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GENERAL EDGEWORTH EXPANSIONS WITH APPLICATIONS TO
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We prove an asymptotic Edgeworth expansion for the profiles of certain
random trees including binary search trees, random recursive trees and plane-
oriented random trees, as the size of the tree goes to infinity. All these models
can be seen as special cases of the one-split branching random walk for which
we also provide an Edgeworth expansion. These expansions lead to new re-
sults on mode, width and occupation numbers of the trees, settling several
open problems raised in Devroye and Hwang [Ann. Appl. Probab. 16 (2006)
886–918], Fuchs, Hwang and Neininger [Algorithmica 46 (2006) 367–407],
and Drmota and Hwang [Adv. in Appl. Probab. 37 (2005) 321–341]. The
aforementioned results are special cases and corollaries of a general theorem:
an Edgeworth expansion for an arbitrary sequence of random or deterministic
functions Ln : Z → R which converges in the mod-φ-sense. Applications to
Stirling numbers of the first kind will be given in a separate paper.

1. Introduction.

1.1. Introduction. The aim of this paper is to study asymptotic properties of
profiles for certain families of random trees when the size of the tree goes to infin-
ity. The profile is the function k �→ Ln(k), where Ln(k) is the number of nodes at
depth k in the tree of size n. These numbers are also called “occupation numbers.”
We shall mainly be interested in the following families of random trees:

1. binary search trees (BSTs) and, more generally, D-ary recursive trees;
2. random recursive trees (RRTs);
3. plane-oriented recursive trees (PORTs) and, more generally, p-oriented

trees.
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BSTs, RRTs and PORTs have been much studied in the literature; see [6, 8, 13, 14,
16, 20, 35]. Mahmoud’s book [33] and Drmota’s monograph [15] contain further
pointers to relevant literature. It is well known that BSTs are intimately connected
to the Quicksort algorithm.

Our main result is an asymptotic expansion for the profile which is somewhat
similar to the classical Chebyshev–Edgeworth–Cramér expansion for sums of in-
dependent identically distributed (i.i.d.) integer-valued random variables. As a con-
sequence of our asymptotic expansion, we derive limit theorems for several func-
tionals of the profile such as the mode, the width and the occupation numbers, thus
answering a number of open questions on these quantities. Many known results on
the profiles such as the (local) central limit theorem or limit theorems for occupa-
tion numbers on the scale of large deviations can be recovered in a unified way as
corollaries of our expansion.

The scope of our method is by no means restricted to random trees. In Section 2,
we shall state and prove a very general asymptotic expansion (Theorem 2.1) which
can be applied to any sequence of random or deterministic functions Ln : Z → R,
n ∈N, provided certain natural conditions are satisfied. Recently, a closely related
expansion was derived by Féray, Méliot and Nikeghbali [19] in the framework
of the mod-φ-convergence. It has been observed by Nikeghbali and collaborators
that mod-φ-convergence (see Remark 2.10 for the definition) is a common phe-
nomenon in probability, combinatorics, number theory and statistical mechanics;
see [11, 19, 25, 30, 31, 34]. In this work, we show how mod-φ-convergence3 can
be applied to the analysis of random trees of logarithmic height.

The paper is organized as follows. The general asymptotic expansion is stated
in Section 2. In Section 3, we apply this expansion to the profile of the one-split
branching random walk, a model which contains profiles of all random trees listed
above as special cases. Since these results are quite general and require heavy no-
tation, we motivate and prepare the reader in the next Section 1.2 by formulating
the results in the special case of binary search trees. In Section 3.2, we shall ex-
plain how to formulate similar results for other random trees including RRTs and
PORTs. Proofs are given in Sections 4 and 5.

1.2. Results for binary search trees. For our purposes, the following construc-
tion of BSTs is most convenient. There are nodes of two types: the external ones
(denoted by �) and the internal ones (denoted by •); see Figure 1 (left). At time
n = 0, start with one external node (the root of the tree). At any step of the con-
struction, pick one of the existing external nodes uniformly at random, declare it
to be internal and connect it to two new external nodes according to the rule shown
on Figure 1 (right). After n steps, one obtains a random tree Tn having n internal
and n + 1 external nodes; see Figure 1 (left) for a sample realization.

3In all examples mentioned in Section 1.1, it is, in fact, mod-Poisson convergence.
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FIG. 1. Left: Sample realization of the BST. Right: Construction rule for the BST

The depth of an external node is its distance to the root. Denote by Ln(k) the
number of external nodes of Tn at depth k ∈ N0 := N ∪ {0}, and let Ln(k) = 0 for
k < 0. The random function k �→ Ln(k), k ∈ Z, is called the (external) profile of
the tree Tn. Denote by x1,n, . . . , xn+1,n the depths of the (arbitrarily enumerated)
external nodes of Tn so that

Ln(k) = #{1 ≤ i ≤ n + 1 : xi,n = k}, k ∈ Z.

The BST profile has been much studied; see [6, 8, 14, 16, 17, 20] and [15],
Section 6.5, for a survey. In the following, we provide a short overview of known
results. Let β− ≈ −1.678 and β+ ≈ 0.768 be the solutions to the equation 2eβ(1−
β) = 1. The numbers 2eβ− ≈ 0.373 and 2eβ+ ≈ 4.311 are called the fill-up level
constant and the height constant of the BST because of the classical results

1

logn
min

i=1,...,n+1
xi,n

a.s.−→
n→∞ 2eβ−,

1

logn
max

i=1,...,n+1
xi,n

a.s.−→
n→∞ 2eβ+,

going back to [12]; see also [5]. Define the following random function:

Wn(β) = 1

n(2eβ−1)

n+1∑
i=1

eβxi,n, β ∈C,

which is the normalized moment generating function of the random counting mea-
sure
∑

k∈Z Ln(k)δk =∑n+1
i=1 δxi,n

, where δx denotes a Dirac measure at point x.
The basic fact underlying all further arguments is that Wn converges as n → ∞
to a random analytic function W∞ with probability 1. More precisely, it is known
[8] that there is an open set D ⊂ C containing the interval (β−, β+) and a random
analytic function W∞ defined on D such that

sup
β∈K

∣∣Wn(β) − W∞(β)
∣∣ a.s.−→
n→∞ 0

for every compact set K ⊂ D . Note that W∞(0) = 1 since Wn(0) = (n + 1)/n for
all n ∈ N.

It is useful to keep in mind the following principle: k �→ 1
n
Ln(k) is “close” to

the probability mass function of the Poisson distribution with intensity 2 logn. The
moment generating function of the latter distribution is β �→ n2eβ−2, and the gen-



EDGEWORTH EXPANSIONS FOR PROFILES OF RANDOM TREES 3481

eral philosophy of mod-φ-convergence [25, 30] suggests to view the limit function
W∞ as a quantification of the “difference” between 1

n
Ln and the Poisson distribu-

tion with parameter 2 logn. Note that in our case, this function is random.
An important role will be played by the derivatives and logarithmic derivatives

of W∞ (the latter will be called random cumulants). In particular, we shall fre-
quently encounter the random variables

χ1(0) := (logW∞)′(0) = W ′∞(0),

χ2(0) := (logW∞)′′(0) = W ′′∞(0) − (W ′∞(0)
)2

.

It will be shown in Section 3.4 that they can also be represented as the a.s. limits

χ1(0) = lim
n→∞(logWn)

′(0) = lim
n→∞

(
1

n + 1

n+1∑
i=1

xi,n − 2 logn

)
,(1)

χ2(0) = lim
n→∞(logWn)

′′(0)(2)

= lim
n→∞

(
1

n + 1

n+1∑
i=1

x2
i,n −
(

1

n + 1

n+1∑
i=1

xi,n

)2

− 2 logn

)
.

It is useful to think of χ1(0) (whose distribution is the celebrated Quicksort law
[36, 37], modulo an additive constant) as a parameter describing the random shift
of the BST profile with respect to (w.r.t.) the location 2 logn. The random variable
χ2(0) describes the random deviation of the empirical variance of the profile from
the value 2 logn and seems to appear for the first time.

We proceed to the asymptotic properties of the BST profile (Ln(k))k∈Z, as
n → ∞. The following (local) central limit theorem was proved by [6]:

(3) sup
k∈Z

∣∣∣∣1nLn(k) − 1√
4π logn

e− (k−2 logn)2

4 logn

∣∣∣∣= O

(
1

logn

)
a.s.

As a special case of our results, we shall derive an asymptotic expansion comple-
menting (3).

THEOREM 1.1. Let (Ln(k))k∈Z be the external profile of a binary search tree
with n + 1 external nodes. For every r ∈ N0, we have

(logn)
r+1

2 sup
k∈Z

∣∣∣∣∣Ln(k)

n
− e− (k−2 logn)2

4 logn

√
4π logn

r∑
j=0

Gj(
k−2 logn√

2 logn
;0)

(logn)j/2

∣∣∣∣∣ a.s.−→
n→∞ 0,

where Gj(x;0) is a polynomial in x of degree at most 3j whose coefficients can

be linearly expressed through the derivatives W ′∞(0), . . . ,W
(j)∞ (0). For example,

G0(x;0) = 1, G1(x;0) = 1√
2

(
W ′∞(0)x + x3 − 3x

6

)
;

see (46), (47) below for an explicit general formula.
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The above results deal with the profile around level 2 logn, where “most”
external nodes are located. The shape of the profile at levels around c logn,
2eβ− < c < 2eβ+ , is described by the following result due to [8] (compare also
[6, 17, 24] for weaker formulations and [20] for pointwise convergence theorems):

(4) sup
k∈Z∩(logn)L

∣∣∣∣ nk!
(2 logn)k

Ln(k) − W∞
(

log
(

k

2 logn

))∣∣∣∣ a.s.−→
n→∞ 0

for every compact set L ⊂ (2eβ−,2eβ+). We can derive an asymptotic expansion
complementing (4).

THEOREM 1.2. Let (Ln(k))k∈Z be the external profile of a binary search
tree with n + 1 external nodes. For every r ∈ N0 and every compact set L ⊂
(2eβ−,2eβ+), we have

(logn)r+1 sup
k∈Z∩(logn)L

∣∣∣∣∣ nkk
Ln(k)

(2e logn)k
− 1√

2πk

r∑
j=0

F2j (0;βn(k))

(logn)j

∣∣∣∣∣ a.s.−→
n→∞ 0,

where βn(k) is the solution4 of 2eβn(k) = k/ logn and

F2j (0;β) := W∞(β)G2j (0;β)

is a linear combination of 1,W∞(β), . . . ,W
(2j)∞ (β); see (46), (47) below for an

explicit formula. For example,

F0(0;β) = W∞(β), F2(0;β) = 1

4

(
W ′∞(β) − W ′′∞(β)

)− 1

24
.

REMARK 1.3. Our techniques yield analogous expansions for the mean pro-
file: Theorems 1.1 and 1.2 remain valid upon replacing Ln(k) by E[Ln(k)] and the
random polynomials Gj , F2j by their expectations.

The above expansions can be used to answer a number of open questions on the
BST profile. The mode un and the width Mn of a binary search tree are defined by

un = arg max
k∈N0

Ln(k), Mn = max
k∈N0

Ln(k).

These quantities were studied by [6], [16] and [14]. In particular, [14], Theo-
rem 4.1, proved that un is concentrated near 2 logn in the sense that for every
B > 0 there is C0 = C0(B) such that

P
[|un − 2 logn| > T

]≤ C0T
−B, n ∈N, T ≥ 1.

We show that, starting from some random almost surely finite time K , the mode
un attains only one of two possible explicitly given values. This result is a special
case of Theorem 3.17.

4Obviously, we have βn(k) = log k − log logn − log 2, however, we prefer to define βn(k) implic-
itly to conform with the definition of βn(k) in general case; see formula (26) below.
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THEOREM 1.4. There is an a.s. finite random variable K such that for n > K ,
the mode un of the BST with n + 1 external nodes is equal to one of the numbers⌊

2 logn + χ1(0) − 1/2
⌋

or
⌈
2 logn + χ1(0) − 1/2

⌉
,

where �·�, �·� denote the floor and the ceiling functions, respectively, and χ1(0) is
the Quicksort-distributed random variable defined in (1).

As for the BST’s width Mn, it is known [6, 14, 16] that

E[Mn] = n√
4π logn

(
1 + O

(
1

logn

))
,

Mn

√
4π logn

n

a.s.−→
n→∞ 1.

Both [14] as well as [16], Section 5, asked for the limit distribution of Mn (if it
exists). The next result (which holds a.s. rather than in distribution) settles this
issue, and is a consequence of Theorem 3.21 and the remark following it.

THEOREM 1.5. Let Mn be the width of a binary search tree with n+1 external
nodes. With probability 1, the set of subsequential limits of the sequence

M̃n := 4 logn

(
1 −

√
4π lognMn

n

)
, n ∈ N,

is the interval [χ2(0)− 1/12, χ2(0)+ 1/6] with χ2(0) as in (2). Furthermore, with
θn = mink∈Z |2 logn + χ1(0) − 1/2 − k| we have

(5) M̃n − θ2
n

a.s.−→
n→∞ χ2(0) − 1

12
.

REMARK 1.6. Let us stress that the centering θ2
n in (5) is random since it

involves χ1(0). In order to obtain a nonrandom centering, we have to pass to a
subsequence. If (nj )j∈N ⊂ N is any sequence with nj → +∞ and {2 lognj } →
α ∈ [0,1] as j → ∞ (where {·} denotes the fractional part), then limj→∞ θnj

=
|{α + χ1(0)} − 1/2| and we obtain

M̃nj

a.s.−→
j→∞ χ2(0) − 1

12
+
({

α + χ1(0)
}− 1

2

)2
.

