w}])

r

> ifﬁ((%)(ﬂ)a [e—r(mp}""’>¢r(mell_oo)]) = (%)(x{)cpr(x).
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Taking v = 400, P-a.s. in (3.52) [and recalling (2.2)], it now follows from the
Laplace transforms (2.6) that the lower bound above is attained. Hence, it is opti-
mal for P, to choose T = +00 P,-a.s. for all x > xi.

In conclusion, we have shown that T = 4-00 is a best reply of P> to P;’s stopping
rule ,011 "% Since P;’s best reply to T = 400 is by definition ,011 ">, we have reached

an equilibrium with (p 11’00, +00) as claimed. O

REMARK 3.19. It is not difficult to check that under (i) and (iii) of Assump-
tion 2.6, letting G, G € A, there exist x; € Z, i = 1, 2 such that ,01-2’OO =1(x)),
i =1, 2 are optimal for (3.51). Moreover, in the game (1.1)—(1.2) we have:

1. if xg > xé, then the couple (+o0, pg’oo) realises a Nash equilibrium;
2. if xi < xé, then the couple (,012’00, +00) realises a Nash equilibrium;

3. if x| = x}, then both the couples (400, ,0%’00) and (,of’oo, +00) realise Nash
equilibria.

APPENDIX

A.1. Convexity of H. We show here that H of (2.16) is strictly convex at y >
Oifand only if (Ly —r)H(x) >0 atx = Fr_1 (y). We simply work out explicitly
calculations indicated by [12], Section 6. For y = F}-(x), it is obvious that H (y) =
g(x) with g(x) := (H/¢,) (x)/F/(x) so that ﬁ”(y) = g'(x)/F/(x). Since F; is
strictly increasing, we only need to evaluate g’(x). This can be easily done by
observing that
(W, or — Yrp)(x) W S§'(x) _ (H'¢y — Hop)(x)

= d
(62 (x) G2 s WS (x)

from which we get

Fl(x)=

pon G )(S'H" = S"H) (x)  H(x)(S'¢, — S"¢,)(x)
8 (x) - \2 - N2
W(S)2(x) W(S)=(x)

Now we use that $”(x) = —2u(x)S’(x)/o%(x) to obtain

§'(x) = [¢r (X)Lx H (x) — H(x)Lx ¢, (x)]

Wa2(x)(8)(x)
20 (x)

= W(LXH —rH)(x),

where in the last equality we have used that Ly¢, = r¢,. The last expression
proves the claim and we remark that the result holds even if r = r(x) is state
dependent.
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A.2. Proofs of some lemmas.

PROOF OF LEMMA 3.1. Recalling the notation of Section 2.3, let H € A;.
From Lemma 2.5, we immediately get (i). We notiqe that indeed F,(x+) =0 and
F;(x—) = 400 due to (3.1) and the limit at zero of H is verified from the definition
of A.

If we now show that

(A.1) (a) lim H(y)=+o0 and (b) limH'(y) = —oo,
ytoo y10

we can then conclude parts (ii) and (iii).

First, we prove (a) above. By the definition of Ay, for fixed § > 0 there exists
&s > 0 such that h(z) < —egg for any z € [x;, 4+ 8, X). Moreover, for any x € [x; +
8,x), (2.13) implies

! Xp+6 ,
Hx) = —W™ [asr(x) [ n@n@mn' @
+ ¢r(x) /x Vr(2)h(z)m'(z) dz
xp+8
(A2) o [ " 6, (Dh(@m' () dz]
_— [¢r(X)Ca —estr ) [ Y m (@) dz
Xp+6

— et () | " 4, @m' 2) dz]

with Cs := f£h+5 Y, (2)h(z)m’(z) dz. Using (2.9), we have

oyde = [0 _ Yin+8)
5 Vr(z)m (2)dz = r [ S'(x) S'(xp +6) ]

X

Xp+

and by using (3.2) also, we obtain

¥ / 1 ¢.(x)
dz=—- .
| or@m'@dz= -
Substituting these into (A.2), the right-hand side of (A.2) is equal to
&s Yy (xn +9)
r S'(xp+9)

(A3) W ci+ Jercr+ 2.

and so we have

(A4) i) —W—l[c L e Y +5)] %

¢r(x) — r S +8) 1 rgr(x)
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Using (3.1), we obtain
H
Jim 29 _
XX @ (x)
and since limy; Fr_l (y) =X, we have established part (a).

