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FINITE SYSTEM SCHEME FOR MUTUALLY CATALYTIC
BRANCHING WITH INFINITE BRANCHING RATE

BY LEIF DÖRING1, ACHIM KLENKE2 AND LEONID MYTNIK2

Universität Mannheim, Johannes Gutenberg-Universität Mainz and
Technion—Israel Institute of Technology

For many stochastic diffusion processes with mean field interaction, con-
vergence of the rescaled total mass processes towards a diffusion process is
known.

Here, we show convergence of the so-called finite system scheme for inter-
acting jump-type processes known as mutually catalytic branching processes
with infinite branching rate. Due to the lack of second moments, the rescaling
of time is different from the finite rate mutually catalytic case. The limit of
rescaled total mass processes is identified as the finite rate mutually catalytic
branching diffusion. The convergence of rescaled processes holds jointly with
convergence of coordinate processes, where the latter converge at a different
time scale.

1. Introduction and main results.

1.1. The finite systems scheme. The finite systems scheme for interacting dif-
fusion processes was developed by Cox and Greven [5] and Cox, Greven and Shiga
[6] as a tool for a quantitative description of large, but finite, systems in terms of
the equilibrium distributions of their infinite counterparts. In order to describe the
idea, it is most convenient to sketch an example. In fact, we will only describe the
so-called mean field finite systems scheme here. For N ∈ N let SN := {1, . . . ,N}
be a finite site space. Each site k ∈ SN carries a diffusion process (XN

t (k))t≥0 with
values in an interval I . Furthermore, the diffusion processes interact mutually via
symmetric migration. More formally, we have the following set of stochastic dif-
ferential equations (the second line being an equivalent reformulation of the first
line):

(1.1)

dXN
t (k) = (ANXN

t

)
(k) dt +

√
g
(
XN

t (k)
)
dBt(k)

= 1

N

∑
l∈SN

(
XN

t (k) − XN
t (k)
)
dt +
√

g
(
XN

t (k)
)
dBt(k),
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k ∈ SN, t ≥ 0. Here, B(k), k ∈ SN , are independent Brownian motions and the
matrix

AN(k, l) =

⎧⎪⎪⎨
⎪⎪⎩

1

N
, if k �= l,

1

N
− 1, if k = l,

(1.2)

is the transition operator for migration between sites. The function g : I → [0,∞)

is the so-called diffusion coefficient and is assumed to be sufficiently smooth and
well behaved. We will denote the continuous time transition matrix of AN by

(1.3) etAN

(k, l) = 1

N

(
1 − e−t )+ 1{k=l}e−t .

Note that etAN
is the time t transition matrix of a continuous time Markov chain on

SN that makes uniformly distributed jumps at rate 1 and this is the chain defined
by the q-matrix AN .

Most prominent examples are:

(a) I = R, gγ (x) ≡ γ > 0, so-called “interacting Brownian motions”,
(b) I = [0,∞), gγ (x) = γ x2, so-called “parabolic Anderson model with

Brownian potential”,
(c) I = [0,1], gγ (x) = γ x(1 − x), so-called “stepping stone model”.

Let

(1.4) �N
t := 1

N

∑
k∈SN

XN
t (k), t ≥ 0,

be the average process of the system (1.1). Due to the choice of AN the matrix
multiplication in (1.1) can be rewritten as

(1.5) dXN
t (k) = (�N

t − XN
t (k)
)
dt +
√

g
(
XN

t (k)
)
dBt(k), k ∈ SN, t ≥ 0.

We give a very rough sketch of the basic idea of the finite systems scheme. Assume
that �N

0 converges weakly to some value θ as N → ∞. By a law of large numbers,
we get limN→∞ �N

t = θ for all t ≥ 0, and hence, formally, the equation (1.5) for
one coordinate converges to

(1.6) dXt(k) = (θ − Xt(k)
)
dt +
√

g
(
Xt(k)

)
dBt(k), k ∈ N, t ≥ 0,

as N → ∞. The diffusions X(k), k ∈ N, are now independent and (under suitable
assumptions on g) converge for t → ∞ to an ergodic equilibrium distribution νθ =
ν

g
θ .

Now an appropriate time-rescaling gives a nontrivial limit for �N . More pre-
cisely, for βN := N , under mild assumptions on g, the time-rescaled process



FINITE SYSTEM SCHEME FOR INFINITE RATE MCB 3115

(�N
βN t

)t≥0 converges to a diffusion process � which is the solution of the stochas-
tic differential equation

(1.7) d�t =
√

g∗(�t) dBt , t ≥ 0.

Here, B is a Brownian motion and

(1.8) g∗(θ) =
∫

g(x)ν
g
θ (dx)

is the (approximate and up to a factor 1/N2) mean contribution of a single coordi-
nate XN(k) to the square variation process 〈�N 〉.