Since the set of accumulation points of the sequence ({2 logn})n∈N is the interval
[0,1], we obtain for M̃n a family of subsequential limit distributions indexed by
α ∈ [0,1] with values α = 0 and α = 1 corresponding to the same limit.

In the next theorem, we describe the asymptotic behavior of the “occupation
numbers” Ln(kn), where (kn)n∈N is a deterministic sequence with sufficiently reg-
ular behavior. These quantities were the main object of study in [20]; see also [6,
8] and (for results on lattice branching random walks) [10, 22, 26]. It is known [8,
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20] [and not difficult to deduce from (4)] that if kn = 2eβ logn + α
√

2eβ logn +
o(

√
logn) for some β ∈ (β−, β+) and α ∈ R, then

(6)

√
2eβ logn

n2eβ−1
eβknLn(kn)

a.s.−→
n→∞

W∞(β)√
2π

e− 1
2 α2

.

Furthermore, the convergence of moments of order κ , for any κ ∈ (1,2)∪{2,3, . . .}
with E[Wκ∞(β)] < ∞, was proved in [20]. Another consequence of (4) is that for
kn = 2eβ logn + cn, where β ∈ (β−, β+), cn = o(logn) we have

(7)

√
2eβ logn

ecnn2eβ−1

(
kn

2 logn

)kn

Ln(kn)
a.s.−→

n→∞
W∞(β)√

2π
.

For β = 0, the limit random variable in (6), (7) is degenerate because
W∞(0) = 1, and a more refined analysis is needed to obtain a nondegenerate limit
law. It turns out that all such results hold also in the almost sure sense.

THEOREM 1.7. Let (Ln(k))k∈Z be the external profile of a BST with n + 1
external nodes. Put L◦

n(k) := Ln(k)−E[Ln(k)] and let (kn)n∈N be a deterministic
integer sequence.

(a) If kn = 2 logn + α
√

2 logn + o(
√

logn) for some α ∈ R, then

logn

n
L

◦
n(kn)

a.s.−→
n→∞

χ1(0) −E[χ1(0)]
2
√

2π
αe− 1

2 α2
.

(b) If kn = 2 logn + cn, where cn = o(logn) and limn→∞ |cn| = ∞, then

(logn)3/2

ncnecn

(
kn

2 logn

)kn

L
◦
n(kn)

a.s.−→
n→∞

χ1(0) −E[χ1(0)]
4
√

π
.

In particular, if cn = o(
√

logn) and limn→∞ |cn| = ∞, then

(logn)3/2

ncn

L
◦
n(kn)

a.s.−→
n→∞

χ1(0) −E[χ1(0)]
4
√

π
.

(c) If kn = 2 logn + cn, where cn is bounded, then

(logn)3/2

n
L

◦
n(kn) − χ1(0) −E[χ1(0)]

4
√

π

(
cn + 1

2

)
a.s.−→

n→∞
E[W ′′∞(0)] − W ′′∞(0)

8
√

π
.

REMARK 1.8. More specifically, if in case (c) we have kn = �2 logn� + a for
a ∈ Z, then the set of subsequential limits of ( 1

n
(logn)3/2

L
◦
n(kn))n∈N equals, with

probability 1, the closed interval{
χ1(0) −E[χ1(0)]

4
√

π
(a + y) − W ′′∞(0) −E[W ′′∞(0)]

8
√

π
: −1

2
≤ y ≤ 1

2

}
.

A subsequential limit of this form is attained along any subsequence (nj )n∈N with
{2 lognj } → 1

2 − y as j → ∞.
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In cases (a) and (b), distributional convergence (and, in fact, convergence of
all moments) was proved by [20]. Our approach (which is very different from
the method of moments and the contraction method used in [20]) yields a.s. con-
vergence. In case (c), [20] showed that Ln(kn), centered by its expectation and
normalized by its standard deviation, has no nondegenerate limit law. Our result
identifies all possible weak (and, in fact, even a.s.) subsequential limits of the ap-
propriately normalized Ln(kn). One may also ask for multivariate limit laws for
the occupation numbers. For example, in case (c) it is natural to investigate the
joint limit distribution of the random vector (Ln(�2 logn� + a))a=−K,...,K where
K ∈ N0 is fixed. Since our results are a.s., they automatically yield such multi-
variate limit theorems, whereas the moment method and the contraction method
seem less convenient to treat multivariate problems. Finally, let us mention that
there is one more case in which W∞(β) is a.s. constant, namely β = − log 2; see
Section 3.8 for a detailed analysis of this case.

2. The general Edgeworth expansion.

2.1. Assumptions on the profiles. Consider a sequence L1,L2, . . . such that
each Ln = (Ln(k))k∈Z is a real-valued stochastic process defined on the integer
lattice Z. We assume that all L1,L2, . . . are defined on a common probability space
(
,F,P). We shall consider the random function

Ln : Z →R, k �→ Ln(k)

as a “random profile”. As has already been mentioned, in our applications to ran-
dom trees, Ln(k) is the number of nodes of depth k in a random tree at time n. Our
aim is to prove that under appropriate assumptions, Ln satisfies an Edgeworth-type
asymptotic expansion with probability 1. Let us state these assumptions.

ASSUMPTION A1. There is an open, nonempty interval (β−, β+) ⊂ R con-
taining 0 such that for every n ∈ N and every β ∈ (β−, β+),

(8)
∑
k∈Z

∣∣Ln(k)
∣∣eβk < ∞ a.s.

The interval (β−, β+) need not be bounded. For example, Assumption A1 is
satisfied on whole R if for every n ∈ N the profile support {k ∈ Z : Ln(k) �= 0} is a
finite set with probability 1.

The next assumption essentially states that the Laplace transform of the profile
given by

β �→∑
k∈Z

Ln(k)eβk

converges, after an appropriate normalization, to a random analytic function on
some domain D in the complex plane which contains the interval (β−, β+). To
state this assumption, we need the following ingredients:
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• a sequence (wn)n∈N ⊂R such that limn→∞ wn = +∞;
• an open, connected set D ⊂ {β ∈ C : β− < Reβ < β+} such that D ∩ R =

(β−, β+);
• a (deterministic) analytic function ϕ : D → C such that, for real β ∈ (β−, β+),

we have ϕ(β) ∈ R and ϕ′′(β) > 0.

It follows from Assumption A1 that, with probability 1, the normalized Laplace
transform

(9) Wn(β) := e−ϕ(β)wn
∑
k∈Z

Ln(k)eβk, β ∈ D,

is a random analytic function on D .

ASSUMPTION A2. With probability 1, the sequence of random analytic func-
tions (Wn)n∈N converges locally uniformly on D , as n → ∞, to some random
analytic function W∞ such that P[W(β) �= 0 for all β ∈ (β−, β+)] = 1.

Moreover, we require that the speed of convergence is superpolynomial in wn.

ASSUMPTION A3. For every compact set K ⊂ D and r ∈ N, we can find an
a.s. finite random variable CK,r such that for all n ∈ N,

(10) sup
β∈K

∣∣Wn(β) − W∞(β)
∣∣< CK,rw

−r
n .

The last assumption is of technical nature. In the classical Edgeworth expansion
for sums of i.i.d. integer-valued variables, it corresponds to the assumption that Z
is the minimal lattice on which the distribution is concentrated.

ASSUMPTION A4. For every compact set K ⊂ (β−, β+), every a > 0 and
r ∈ N0, we have

(11) sup
β∈K

[
e−ϕ(β)wn

∫ π

a

∣∣∣∣∑
k∈Z

Ln(k)ek(β+iu)

∣∣∣∣du

]
= o
(
w−r

n

)
a.s. as n → ∞.

2.2. Statement of the general Edgeworth expansion. Consider a sequence of
profiles L1,L2, . . . satisfying Assumptions A1–A4. We are going to state an Edge-
worth expansion for Ln as n → ∞. In fact, we shall obtain an expansion of the
“tilted” profile k �→ eβk−ϕ(β)wnLn(k) which is uniform as long as β stays in a
certain range.

We shall see that the following parameters μ(β) and σ(β) play the role of the
“drift” and the “standard deviation” of the tilted profile:

(12) μ(β) = ϕ′(β), σ 2(β) = ϕ′′(β).
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Introduce the normalized coordinate

(13) xn(k) = xn(k;β) = k − μ(β)wn

σ(β)
√

wn

, k ∈ Z.

Define the “deterministic cumulants” κj (β) and the “random cumulants” χj (β) by

(14) κj (β) = ϕ(j)(β), χj (β) = (logW∞)(j)(β).

The general Edgeworth expansion for the profile Ln reads as follows.

THEOREM 2.1. Let L1,L2, . . . be a sequence of random profiles satisfying
Assumptions A1–A4. Fix r ∈N0 and a compact set K ⊂ (β−, β+). Then

w
r+1

2
n sup

k∈Z
sup
β∈K

∣∣∣∣∣eβk−ϕ(β)wnLn(k) − W∞(β)e− 1
2 x2

n(k)

σ (β)
√

2πwn

r∑
j=0

Gj(xn(k);β)

w
j/2
n

∣∣∣∣∣
a.s.−→

n→∞ 0.

(15)

Here, Gj(x) = Gj(x;β), j ∈N0, is a polynomial of degree at most 3j given by

(16) Gj(x) = (−1)j

j ! e
1
2 x2

Bj(D1, . . . ,Dj )e
− 1

2 x2
,

where Bj is the j th Bell polynomial (defined in Remark 2.2 below) and D1,D2, . . .

are linear differential operators (with random coefficients) given by

(17) Dj = ϕ(j+2)(β)

(j + 1)(j + 2)

(
1

σ(β)

d

dx

)j+2
+ χj (β)

(
1

σ(β)

d

dx

)j

.

REMARK 2.2. The (complete) Bell polynomials Bj(z1, . . . , zj ) are defined by
the formal identity

(18) exp

{ ∞∑
j=1

xj

j ! zj

}
=

∞∑
j=0

xj

j ! Bj(z1, . . . , zj ).

It follows that B0 = 1 and for j ∈ N,

(19) Bj(z1, . . . , zj ) =∑ ′ j !
i1! · · · ij !

(
z1

1!
)i1

. . .

(
zj

j !
)ij

,

where the sum
∑ ′ is taken over all i1, . . . , ij ∈ N0 satisfying 1i1 + 2i2 + · · · +

jij = j . We shall need the first three Bell polynomials which are given by

(20) B0 = 1, B1(z1) = z1, B2(z1, z2) = z2
1 + z2.
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REMARK 2.3. It follows from (16), (17), (20) that G0, G1, G2 are given by

G0(x) = 1,(21)

G1(x) = χ1(β)

σ (β)
x + κ3(β)

6σ 3(β)
He3(x),(22)

G2(x) = χ2
1 (β) + χ2(β)

2σ 2(β)
He2(x) +

(
κ4(β)

24σ 4(β)
+ κ3(β)χ1(β)

6σ 4(β)

)
He4(x)

(23)

+ κ2
3 (β)

72σ 6(β)
He6(x),

where Hen(x) denotes the nth “probabilist” Hermite polynomial:

Hen(x) = e
1
2 x2
(
− d

dx

)n

e− 1
2 x2

.

The first few Hermite polynomials relevant to us are

He1(x) = x, He2(x) = x2 − 1, He3(x) = x3 − 3x,(24)

He4(x) = x4 − 6x2 + 3, He6(x) = x6 − 15x4 + 45x2 − 15.(25)

REMARK 2.4. We have Gj(−x) = (−1)jGj (x) for all j ∈ N0. In particular,
Gj(0) = 0 for odd j . The proof can be found in the extended version of the present
paper [27], Remark 2.4.

REMARK 2.5. It turns out that Fj (x;β) := W∞(β)Gj (x;β) is a polynomial
in x (which is evident) whose coefficients are linear combinations (rather than
rational functions) of 1,W∞(β), . . . ,W

(j)∞ (β) (which is not evident). See [27],
Section 4.2, for the proof.

EXAMPLE 2.6. If Z1,Z2, . . . are i.i.d. integer-valued random variables whose
moment generating function is finite on some interval containing 0, then Theo-
rem 2.1 can be applied to the deterministic profiles Ln(k) := P[Z1 +· · ·+Zn = k],
k ∈ Z, to re-derive the classical Edgeworth expansion; see [27] for details. It is also
possible to apply Theorem 2.1 to the probability mass function of the Ewens dis-
tribution

Ln(k) := θk

θ(θ + 1) · · · (θ + n − 1)

[
n

k

]
, k = 1, . . . , n,

where θ > 0 and
[ n

k

]
are Stirling numbers of the first kind; see [28] for details.

Taking r = 0 and β = 0 in Theorem 2.1, we obtain the following local limit
theorem for the profile Ln.
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THEOREM 2.7. Let L1,L2, . . . be a sequence of random profiles satisfying
Assumptions A1–A4. Then

√
wn sup

k∈Z

∣∣∣∣e−ϕ(0)wnLn(k) − W∞(0)

σ (0)
√

2πwn

exp
{
−1

2

(
k − μ(0)wn

σ(0)
√

wn

)2}∣∣∣∣ a.s.−→
n→∞ 0.

