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ON THE UNIQUE CROSSING CONJECTURE OF DIACONIS AND
PERLMAN ON CONVOLUTIONS OF GAMMA

RANDOM VARIABLES

BY YAMING YU

University of California, Irvine

Diaconis and Perlman [In Topics in Statistical Dependence (Somerset,
PA, 1987) (1990) 147–166, IMS] conjecture that the distribution functions of
two weighted sums of i.i.d. gamma random variables cross exactly once if
one weight vector majorizes the other. We disprove this conjecture when the
shape parameter of the gamma variates is α < 1 and prove it when α ≥ 1.

1. Introduction. We say a real vector θ majorizes η, written as η ≺ θ , if there
exists a doubly stochastic matrix D such that η = θD; see Marshall, Olkin and
Arnold (2009) for basic properties of majorization. Let X1, . . . ,Xn be independent
and identically distributed (i.i.d.) gamma(α,1) random variables and denote the
distribution function for

∑n
i=1 θiXi by Fθ where θ ≡ (θ1, . . . , θn) is a nonnegative

weight vector. Diaconis and Perlman (1990) made the following.

CONJECTURE 1. If η ≺ θ , but θ is not a permutation of η, then Fη(x)−Fθ(x)

changes signs exactly once, from − to +, as x increases from 0 to ∞.

Intuitively,
∑n

i=1 θiXi is more dispersed when the weight vector θ becomes
less uniform. This conjecture, known as the unique crossing conjecture (UCC),
can be seen as a strong statement about the dispersion of these weighted sums in
terms of tail probabilities. Disconis and Perlman verified the UCC in the following
cases: (a) n = 2; (b) n = 3 and α = 1; (c) n ≥ 3, α ≥ 1 and θ and η differ in only
two components; (d) n ≥ 3 and components of η are equal. Case (d) is useful for
providing bounds on Fθ in terms of the distribution function of a single gamma
variable. For this purpose, Diaconis and Perlman also carried out detailed analysis
of the location of the crossing point between Fθ and Fη when all components of
η are equal. Bounds based on a single gamma variable can also be found in the
work of Roosta-Khorasani, Székely and Ascher (2015). Nevertheless, as remarked
by several authors [Kochar and Xu (2012), Roosta-Khorasani and Székely (2015)]
the UCC itself has remained an open problem.
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In this paper, we show that the UCC holds when α ≥ 1, but may fail when
α < 1, which is surprising as previous work has all supported the general validity
of the UCC. This is relevant for understanding the behavior of tail probabilities
for weighted sums of χ2 random variables (corresponding to α = 1/2) which arise
naturally in statistical applications. For general α, weighted sums of gamma vari-
ables appear in diverse areas including reliability, actuarial science and statistics,
and their properties have been extensively studied; see, for example, Bock et al.
(1987), Diaconis and Perlman (1990), Székely and Bakirov (2003), Khaledi and
Kochar (2004), Zhao and Balakrishnan (2009), Yu (2009, 2011), Kochar and Xu
(2012) and Roosta-Khorasani and Székely (2015).

2. Special cases and a counterexample. Theorem 1 gives a positive answer
to the UCC when α ≥ 1 and the weight vectors form a special configuration.

THEOREM 1. Suppose α ≥ 1. Suppose 0 < θ1 ≤ · · · ≤ θn and η1 ≤ · · · ≤ ηn

and (a) there exists 2 ≤ k ≤ n such that θi < ηi for i < k and θi > ηi for i ≥ k;
(b)

∏n
i=1 ηi >

∏n
i=1 θi . Then there exists x0 ∈ (0,∞) such that Fη(x) < Fθ(x) for

x ∈ (0, x0) and the inequality is reversed for x > x0.

COROLLARY 1. The UCC is valid if n ≥ 3, α ≥ 1 and the weight vectors differ
in at most three components.

PROOF. When n = 3, conditions of Theorem 1 can be written as η(1) > θ(1) >

0, η(3) < θ(3) and θ1θ2θ3 < η1η2η3. It is easy to verify that, if η ≺ θ and θ is all
positive, and ηi �= θj for all i, j , then these conditions are satisfied, and hence the
UCC is valid.

If any ηi = θj , then the problem reduces to the n = 2 case. As noted by Diaconis
and Perlman, when α ≥ 1, one may extend the validity of the UCC for n = 3 to
n ≥ 3 provided that the weight vectors differ in at most three components.

Although Theorem 1 as stated requires all components of θ to be positive, the
argument can be easily extended. Suppose η and θ differ in at most three compo-
nents, η ≺ θ , and η is all positive but θ may have zero components. Then we can
find η ≺ θ̃ ≺ θ such that θ̃ is all positive, differs from η in the same (at most three)
components and is infinitesimally close to θ . By the argument above, Fη and Fθ̃
cross only once. If Fη and Fθ cross two or more times, then this implies that at
least one crossing point has suddenly disappeared when a perturbation (no matter
how slight) is made to θ , which is impossible. �

To prove Theorem 1, we need some preliminary results. The following lemma
is a special case of Theorem 1 of Yu (2011).

LEMMA 1. For n ≥ 2 and α > 0, if logη ≺ log θ then Fη(x) ≥ Fθ(x) for all
x ∈ (0,∞), that is, Fη ≤st Fθ .
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Based on Lemma 1, if there exists a vector τ such that η ≤ τ coordinate-wise
and log τ ≺ log θ (effectively logη ≺w log θ ), then Fη ≤st Fτ ≤st Fθ . In this way,
the conditions of Lemma 1 can be weakened.

Proposition 1 summarizes conditions for unique crossing for n = 2 and general
α > 0.

PROPOSITION 1. Suppose n = 2. Then Fη crosses Fθ exactly once, and from
below, as x increases from 0 to ∞ if and only if θ1θ2 < η1η2 and max(θ1, θ2) >

max(η1, η2).

PROOF. Let us assume θ1 ≤ θ2 and η1 ≤ η2 without loss of generality.
Necessity. Suppose Fη crosses Fθ exactly once from below. Then Fη(x)−Fθ(x)

is negative for sufficiently small x > 0 and is positive for sufficiently large x. But

1 − Fθ(x)

1 − Fη(x)
≤ Pr(θ2(X1 + X2) > x)

Pr(η2X2 > x)
.