To prove (b), let § > 0, take x < x, — 4, and let y = F,(x). Note that since
H € A, there exists g5 > 0 such that i(z) > &5 for z € (x, x; — 8] and we obtain

’

" 1 x , Xp—06 ,
A'(y) = ‘W[ [ e@n@m@d+ [ s@hem (z)dz}
Xp— x

xp

x )
(A5) s—%Um_ﬁr(z)h(z)m’(z)dz+sa / q»(z)m/(z)dz}

:—W_l[ ' ¢r(z)h(z)m/(z)dz+8—“<

xp—38 r

dm—&_@m”
S'(xp—8)  Sx)/)]
where the first line follows from (2.14) and the chain rule and the third line by (2.9).
Then, letting y | O (equivalently x | x) and using (3.2), we conclude H' 0+) =
—00. The case H € A, follows by symmetric arguments. [J

PROOF OF LEMMA 3.6. Problem (3.27) is the same as the one in Ap-
pendix A.4.1 below with x, = x therein. Once we prove existence and uniqueness
of y5° then optimality of 75° follows from Proposition A.1.

The equation f}/z(y) y — Gz(y) =0 with y > y, expresses the tangency con-
dition for a straight line passing through the origin and tangent to Gy ata point
in (2, +00). If a solution to that equation exists then the convexity of G in
(32, +00) implies that it must be unique. For the existence, it is sufficient to ob-
serve that

Ao V2 A A
G592 < /0 Gh(s)ds = Ga(52)

since G is strictly concave in (0, y). Recalling (3.12), we get limyﬁoo[é/z(y)y —
Gz(y)] = 400 and, therefore, there exists a unique y5° € (32, +00). O

A.3. Some remarks on state dependent discounting. Here, we illustrate the
case of a state dependent discount rate (r(X;));>o. In this setting, the payoffs (1.1)
become

Ji(zy, 125 %) := Ex[e Jo TG (X)L <)
(A.6) e
i e_fo r(X’)dtLl(th)ﬂ-{Tszl}]’

12
Ja(t1, 125 x) == E, [e’fo rXDA Gy (X o) L (ry<a)

(A7) ,
el T (X)L gy <0y |
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In order to extend the methodology applied above, we make sufficient assumptions
on r to ensure the existence of strictly monotonic and strictly positive fundamental
solutions ¢, ¥, to the ODE

1
(A.8) Eaz(xw(x) +ur@) () —r(x) f(x)=0, xel.

In particular, we assume that r(x) is bounded, continuous and strictly positive for
x € Z. In this case, we again have

Y (x)

(A.9) g [ o] 2 L ¥rO) =
or(x) x>y,
dr(y)

for x,y € Z and 7(y) :=inf{t > 0: X; = y} (see [11], Proposition 2.1). The limits
at the endpoints of the domain Z of functions ¢,, ¥, ¢./S’ and ¥/ /S’ remain the
same as in the previous sections, depending on whether x is natural, entrance-not-
exit or exit-not-entrance. Instead of the expressions (2.9), we must now consider
their generalisation (see paragraphs 9 and 10, Chapter 2 of [8]):

Yo @ _ [ ,
S S = | rowom ey,
o o (b) _ dr@ _ (b
r Pa) ’
S S = reeom ey,

forx <a<b<Xx.

It is then easy to see that all the arguments that we have used for the construction
of Nash equilibria in the above sections can be repeated for state dependent dis-
counting and all the results carry over to this setting with no additional difficulties.
In particular, one should notice that positivity and boundedness of r(-) allow us to
find bounds similar to those that led to some of our key inequalities [e.g., (A.3) and
(A.5)]; e.g.,, setting 7 := sup, .7 r(z) the second term in the first equality of (A.5)
can be bounded from below as follows:

[ " g @m' @) dz = - [

xXp—

s / 17g(xn—8)  ¢,(x)
@ ' @z = - (T - )
and the rest of the proof follows in the same way also with state dependent dis-

counting.