Theorem 2.1 contains one free parameter β which can be chosen as a func-
tion of k and n. With β = 0, we obtain an asymptotic expansion complementing
Theorem 2.7. On the other hand, it is natural to choose β = βn(k) as the solution
to

ϕ′(βn(k)
)= k

wn

,
k

wn

∈ ϕ′((β−, β+)
)
,(26)

where the strict monotonicity of ϕ′ has to be recalled. Then xn(k) = 0 by definition
(13), and we obtain the following result.

THEOREM 2.8. Let L1,L2, . . . be a sequence of random profiles satisfying
Assumptions A1–A4. Then, for all r ∈ N0 and any compact set K ⊂ (β−, β+),

wr+1
n sup

k∈Z∩wnϕ′(K)

∣∣∣∣∣e
kβn(k)

Ln(k)

eϕ(βn(k))wn
− W∞(βn(k))

σ (βn(k))
√

2πwn

r∑
j=0

G2j (0;βn(k))

w
j
n

∣∣∣∣∣
a.s.−→

n→∞ 0.

(27)

REMARK 2.9. Note that only integer powers of wn are present in the sum in
(27) because G2j−1(0) = 0 for j ∈ N; see Remark 2.4. In particular, with r = 0
we obtain a precise large deviations asymptotics

wn sup
k∈Z∩wnϕ′(K)

∣∣∣∣ekβn(k)−ϕ(βn(k))wnLn(k) − W∞(βn(k))

σ (βn(k))
√

2πwn

∣∣∣∣ a.s.−→
n→∞ 0.

REMARK 2.10 (On mod-φ-convergence). Let φ be a nondegenerate infinitely
divisible distribution with cumulant generating function η(β) = log

∫
R

eβxφ(dx).
[19] called a sequence of real random variables (Xn)n∈N mod-φ convergent with
speed wn → +∞ if

(28) lim
n→∞

E[eβXn]
eη(β)wn

= �∞(β)

locally uniformly on some strip {β ∈ C : δ− < Reβ < δ+}, where �∞(β) is an an-
alytic function which does not vanish on (δ−, δ+). Variations of this definition can
be found in [11, 25, 30, 31, 34]. Assuming that (28) holds with speed O(w−r

n ), for
all r ∈ N, they obtained Edgeworth expansions for both lattice and nonlattice Xn.
In particular, Theorem 3.4 of [19] is closely related to expansion (27). In our set-
ting, the distribution of Xn, namely the function k �→ P[Xn = k], is replaced by
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the profile k �→ Ln(k) (which may be random). More importantly, the analogue
of (28) given in Assumptions A2 and A3 holds in some open neighborhood D of
(β−, β+), but it fails to hold in the strip {β ∈ C : β− < Reβ < β+} in our appli-
cations to random trees. The function W∞ replacing �∞ may be random in our
setting. Also note that the expansion in Theorem 2.1 is uniform in the “tuning” pa-
rameter β and its terms are given explicitly using Bell and Hermite polynomials,
which is convenient in applications.

2.3. Mode and width. Using the Edgeworth expansion stated in Theorem 2.1,
we can obtain limit theorems for the width Mn and the mode un of the profile
k �→ Ln(k). These are defined by

(29) Mn = max
k∈Z Ln(k), un = arg max

k∈Z
Ln(k).

THEOREM 2.11. Consider a sequence of random profiles L1,L2, . . . satisfy-
ing Assumptions A1–A4. There is an a.s. finite random variable K such that for
n > K , the mode un is equal to �u∗

n� or �u∗
n�, where

(30) u∗
n = ϕ′(0)wn + χ1(0) − κ3(0)

2σ 2(0)
.

REMARK 2.12. The uniqueness of the arg max is a rather subtle question and
is not discussed here (see, e.g., [18] where uniqueness of the mode is proved for
Stirling numbers of the first kind). In the case when the arg max is nonunique,
Theorem 2.11 has to be understood as follows: for n > K there are at most two
maximizers of Ln(k) and they belong to the set {�u∗

n�, �u∗
n�}.

The next result on the width Mn = Ln(un) is not surprising in view of the local
limit Theorem 2.7.

THEOREM 2.13. Consider a sequence of random profiles L1,L2, . . . satisfy-
ing Assumptions A1–A4. Then the width Mn satisfies

(31) σ(0)
√

2πwne−ϕ(0)wnMn
a.s.−→

n→∞ W∞(0).

In our applications to random trees, the limiting random variable W∞(0) is a.s.
constant. It is therefore natural to ask whether it is possible to obtain a more refined
result with a nondegenerate limit.

THEOREM 2.14. Consider a sequence of random profiles L1,L2, . . . satisfy-
ing Assumptions A1–A4. Let

M̃n := 2σ 2(0)wn

(
1 −

√
2πwnσ(0)Mn

W∞(0)eϕ(0)wn

)
.
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If θn := mink∈Z |u∗
n − k| denotes the distance between u∗

n and the nearest integer,
then

M̃n − θ2
n

a.s.−→
n→∞ χ2(0) + κ2

3 (0)

6σ 4(0)
− κ4(0)

4σ 2(0)
.

We conclude this section with several generalizations of our main results, all of
which are consequences of the proof of Theorem 2.1.

REMARK 2.15. Let (Lt )t≥0 be a continuous-time profile satisfying the ob-
vious continuous-time formulations of Assumptions A1–A4 for some real-valued
function (wt )t≥0 with wt → +∞ as t → ∞. Then all results in this section apply
analogously to the profile (Lt )t≥0.

REMARK 2.16. All results remain valid if the sequence (wn)n∈N, is random
and wn → +∞ almost surely.

REMARK 2.17. Under Assumptions A1 and A4, if there exists a sequence of
random analytic functions W̃n, n ∈ N, on D such that the convergence (10) holds
with W̃n instead of W∞, then Theorems 2.1, 2.7 and 2.8 hold with W∞ replaced
by W̃n.

3. Edgeworth expansions for random trees.

3.1. One-split branching random walk. Consider a system of particles on Z

which evolves in discrete time as follows. At time 0, we have a single particle
located at 0. In each step, one of the particles is chosen uniformly at random. This
particle is replaced by a random cluster of particles whose displacements w.r.t.
the original particle are described by a point process ζ =∑N

i=1 δZi
(where N , the

number of particles, is a.s. finite) on Z. In other words, if the original particle
is located at x, its descendants are located at x + Z1, . . . , x + ZN . All random
mechanisms involved in this definition are independent.

REMARK 3.1. The difference between this model and the usual discrete-time,
many splits BRW (for which the Edgeworth expansion was obtained in [22]) is that
in the one-split BRW, only one particle (chosen uniformly at random) is allowed to
split, whereas in the many-split BRW all particles split at the same time. We shall
see that there are many differences between these models.

Denote by Sn the number of particles after n splitting events, and let their po-
sitions be x1,n, . . . , xSn,n. Let us denote by Ln(k) the number of particles at site
k ∈ Z after n splitting events:

(32) Ln(k) = #{1 ≤ j ≤ Sn : xj,n = k}.
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We are interested in the function k �→ Ln(k) which is called the profile of the one-
split BRW.

We are going to state our assumptions on the one-split BRW. Denote by νk the
expected number of particles at site k ∈ Z in the cluster process ζ :

(33) νk = Eζ
({k})= E

[
N∑

i=1

1{Zi=k}
]
, k ∈ Z.

The first assumption states that nonzero jumps are possible with positive prob-
ability, and thus excludes the case in which all particles stay at 0. The second
assumption requires the one-split BRW to be supercritical and excludes the possi-
bility that it can become extinct.

ASSUMPTION B1. We have νk > 0 for at least one k ∈ Z \ {0}.

ASSUMPTION B2. The cluster point process ζ is a.s. nonempty, and the prob-
ability that it has at least 2 particles is positive. In other words, N ≥ 1 a.s. and
P[N = 1] �= 1.

REMARK 3.2. It is possible to replace this assumption by a weaker one re-
quiring that EN > 1 (supercriticality), in which case all results would hold a.s. on
the survival event.

Denote by m(β) the moment generating function of the intensity of the cluster
point process ζ minus 1:

(34) m(β) =∑
k∈Z

eβkνk − 1 = E

[
N∑

i=1

eβZi

]
− 1.

The expected number of particles at time n is ESn = 1 + m(0)n, where, by As-
sumption B2,

(35) m(0) =∑
k∈Z

νk − 1 = EN − 1 > 0.

ASSUMPTION B3. The function m is finite on some nonempty open interval
I containing 0.

It follows that the function m is well defined for β ∈ {z ∈ C : Re z ∈ I } and
strictly convex and infinitely differentiable on I . We shall need the function

ϕ(β) = m(β)

m(0)
, Reβ ∈ I .
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Denote by (β−, β+) ⊂ I the open interval on which ϕ′(β)β < ϕ(β):

β− = inf
{
β ∈ I : ϕ′(β)β < ϕ(β)

}
,(36)

β+ = sup
{
β ∈ I : ϕ′(β)β < ϕ(β)

}
.(37)

The interval (β−, β+) is nonempty because it contains 0. The endpoints of the
intervals I and (β−, β+) are allowed to be infinite.

The (normalized) moment-generating function of the one-split BRW profile is
defined, for Reβ ∈ I , by

(38) Wn(β) = 1

nϕ(β)

Sn∑
i=1

eβxi,n .

The following aperiodicity condition plays an important role in the verification
of Assumption A4. Here, and subsequently, we denote by ν =∑k∈Z νkδk the in-
tensity measure of the point process ζ .

ASSUMPTION B4. ν is not concentrated on any proper additive subgroup of
Z. In other words, ν(Z \ aZ) �= 0 for all a ∈ {2,3, . . .}.

Assumption B4 can be imposed without loss of generality: if ν(Z \ a∗
Z) = 0

for some a∗ ≥ 2 (chosen to be maximal with this property), then we can rescale
the jumps by a∗ and work equivalently with the one-split BRW governed by the
intensity measure ν∗, where ν∗({k}) = ν({k/a∗}). Note that this contrasts the sit-
uation in the many-split BRW [22], where it was necessary to exclude measures ν

concentrated on lattices of the form aZ+ b.
Finally, we also need the following moment condition which supplements As-

sumption B3.

ASSUMPTION B5. For any β ∈ (β−, β+), there is γ = γ (β) > 1 such that

E

[(
N∑

i=1

eβZi

)γ]
< ∞.

REMARK 3.3. This is easily shown to be equivalent to the following assump-
tion: For every compact set K ⊂ (β−, β+), there is γ = γ (K) > 1 such that the
above expectation is bounded uniformly in β ∈ K .

The next theorem states that the sequence of the one-split BRW profiles satisfies
Assumptions A2 and A3 with wn = logn.

THEOREM 3.4. Under Assumptions B1–B3 and B5, there is an open neigh-
borhood D of the interval (β−, β+) in the complex plane such that, with proba-
bility 1, Wn converges to some random analytic function W∞ locally uniformly
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on D . Moreover, for every compact set K ⊂ D and r ∈ N we can find an a.s. finite
random variable CK,r such that, for all n ∈ N,

(39) sup
β∈K

∣∣Wn(β) − W∞(β)
∣∣< CK,r(logn)−r .

With probability 1, the function W∞ has no zeros on the interval (β−, β+).

The proof of the theorem will be given in Section 5.1 and uses an embedding
into a continuous-time BRW in conjunction with results of [3] (see also [41]). The
explicit form of the neighborhood D plays no role in the sequel. However, let us
stress that we cannot take D to be the strip {β ∈ C : β− < Reβ < β+}. In the case
of the BSTs, the exact shape of D can be found in [8]: it is a bounded set. For this
reason, the asymptotic expansion obtained by [19] does not apply directly.

REMARK 3.5. Note that ϕ(0) = 1 and, by the law of large numbers,

W∞(0) = lim
n→∞Wn(0) = lim

n→∞
Sn

n
= m(0) a.s.

3.2. Random trees and one-split BRWs. We can identify profiles of random
trees and profiles of the one-split BRW as follows: Particles correspond to (external
or internal) nodes, and positions of particles correspond to the depths of the nodes.
In the following, we describe the cluster point process, and give explicit formulas
for the quantities m(0), ϕ(β), μ(0) = ϕ′(0), σ 2(0) = ϕ′′(0) and κj (0) = ϕ(j)(0),
j ∈ N, which will be relevant in our limit theorems.

(i) External profiles of BSTs defined in Section 1.2 correspond to the one-split
BRW with the deterministic displacement point process ζ = 2δ1 because at any
step of the construction an external node at depth k is replaced by two new external
nodes at depth k + 1; see Figure 1 (right). We have

ϕ(β) = 2eβ − 1, m(0) = 1,

μ(0) = σ 2(0) = κj (0) = 2, j ∈ N.

The constants β− ≈ −1.678 and β+ ≈ 0.768 are the solutions of 2eβ(1 − β) = 1.
(ii) Random recursive trees (RRTs) [see Figure 2 (left)] can be defined as fol-

lows. At time n = 0, start with one node (denoted by •) at level 0. At any step,
pick one of the existing nodes (say, x) uniformly at random and connect it to a
new node one level deeper than x; see Figure 3 (left). Let Ln(k) be the number
of nodes at depth k in a RRT with n + 1 nodes. RRTs correspond to the one-split
BRW with the deterministic displacement point process ζ = δ0 + δ1. In particular,

ϕ(β) = eβ, m(0) = 1,

μ(0) = σ 2(0) = κj (0) = 1, j ∈ N.
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FIG. 2. Sample realizations of random trees. Left: RRT. Middle: D-ary recursive tree with D = 3.
Right: PORT.