The latter ratio is asymptotic to g2α(x/θ2)/gα(x/η2) as x → ∞ where gα(t) ≡
tα−1e−t / �(α). It is clear that if θ2 < η2 then (1 − Fθ(x))/(1 − Fη(x)) → 0 as
x → ∞, and hence we must have θ2 > η2. (It is easy to dismiss the boundary case
θ2 = η2.) On the other hand,

lim
x↓0

Fθ(x)

Fη(x)
= lim

x↓0

fθ (x)

fη(x)
=

(
θ1θ2

η1η2

)−α

;
see, for example, Yu (2009), equation (13). Hence we must have θ1θ2 ≤ η1η2.
To rule out the boundary case, note that if θ1θ2 = η1η2, then (logη1, logη2) ≺
(log θ1, log θ2) and, by Lemma 1, there is no crossing.

Sufficiency. Assume θ1θ2 < η1η2 and θ2 > η2. Retracing the proof of the neces-
sity part, we can deduce that Fη crosses Fθ at least once, from below. To show
that the crossing point is unique, we slightly extend the arguments of Diaconis and
Perlman (1990). We have

Fθ(x) − Fη(x) = xu−2
∫ ∞

0

(
Hθ(u) − Hη(u)

)
g2α(x/u)du,

where Hθ(u) = Pr(θ1W1 +θ2W2 ≤ u) and W1 is a beta(α,α) random variable with
W1 = 1 − W2 = X1/(X1 + X2). The kernel g2α(x/u) is strictly totally positive
(STP) for (x, u) ∈ (0,∞)2. The claim would follow from variation-diminishing
properties of STP kernels if we can show that Hθ(u) − Hη(u) changes signs only
once, from + to −, as u increases on (0,∞). Note that

Hθ(u) − Hη(u) = B

(
η2 − u

η2 − η1

)
− B

(
θ2 − u

θ2 − θ1

)
,

where B(·) denotes the beta(α,α) distribution function. Let

u∗ = θ2η1 − η2θ1

θ2 − θ1 − η2 + η1
.
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Under the assumptions, we have θ1 < η1 ≤ η2 < θ2. It follows that η1 ≤ u∗ ≤ η2
and

Hθ(u) − Hη(u)

⎧⎪⎪⎨
⎪⎪⎩

> 0 if θ1 < u < u∗,
< 0 if u∗ < u < θ2,

= 0 otherwise.

That is, Hθ(u) − Hη(u) has only one sign change at u∗, as needed. �

REMARK 1. This proposition is closely related to Theorem 3.6 of Kochar
and Xu (2011) and Proposition 3.1 of Kochar and Xu (2012) who compare Fθ

and Fη according to the star order [Shaked and Shanthikumar (2007)]. Fη ≤∗ Fθ

means Fη(x) crosses Fθ(cx) at most once, and always from below, for all c > 0.
Proposition 1 can be used to recover a special case of Proposition 3.1 of Kochar
and Xu (2012).

COROLLARY 2. If θ2 > θ1, η2 > η1 and θ2/θ1 > η2/η1, then Fη ≤∗ Fθ .

PROOF. In the stated parameter configuration, one can show that, for every
c > 0, either θ and cη satisfy the necessary conditions of Proposition 1 and Fθ and
Fcη cross exactly once, or they are ordered by the usual stochastic order, and there
is no crossing. In other words, Fη ≤∗ Fθ . �

PROOF OF THEOREM 1. We use induction on n. The case of n = 2 is given
by Proposition 1. Suppose n ≥ 3. The following argument works for k < n, and
can be modified (with a different definition of τ ) to handle the k = n case. Let us
consider τ ≡ (θ1, . . . , θk−2, δ, ηk, θk+1, . . . , θn), where

δ∗ ≡ θk−1θk

ηk

≤ δ ≤ min
(
θk,

∏
i �=k

ηi

/ ∏
i �=k−1,k

θi

)
≡ δ∗.

It is easy to see that δ∗ < δ∗, and for δ ∈ (δ∗, δ∗) we have δ > θk−1 and
∏n

i=1 ηi >∏n
i=1 τi >

∏n
i=1 θi . Also, τi < ηi for i < k − 1 and τi > ηi for i ≥ k + 1 (including

i = n since k < n). Hence the sequence τ(i) − ηi, i = 1, . . . , n, has exactly one
sign change, whether δ > ηk−1 or not. (In the special case k = 2, we have δ < η1.)
Here, we use τ(i) rather than τi to account for possible switching between ηk−1
and δ when we rearrange τ . As τ and θ differ in only two components, and τ

and η have at least one (ηk) in common, by the induction hypothesis, Fτ crosses
Fθ at most once, from below (say at x∗) and Fη crosses Fτ at most once, from
below (say at x∗). When α ≥ 1, the gamma density is log-concave, which ensures
that adding identical components does not create multiple crossings [see Diaconis
and Perlman (1990), proof of their Proposition 2.3]. It is possible that the original
single crossing is annihilated. If δ is large, then Fτ could stay entirely below Fθ
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(effectively x∗ = ∞). It is not possible, however, for Fη to stay entirely below Fτ ,
because τn > ηn.

Note that Fτ stochastically increases in δ, which implies that x∗ increases while
x∗ decreases in δ. This monotonicity can then be used to show that the crossing
points (as long as they are finite) are continuous functions of δ. Specifically, fix
δ0 ∈ (δ∗, δ∗) such that x∗(δ0) is finite. Then, by the continuity of Fθ and Fτ , and
the monotonicity of x∗, we have

Fθ

(
x∗(δ0+)

) = lim
δ↓δ0

Fθ

(
x∗(δ)

) = lim
δ↓δ0

Fτ

(
x∗(δ)

) = Fτ(δ0)

(
x∗(δ0+)

)
.

That is, Fθ and Fτ(δ0) crosses at x∗(δ0+). By uniqueness of the crossing point,
we have x∗(δ0) = x∗(δ0+), and similarly x∗(δ0) = x∗(δ0−), showing that x∗ is
continuous.

At δ = δ∗, we have Fτ ≤st Fθ by Lemma 1. So there is no crossing be-
tween Fτ and Fθ , that is, x∗ ↓ 0 as δ ↓ δ∗ and limδ↓δ∗ x∗ > 0. At δ = θk , we
have Fτ ≥st Fθ . Thus x∗ ↑ ∞ as δ ↑ θk if δ∗ = θk . The other possibility is
δ∗ = ∏

i �=k ηi/
∏

i �=k,k−1 θi . In this case, at δ = δ∗ we have Fτ ≥st Fη again by
Lemma 1, because logη ≺ log τ . Indeed, because log(ηi/τi) changes signs only
once (after τ is arranged in increasing order),

∑l
i=1 log(ηi/τi) first increases, and

then decreases. At l = 1, we have η1 > τ1. At l = n, we have
∑n

i=1 log(ηi/τi) = 0.
Thus

∑l
i=1 log(ηi/τi) ≥ 0 for all l = 1, . . . , n, that is, logη ≺ log τ . It follows that

x∗ ↓ 0 as δ ↑ δ∗.
Regardless of whether δ∗ = θk , we have x∗ < x∗ as δ → δ∗ and x∗ > x∗ as

δ → δ∗. By continuity, there exists some δ such that x∗ = x∗ and

Fθ(x) > Fτ (x) > Fη(x), 0 < x < x∗;
Fθ(x) < Fτ (x) < Fη(x), x∗ < x < ∞.