We also remark that the argument used to infer convexity and concavity of
the transformed functions A in Lemma 3.1 and 3.9 holds in the same form, that
is, fAI(y) is strictly convex if and only if %GZ(x)H”(x) +u()H (x)—r(x)H(x) >
0 with y = F,(x).
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A.4. Two useful optimal stopping problems. The proof of Theorem 3.2 in-
volves solving, for each player in turn, an optimal stopping problem whose stop-
ping cost function depends on the strategy of the other player. Our approach to
such problems is inspired by a characterisation via convex analysis due to Dynkin
[16], later developed in [12]. Since it is beyond the scope of the present paper to
develop a complete theory for such problems, however, we adopt the following
hybrid approach. A geometric construction similar to that employed in the latter
references is first used to propose a candidate stopping region and payoff. This
candidate solution is then verified in a second step. In this way, we obtain a con-
venient geometric characterisation of the stopping set and payoff for the particular
optimal stopping problems encountered in Theorem 3.2.

A.4.1. A first optimal stopping problem. Recall Definition 2.4 along with the
notation of (2.15) and (2.16), and consider a function G € A;. Denote by x € Z the
unique point at which LxG — rG changes its sign and take x, € Z with x, < X.
Let us introduce the infinite time horizon optimal stopping problem with value
function

(A.11) Vo(x) := Tllel7f_ E, [e_”G(X,)]l{TETD} + L(Xfa)e_rr”]l{fa<f}],

where L(x) < G(x) forall x € Z and 7, :=inf{r > 0: X; <x,}.

First, we notice that if x < x,, picking any t gives a payoff equal to
L(x)1{z>0) + G(x)1{r=0). The latter is minimised by choosing an arbitrary t > 0
a.s., and

(A.12) V,(x) = L(x) for x < x,.

Further, the next standard argument shows that it is never optimal to stop for x < x
since LyG — rG < 0. In fact if x < X, the suboptimal stopping time 7 := inf{z >
0: X* > x} gives

Vo(x) < Ex[e T G(Xe)Lipry + L(Xe,)e ™1, 4]
<E[e "G (X4 r,)] < Gx),

where the last inequality is obtained by using Dynkin’s formula and LxG —rG <
0in (x, X).

It then follows that if an optimal stopping time t, exists then Py (7, = 17,) =0
for all x € Z, since x, < . Hence, in (A.11) we could replace the event {t < 1,}
by the event {t < 7,} with no loss of generality, thus avoiding potential problems
concerning continuity of the value function at x,,.

Set y, := F;(x,) and define the function

Ly 0<y<=y..

A.13 =1
(A.13) o) Y vy
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For y := F,(x), we argue as in Section A.1 of this Appendix and obtain that G is
strictly concave in (0, y) and strictly convex in (¥, 00).

Let us consider the straight line r,(-), which passes through the point
(¥o, Q(y0)) and is tangent to Q at a point y, > y := F,(x). Existence of r, can be
easily proven due to convexity/concavity of Q (Section A.1) and we leave it to the
reader. This line is expressed as

(A.14) ro(y) =my +gq, y >0,
with

_ 200 — 000
(A.15) ' Y« —Yo
q = Qo) —my,.

By the convexity of G (and, therefore, of Q) in (y, +00) the point y, is determined
as the unique y > y that solves the tangency equation

Yy —=Yo
PROPOSITION A.1. Let G € A;. Assume there exists y, > y solving (A.16)

(which is then unique). Recall (A.14) and (A.15) and define x, := Fr_l(y*) and
the functions

L(y) 0<y <o
(A.17) W(y):= nfy+q Yo <Y < Vs,
G(y) V> Yy
and
L(.x) £<x §x07
(A1) Vo(x) =W (Fr(0)) = {my(x) + g (x)  Xp <X <Xy,
G(x) Xe <X <X.

Then one has Vo =V, and 7, :=inf{t > 0: X; > x,} is optimal for prob-
lem (A.11).

PROOF. If x < x,, there is clearly nothing to prove thanks to (A.12).
Therefore, take x > x, and notice by (A.18) that (Lx — r)V,)(x) =0if x €
(x0, xx). Moreover, by Section Al we also have that (Lxy — r)Vo(x) >0 if
X € (x4, X), since Vx> y and G 1s convex in (y,00). Also, by construction,
V (x4) = G(x4), V (x5) = G'(x), V (x,) = L(x,) and V < G, for any x > x,.
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Since~\70 € Wli’coo((xo,)_c)), we can apply It6-Tanaka’s formula to the process
(e7""V,(X7))s>0 on the time interval [0, T A 1,], for arbitrary € T, and obtain
\70()6) <Ey [e—rr/\tg Vo(XrAto)]
(A.19)
= Ex[e_rrG(Xr)]l{rsn,} + L(Xro)e_rroﬂ{r>to}]
and hence V, < V,,. Then repeating the argument with T = 7, we find
Vo(x) = Ex[e” ™G (Xt L{z,<z,) + L(Xg e " 1iz,5q,)]

and, therefore, Vo V, and t, is optimal. [

Notice that, when restricted to [y,, +00), the function W is the largest convex
function dominated by Q. The latter condition makes the result slightly different to
the geometric characterisation in [12] (they have G = L and then W is nonpositive;
see also [30]).