We have β− = −∞ and β+ = 1. For results on the profile of RRTs, we refer to [14,
16, 20, 38], see also [15], Section 6.3, for a detailed discussion of the three main
methods applied in this context: the martingale method, the method of moments
and the contraction method.

(iii) D-ary recursive trees5 with D ∈ {2,3, . . .} are a special case of so-called
increasing trees introduced in [2], see also [15], Sections 1.3.3 and 6.5, and [38]
for results on the profile. The model reduces to BSTs for D = 2; see Figure 2
(middle). These trees can be constructed in a similar manner as BSTs with the
only difference that at each step D new external nodes are attached; see Figure 3
(middle). The external profile of D-ary recursive trees correspond to the one-split
BRW with the displacement point process ζ = Dδ1. We have

ϕ(β) = Deβ − 1

D − 1
, m(0) = D − 1,

μ(0) = σ 2(0) = κj (0) = D

D − 1
, j ∈ N.

The constants β− < 0 and β+ > 0 are the solutions of Deβ(1 − β) = 1.
(iv) Plane-oriented recursive trees (PORTs) (see Figure 2 (right) for a sample

realization and [15], Section 1.3.2, for a discussion of this model) are constructed
in the following way. At time 0, start with an internal node • at level 0 connected

FIG. 3. Construction rules for random trees. Left: RRT. Middle: D-ary recursive tree with D = 3.
Right: PORT.

5Not to be confused with m-ary search trees, which is a different model; see [15], Section 1.4.2.
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to an external node � at level 1:

At each step, choose one external node uniformly at random, declare it internal
and add 3 new external nodes as shown on Figure 3 (right). After n steps we
obtain a tree with 2n + 1 external nodes. As opposed to BSTs, RRTs and D-ary
recursive trees, the external profiles of PORTs follow the dynamics of a one-split
BRW initiated with one particle (external node) at position one (short: initiated at
one) at time zero. The displacement point process is ζ = 2δ0 + δ1. We obtain

ϕ(β) = 1

2

(
eβ + 1

)
, m(0) = 2,

μ(0) = σ 2(0) = κj (0) = 1

2
, j ∈ N.

We have β− = −∞, whereas β+ ≈ 1.278 is the solution of eβ(β − 1) = 1. The
profile of PORTs was studied in [23, 29, 38, 39].

(v) p-oriented trees (which reduce to PORTs if p = 2) correspond to the one-
split BRW initiated at one with ζ = pδ0 + δ1, where p ∈ {2,3, . . .}. They also fall
under the general model introduced in [2]. We have

ϕ(β) = 1

p

(
eβ + p − 1

)
, m(0) = p,

μ(0) = σ 2(0) = κj (0) = 1

p
, j ∈ N.

We have β− = −∞, whereas β+ is the solution of eβ(β − 1) = p − 1. For further
information on p-oriented trees, we refer to Sections 1.3.3 and 6.5 in the mono-
graph [15].

REMARK 3.6. Writing (Ln(k))k∈N for the external profile of PORTs (or p-
oriented trees), and (L∗

n(k))k∈N0 , for the profile of the corresponding standard
one-split BRW initiated at zero, we can identify Ln(k) = L

∗
n(k − 1), for n ∈ N0,

k ∈ N. Denoting by W ∗∞(β) the almost sure limit in Theorem 3.4 for the profile
(L∗

n(k))k∈N0 , the limiting process W∞(β) for the profile (Ln(k))k∈N is equal to
eβW ∗∞(β). In particular, for the random cumulants, we have χ1(β) = 1 + χ∗

1 (β)

and χk(β) = χ∗
k (β) for all k ≥ 2.

REMARK 3.7. In all examples listed above, the displacement point process ζ

is concentrated on {0,1} and, therefore, we have ϕ(β) = 1 + ϕ′(0)(eβ − 1) [since
ϕ(0) = 1 by definition], and hence, almost surely

nϕ(β) = n · e(ϕ(β)−1) logn

= n · eϕ′(0)(eβ−1) logn ∼ Sn

m(0)
eϕ′(0)(eβ−1) logn, n → ∞.
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Thus, Theorem 3.4 states that the sequence (S−1
n

∑
k∈N0

Ln(k)δk)n∈N of random
probability measures on Z converges in the mod-Poisson sense with probability 1;
see [30] and Remark 2.10.

(vi) So far we considered “horizontally projected profiles.” The vertically pro-
jected external profile of a binary search tree can be defined as follows. At time 0,
assign to the root of the BST the abscissa 0. During the construction of the BST, if
some external node with abscissa i is chosen, then its two descendants are assigned
abscissas i − 1 and i + 1. The abscissa of a node describes its so-called left-right
imbalance since it measures the difference between the number of times the path
from the root to the node turns right rather than left. Denote by Ln(k) the number
of external nodes with abscissa k ∈ Z in a BST with n + 1 external nodes. This
profile corresponds to the one-split BRW with ζ = δ−1 + δ+1 and we have

ϕ(β) = eβ + e−β − 1, m(0) = 1, μ(0) = 0,

κ2j−1(0) = 0, σ 2(0) = κ2j (0) = 2, j ∈ N.

The constants β+ ≈ 0.9071 and β− = −β+ are the solutions of the equation (eβ −
e−β)β = eβ + e−β − 1. The left-right imbalance of nodes and the corresponding
path length were studied in [32], the profile in [38].

3.3. Jabbour martingale. In all models listed in the previous section, the num-
ber of descendants of any particle in the one-split BRW is deterministic. Recall
that this number equals m(0) + 1, so that for BSTs, RRTs and PORTs we have
m(0) = 1,1,2, respectively. In this case, it turns out that the Laplace transform
of the particle positions divided by its expectation is a martingale. In the case of
BSTs, this martingale has been introduced by [24]; see also [6]. The next theorem
generalizes Jabbour’s martingale to general one-split BRWs with a deterministic
number of descendants.

THEOREM 3.8. Consider a one-split branching random walk in which the
number of descendants of every particle is deterministic and equals m(0)+ 1 ∈ N.
Assume that the function m(β) defined by (34) is finite on some interval I con-
taining 0. Then, for all β ∈ {z ∈ C : Re z ∈ I }, the sequence (Jn(β))n∈N0 defined
by

Jn(β) := 1

αn(β)

1+m(0)n∑
i=1

eβxi,n,

αn(β) =
n−1∏
k=0

(
1 + m(β)

1 + m(0)k

)
,

is a martingale w.r.t. the filtration (Fn)n∈N0 , where Fn is a σ -algebra generated
by the first n generations of the one-split BRW. Also, EJn(β) = 1.
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PROOF. Note that the number of particles at time n is Sn = 1 + m(0)n. Let
Zn(β) =∑1+m(0)n

i=1 eβxi,n , where x1,n, . . . , xSn,n are the positions of the particles at

time n. Denoting by ζn =∑m(0)+1
j=1 δZj,n

the point process of descendants used to
pass from generation n to generation n + 1, we have

E
[
Zn+1(β)|Fn

]

= 1

1 + m(0)n

1+m(0)n∑
i=1

E

[
Zn(β) − eβxi,n +

m(0)+1∑
j=1

eβ(xi,n+Zj,n)|Fn

]

= Zn(β) +
[1+m(0)n∑

i=1

eβxi,n

(
E

m(0)+1∑
j=1

eβZj,n − 1

)]
1

1 + m(0)n

= Zn(β)

(
1 + m(β)

1 + m(0)n

)
,

where we used that m(β) = E
∑m(0)+1

j=1 eβZj,n − 1; see (34). It follows that Jn(β)

is a martingale. Since J0(β) = 1, we have EJn(β) = 1 for all n ∈ N0. �

For the function Wn introduced in (38), we obtain (in the case of deterministic
number of descendants)

EWn(β) = αn(β)

nϕ(β)
= n

−m(β)
m(0)

(
m(β)+1

m(0)
)(n)

( 1
m(0)

)(n)
, Reβ ∈ I ,(40)

where z(n) = z(z + 1) · · · (z + n − 1) is the rising factorial. For Reβ ∈ I , using
the formula z(n) ∼ nz�(n)/�(z) as n → ∞, we obtain

lim
n→∞EWn(β) = �( 1

m(0)
)

�(
m(β)+1

m(0)
)
.(41)

Further, for β ∈ (β−, β+) we shall show that EW∞(β) = limn→∞EWn(β); see
Section 5.3, below.

3.4. Cumulants of the profile. Recall that x1,n, . . . , xSn,n denote the positions
of the particles in a one-split BRW after n splits. For β ∈ I , consider

χk,n(β) =
(

d

dβ

)k

log
Sn∑
i=1

eβxi,n .

It is easy to see that χk,n(β) is the kth cumulant of the Gibbs probability measure
assigning to each point xi,n the weight proportional to eβxi,n .
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REMARK 3.9. The most interesting case is β = 0. Then χk,n := χk,n(0) is
the kth cumulant of the empirical measure assigning to each particle xi,n the same
weight 1/Sn. For example,

χ1,n = 1

Sn

Sn∑
i=1

xi,n, χ2,n = 1

Sn

Sn∑
i=1

(xi,n − χ1,n)
2,

χ3,n = 1

Sn

Sn∑
i=1

(xi,n − χ1,n)
3

are the empirical mean, the empirical variance and the empirical central third mo-
ment of the particle positions in the one-split BRW. In the context of random
trees, Snχ1,n is the external path length of the tree. Specifically, in the BST case,
(n + 1)χ1,n − 2n can be interpreted as the number of key comparisons used by the
Quicksort algorithm to sort n randomly ordered items.

THEOREM 3.10. Consider a one-split BRW satisfying Assumptions B1–B3
and B5. Uniformly, on any compact set K ⊂ (β−, β+) we have

(42)
(

d

dβ

)k

logWn(β) = χk,n(β) − ϕ(k)(β) logn
a.s.−→

n→∞ χk(β),

where the limiting random variable χk(β) is given by

χk(β) =
(

d

dβ

)k

logW∞(β).

PROOF. The equality in (42) follows from the definition of Wn; see (38). We
prove the convergence. Let D be an open neighborhood of (β−, β+) as in Theo-
rem 3.4. In the probability space on which the one-split BRW is defined, consider
some outcome ω and let D ′ := D ′(ω) ⊆ D be an open subset with K ⊆ D ′ such
that W∞ is almost surely nonzero on the closure of D ′, and the analytic functions
Wn(·;ω) converge, as n → ∞, to W∞(·;ω) in H(D ′), the set of analytic functions
on D ′ with the topology of locally uniform convergence. The set of such outcomes
has probability 1. By Theorem 3.4,

logWn(β)
a.s.−→

n→∞ logW∞(β) in H
(
D ′).

Observe that the logarithm can be defined continuously since W∞ and Wn do not
vanish for sufficiently large n. By the Cauchy formula, taking the kth derivative is
a continuous map from H(D ′) to H(D ′). Consequently,(

d

dβ

)k

logWn(β)
a.s.−→

n→∞

(
d

dβ

)k

logW∞(β) in H
(
D ′),

and hence uniformly in β ∈ K . This concludes the proof. �
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3.5. Edgeworth expansion for one-split BRW. We are going to state an Edge-
worth expansion for the profile of the one-split BRW. We recall the parameters
μ(β) and σ(β) from (12),

(43) μ(β) = ϕ′(β), σ 2(β) = ϕ′′(β),

as well as the deterministic cumulants κj (β) = ϕ(j)(β), j ∈ N. As in (13) (with
wn = logn), we introduce the normalized coordinate:

(44) xn(k) = xn(k;β) = k − μ(β) logn

σ(β)
√

logn
, k ∈ Z.

THEOREM 3.11. Let (Ln(k))k∈Z be the profile at time n of a one-split branch-
ing random walk satisfying Assumptions B1–B5. Fix r ∈ N0 and a compact set
K ⊂ (β−, β+). Then

(45) (logn)
r+1

2 sup
k∈Z

sup
β∈K

∣∣∣∣∣e
βk
Ln(k)

nϕ(β)
− W∞(β)e− 1

2 x2
n(k)

σ (β)
√

2π logn

r∑
j=0

Gj(xn(k);β)

(logn)j/2

∣∣∣∣∣ a.s.−→
n→∞ 0.

Here, Gj(x) = Gj(x;β) is a polynomial of degree at most 3j given by

(46) Gj(x) = (−1)j

j ! e
1
2 x2

Bj(D1, . . . ,Dj )e
− 1

2 x2
,

where Bj is the j th Bell polynomial (see Remark 2.2) and D1,D2, . . . are differ-
ential operators (with random coefficients) given by

(47) Dj = ϕ(j+2)(β)

(j + 1)(j + 2)

(
1

σ(β)

d

dx

)j+2
+ χj (β)

(
1

σ(β)

d

dx

)j

with χj (β) as in Theorem 3.10.

REMARK 3.12. The expressions for the first three terms in the expansion have
the same form as in (21), (22), (23).

REMARK 3.13. An Edgeworth expansion for the profile of a many-split BRW
was obtained in [22]. Theorem 2.1 from the present paper can be applied to the
many-split BRW, but both the representation of the terms of the expansion and the
proof given in [22] differ from ours. In [27], Section 4.2, we provide an alternative
representation for the terms in Theorem 2.1 which allows to derive the many-
split BRW expansion of [22]. There are many differences between the one-split
and many-split BRW cases. For example, in the former case the expansions are
in negative powers of

√
logn, whereas in the latter case negative powers of

√
n

appear.