It follows that Fη crosses Fθ exactly once, from below. �

Theorem 2 gives a negative answer to the UCC for n = 3 and α < 1. Note that
counterexamples for n > 3 can be generated from a counterexample for n = 3 by
appending small enough components to the weight vectors.

THEOREM 2. For every 0 < α < 1, there exist positive vectors θ and η with
n = 3 such that η ≺ θ and Fη(x) − Fθ(x) changes signs at least three times as x

increases from 0 to ∞.

Theorem 2 is derived through a perturbation analysis rather than extensive nu-
merical calculations. Our counterexamples have the feature that θ1 ≈ θ2 � θ3, and
η is a small perturbation of θ which changes all three components. We show that
for a suitable choice of such θ and η, there exists a point at which Fη(x) crosses
Fθ(x) from above. Since Fη(x) has to cross Fθ(x) from below for sufficiently
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small x > 0 and for sufficiently large x, it follows that there are at least three
crossing points. The rest of this section makes this precise. We need the following
result, which is slightly modified from Lemma 1 of Rinott, Scarsini and Yu (2012);
see also Székely and Bakirov (2003).

LEMMA 2. Suppose Xi and Zi, i = 1,2 are independent random variables
with Xi ∼ gamma(α,1) and Zi ∼ expo(1), i = 1,2 and, independently, G is a
weighted sum of i.i.d. gamma variates. Fix θ∗

i > 0, i = 1,2 and let θ1 = θ∗
1 − δ and

θ2 = θ∗
2 + δ. Then

∂

∂δ
Pr(θ1X1 + θ2X2 + G ≤ x)

= α(θ2 − θ1)
∂2

∂x2 Pr
(
θ1(X1 + Z1) + θ2(X2 + Z2) + G ≤ x

)
.

We also need a result concerning mixtures of gamma densities [gα(t) ≡
tα−1e−t / �(α)].

LEMMA 3. If α ∈ (0,1), then there exists λ ∈ (0,∞) such that the mixture
density (λg1+α(x) + gα(x))/(1 + λ) is bimodal. There exists no such λ if α ≥ 1.

PROOF. For fixed λ > 0, let h(x) ≡ �(1 +α)(λg1+α(x)+gα(x)). Simple cal-
culation yields

h′(x) = e−xxα−2[−λx2 + α(λ − 1)x + α(α − 1)
]
.

If α > 1, the quadratic in square brackets has only one positive root, and the sign
pattern of h′(x) is +,− on (0,∞). Hence h(x) is unimodal. We can similarly
analyze the case of α = 1.

If α ∈ (0,1), then for large enough λ the quadratic in square brackets has two
distinct positive roots, and the sign pattern of h′(x) becomes −,+,− on (0,∞),
showing that h(x) has precisely two modes (one at zero, the other positive) with a
local minimum in between. �

PROOF OF THEOREM 2. Since α ∈ (0,1), by Lemma 3 one can choose λ > 0
such that s(x) ≡ λg1+α(x) + gα(x) is bimodal, with a local minimum at x0 > 0.
Choose w > 0 small enough so that s′(x0 − w) < 0 and s′(x0 + w) > 0.

Let θ1 = ε − δ, θ2 = ε + δ − λδ2, θ3 = 1 + ε + λδ2, where ε and δ are to be de-
termined. We require ε > δ > 0 and ε < 1/λ so that the weight vector θ is positive.
Let Xi, i = 1,2, . . . be independent gamma(α,1) variates and Zi ∼ expo(1) inde-
pendently. Define G0 ≡ ∑3

i=1 θiXi . Denote the density of G1 ≡ G0 + ∑2
i=1 θiZi

by f1 and that of G2 ≡ G0 + ∑3
i=2 θiZi by f2. As ε ↓ 0 and ε > δ, we have

f1(x) → gα(x) and f2(x) → g1+α(x) pointwise in x ∈ (0,∞). To show this, let
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ν = 2 + 3α and T = ∑3
i=1 Xi + ∑2

i=1 Zi . Then T ∼ gamma(ν,1) and we may use
the independence of T and S ≡ G1/T to obtain

f1(x) = xν−1

�(ν)
E

[
e−x/SS−ν];(1)

f ′
1(x) = ν − 1

x
f1(x) − xν−1

�(ν)
E

[
e−x/SS−ν−1]

.(2)

For fixed x > 0, the function e−x/ss−ν vanishes as s ↓ 0 and is bounded and con-
tinuous over s ∈ (0,∞), achieving its maximum at s = x/ν. As ε ↓ 0, we have
S → beta(α,2 + 2α) in distribution. Hence E[e−x/SS−ν] converges, and f1(x)

converges to gα(x). Similarly, convergence holds for the derivatives of fi, i = 1,2.
In fact, from (1) we can regard f1(x) as an analytic function on the open right half
of the complex plane, and the convergence just mentioned is uniform in compact
subsets.

By Lemma 2 and the chain rule, with Fθ(x) = Pr(G0 ≤ x), we have

∂

∂δ
Fθ(x) = α

[
(θ2 − θ1)f

′
1(x) + 2λδ(θ3 − θ2)f

′
2(x)

]
= 2αδs′

δ(x),

where s′
δ(x) ≡ λ(1 − δ + 2λδ2)f ′

2(x) + (1 − λδ/2)f ′
1(x). Since s′

δ(x) → s′(x) as
ε ↓ 0, we may choose ε < 1/λ small enough so that, as long as δ < ε, we have
s′
δ(x0 − w) < 0 and s′

δ(x0 + w) > 0. Let η = (ε, ε,1 + ε). Then η ≺ θ and by the
mean value theorem

Fθ(x) − Fη(x) = 2αδδ∗s′
δ∗(x), δ∗ ∈ (0, δ).