A4.2. A second optimal stopping problem. For the next optimal stopping
problem, we take the same setup as in Section A.4.1, with the modifications that
G e A1, x, > % and 7, :=inf{r > 0: XJ > x,}. Again we recall that if an optimal
stopping time 7, exists then P, (7, = 7,) = 0 for all x € Z so that the indicator
functions in (A.11) may effectively be taken with strict inequalities only. As be-
fore, we denote
(A.20) 0() = :Q(y) 0<y < Yo

L)  yZ=Yo.
In contrast to the situation in Section A.4.1, in the present setting we will consider
two possible geometries for this optimal stopping problem, in Propositions A.2
and A.3, respectively. This is necessary because it may in principle be optimal to
stop anywhere in the interval (x, X) and the geometry of G on (0, ¥) depends on
the boundary behaviour of X at x, which we vary through the paper.

In what follows, we write

(A.21) m:= Qo)/Yo

and recall that for a not nonsingular lower boundary x we have ¥, (x)/¢,(x) — 0
as x — Xx.
PROPOSITION A.2. LetGe A;. If
(A.22) Q) >my  forallye(0,y,)
then the function
(A.23) V)= M) x<x<x,

L(x) Xo<x <X,

is such that V, =V, and further the stopping time 1, := 400 is optimal for prob-
lem (A.11).
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PROOF. Clearly, \70 € C,f(g, X,) and Ly ‘70 — rVo =0on (x, x,). By the same
geometric arguments as in the proof of Proposition A.1, and using (A.22), we also
have V,(x) < G(x). Hence, by applying It6’s formula for x € (x, x,) and any t
we get (A.19) and, therefore, 170 (x) < V,(x).

For fixed ¢ > 0, picking t = 7, :=inf{t > 0: X; < x + €} we also find

Vo(x) = Ex[e " # ™)V, (X, pr,)]
=Ex[e " Vo(Xe) i <z,) + € L(X7,) Lz, <))
= n‘z%xom + Ex[e” ™ L(Xe,) 1z, <o) ],
with
Do () = Vr (X)Pr (x0) — Yy (X0)r (X)
(W /) (x + &) (X0) — Y (x0)

by (A.23) and equation (4.3) in [12]. Letting ¢ — 0 we have 7, — o7 and ¥, (x +
&)/@r(x +¢) — 0. Thus, taking limits and using dominated convergence and (2.2),
we obtain

‘70()6) = Ex[e_rTOL(Xro)]l{ra<oo}] > Vo(x),

hence completing the proof. [J

Because of the convexity of G on (0, v), if

(A.24) G(O+)>0 and inf [G(y)—my] <0

y€(0.y0)
then there exist two points 0 < y, | < y«2 < ¥ such that the straight line | (y) :=
myy, with m1 := Q(¥,1)/¥+1, 1s tangent to Q(yx 1) while y, 2 solves (A.16).
In this case, we have the following proposition, whose proof we omit due to its
similarity to Proposition A.1.

PROPOSITION A.3. Let G € A; be such that (A.24) is satisfied and let y, |
and ys 2 be the points described above. Then writing x, ; = Fr_1 (Ysi) fori=1,2
and defining m, q as in (A.15), the function

myy(x) X <X <Xyl
7 <x <
(A.25) V,(x):= G(x) X, 1 SX <Xy 2,
my(x) + qér(x) Xe2 <X < X,
L(x) Xo <X <X,

is such that V, = V. Further the stopping time T, :=1inf{s > 0: X € [xy 1, X4 2]}
is optimal for problem (A.11).
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It is immediate to check that, when restricted to the domain (0, y,], the func-
tion W(y) := (V,/¢y) o Fr_l(y) is the largest convex function dominated by Q.
If G(0+) <0, then y, 1 clearly does not exist in (0, y,) and instead we state the
following corollary, whose proof is left to the reader.

COROLLARY A.4. Let G € Ay with G(0+) < 0 and assume y,.o exists as
described above. Then the results of Proposition A.3 hold with x, 1 = x.
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