Taking β = 0 and r = 0 in Theorem 3.11, and recalling that W∞(0) = m(0) and
ϕ(0) = 1, we obtain the following local limit theorem for the one-split BRW.
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THEOREM 3.14. Let (Ln(k))k∈Z be the profile at time n of a one-split branch-
ing random walk satisfying Assumptions B1–B5. Then

(48)
√

logn sup
k∈Z

∣∣∣∣Ln(k)

n
− m(0)

σ (0)
√

2π logn
exp
{
−1

2

(
k − μ(0) logn

σ(0)
√

logn

)2}∣∣∣∣ a.s.−→
n→∞ 0.

More terms can be obtained by taking β = 0 and arbitrary r ∈N0. Another pos-
sibility is to take β = βn(k) as in (26), that is ϕ′(βn(k)) = k/ logn. Then xn(k) = 0
and we obtain the following expansion containing only half-integer powers of logn

(cf. Theorem 2.8).

THEOREM 3.15. Let (Ln(k))k∈Z be the profile at time n of a one-split branch-
ing random walk satisfying Assumptions B1–B5. Then, for all r ∈ N0 and any
compact set K ⊂ (β−, β+),

(logn)r+1 sup
k∈Z∩(logn)ϕ′(K)

∣∣∣∣∣ ekβn(k)

nϕ(βn(k))
Ln(k) − 1√

2π logn

r∑
j=0

F2j (0;βn(k))

σ (βn(k))(logn)j

∣∣∣∣∣
a.s.−→

n→∞ 0,

where F2j (0;β) := W∞(β)G2j (0;β) is a linear combination of 1,W∞(β), . . . ,

W
(2j)∞ (β) (see [27], Section 4.2, for the proof of the latter claim).

Our results easily imply an expansion similar to Theorem 3.11 for the mean of
the profile when the number of particles in the first generation is almost surely
constant.

THEOREM 3.16. Let (Ln(k))k∈Z be the profile at time n of a one-split branch-
ing random walk with the deterministic number of descendants and satisfying As-
sumptions B1–B5. Fix r ∈ N0 and a compact set K ⊂ (β−, β+). Then

(logn)
r+1

2 sup
k∈Z

sup
β∈K

∣∣∣∣∣e
βk
E[Ln(k)]
nϕ(β)

− E[W∞(β)]e− 1
2 x2

n(k)

σ (β)
√

2π logn

r∑
j=0

G̃j (xn(k);β)

(logn)j/2

∣∣∣∣∣
−→
n→∞ 0.

Here, G̃j (x;β) is defined by the same formulas (46), (47) as Gj(x;β), but with
χj (β) replaced by its deterministic analogue

χ̃j (β) =
(

d

dβ

)j

logEW∞(β) = −
(

d

dβ

)j

log�

(
m(β) + 1

m(0)

)
.

Again, it is natural to choose β as in (26). Then xn(k) = 0 and one obtains an
expansion containing half-integer powers of logn only.
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3.6. Width and mode of the one-split BRW. Recall the definitions of the width
Mn and the mode un of a one-split BRW at time n in (29). In the setting of random
trees, the mode is the level having the largest number of nodes, while the width is
the maximal number of nodes at a level. From Theorems 2.11, 2.13 and 2.14, we
obtain the following results for the one-split BRW.

THEOREM 3.17. Consider a one-split BRW satisfying Assumptions B1–B5.
There is an a.s. finite random variable K such that for n > K , the mode un is
equal to one of the numbers �u∗

n� or �u∗
n�, where

(49) u∗
n = ϕ′(0) logn + χ1(0) − κ3(0)

2σ 2(0)
.

REMARK 3.18. In fact, one can provide more information on which of the two
values, �u∗

n� or �u∗
n�, is the mode. Let nint(u∗

n) = arg mink∈Z |u∗
n −k| be the integer

closest to u∗
n with convention that nint(u∗

n) = �u∗
n� if u∗

n is a half-integer. The proof
of Theorem 2.11 (see [27]) shows that, for every ε > 0, we can find an a.s. finite
random variable K(ε) such that for all n > K(ε) satisfying mink∈Z |u∗

n − k − 1
2 | >

ε, the mode un is unique and equals nint(u∗
n).

Case 1: ϕ′(0) = 0 [meaning that the one-split BRW has no drift, which applies
to Example (vi) of Section 3.2]. If the random variable χ1(0) has no atoms, then
χ1(0) − 1

2κ3(0)/σ 2(0) is not a half-integer with probability 1. It follows that there
is an a.s. finite random variable K1 such that

un = nint
(
χ1(0) − κ3(0)

2σ 2(0)

)

for all n > K1. Absolute continuity of χ1(0) in Example (vi) follows from the
fixed-point equation derived in [32].

Case 2: ϕ′(0) �= 0 [which is true in examples (i)–(v) of Section 3.2]. The arith-
metic properties of the sequence ({ϕ′(0) logn})n∈N, with {·} denoting the fractional
part, allow us to deduce an additional information compared to the general result
given by Theorem 2.11. Here, we say that a set A ⊂ N has asymptotic density
α ∈ [0,1] if

(50) lim
n→∞

#(A ∩ {1, . . . , n})
n

= α.

PROPOSITION 3.19. Consider a one-split BRW satisfying Assumptions B1–
B5 with ϕ′(0) �= 0. Then, almost surely:

(i) there are arbitrary long intervals of consecutive n’s for which un is unique
and un = �u∗

n�; and, similarly, arbitrary long intervals for which un is unique and
un = �u∗

n�;
(ii) the asymptotic density of the set A = {n ∈ N : un is unique and un =

nint(u∗
n)} equals one.
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The next two results on the width Mn are special cases of Theorems 2.13 and
2.14.

THEOREM 3.20. Consider a one-split BRW satisfying Assumptions B1–B5.
Then the width Mn satisfies

(51)

√
2π lognσ(0)Mn

m(0)n

a.s.−→
n→∞ 1.

THEOREM 3.21. Consider a one-split BRW satisfying Assumptions B1–B5.
Let

M̃n := 2σ 2(0) logn

(
1 −

√
2π lognσ(0)Mn

m(0)n

)
.

If θn := mink∈Z |u∗
n − k| denotes the distance between u∗

n and the nearest integer,
then

M̃n − θ2
n

a.s.−→
n→∞ χ2(0) + κ2

3 (0)

6σ 4(0)
− κ4(0)

4σ 2(0)
.

REMARK 3.22. Again, the details depend on whether ϕ′(0) vanishes or not.
Case 1: Suppose that ϕ′(0) = 0. Then θn does not depend on n and we obtain

M̃n
a.s.−→

n→∞ χ2(0) + κ2
3 (0)

6σ 4(0)
− κ4(0)

4σ 2(0)
+ min

k∈Z

∣∣∣∣χ1(0) − κ3(0)

2σ 2(0)
− k

∣∣∣∣2.
Case 2: ϕ′(0) �= 0. The sequence ({ϕ′(0) logn})n∈N is dense in [0,1]. This im-

plies that the set of subsequential limits of the sequence θn is equal to [0,1/2]. It
follows that

lim inf
n→∞ M̃n = χ2(0) + κ2

3 (0)

6σ 4(0)
− κ4(0)

4σ 2(0)
a.s.,

lim sup
n→∞

M̃n = χ2(0) + κ2
3 (0)

6σ 4(0)
− κ4(0)

4σ 2(0)
+ 1

4
a.s.,

and every point between the lim inf and lim sup is a.s. a subsequential limit of M̃n.
Thus, we have infinitely many different a.s. (and hence, weak) subsequential limits
of M̃n. If χ2(0) is nondegenerate, it follows from the convergence of types lemma
that the random variable Mn cannot be normalized by an affine transformation to
converge (in the weak sense) to a nondegenerate limit law.

3.7. Occupation numbers in the one-split BRW. Consider a one-split BRW
with profiles L1,L2, . . . . In this section, we shall state limit theorems on the “oc-
cupation numbers” Ln(kn), where kn is a (deterministic) integer sequence with
some regular type of behavior. These limit theorems can be applied to random
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trees (including BSTs, RRTs and PORTs; see Section 3.2) and improve on the re-
sults of [20]. In these applications, Ln(kn) is interpreted as the number of nodes at
depth kn in a random tree. To prove these theorems, we shall use a suitable number
of terms in the Edgeworth expansion of Ln stated in Theorem 3.11. Our aim is to
find a nondegenerate limit distribution for Ln(kn), but it turns out that our results
hold even in the sense of a.s. convergence. As in (26), define βn = βn(k) to be the
solution of

ϕ′(βn(k)
)= k

logn
,

k

logn
∈ ϕ′((β−, β+)

)
.(52)

THEOREM 3.23. Consider a one-split BRW satisfying Assumptions B1–B5.
Let kn be an integer sequence such that, for some β ∈ (β−, β+), we have kn =
ϕ′(β) logn + o(logn). Then, with βn = βn(kn) as in (52), we have

(53)

√
logn

nϕ(βn)−βnϕ′(βn)
Ln(kn)

a.s.−→
n→∞

W∞(β)√
2πσ(β)

.

If, for some α ∈ R,

(54) kn = ϕ′(β) logn + ασ(β)
√

logn + o(
√

logn), n → ∞,

then

(55)

√
logn

nϕ(β)
eβknLn(kn)

a.s.−→
n→∞

e− 1
2 α2

√
2πσ(β)

W∞(β).

PROOF. From Theorem 3.11 with r = 0 and K ⊆ (β−, β+) compact, we have

(56)
√

logn sup
β ′∈K

sup
k∈Z

∣∣∣∣e
β ′k

Ln(k)

nϕ(β ′) − W∞(β ′)e− 1
2 (

k−ϕ′(β′) logn

σ(β′)√logn
)2

σ(β ′)
√

2π logn

∣∣∣∣ a.s.−→
n→∞ 0.

From here, (53) follows readily upon taking k = kn, β ′ = βn(kn) as in (52) (which
converges to β , as n → ∞), recalling the continuity of W∞ and σ and noting that
the term in the exponent vanishes. Formula (55) follows from (54) upon choosing
β ′ = β in (56) and using the observation

xn(kn) = kn − ϕ′(β) logn

σ(β)
√

logn
−→
n→∞ α.

The proof is complete. �

REMARK 3.24. If, in addition to the conditions stated in the theorem, we
assume that the BRW has a deterministic number of descendants, then the conver-
gences (53) and (55) also hold in L1 sense.
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Theorem 3.23 is applicable in the case β = 0, however, W∞(0) = m(0) is a.s.
constant (see Remark 3.5) meaning that the limits in (53) and (55) are degener-
ate. It is therefore natural to ask whether nondegenerate limits can be obtained
by choosing a more refined normalization of Ln(kn). Denote by L

◦
n(k) the profile

centered by its expectation:

L
◦
n(k) = Ln(k) −E

[
Ln(k)

]
, k ∈ Z.

In the following, we assume that the integer sequence kn can be represented in the
form

kn = ϕ′(0) logn + cn,

where cn is a sequence on which we impose various growth conditions. While The-
orem 3.23 can be derived from the first term in the Edgeworth expansion (meaning
that r = 0), the following more refined theorem requires more terms (meaning that
r = 1 or r = 2).

THEOREM 3.25. Consider a one-split BRW with deterministic number of de-
scendants and satisfying Assumptions B1–B5. Let (kn)n∈N be an integer sequence.

(a) If kn = ϕ′(0) logn + ασ(0)
√

logn + o(
√

logn) for some α ∈ R, then

(57)
logn

n
L

◦
n(kn)

a.s.−→
n→∞

m(0)αe− 1
2 α2

√
2πσ 2(0)

(
χ1(0) −Eχ1(0)

)
.

(b) If kn = ϕ′(0) logn + cn with limn→∞ |cn| = ∞ and cn = o(logn), then,
with βn as in (52),

(58)
(logn)

3
2

cnnϕ(βn)−βnϕ′(βn)
L

◦
n(kn)

a.s.−→
n→∞

m(0)(χ1(0) −Eχ1(0))√
2πσ 3(0)

.

In particular, if limn→∞ |cn| = ∞ and cn = o(
√

logn), then

(59)
(logn)

3
2

ncn

L
◦
n(kn)

a.s.−→
n→∞

m(0)(χ1(0) −Eχ1(0))√
2πσ 3(0)

.

(c) If kn = ϕ′(0) logn + cn where cn is bounded, then

(60)
(logn)

3
2

n
L

◦
n(kn) − R◦(cn)

a.s.−→
n→∞ 0,

where R◦(c) = R(c) −ER(c) and R(c) is a random variable given by

(61) R(c) := m(0)√
2πσ 3(0)

(
χ1(0)

(
c + κ3(0)

2σ 2(0)

)
− χ2

1 (0) + χ2(0)

2

)
, c ∈ R.
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PROOF. Taking β = 0 and r = 1 in Theorem 3.11 and using formula (22), we
obtain

Ln(kn)

n
= m(0)e− 1

2 x2
n(kn)

σ (0)
√

2π logn

(
1 +

χ1(0)
σ (0)

xn(kn) + κ3(0)

6σ 3(0)
He3(xn(kn))√

logn

)

+ o

(
1

logn

)

almost surely. By Theorem 3.16, we have an analogous expansion for the expecta-
tion of Ln(kn). Subtracting both expansions, we obtain

(62)
L

◦
n(kn)

n
= m(0)e− 1

2 x2
n(kn)

σ (0)
√

2π logn
· χ1(0) −Eχ1(0)

σ (0)
√

logn
xn(kn) + o

(
1

logn

)
a.s.,

where

xn(kn) = kn − ϕ′(0) logn

σ(0)
√

logn
= cn

σ (0)
√

logn
.