But the right-hand side is strictly negative at x = x0 −w and strictly positive at x =
x0 +w, indicating at least one sign change in x ∈ (x0 −w,x0 +w). Since Fθ(x)−
Fη(x) > 0 for sufficiently small x > 0 and Fθ(x) − Fη(x) < 0 for sufficiently
large x, we have at least two additional sign changes, both from + to −, in x ∈
(0, x0 − w] and x ∈ [x0 + w,∞), respectively. �

3. Main result and proof.

THEOREM 3. Conjecture 1 is valid if α ≥ 1.

The rest of this paper is devoted to a proof of the above result. We extend the
techniques of the previous section. By analyzing the distribution function crossing
patterns of gamma convolutions, we reduce the problem to a particular configura-
tion of the weight vectors θ and η that are sufficiently close. For this local case,
relationship between crossing points to modes of a mixture of gamma convolutions
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is explored. We introduce a new stochastic order and derive monotonicity proper-
ties concerning densities of gamma convolutions. These tools further reduce the
problem, leading to Theorem 3.

Lemma 4 shows that UCC holds locally for a particular configuration.

LEMMA 4. Suppose α ≥ 1. Given an index 1 < k < n − 1 let 0 < θ1 ≤ · · · ≤
θk−1 < θk ≤ θk+1 < θk+2 ≤ · · · ≤ θn and δi > 0, i = 1, . . . , n, and let η be defined
as follows:

ηi =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θi + δi i = 1, . . . , k − 1;
θi −

k−1∑
j=1

δj i = k;

θi +
n∑

j=k+2

δj i = k + 1;

θi − δi i = k + 2, . . . , n.

Then Fη crosses Fθ exactly once from below if
∑

i �=k,k+1 δi is small enough.

To deduce Theorem 3 from Lemma 4, we build on our proof of Theorems 1
and 2. Let us introduce a majorization-type ordering which may be of independent
interest. As usual, we write θ(1), θ(2), . . . , θ(n) as θ rearranged in increasing order.

DEFINITION 1. We say a real vector θ V-majorizes η, written as η ≺V θ , if
there exists θ̃ such that η ≺ θ̃ and indices 1 ≤ k1, k2 ≤ n such that

(3) θ(i)

⎧⎪⎪⎨
⎪⎪⎩

≤ θ̃(i) ≤ η(i) 1 ≤ i ≤ k1;
= θ̃(i) k1 < i < k2;
≥ θ̃(i) ≥ η(i) k2 ≤ i ≤ n.

Simply put, θ V-majorizes η if θ is obtained from a vector θ̃ that majorizes η

by increasing (and decreasing) the largest (smallest) few components of θ̃ which
are already larger (smaller) than those of η. Let us record some useful properties
of ≺V.

PROPOSITION 2. Let η, θ be positive vectors such that η ≺V θ . (a) If∏n
i=1(ηi/θi) ≥ 1 then logη ≺w log θ . (b) If

∏n
i=1(ηi/θi) ≤ 1 then Fη ≤st Fθ .

PROOF. Assume the coordinates of θ (resp., η) are arranged in increasing or-
der, and assume θ �= η. Let θ̃ (also arranged in increasing order) be such that η ≺ θ̃

and (3) is satisfied.
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Part (a). Note that θ̃i ≥ θi for 1 ≤ i < k2. From η ≺ θ̃ , we get logη ≺w log θ̃ and

l∏
i=1

ηi ≥
l∏

i=1

θ̃i ≥
l∏

i=1

θi, 1 ≤ l < k2.

For i ≥ k2, we have ηi ≤ θi which means
∏l

i=1(ηi/θi) between l = k2 − 1 and
l = n is minimized at l = n. Thus, to ensure logη ≺w log θ we only need

∏n
i=1 ηi ≥∏n

i=1 θi .
Part (b). We may define

θ∗
i ≡

{
θi, i < k2,

θ1−λ
i ηλ

i , i ≥ k2; λ =
∑n

i=1 log(θi/ηi)∑n
i=k2

log(θi/ηi)
.

Then λ ∈ [0,1], θ∗ ≤ θ (coordinate-wise), and
∏n

i=1(ηi/θ
∗
i ) = 1. The reasoning of

part (a) yields logη ≺ log θ∗. By Lemma 1, Fη ≤st Fθ∗ ≤st Fθ . �

With the notion of ≺V, we can suitably generalize Conjecture 1 and prove it,
building on a special case, Lemma 4, which we will establish later.

THEOREM 4. Suppose α ≥ 1, and η, θ are positive weight vectors such that
η ≺V θ , θ(n) > η(n) and

∏n
i=1(ηi/θi) > 1. Then there exists x0 ∈ (0,∞) such that

Fη(x) < Fθ(x) for x ∈ (0, x0) and Fη(x) > Fθ(x) for x > x0.

It is easy to verify that if η ≺ θ and (i) θ is all positive and (ii) ηi �= θj for all
i, j , then the conditions of Theorem 4 are satisfied (assuming α ≥ 1 of course).
When deducing Theorem 3 from Theorem 4, both restrictions (i) and (ii) can be
relaxed in the same way as explained in the proof of Corollary 1.

PROOF OF THEOREM 4. We will use induction on n. The case of n = 3 is
covered by Theorem 1. For n ≥ 4, assume θ1 ≤ · · · ≤ θn, η1 ≤ · · · ≤ ηn and θi �= ηi

for all i. Let us define

j ≡ min{i : θi > ηi,1 ≤ i ≤ n}; k ≡ max{i : θi < ηi,1 ≤ i ≤ n}.
These indices must exist because θn > ηn and θ1 < η1. Moreover, we have j ≥
2, k ≤ n − 1, j �= k and k ≥ j − 1. Consider two cases:

(a) k = j − 1. Then log(ηi/θi) has only one sign change and the claim follows
from Theorem 1.

(b) k > j . Since η ≺V θ , there exists θ̃ such that η ≺ θ̃ and (3) holds. In (3), we
necessarily have k1 ≤ j − 1 and k2 ≥ k + 1, and hence θ̃i = θi, i = j, . . . , k. Let
δ = η − θ̃ . Then δi ≥ 0 for i < j and δi ≤ 0 for i > k. Define a weight vector τ
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parameterized by t1, t2 as follows:

(4) τi ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

θi + t1δi i < j,

θi − t1

j−1∑
l=1

δl i = j,

θi j < i < k;
θi − t2

n∑
l=k+1

δl i = k,

θi + t2δi i > k.

We require 0 ≤ t1 ≤ c1 and 0 ≤ t2 ≤ c2 where

c1 = θj − ηj∑j−1
i=1 δi

; c2 = θk − ηk∑n
i=k+1 δi

.

Because η ≺ θ̃ , we have
∑j−1

i=1 δi ≥ −δj > 0,
∑n

i=k+1 δi ≤ −δk < 0 and c1, c2 ∈
(0,1). Define τ̃ = τ + θ̃ − θ . Using ti ≤ ci, i = 1,2, we can show that components
of τ̃ are in increasing order, and that η ≺ τ̃ . Moreover, τi ≤ τ̃i ≤ ηi for i < j and
τi ≥ τ̃i ≥ ηi for i > k. It follows that η ≺V τ . Also, from (4) and (i) τi ≤ ηi ≤ ηj ≤
τj for i < j and (ii) τi ≥ ηi ≥ ηk ≥ τk for i > k, we can deduce that τ ≺ θ , which
yields

∏n
i=1(τi/θi) ≥ 1. In fact, if we have t, t̃ such that 0 ≤ ti ≤ t̃i ≤ ci, i = 1,2,

then η ≺V τ(t̃) ≺ τ(t).
Let us denote τ(t = (c1,0)) by ν, which has the feature that νj = ηj . Define

γi ≡
{
θ

1−c3
i ν

c3
i i < j,

νi i ≥ j ; c3 = log(θj /νj )∑j−1
i=1 log(νi/θi)

.

Then c3 ∈ (0,1), and logγ ≺ log θ . Moreover, since νi ≥ γi for i < j and η ≺V ν,
we have η ≺V γ .

Also, denote ν̃ ≡ τ(t = (0, c2)), and define γ̃i = θi, i �= k and γ̃k = ηk . We have
ν̃k = ηk , γ̃ ≥ ν̃, γ̃ ≥ θ and η ≺V γ̃ .

In view of Lemma 4, let ε > 0 be small enough so that as long as 0 < ti ≤ ε, i =
1,2, we have Fτ(t1,t2) crosses Fθ exactly once from below. Construct a continuum
of weight vectors ρ(s) such that ρ(−3) = γ,ρ(−2) = ν,ρ(−1) = τ(ε,0), ρ(1) =
τ(0, ε), ρ(2) = ν̃, ρ(3) = γ̃ and values of ρ(s) in between are defined through
linear interpolation. In particular, for s ∈ (−1,1) we have ρ(s) = τ(t1, t2) with
t1 = (1 − s)ε/2 and t2 = (1 + s)ε/2. By the choice of ε, we know Fρ(s) crosses Fθ

exactly once, from below, for s ∈ (−1,1). The same holds for s ∈ (−3,−1]∪[1,3)

by Theorem 1, with the possible exception of some s in the upper portion of the
interval (2,3). When s ∈ (2,3) it is possible that Fρ(s) stays entirely below Fθ .
This is not possible for s ∈ [−2,2] because ρ(s) ≺ θ and the means of the two
distributions are equal. It is not possible for s ∈ (−3,−2) because the mean of
Fρ(s) is even smaller than that of Fθ . To verify the conditions of Theorem 1, we
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examine the subintervals of (−3,−1] ∪ [1,3) and note that ρ(i)(s) − θi has only
one sign change as a function of i = 1, . . . , n.

Let x∗ denote a crossing point between Fη and Fθ (the conditions ensure
at least one crossing). Note that Fρ(s) stochastically decreases as s ↓ −3, with
Fρ(−3) ≤st Fθ , and Fρ(s) stochastically increases as s ↑ 3, with Fρ(3) ≥st Fθ . Al-
though monotonicity need not hold when s moves away from the boundary, by
continuity, Fρ(s) must cross Fθ at precisely x∗ for some s∗ ∈ (−3,3).

Suppose s∗ ∈ [2,3). Then it is easy to verify η ≺V ρ(s∗). Note that ρ(s∗) �= η

but Fη(x∗) = Fρ(s∗)(x∗). By Proposition 2, we have
∏n

i=1(ηi/ρi(s∗)) > 1. Since
η and ρ(s∗) have ηk in common, by the induction hypothesis, Fη crosses Fρ(s∗)
exactly once, from below, at the same crossing point x∗ between Fρ(s∗) and Fθ . As
in the proof of Theorem 1, we conclude that x∗ is the only crossing point between
Fη and Fθ .

The case of s∗ ∈ (−3,−2] is similar.
Suppose s∗ ∈ (−2,2). Regardless of which subinterval s∗ falls into, we have

some t∗ ≡ (t∗1 , t∗2 ) not identically zero such that

(5) Fτ(t∗)(x) < Fθ(x), x ∈ (0, x∗); Fτ(t∗)(x) > Fθ(x), x > x∗.

By Proposition 2, we must have
∏n

i=1 τi(t
∗) ≤ ∏n

i=1 ηi , that is, t∗ ∈ �, with � ≡
{t = (t1, t2) : ti ∈ [0, ci], i = 1,2;∏n

i=1 ηi ≥ ∏n
i=1 τi(t)}. If t∗ lies in the interior of

�, then repeating the entire argument with τ(t∗) in place of θ [which corresponds
to t = (0,0)] we conclude that, either the claim does hold, or there exists t∗∗

i ≥ t∗i ,
with strict inequality for at least one i = 1,2, such that Fτ(t∗∗) crosses Fτ(t∗) (and
hence Fθ ) exactly once, from below, at x∗. And t∗∗ ∈ �. Let �0 be the set of t ∈ �

such that (i) t ≥ t∗, and (ii) Fτ(t)(x) ≤ Fτ(t∗)(x) for x ∈ (0, x∗) and the inequality
is reversed for x > x∗. By continuity, �0 is a closed set. Let ω∗ be an element of
�0 with maximal value of ω1 + ω2. The above discussion shows that, either the
claim holds, or ω∗ does not belong to the interior of �, that is, ω∗

i = ci for at least
one i = 1,2. We can rule out the other boundary situation

∏n
i=1 ηi = ∏n

i=1 τi(ω
∗)

in view of Proposition 2, unless τ(ω∗) is a permutation of η, in which case the
claim follows from the definition of �0 and the strict inequalities (5). In other
cases, by the induction hypothesis, Fη crosses Fτ(ω∗) exactly once from below, at
x∗; the claim follows from this, the definition of �0, and (5). �

To treat the local case of Lemma 4, a key tool is the following Lemma 5, which
connects whether there are multiple crossing points when the weight vector is per-
turbed locally to whether mixtures of several gamma convolutions are always uni-
modal.