To prove (57), it is enough to notice that limn→∞ xn(kn) = α. Inserting this into
(62), we obtain (57).

For the remaining results, we need to apply the Edgeworth expansion with
r = 2. First, choosing β = 0 in Theorems 3.11, 3.16, using (22), (23) and sub-
tracting the expansions for Ln(kn) and E[Ln(kn)], we obtain

1

n
L

◦
n(kn) = m(0)e− 1

2 x2
n(kn)

σ (0)
√

2π logn

(
χ1(0) −Eχ1(0)

σ (0)
√

logn
xn(kn)

+ κ3(0)
χ1(0) −Eχ1(0)

6σ 4(0) logn
He4
(
xn(kn)

)

+ χ2
1 (0) + χ2(0) −E[χ2

1 (0) + χ2(0)]
2σ 2(0) logn

He2
(
xn(kn)

))

+ o

(
1

(logn)
3
2

)
a.s.

Multiplying both sides of the last display by (logn)3/2/cn yields (59) because
limn→∞ xn(kn) = 0 and He2(x) = −1 + o(1),He4(x) = 3 + o(1) as x → 0.
For the proof of (60), use the same expansion as above and note that xn(kn) =
O(1/

√
logn).

It remains to show that (58) holds. Here, we use the Edgeworth expansion with
r = 2 and βn as in (52). First, note that, by a simple Taylor expansion, we have

βn = cn(1 + o(1))

σ 2(0) logn
.(63)
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Next, by Theorem 3.11 and (21), (23),

eβnkn

nϕ(βn)
Ln(kn)

= 1

σ(βn)
√

2π logn

(
W∞(βn) + 3

logn

(
κ4(βn)

24σ 4(βn)
+ κ3(βn)W

′∞(βn)

6σ 4(βn)

)

− W ′′∞(βn)

2σ 2(βn) logn
− 15κ2

3 (βn)

72σ 6(βn) logn

)
+ o

(
1

(logn)
3
2

)
a.s.,

and similarly, by Theorem 3.16 with β = βn,

eβnkn

nϕ(βn)
E
[
Ln(kn)

]

= 1

σ(βn)
√

2π logn

(
EW∞(βn) + 3

logn

(
κ4(βn)

24σ 4(βn)
+ κ3(βn)EW ′∞(βn)

6σ 4(βn)

)

− EW ′′∞(βn)

2σ 2(βn) logn
− 15κ2

3 (βn)

72σ 6(βn) logn

)
+ o

(
1

(logn)
3
2

)
.

Since |cn| → ∞, taking the difference of both expansions yields

(logn)3/2

cn

eβnkn

nϕ(βn)
L

◦
n(kn)

= (W∞(βn) −EW∞(βn)) logn

cnσ(βn)
√

2π
+ o(1) a.s.

(64)

Since βn → 0, we have, almost surely, W∞(βn) = m(0)+W ′∞(0)βn+o(βn). Since
EW∞(β) is analytic in a neighbourhood of β = 0, the analogous expansion holds
for the mean. The assertion now follows from (64) together with (63). (Note that,
even though the higher order terms in the Edgeworth expansion appearing in the
proof are asymptotically irrelevant, we cannot obtain the result using the expansion
for r = 1). �

REMARK 3.26. In the setting of Theorem 3.25, part (c), the lim sup and the
lim inf of the sequence 1

n
(logn)3/2

L
◦
n(kn) are a.s. finite (but not necessarily equal

to each other). Whether or not this sequence has an a.s. limit depends on the value
of ϕ′(0).

Case 1. ϕ′(0) = 0 [which applies to Example (vi) of Section 3.2]. It is natural
to take kn = a ∈ Z. Then cn = a and we obtain

(logn)
3
2

n
L

◦
n(kn)

a.s.−→
n→∞ R◦(a).

Case 2. ϕ′(0) �= 0 [which applies to Examples (i)–(v) of Section 3.2]. It is
natural to take kn = �ϕ′(0) logn� + a, where a ∈ Z, which means that cn =
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a − {ϕ′(0) logn}. The set of accumulation points of the sequence cn is the in-
terval [a − 1, a]. Hence, we can parametrize the set of all a.s. subsequential limits
of 1

n
(logn)3/2

L
◦
n(kn) as follows:

(65)
{
R◦(a − z) : z ∈ [0,1]}.

REMARK 3.27. We also point out that in Theorem 3.25 the assumption that
a BRW has deterministic number of descendants is used only to derive the Edge-
worth expansion for the centering E[Ln(k)] by using Theorem 3.16. If such an
expansion holds a priori, the results of the above theorems remain valid without
this constraint.

3.8. Profile of binary search trees around level logn. Applying the results
of Section 3.7 to the special case of BSTs we obtain equations (6), (7) and Theo-
rem 1.7 stated in the Introduction. In equations (6), (7) (which deal with levels near
2eβ logn, β ∈ R), the limit random variable is a multiple of W∞(β). For β = 0, the
limit W∞(0) = 1 is degenerate, and we collected more precise results describing
the behavior of the profile around level ϕ′(0) logn = 2 logn in Theorem 1.7.

However, there is one more value of β for which W∞(β) is degenerate, namely
β = − log 2 ≈ −0.693. By construction of the BSTs, we have Wn(− log 2) = 1 =
W∞(− log 2) for all n ∈ N. The value β = − log 2 corresponds to the behavior of
the BST profile around level ϕ′(− log 2) logn = logn. We conclude this section
with a discussion of this case. Similar to Theorem 3.25, Fuchs et al. [20], Theo-
rem 6, showed that the scaling behavior of Ln(kn) with kn = logn + cn depends
drastically on whether |cn| → ∞ or cn = O(1). The next theorem is proved along
the same lines as Theorem 3.25.

THEOREM 3.28. Let (Ln(k))k∈Z be the profile of a random binary search tree
with n + 1 external nodes. Let (kn)n∈N be an integer sequence:

(a) If kn = logn + α
√

logn + o(
√

logn) with α ∈ R, then

logn

2kn
L

◦
n(kn)

a.s.−→
n→∞

χ1(− log 2) −E[χ1(− log 2)]√
2π

αe− 1
2 α2

.

(b) If kn = logn + cn, with limn→∞ |cn| = ∞ and cn = o(logn), then, with βn

as in (52),

(logn)3/2

cnn2eβn(1−βn)−1
L

◦
n(kn)

a.s.−→
n→∞

χ1(− log 2) −E[χ1(− log 2)]√
2π

.

In particular, if limn→∞ |cn| = ∞ but cn = o(
√

logn), then

(logn)3/2

cn2kn
L

◦
n(kn)

a.s.−→
n→∞

χ1(− log 2) −E[χ1(− log 2)]√
2π

.
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(c) If kn = logn + cn, where cn is bounded, then

(logn)
3
2

2kn
L

◦
n(kn) − R◦∗(cn)

a.s.−→
n→∞ 0,

where R◦∗(c) = R∗(c) −ER∗(c) and R∗(c) is a random variable given by

R∗(c) := 1√
2π

(
χ1(− log 2)

(
c + 1

2

)
− χ2

1 (− log 2) + χ2(− log 2)

2

)
, c ∈R.

REMARK 3.29. The random variable χ1(− log 2) is not almost surely con-
stant: in the space of distributions with zero mean and finite variance, χ1(− log 2)

is uniquely characterized by the stochastic fixed-point equation

χ1(− log 2)
d= 1

2
χ

(1)
1 (− log 2) + 1

2
χ

(2)
1 (− log 2) + 1

(66)

+ 1

2

(
logU + log(1 − U)

)
,

where χ
(1)
1 (− log 2), χ

(2)
1 (− log 2) are distributional copies of χ1(− log 2), U is

uniformly distributed on [0,1], and all three variables are independent. This fol-
lows from the arguments on page 35 in [20]; see also display (35) in [8] for a less
explicit variant of (66).

Let us finally mention that the random variable W∞(β) is nondegenerate for
all β ∈ (β−, β+) except β = 0 and β = − log 2. Indeed, we have the stochastic
fixed-point equation (see [27], Proof of Proposition 5.2)

e−βW∞(β)
d= U2eβ−1W1,∞(β) + (1 − U)2eβ−1W2,∞(β),

where W1,∞(β), W2,∞(β) are distributional copies of W∞(β), U is uniformly
distributed on [0,1] and all three variables are independent. A constant random
variable W∞(β) = c > 0 satisfies this equation if and only if 2eβ − 1 ∈ {0,1}. This
corresponds to β ∈ {0,− log 2}.

4. Proof of the general Edgeworth expansion.

4.1. Proof of Theorem 2.1. The proof is based on studying the characteristic
function of the profile. For notational reasons, we shall use μ and σ 2 as shorthand
for μ(β) and σ(β). Consider the following signed measure on R:

(67) μn := μn(β) :=∑
k∈Z

eβk−ϕ(β)wnLn(k)δ

(
k − μwn

σ
√

wn

)
,
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for β ∈ (β−, β+). Here, δ(z) is the Dirac delta-measure at z ∈ R. The characteristic
function of μn has the form

ψn(s) := ψn(s,β)

:=
∫
R

eistμn(dt)(68)

= e
−ϕ(β)wn−is

μwn
σ
√

wn
∑
k∈Z

Ln(k)e
k(β+ is

σ
√

wn
)
.

Fix some β0 ∈ (β−, β+) and random ε0 > 0 such that D3ε0(β0) ⊂ D and W∞
is nonzero on D3ε0(β0). Here, Dr (β0) = {z ∈ C : |z − β0| < r} denotes an open
disk with radius r centered at β0. For any β ∈ I0 := (β0 − ε0, β0 + ε0), we have
D2ε0(β) ⊂ D . In the following, all estimates are going to be uniform in β ∈ I0.
Since any compact set K ⊂ (β−, β+) can be covered by finitely many such inter-
vals I0, the uniformity in β ∈ K follows. After recalling the definition of Wn [see
(9)], we obtain that, for all β ∈ I0, as long as the variable s ∈R satisfies∣∣∣∣ s

σ
√

wn

∣∣∣∣< ε0,

the function ψn is well defined and can be written in the form

(69) ψn(s) = e
−ϕ(β)wn−is

μwn
σ
√

wn
+wnϕ(β+ is

σ
√

wn
)
Wn

(
β + is

σ
√

wn

)
.

Our aim is to derive an asymptotic expansion of ψn(s) in powers of w
−1/2
n .

Consider a modification of ψn(s) in which Wn is replaced by W∞ and w
−1/2
n is

replaced by a new variable u. For any fixed s ∈ R and β ∈ I0, the function

(70) ψ̃(s;u) = exp
{
−ϕ(β)

u2 − is
μ

σu
+ 1

u2 ϕ

(
β + isu

σ

)
+ logW∞

(
β + isu

σ

)}
is well defined and analytic in u in the disk |u| < σε0/|s|. Note that logW∞ is
defined as an analytic function because W∞ does not vanish on D3ε0(β0). Thus, as
long as | su

σ
| < ε0,

log ψ̃(s;u) =
∞∑

k=0

ak(s)

k! uk,

where

(71) ak(s) = ak(s, β) := ϕ(k+2)(β)

(k + 2)(k + 1)

(
is

σ

)k+2
+ χk(β)

(
is

σ

)k

.

Recall from the definition of Bell polynomials [see (18)] that there is a formal
identity

exp

{ ∞∑
k=1

ak

k! x
k

}
=

∞∑
k=0

Bk(a1, . . . , ak)

k! xk.
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It follows that the following holds (not only formally!) for |u| < ε0σ/|s|:

(72) ψ̃(s;u) = W∞(β)e− s2
2

∞∑
k=0

Bk(a1(s), . . . , ak(s))

k! uk.

To see that (72) holds not only formally, note that ψ̃(s;u), being an analytic func-
tion of u in the disk |u| < ε0σ/|s|, has a convergent Taylor expansion. But in order
to compute the coefficients of this expansion, we can use a formal series. We shall
need a uniform estimate for the remainder term in (72).

LEMMA 4.1. Recall that ak(s) is given by (71). There exists an a.s. finite
random variable M > 0 such that, for all β ∈ I0,∣∣∣∣ak(s)

k!
∣∣∣∣≤ Mk(|s| + 1

)k+2

for all s ∈R and k ∈ N.

PROOF. Since the functions ϕ and logW∞ are analytic on D2ε0(β0), the
Cauchy formula implies that, for β ∈ I0 and all k ∈N,∣∣∣∣ϕ

(k+2)(β)

(k + 2)!
∣∣∣∣≤ sup

γ∈Dε0 (β0)

∣∣ϕ(γ )
∣∣ε−k−2

0 ,

∣∣∣∣χk(β)

k!
∣∣∣∣≤ sup

γ∈Dε0 (β0)

∣∣logW∞(γ )
∣∣ε−k

0 .