LEMMA 5. For a fixed positive weight vector θ , let η be defined by η = θ +∑K
k=1 τ (k) where, associated with each k, we have a pair of indices ik �= jk and a
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real number δk > 0 such that θik < θjk
and

τ
(k)
i =

⎧⎪⎪⎨
⎪⎪⎩

δk i = ik,

−δk i = jk,

0 otherwise.

Let fk(x|δ), δ ≡ (δ1, . . . , δK), denote the density of
∑n

i=1 ηiXi + ηikZik + ηjk
Zjk

,
where Xi ∼ gamma(α,1),Zi ∼ expo(1) are mutually independent. Suppose, for
arbitrary constants λk ≥ 0 such that

∑
k λk = 1, we have

∑
k λkfk(x|0) is uni-

modal, with a strictly negative second derivative at the mode, and no saddle points.
Then for small enough

∑K
k=1 δk , Fη crosses Fθ exactly once, from below.

PROOF. Note that η ≺ θ if δ is small enough, and hence Fη crosses Fθ at least
once, from below. By Lemma 2, we have

∂Fη(x)

∂δk

= α(ηik − ηjk
)f ′

k(x|δ), k = 1, . . . ,K.

Then

(6) Fη(x) − Fθ(x) =
∫ 1

0

K∑
k=1

α(θik − θjk
+ 2tδk)δkf

′
k(x|tδ)dt.

Suppose the claim does not hold, and there exists a sequence η(l) corresponding
to δ(l) ≡ (δ1l , . . . , δKl) such that δ(l) → 0 and Fη(l)(x) − Fθ(x) = 0 has at least
two roots in x ∈ (0,∞), for each l = 1,2, . . . . Denote L(δ) = ∑K

k=1 δk(θik − θjk
).

By taking subsequences if necessary as l → ∞, we may assume δkl(θik −
θjk

)/L(δ(l)) → λk for some nonnegative λk such that
∑K

k=1 λk = 1. We benefit
from the fact that fk can be regarded as analytic functions on the open right half
of the complex plane, and as δ tends to zero they converge uniformly on compact
subsets. It follows that

(7) lim
l→∞

Fη(l)(x) − Fθ(x)

αL(δ(l))
=

K∑
k=1

λkf
′
k(x|0),

and the convergence is uniform on compact subsets. Let D denote a finite hor-
izontal strip within the open right half plane such that D ∩ R encloses all pos-
sible roots x ∈ (0,∞) of Fη(l)(x) − Fθ(x) = 0 for sufficiently large l. This is
possible from bounds on location of the crossing points [Bock et al. (1987),
Roosta-Khorasani and Székely (2015)]. In fact, when δ is sufficiently small and
t ∈ (0,1), letting M = max(θ) and m = min(θ) we obtain gamma(nα + 2,m) ≤lr
fk(·|tδ) ≤lr gamma(nα + 2,M), which implies f ′

k(x|tδ) < 0 for x > M/(nα + 1)

and f ′
k(x|tδ) > 0 for x < m/(nα + 1). It follows from (6) that all positive real

roots of Fη(x) − Fθ(x) = 0 must be between m/(nα + 1) and M/(nα + 1). We
can make D thin enough so that there are no other roots of

∑K
k=1 λkf

′
k(x|0) within
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D except for the unique mode of the real function
∑K

k=1 λkfk(x|0) which, by as-
sumption, must be a simple root. By (7), for large enough l, the number of roots of
Fη(l) −Fθ within D, counting multiplicity, must be equal to one, which contradicts
the assumption of multiple real roots. �

Lemma 4 is a consequence of Lemma 6 and Lemma 5.

LEMMA 6. In the setting of Lemma 4, let Xi ∼ gamma(α,1) and Zi ∼
expo(1) be mutually independent. Let fj denote the density of

∑n
i=1 θiXi +

θjZj + θkZk for j = 1, . . . , k − 1 and that of
∑n

i=1 θiXi + θjZj + θk+1Zk+1 for
j = k + 2, . . . , n. Then, for any λ = (λ1, . . . , λk−1, λk+2, . . . , λn) such that λi ≥ 0
and

∑
λi = 1, the mixture density

∑
i �=k,k+1 λifi is unimodal with a strictly nega-

tive second derivative at the mode, and no saddle points.

Lemma 6 requires detailed analysis. As a starting point, we prove some mono-
tonicity properties concerning the densities of gamma convolutions in a simple
case.

LEMMA 7. For θ ∈ (0,1), let X ∼ gamma(α,1) and Z ∼ expo(1) indepen-
dently. Let gα(x) = xα−1e−x/�(α) and denote the density of X + θZ by h(x).
Then (a) if α ≥ 1 then h′(x)/g′

α(x) strictly increases in x ∈ (α − 1,∞); (b) if
α ≥ 2 then h′(x)/g′

α(x) also strictly increases in x ∈ (0, α − 1); (c) if α ≥ 1 then
h′(x)/g′

α+1(x) strictly decreases in each of x ∈ (0, α) and x ∈ (α,∞); (d) parts
(a)–(c) still hold when the distribution of Z is replaced by a finite mixture of expo-
nentials with rates > 1.

PROOF. In the α = 1 case, the densities are amenable to direct calculations.
Let us assume α > 1. Denote g ≡ gα . We have

(8) θh′(x) + h(x) = g(x), x > 0,

which can be verified by comparing the Laplace transform of both sides. To prove
(a), we will show h′′(x)g′(x) > h′(x)g′′(x) for x > α − 1. Differentiating (8) to
eliminate h′′(x), and noting that θg′′(x)+g′(x) < 0 for x > α−1, we equivalently
need to show

(9) u(x) ≡ ex/θ

[
g′2(x)

θg′′(x) + g′(x)
− h′(x)

]
< 0, x > α − 1.

This holds for x = α−1 because g′(α−1) = 0 and h dominates g in the likelihood
ratio order. By direct calculation, we have

(10) u′(x) = θex/θg′(x)(g′′2(x) − g′(x)g′′′(x))

(θg′′(x) + g′(x))2 < 0, x > α − 1.

Thus u(x) < 0 for all x > α − 1, as required.
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To prove (b), we only need to show that u(x) > 0 for x ∈ (0, x∗) and u(x) < 0
for x ∈ (x∗, α−1) where x∗ < α−1 is the unique positive root of θg′′(x)+g′(x) =
0. When α ≥ 2, we have u(x) → 0 as x ↓ 0 and u′(x) > 0 for x ∈ (0, x∗)∪ (x∗, α−
1). We obtain the desired sign pattern of u as a consequence.