With M ′ = max{1, supγ∈Dε0 (β0)
|ϕ(γ )|, supγ∈Dε0 (β0)

| logW∞(γ )|}, and C =
max(1, supγ∈Dε0 (β0)

(ε0σ(γ ))−1), it follows from (71) that

∣∣∣∣ak(s)

k!
∣∣∣∣≤
∣∣∣∣ sσ
∣∣∣∣k+2∣∣∣∣ϕ

(k+2)(β)

(k + 2)!
∣∣∣∣+
∣∣∣∣ sσ
∣∣∣∣k
∣∣∣∣χk(β)

k!
∣∣∣∣≤ M ′(|s|k+2Ck+2 + |s|kCk)

which yields the desired estimate choosing M = M ′C3. �

LEMMA 4.2. There is an a.s. finite random variable M1 > 0 such that, for all
β ∈ I0,

1

k!
∣∣Bk

(
a1(s), . . . , ak(s)

)∣∣≤ Mk
1
(|s| + 1

)3k

for all k ∈ N and s ∈ R.

PROOF. By definition of the Bell polynomial Bk [see (19)],

1

k!
∣∣Bk

(
a1(s), . . . , ak(s)

)∣∣≤∑ ′ 1

j1! · · · jk!
∣∣∣∣a1(s)

1!
∣∣∣∣j1

. . .

∣∣∣∣ak(s)

k!
∣∣∣∣jk

≤∑ ′ 1

j1! · · · jk!M
1j1+···+kjk

(|s| + 1
)∑k

m=1(m+2)jm,
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where the sum
∑ ′ is taken over all j1, . . . , jk ∈ N0 satisfying 1j1 + 2j2 + · · · +

kjk = k. Using that 1j1 + · · · + kjk = k (and consequently j1 + · · · + jk ≤ k)
and the inequality

∑ 1
j1!···jk ! ≤ ek , we obtain the required estimate choosing

M1 = eM . �

LEMMA 4.3. Fix r ∈ N0. There exist a.s. finite random variables U > 0 and
M2 > 0 such that for all β ∈ I0, u ∈ (−U,U) and s ∈ R with 1 + |s| < u−1/4, we
have ∣∣∣∣∣ψ̃(s;u) − W∞(β)e− 1

2 s2
r∑

k=0

Bk(a1(s), . . . , ak(s))

k! uk

∣∣∣∣∣
≤ M2e− 1

2 s2(
1 + |s|)3r+3|u|r+1.

PROOF. Using formula (72) for ψ̃(s;u) and then Lemma 4.2, we obtain

LHS ≤ ∣∣W∞(β)
∣∣e− 1

2 s2
∞∑

k=r+1

|Bk(a1(s), . . . , ak(s))|
k! |u|k

≤ ∣∣W∞(β)
∣∣e− 1

2 s2
∞∑

k=r+1

Mk
1
(|s| + 1

)3k|u|k

≤ M2

2
e− 1

2 s2(|s| + 1
)3r+3|u|r+1

∞∑
k=0

Mk
1
(|s| + 1

)3k|u|k,

where M2 = 2Mr+1
1 supγ∈Dε0 (β0)

|W∞(γ )|. The sum on the right-hand side can be

estimated using the assumptions 1 + |s| < u−1/4 and |u| < U as follows:
∞∑

k=0

Mk
1
(|s| + 1

)3k|u|k ≤
∞∑

k=0

Mk
1 |u|− 3

4 k|u|k ≤
∞∑

k=0

Mk
1Uk/4 = 2,

where the last step holds if we choose U = (16M4
1 )−1. �

We are now able to state the expansion for the characteristic function ψn with
an estimate for the remainder term. Let

(73) Vr,n(s) = W∞(β)e− 1
2 s2

r∑
k=0

Bk(a1(s), . . . , ak(s))

k! w
− k

2
n .

LEMMA 4.4. There exist a.s. finite numbers K > 0 and M3 > 0 such that

∣∣ψn(s) − Vr,n(s)
∣∣≤ M3e− 1

2 s2(|s| + 1
)3r+3

w
− r+1

2
n

for all β ∈ I0, n > K and s ∈ R satisfying 1 + |s| < w
1/8
n .
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PROOF. We have

(74) LHS ≤ ∣∣ψ̃(s;w− 1
2

n

)− Vr,n(s)
∣∣+ ∣∣ψn(s) − ψ̃

(
s;w− 1

2
n

)∣∣.
We estimate the terms on the right-hand side in two steps.

Step 1. We start with the first term on the right-hand side in (74). By Lemma 4.3
with u = w

−1/2
n , the estimate

(75)
∣∣ψ̃(s;w− 1

2
n

)− Vr,n(s)
∣∣≤ M2e− 1

2 s2(|s| + 1
)3k+3

w
− r+1

2
n

holds provided that w
−1/2
n < U and 1 + |s| < w

1/8
n . Since limn→∞ wn = +∞, we

can choose a random variable K such that w
−1/2
n < U for n > K .

Step 2. We estimate the second term on the right-hand side in (74). Let zn =
is

σ
√

wn
so that for sufficiently large n, we have |zn| < ε0. With this notation, we

have ∣∣ψn(s) − ψ̃
(
s;w− 1

2
n

)∣∣
= ∣∣ewn(ϕ(β+zn)−ϕ(β)−ϕ′(β)zn)

∣∣∣∣W∞(β + zn) − Wn(β + zn)
∣∣.

By Assumption A3 [see (10)], we have, for some a.s. finite number M ′ depending
on β0 and ε0 but not on β ,

∣∣W∞(β + zn) − Wn(β + zn)
∣∣≤ sup

z∈D2ε0 (β0)

∣∣W∞(z) − Wn(z)
∣∣< M ′w− r+1

2
n .

By the Taylor expansion of ϕ at β , we obtain the following estimate in which the
O-term is uniform as long as |zn| < ε0 and β ∈ I0:

wn

(
ϕ(β + zn) − ϕ(β) − ϕ′(β)zn

)= (σ 2

2
z2
n + O

(
z3
n

))
wn

= −s2

2
+ O

(
s3

√
wn

)
(76)

≤ −s2

2
+ O
(
w−1/8

n

)
,

where in the last step we used the restriction 1 + |s| < w
1/8
n . Combining the above

estimates, we obtain

(77)
∣∣ψn(s) − ψ̃

(
s;w− 1

2
n

)∣∣≤ M ′w− r+1
2

n

(
e− 1

2 s2+O(w
−1/8
n )).

Taking (75) and (77) together, we obtain the statement of the lemma. �

In order to obtain the Edgeworth expansion for Ln(k), we shall apply Fourier
inversion to the expansion for ψn established above. Recall formula (68) for the
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characteristic function ψn. It follows by Fourier inversion that

σ
√

wneβk−ϕ(β)wnLn(k) = 1

2π

∫ πσ
√

wn

−πσ
√

wn

ψn(s)e
−isxn(k) ds,

where xn(k) was defined in (13).

LEMMA 4.5. Recall from (73) the definition of Vr,n. For every fixed r ∈ N0,

w
r
2
n sup

k∈Z
sup
β∈I0

∣∣∣∣
∫ πσ

√
wn

−πσ
√

wn

ψn(s)e
−isxn(k) ds −

∫
R

Vr,n(s)e
−isxn(k) ds

∣∣∣∣ a.s.−→
n→∞ 0.

PROOF. Step 1. We show that

w
r
2
n sup

β∈I0

∫ w
1/9
n

−w
1/9
n

∣∣ψn(s) − Vr,n(s)
∣∣ds

a.s.−→
n→∞ 0.

Indeed, we know from Lemma 4.4 that, for all β ∈ I0,

∣∣ψn(s) − Vr,n(s)
∣∣≤ M3e− 1

2 s2(|s| + 1
)3r+3

w
− r+1

2
n

for n > K , 1 + |s| < w
1/8
n . Integrating this, we obtain the required estimate.

Step 2. We show that there is an a > 0 such that

(78) w
r
2
n sup

β∈I0

∫
|wn|1/9<|s|<a

√
wn

∣∣ψn(s)
∣∣ds

a.s.−→
n→∞ 0.

Let zn = is
σ
√

wn
. We can choose a > 0 so small that |zn| < ε0 provided that |s| <

a
√

wn. From the uniform convergence of Wn to W∞ on D2ε0(β0) and from the
Taylor series for ϕ, we infer

∣∣ψn(s)
∣∣= ∣∣ewn(ϕ(β+zn)−ϕ(β)−ϕ′(β)zn)

∣∣∣∣Wn(β + zn)
∣∣≤ M ′e− 1

2 s2
,

for some a.s. finite M ′ > 0 depending on β0 and ε0 but not on β . It follows that

sup
β∈I0

∫
|wn|1/9<|s|<a

√
wn

∣∣ψn(s)
∣∣ds ≤ M ′

∫
|wn|1/9<|s|<a

√
wn

e− 1
2 s2

ds = o
(
w

− r
2

n

)

a.s. This completes the proof of (78).
Step 3. We prove that, for every a > 0,

(79) w
r
2
n sup

β∈I0

∫
a
√

wn<|s|<σπ
√

wn

∣∣ψn(s)
∣∣ds

a.s.−→
n→∞ 0.

In this case, zn = is
σ
√

wn
need not satisfy |zn| ≤ ε0 so that Wn need not converge

(nor even be well defined) and the estimate from Step 2 does not work. Instead, we
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shall use Assumption A4. Using the definition of ψn [see (68)],∫
a
√

wn<|s|<σπ
√

wn

∣∣ψn(s)
∣∣ds

= e−ϕ(β)wn

∫
a
√

wn<|s|<σπ
√

wn

∣∣∣∣∑
k∈Z

Ln(k)e
k(β+ is

σ
√

wn
)
∣∣∣∣ds

= e−ϕ(β)wnσ
√

wn

∫
a/σ<|u|<π

∣∣∣∣∑
k∈Z

Ln(k)ek(β+iu)

∣∣∣∣du,

so that (79) is implied by Assumption A4 since σ is bounded on I0.
The same estimates as (78) and (79), but with Vr,n(s) instead of ψn(s), hold

since Vr,n is a product of e−s2/2 and a polynomial in s. Combining pieces together,
we obtain the claim of the lemma. �

To complete the proof of Theorem 2.1, it remains to show that

∫
R

Vr,n(s)e
−isz ds = √

2πW∞(β)e− 1
2 z2

r∑
k=0

Gk(z)

w
k/2
n

, z ∈ R,

which, in turn, amounts to

1

k!
∫
R

Bk

(
a1(s), . . . , ak(s)

)
eisxe− 1

2 s2
ds

= √
2πGk(−x)e− 1

2 x2
, x ∈R,

(80)

for every k ∈ N0. To check (80), note that

Bk

(
a1(s), . . . , ak(s)

)
eisx = Bk(D1, . . . ,Dk)

(
eisx), s ∈ R,

where the differential operators D1, . . . ,Dk are given by (17). This yields∫
R

Bk

(
a1(s), . . . , ak(s)

)
eisxe− 1

2 s2
ds

= Bk(D1, . . . ,Dk)

(∫
R

eisxe− 1
2 s2

ds

)

= √
2πBk(D1, . . . ,Dk)e

− 1
2 x2

= √
2π(−1)kk!e− 1

2 x2
Gk(x).

Formula (80) now follows from the observation (−1)kGk(x) = Gk(−x), k ∈ N0;
see Remark 2.4. The proof of Theorem 2.1 is complete.
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4.2. Proofs of Theorems 2.11, 2.13, 2.14 and Proposition 3.19. The proof of
Theorems 2.11, 2.13, 2.14 runs along the same lines as the proof of Theorem 2.17
in [22]. Full details are presented in the extended version of the present paper [27].

PROOF OF PROPOSITION 3.19. Both assertions follow from properties of the
logarithm. The first claim (i) follows immediately from the fact that, for every fixed
L > 0, we have log(n + L) − logn → 0 as n → ∞. To show (ii), it is sufficient to
verify that, almost surely,

lim sup
ε→0

lim sup
n→∞

#{1 ≤ k ≤ n : dist(u∗
k,Z+ 1/2) < ε}

n
= 0.

Since ϕ′(0) �= 0, using the explicit expression (49), the claim follows if, for all
α > 0 and β ∈ R,

lim sup
ε→0

lim sup
n→∞

#{1 ≤ k ≤ n : dist(log k,αZ+ β) < ε}
n

= 0.

For the verification of this relation, we refer to [28], Proof of Theorem 1.4(iii). �

5. Proofs for random trees.

5.1. Embedding the one-split BRW into a continuous-time BRW. Continuous-
time embeddings of discrete-time Markov chains in the study of random discrete
structures go back at least to [1] in the context of Pólya urn models. In the frame-
work of random trees, Pittel in his paper [35] was the first to use a continuous-time
embedding in the analysis of the height of BSTs. In the study of the profile of
BSTs, the idea was introduced in a series of works by Chauvin and collaborators;
see [7–9]. More recent works crucially relying on this technique are, among oth-
ers, [21, 38, 39] and [40]. Start with a one-split BRW as described in Section 3.1.
Consider a continuous-time BRW which starts with a single particle at the origin
at time τ0 := 0 and in which any particle splits, with intensity 1, into a cluster of
particles described by the same point process ζ as in the one-split BRW. The par-
ticles do not move between the splits. Denote the split times by τ1 < τ2 < · · · and
write Nt for the number of particles in the process at time t ≥ 0. Note that (Nt )t≥0
is a Galton–Watson process in continuous time. Further, we let z1,t , . . . , zNt ,t be
the positions of the particles and

Lt (k) = #{1 ≤ j ≤ Nt : zj,t = k}, k ∈ Z,

be the corresponding profile at time t ≥ 0. We have the following correspondence:

Sn = Nτn, xi,n = zi,τn, 1 ≤ i ≤ Sn,

Ln(k) = Lτn(k), k ∈ Z.
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For β ∈ C,Reβ ∈ I (see Assumption B3) consider the Biggins martingale

Wt (β) = e−m(β)t
Nt∑

k=1

eβzk,t , t ≥ 0.

Set Hn(β) := em(β)τn−ϕ(β) logn, and note that Wn(β) [see formula (38)] and
Wτn(β) are connected via the relation

Wn(β) = Wτn(β)Hn(β).(81)

Our aim is to show that Wn converges, with speed (logn)−r , to a random ana-
lytic function W∞, thus verifying Assumptions A2 and A3 of Theorem 2.1. Let
us analyze the factors on the right-hand side of (81). Let m∗(β) = em(β). For
γ ∈ (1,2], define the open sets


1
γ = int

{
β ∈ C : Reβ ∈ I ,E

[(∑
k∈Z

e(Reβ)kL1(k)

)γ ]
< ∞
}
,


2
γ =
{
β ∈ C : γ Reβ ∈ I ,

m∗(γ Reβ)

|m∗(β)|γ < 1
}
,

and let

D = ⋃
γ∈(1,2]

(

1

γ ∩ 
2
γ

)⊂ C.

Note that the set D is open. Biggins in his paper [3] proved that, with probability 1,
Wt converges locally uniformly on D , as t → ∞. The next proposition is a slight
extension of this classical result adapted to our needs; see the extended version
[27] of the present paper for a full proof.

PROPOSITION 5.1. Under Assumptions B1–B3 and B5, there exists a random
analytic function W∞ on D such that, for all compact sets K ⊂ D , there exists
0 < r = r(K) < 1 with

r−t sup
β∈K

∣∣Wt (β) −W∞(β)
∣∣ a.s.−→
t→∞ 0.(82)

It holds that (β−, β+) ⊂ D . Finally, for γ ∈ (1,2] and β ∈ 
1
γ ∩ 
2

γ , we have

lim
t→∞E

∣∣Wt (β) −W∞(β)
∣∣γ = 0.(83)

PROPOSITION 5.2. Under Assumptions B1–B3 and B5, almost surely, the
function W∞ has no zeros on the interval (β−, β+).

PROOF. Using the stochastic fixed-point equation satisfied by W∞, [4]
showed that, for fixed β ∈ (β−, β+), the random variable W∞(β) is absolutely
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continuous. From here, using the identity theorem for holomorphic functions it
is not hard to deduce that, almost surely, the function has no zero on any closed
subinterval of (β−, β+). See [27] for details. �

From Proposition 5.1, we can easily obtain the following a.s. asymptotics for
the nth split time τn.

LEMMA 5.3. There exists a deterministic ε > 0 such that, as n → ∞,

(84) τn = logn

m(0)
+ logm(0) − logW∞(0)

m(0)
+ o
(
n−ε) a.s.

PROOF. From Proposition 5.1 with β = 0, we obtain

Wt (0)
a.s.−→

t→∞ W∞(0).

The continuous-time Galton–Watson process (Nt )t≥0 does not explode because
the expected number of particles in the cluster ζ is finite by Assumption B3. This
means that τn → ∞ a.s., as n → ∞, and the last display implies

Wτn(0) = e−m(0)τnSn
a.s.−→

n→∞ W∞(0).

From Remark 3.5, we know that Sn/n → m(0) a.s., which yields

(85) τn = logn

m(0)
+ O(1) a.s.

Using Proposition 5.1 with β = 0 and t = τn gives

e−m(0)τnSn −W∞(0) = o
(
rτn
)

a.s.

From (85), we deduce rτn = o(n−ε1) a.s., as n → ∞, for arbitrary ε1 <

| log r|/m(0). The variance of S1 is finite by Assumption B3. By the law of it-
erated logarithm, for every δ > 0, as n → ∞,

Sn = m(0)n + o
(
n1/2+δ) a.s.

Combining the estimates, we see that (84) holds for ε < (| log r|/m(0)∧ 1/2). �

Recall that Hn(β) = em(β)τn−ϕ(β) logn. Lemma 5.3 immediately yields the fol-
lowing.

LEMMA 5.4. For β ∈ D , let H∞(β) = (W∞(0))−ϕ(β)m(0)ϕ(β). For any com-
pact set K ⊂ D , there exists ε = ε(K) > 0 such that

nε sup
β∈K

∣∣Hn(β) − H∞(β)
∣∣ a.s.−→
n→∞ 0.
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PROOF OF THEOREM 3.4. Recall from (81) that Wn(β) = Wτn(β)Hn(β). De-
fine

W∞(β) = W∞(β)H∞(β) = W∞(β)
(
W∞(0)

)−ϕ(β)
m(0)ϕ(β).

By Proposition 5.1, Lemmas 5.3 and 5.4 and the triangle inequality, Wn(β) con-
verges to W∞(β) locally uniformly on D , with probability 1 and speed (logn)−r .
Since H∞(β) > 0 for real β and, by Proposition 5.2, the function W∞ has
no zeros on the interval (β−, β+) (with probability 1), the same is true for the
function W∞. �

5.2. Proof of Theorem 3.11. Consider a one-split BRW satisfying Assump-
tions B1–B5. We are going to verify Assumptions A1–A4 of Theorem 2.1 for the
sequence of its profiles L1,L2, . . . and wn = logn. Assumption A1 is fulfilled be-
cause the number of particles in the one-split BRW is finite at any time, and hence,
the function Ln has a.s. finite support. Assumptions A2 and A3 were verified in
Theorem 3.4.

The next proposition verifies an analogue of Assumption A4 for the continuous-
time BRW. The result is essentially shown in [3] without rate of convergence and
only in the nonlattice case. For the sake of completeness, we include the proof
here.

PROPOSITION 5.5. For any compact set K ⊂ (β−, β+) and 0 < a < π , under
Assumptions B1–B5, there exists 0 < r = r(K,a) < 1 such that

r−t sup
β∈K

sup
a≤η≤π

e−m(β)t

∣∣∣∣∣
Nt∑

k=1

e(β+iη)zk,t

∣∣∣∣∣ a.s.−→
t→∞ 0.(86)

PROOF. Set ψ(β) = |m∗(β)|/m∗(Reβ) and note that, for β ∈ C,Reβ ∈ I ,

(
m∗(Reβ)

)−t

∣∣∣∣∣
Nt∑

k=1

eβzk,t

∣∣∣∣∣= (ψ(β)
)t ∣∣Wt (β)

∣∣.
Therefore, (86) is equivalent to

(87) r−t sup
β∈G

ψt(β)
∣∣Wt (β)

∣∣ a.s.−→
t→∞ 0,

where G := {β ∈ C : Reβ ∈ K, Imβ ∈ [a,π]}. By compactness, it is enough to
check that, for any β0 ∈ G, there exists ε > 0 such that

(88) r−t sup
β∈Dε(β0)

ψt (β)
∣∣Wt (β)

∣∣ a.s.−→
t→∞ 0.

By the Borel–Cantelli lemma, (88) follows from summability of the sequence

r−n
E

[
sup

t∈[n,n+1]
sup

β∈Dε(β0)

ψn(β)
∣∣Wt (β)

∣∣], n ∈ N.(89)
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By Cauchy’s integral formula (cf. [3], Lemma 3),

sup
β∈Dε(β0)

∣∣Wt (β)
∣∣≤ 1

π

∫ 2π

0

∣∣Wt

(
β0 + 2εeiφ)∣∣dφ,

whence, for γ > 1,

E

[
sup

t∈[n,n+1]
sup

β∈Dε(β0)

∣∣Wt (β)
∣∣]

≤ 1

π

∫ 2π

0
E

[
sup

t∈[n,n+1]
∣∣Wt

(
β0 + 2εeiφ)∣∣]dφ

≤ 1

π

∫ 2π

0

(
E

[
sup

t∈[n,n+1]
∣∣Wt

(
β0 + 2εeiφ)∣∣γ ])1/γ

dφ

≤ γ

π(γ − 1)

∫ 2π

0

(
E
∣∣Wn+1

(
β0 + 2εeiφ)∣∣γ )1/γ dφ,

having utilized Doob’s inequality in the last passage. Choose ε > 0 small enough
such that there exists γ > 1 with D2ε(Reβ0) ⊆ 
1

γ ∩ 
2
γ . We fix this γ in the

remainder of the proof. Further, let

κ(β) := m∗(γ Reβ)

|m∗(β)|γ .

From our choice of γ , it follows that E|W1(β)|γ < ∞ for all β ∈ D2ε(β0). Using
[3], Lemma 2(ii), we obtain

E

[
sup

t∈[n,n+1]
sup

β∈Dε(β0)

∣∣Wt (β)
∣∣]

≤ C

∫ 2π

0

(
n∑

j=0

κj (β0 + 2εeiφ))1/γ

dφ

≤ C(n + 1)1/γ
∫ 2π

0

(
κ
(
β0 + 2εeiφ)∨ 1

)n/γ dφ

for some C > 0. Therefore,

E

[
sup

t∈[n,n+1]
sup

β∈Dε(β0)

ψn(β)
∣∣Wt (β)

∣∣]

≤ C(n + 1)1/γ
(

sup
β∈Dε(β0)

ψn(β)
)∫ 2π

0

(
κ
(
β0 + 2εeiφ)∨ 1

)n/γ dφ

≤ 2Cπ(n + 1)1/γ
((

sup
β∈D2ε(β0)

ψγ (β)
)(

sup
β∈D2ε(β0)

(
κ(β) ∨ 1

)))n/γ
.
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Note that both β �→ ψγ (β) and β �→ κ(β) ∨ 1 are continuous in some neighbor-
hood of β0. Hence, for δ > 0, upon possibly decreasing ε > 0, we obtain

sup
β∈D2ε(β0)

ψγ (β) ≤ (1 + δ)ψγ (β0) and

sup
β∈D2ε(β0)

(
κ(β) ∨ 1

)≤ (1 + δ)
(
κ(β0) ∨ 1

)
.

(89) now follows from these bounds by a suitable choice of δ upon verifying that

ψγ (β0)
(
κ(β0) ∨ 1

)= m∗(γ Reβ0) ∨ |m∗(β0)|γ
(m∗(Reβ0))γ

< 1.

First, on the one hand, since Reβ0 ∈ 
1
γ ∩ 
2

γ we have

m∗(γ Reβ0)

(m∗(Reβ0))γ
< 1.

On the other hand, since a ≤ Imβ0 ≤ π , we have

|m∗(β0)|
m∗(Reβ0)

= exp
{∑

k∈Z
νkek Reβ0

(
cos(k Imβ0) − 1

)}
< 1,

having utilized Assumptions B1 and B4. The proof of Proposition 5.5 is
complete. �

Now we can pass back to the one-split BRW. By combining Lemma 5.3 and
Proposition 5.5, one deduces that, for any compact set K ⊂ (β−, β+) and 0 < a <

π , there exists ε = ε(K,a) > 0 such that

nε sup
β∈K

sup
a<η≤π

n−ϕ(β)

∣∣∣∣∣
Sn∑

k=1

e(β+iη)xk,n

∣∣∣∣∣ a.s.−→
n→∞ 0.(90)

Assumption A4 follows readily. Theorem 3.11 now follows from Theorem 2.1.

5.3. Proof of Theorem 3.16. We apply Theorem 2.1 to the (deterministic) pro-
file function L̃n(k) := E[Ln(k)]. Obviously, the corresponding moment generating
function W̃n(β) is simply EWn(β). Its limit W̃∞(β) was calculated in (41): for any
β ∈ C with Reβ ∈ (β−, β+),

(91) W̃∞(β) := lim
n→∞EWn(β) = �( 1

m(0)
)

�(
m(β)+1

m(0)
)
.

Using the explicit formula (40), a direct application of Stirling’s formula shows
that Assumption A3 is satisfied. Similarly, Assumption A4 is easily verified us-
ing (40) and Assumption B4. To conclude the proof, it remains to show that
W̃∞(β) = EW∞(β) for real β ∈ (β−, β+) which is true if (and only if) the se-
quence (Wn(β))n∈N is uniformly integrable.
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PROPOSITION 5.6. Consider a one-split BRW with deterministic number of
descendants and satisfying Assumptions B1–B3 and B5. Then, for every β ∈
(β−, β+), the sequence (Wn(β))n∈N0 is bounded in Lγ , for some γ = γ (β) > 1.

PROOF. For β = 0 and γ = 2, the relevant argument is given in the proof of
Proposition 6 in [40]. Fix β ∈ (β−, β+) and γ ∈ (1,2] such that β ∈ 
1

γ ∩ 
2
γ .

Note that Wn(β) and Hn(β) are independent and Wτn(β) = Hn(β)Wn(β). By the
optional stopping theorem, (Wτn(β))n∈N is a martingale with mean 1 and bounded
in Lγ . By independence, EWτn(β) = EHn(β)EWn(β). Since EWn(β) converges
to a nonzero limit [see (91)], it follows that EHn(β) is bounded away from zero.
Thus, by independence and Jensen’s inequality,

EWγ
τn

(β) = EHγ
n (β) ·EWγ

n (β) ≥ EWγ
n (β)
(
EHn(β)

)γ
.

It follows that supn≥0 EW
γ
n (β) < ∞ which completes the proof. �

Acknowledgment. Zakhar Kabluchko is grateful to Rudolf Grübel for useful
discussions.

An extended version of the present paper can be found at http://www.math.
uni-muenster.de/statistik/kabluchko/files/edgeworth_full.pdf.
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