To prove (c), we similarly will show h′′(x)g′
α+1(x) < h′(x)g′′

α+1(x) for x > 0.
This is equivalent to ũ(x) < 0 for x ∈ (0, x∗) and ũ(x) > 0 for x ∈ (x∗,∞), where
x∗ ∈ (α − 1, α) is the unique positive root of θg′′

α+1(x) + g′
α+1(x) = 0 and

ũ(x) ≡ ex/θ

[
g′(x)g′

α+1(x)

θg′′
α+1(x) + g′

α+1(x)
− h′(x)

]
.

This sign pattern can be proved by arguments parallel to the previous parts.
Part (d) is obvious. �

The usefulness of these monotonicity properties is more apparent after we de-
fine the following stochastic order.

DEFINITION 2. Suppose f and g are twice continuously differentiable densi-
ties supported on an interval I ⊂ (0,∞). We say f is dominated by g in the supple-
mented likelihood ratio ordering, written as f ≤slr g, if (a) f ′(x)g(x) ≤ f (x)g′(x)

for all x ∈ I and (b) f ′(x)/g′(x) decreases in each of the sets {x : f ′(x) > 0} and
{x : g′(x) < 0}.

Some properties of ≤slr are summarized as follows.

PROPOSITION 3. (a) If f ≤slr g and g ≤slr h, then f ≤slr h. (b) If α ≥ 2 and
θ ∈ (0,1), then gα ≤slr gα ∗ expo(θ) where ∗ denotes convolution. (c) Suppose
α ≥ 1, and θ ∈ (0,1), then gα ∗ expo(θ) ≤slr gα+1. (d) Parts (b) and (c) still hold
if expo(θ) is replaced by a mixture of exponentials with rates ≥ 1.

PROOF. Part (a) is obvious. Parts (b)–(d) are restating Lemma 7. �

PROPOSITION 4. Suppose f and g are unimodal (see Remark 2), f ≤slr g

and h is Polya frequency order 3. Assume we can take the derivatives inside the
absolutely convergent integrals and obtain (f ∗ h)′ = f ′ ∗ h and (g ∗ h)′ = g′ ∗ h.
Then f ∗ h ≤slr g ∗ h.

PROOF. Let us denote f̃ = f ∗h and g̃ = g ∗h. Since h is PF3, the likelihood
ratio ordering is preserved, that is, f̃ ≤lr g̃. Moreover, f̃ and g̃ are unimodal.
Let λ > 0 and consider the function f ′(x) − λg′(x). By assumption, f ′(x)/g′(x)

decreases on each of I+ ≡ {x : f ′(x) > 0} and I− ≡ {x : g′(x) < 0}. Assume these
are nonempty, otherwise the argument can be suitably modified. Note that by f ≤lr
g we have g′(x) > 0 for x ∈ I+ and f ′(x) < 0 for x ∈ I−. On the set I0 ≡ {x :
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g′(x) ≥ 0, f ′(x) ≤ 0} we have f ′(x)−λg′(x) ≤ 0. Overall f ′ −λg′ changes signs
at most twice, and the sign sequence is +,−,+ in the case of two changes. By
the variation-diminishing properties of totally positive kernels [Karlin (1968)], the
same is true for (f ′ − λg′) ∗ h = f̃ ′ − λg̃′. We need to show f̃ ′/g̃′ decreases on
each of Ĩ+ ≡ {x : f̃ ′(x) > 0} and Ĩ− ≡ {x : g̃′(x) < 0}. Denote the upper end point
of Ĩ+ by x0. For 0 < λ < f̃ (x0)/g̃(x0), if f̃ ′(x) − λg̃′(x) ever crosses zero from
below in x ∈ I+, then it must be nonnegative for x ≥ x0, in order not to violate the
sign pattern of +,−,+. Thus

f̃ (x0) = −
∫ ∞
x0

f̃ ′(x)dx ≤ −λ

∫ ∞
x0

g̃′(x)dx = λg̃(x0)

which contradicts λ < f̃ (x0)/g̃(x0). With a small perturbation this still applies
when λ = f̃ (x0)/g̃(x0). For λ > f̃ (x0)/g̃(x0), we have f̃ ′(x)/g̃′(x) < λ for x ∈ I+
sufficiently close to x0, because of the likelihood ratio ordering. In order not to
violate the sign pattern, f̃ ′(x) − λg̃′(x) cannot cross zero from below in x ∈ I+ in
this case either. Because λ is arbitrary, f̃ ′(x)/g̃′(x) must decrease for x ∈ I+. The
case of x ∈ Ĩ− is similar. �

REMARK 2. We impose a restricted form of unimodality, which is satisfied by
the gamma convolutions. For the above proof to be valid, we need the set I0 to be
situated between I+ and I−. This will be satisfied if we assume the closures of I+
and I− are intervals. So, an isolated saddle point is allowed, but not a flat ridge.
We will note down such restrictions when needed.

Proposition 5 reveals the intimate relation between ≤slr and the unimodality
of the mixture of two densities with arbitrary mixing proportions. It allows us
to reduce the problem of unimodality needed in Lemma 6 to manageable special
cases.

PROPOSITION 5. Let fi and hi, i = 1,2, be twice continuously differentiable
and unimodal densities supported on (0,∞) such that

h1 ≤slr f1 ≤lr f2 ≤slr h2.

Suppose the mixture density ph1 + (1 − p)h2 is unimodal for all p ∈ [0,1]. Then
so is pf1 +(1−p)f2, assuming f ′

1 and f ′
2 do not vanish simultaneously in between

the modes of f1 and f2.

PROOF. Let x∗ and x∗ denote the modes of f1 and f2, respectively. In the case
of a possible plateau, x∗ (resp., x∗) denotes the leftmost (resp., rightmost) mode
of f1 (resp., f2). Obviously, all modes of the mixture pf1 + (1 − p)f2 are in the
interval [x∗, x∗]. Moreover, for each x0 ∈ (x∗, x∗) such that f ′

i (x0) �= 0, i = 1,2,
we may set λ = −f ′

1(x0)/f
′
2(x0) to obtain a stationary point of this mixture density.
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By the likelihood ratio ordering, we necessarily have f ′
1(x0) < 0 < f ′

2(x0) and λ >

0. To show that the mixture is unimodal, suppose f ′
2 does not vanish on (x∗, x∗).

Then we can show that −f ′
1(x)/f ′

2(x) increases on (x∗, x∗), which is equivalent to

(11) f ′′
1 (x0)f

′
2(x0) ≤ f ′′

2 (x0)f
′
1(x0), x0 ∈ (

x∗, x∗)
.

Condition (11) is necessary because, if the mixture is unimodal, then a stationary
point can never be a local minimum, and hence f ′′

1 (x0) + λf ′′
2 (x0) ≤ 0. On the

other hand, if λ = −f ′
1(x0)/f

′
2(x0) is an increasing function of x0 ∈ (x∗, x∗), then

stationary points of the mixture corresponding to the same λ form a connected
interval, showing that the mixture is unimodal. A close inspection shows that (11)
is sufficient as long as the saddle points of f1 and f2 on (x∗, x∗) do not coincide.

Applying this criterion to the mixture ph1 + (1 − p)h2, we have

h′′
1(x0)h

′
2(x0) ≤ h′′

2(x0)h
′
1(x0), x0 ∈ (

x∗, x∗)
,

which yields, as long as f ′
1(x0) �= 0 �= f ′

2(x0),

f ′′
2 (x0)

f ′
2(x0)

≤ h′′
2(x0)

h′
2(x0)

≤ h′′
1(x0)

h′
1(x0)

≤ f ′′
1 (x0)

f ′
1(x0)

, x0 ∈ (
x∗, x∗)

,

in view of h1 ≤slr f1 and f2 ≤slr h2, and (11) is established. �

Next, we present two log-concavity results needed in the proof of Lemma 6.
See also Székely and Bakirov (2003), Theorem 4, for general results related to
Lemma 8 below.

LEMMA 8. Suppose Xi ∼ gamma(α,1) and Zi ∼ expo(1), i = 1,2, are mu-
tually independent where α ≥ 1. Let δ1, δ2 > 0. Then arbitrary mixtures of
δ1X1 + δ2X2 and δ1(X1 + Z1) + δ2(X2 + Z2) are unimodal.

PROOF. We show that when α = 1, such mixtures are log-concave. If α > 1,
then we can write

∑2
i=1 δiXi = ∑2

i=1 δi(X
∗
i + Yi) where X∗

i ∼ expo(1) and Yi ∼
gamma(α − 1,1) independently. We can similarly “split off” δ1Y1 + δ2Y2 from∑2

i=1 δi(Xi + Zi). Because δ1Y1 + δ2Y2 is unimodal, the result follows from the
log-concave result in the α = 1 case.

Let us assume δ2 = 1 and δ ≡ δ1 ∈ (0,1). When α = 1, the densities of δX1 +
X2 and δ(X1 + Z1) + X2 + Z2 are, respectively,

h1(x) = e−x − e−x/δ

1 − δ
; h2(x) = x(e−x + e−x/δ) − 2δh1(x)

(1 − δ)2 .

For λ > −2δ and ε ≡ δ−1 − 1, let

q(x) ≡ x
(
eεx + 1

) + λ
(
eεx − 1

)
.

We only need to show that q(x) is log-concave. A quick calculation yields

e−εx[
q ′2(x) − q ′′(x)q(x)

] = eεx + e−εx − 2 − (εx)2 + (λε + 2)2

which is positive for all x > 0. �
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LEMMA 9. Let Y be an arbitrary mixture of k ≥ 1 exponentials with means
δi, i = 1, . . . , k such that max(δi) ≤ δ. Let Z ∼ expo(δ) independently of Y . Then
Y + Z is strictly log-concave.

PROOF. Suppose max(δi) < δ. The density of U ≡ Y + Z can be written
as h(u) = ∑k

i=1 λi(e
−u/δ − e−u/δi ) for some constants λi > 0. We know h(u)

is strictly log-concave on (0,∞) because eu/δh(u) is strictly concave. A slight
modification works when max(δi) = δ. �

We are now ready to present the proof of Lemma 6, which concludes the deriva-
tion of our main result.

PROOF OF LEMMA 6. We shall use the notation ≤slr with the random vari-
ables as well as the densities. Let Y1 be an arbitrary mixture of θjZj for j =
1, . . . , k − 1; let Y2 be an arbitrary mixture of θjZj for j = k + 2, . . . , n. Then
Y1 ≤lr θkZk ≤lr Y2, and these have strictly decreasing densities. Define

X̃ ≡ θnXn +θk+1Xk+1, W1 ≡ X̃+θkZk +Y1, W2 ≡ X̃+θk+1Zk+1 +Y2.

We have W1 ≤lr W2, and W1,W2 are unimodal (since α ≥ 1); W1 is in fact log-
concave by Lemma 9. If we can show that arbitrary mixtures of W1 and W2
are unimodal, then so are those of fj , j = 1, . . . , k − 1, k + 2, . . . , n, by adding∑

i �=k+1,n θiXi , which is log-concave.
Lemma 7 yields θnXn + Y2 ≤slr θn(Xn + Zn). Convolving both sides with

θk+1(Xk+1 + Zk+1), which is PF3 [Karlin (1968)], we obtain

W2 ≤slr θk+1(Xk+1 + Zk+1) + θn(Xn + Zn).

Lemma 7 also yields

(12) θn(Xn + Zn) ≤slr θn(Xn + Zn) + θkZk ≤slr θn(Xn + Zn) + θkZk + Y1,

where the second ≤slr is obtained by convolving θn(Xn + Zn) ≤slr θn(Xn + Zn) +
Y1 with θkZk . Convolving (12) with θk+1(Xk+1 + Zk+1) yields

W2 ≤slr W3 ≡ θk+1(Xk+1 + Zk+1) + θn(Xn + Zn) + θkZk + Y1.

By Proposition 5, we only need to show that arbitrary mixtures of W1 and W3
are unimodal. But this is a consequence of Lemma 8, which shows that arbitrary
mixtures of X̃ and θk+1(Xk+1 +Zk+1)+θn(Xn +Zn) are unimodal, and Lemma 9,
which shows that θkZk + Y1 is log-concave.

Strict unimodality, in the sense of a strictly negative second derivative at the
mode, and no saddle points, can be established by a careful examination of the
above steps. For example, in Proposition 5, the claim still holds if we use strict uni-
modality in both the condition on hi and the conclusion on fi . Also, in addition to
being unimodal, the density of a mixture of X̃ and θk+1(Xk+1 + Zk+1) + θn(Xn +
Zn) is analytic on (0,∞), vanishes at 0+, and has a bounded first derivative. One
can then verify that the step of adding θkZk + Y1, which is strictly log-concave,
yields a strictly unimodal density. �
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