The nonlinear map g �→ g∗ was studied in a series of papers by [2, 3] and (in a
multi-dimensional situation) [8]. In particular, the fixed shapes (i.e., g∗ = c · g for
some c > 0) are (uniquely up to linear factors) identified as:

• g(x) = 1 if I = R,
• g(x) = x if I = [0,∞),
• g(x) = x(1 − x) if I = [0,1].
In the situation of two-dimensional interacting models, formally corresponding to
(1.1) with I = R

2+, the only nontrivial fixed shape is g((u, v)) = u · v for u, v ≥ 0.
For this situation, the finite systems scheme was developed by [4].

We see that the average process �N fluctuates on a slower time scale than the
individual coordinate processes XN(k). Hence, from time βNt to βNt + s (with
s > 0 large) the coordinates have enough time to converge (independently) to their
equilibrium state ν

g

θ ′ (given �N
βNt

= θ ′). Thus, we should have (in the sense of
weak convergence of finite dimensional distributions)

(1.9) L
((

�N
βNt

,
(
XN

βNt
(k)
)
k∈SN

)) N→∞−→
∫

P
g
t

(
θ, dθ ′)(δθ ′ ⊗ (νg

θ ′
)⊗N)

,

where P
g
t (x, dy) denotes the transition probabilities of � from (1.7). One could

even expect that the full processes XN (and not only the marginal at time βNt)
converge. To be more precise, denote by ν̌

g
θ the distribution of the process (Xt)t≥0,

where X is the stationary solution of (1.6). Then, under some mild regularity con-
ditions on g,

(1.10) L
((

�N
βNt

,
((

XN
βNt+s

(k)
)
s≥0

)
k∈SN

)) N→∞−→
∫

P
g
t

(
θ, dθ ′)(δθ ′ ⊗ (ν̌g

θ ′
)⊗N)

.

The statements (1.9) and (1.10) are often referred to as (mean field) finite systems
scheme. The formal statements are proved (in greater generality) in [7], Theorem 1,
and for a two-dimensional setting in [4].
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1.2. The infinite rate renormalization. Consider first the case of one-dimen-
sional interacting diffusions with compact I = [0,1]. For the renormalization map
g �→ g∗, the only fixed shape is g(x) = x(1 − x), that is, the Wright–Fisher diffu-
sion. However, the Wright–Fisher diffusion also pops up as the result of a renor-
malization procedure that we explain now. Consider the solution XN,γ of (1.1)
with g replaced by gγ = γ · g for some γ > 0. We assume that g(x) = 0 for
x = 0,1 and g(x) > 0 for x ∈ (0,1). One can show that, as γ → ∞, XN,γ con-
verges (e.g., in finite dimensional distributions or in the Meyer–Zheng pseudo-path
topology) to a process XN with values in {0,1}SN

. In fact, in the interior (0,1) of
I , the coordinate processes fluctuate faster and faster and are thus (in the limit)
driven to the boundary of I immediately. Furthermore, since

X
N,γ
t (k) − X

N,γ
0 (k) −

∫ t

0
ANXN,γ

s (k) ds, t ≥ 0, k ∈ SN,

is a martingale, it can be seen that also

XN
t (k) − XN

0 (k) −
∫ t

0
ANXN

s (k) ds, t ≥ 0, k ∈ SN,

is a martingale. From the martingale property, it can be deduced that XN is a voter
model with a symmetric updating mechanism. With this convergence in mind, the
voter process can be seen as an “infinite rate” (γ = ∞) model. The average process
�XN

of the voter process is known as the Moran model from population genetics.
It is well known that (�XN

Nt )t≥0 converges in finite dimensional distributions (and
even in the Skorohod topology) to the Wright–Fisher diffusion, that is, to the solu-
tion of the stochastic differential equation

dYt =√Yt (1 − Yt ) dBt .

Here, we see that the diffusion function g(x) = x(1 − x) shows up in the limiting
equation for the infinite rate renormalization scheme if I = [0,1]. One could try
to find also the fixed shapes for I = [0,∞) and I = R as limits of an infinite rate
renormalization. However, a little thought shows that the limit as γ → ∞ is either
trivial (I = [0,∞)) or not well defined (I = R). Hence, for interacting diffusions
which are one-dimensional at each site not much more can be done.

The situation becomes more interesting in the two-dimensional setting corre-
sponding formally to I = R

2+. Similar to the universal convergence to the voter
process described above, in the two-dimensional setting, under some conditions
on g, there is a nontrivial discontinuous limiting process XN if for gγ = γg we let
γ → ∞. Similar to the voter process which takes values at each site in the bound-
ary {0,1} of [0,1], the universal limiting process XN takes values in the boundary
of R2+, that is,

E := [0,∞)2 \ (0,∞)2.
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REMARK 1.1. For x = (x1, x2) ∈ R
2+, we call the two coordinates the types.

If x ∈ E with x2 = 0, we say x is of type 1, if x1 = 0 we say x is of type 2.

The limiting process XN does not depend on the details of the diffusion func-
tion g as long as g is strictly positive in (0,∞)2 and 0 at the quadrant’s boundary
E (and is sufficiently regular to allow existence of a solution to SDEs); see [15],
Theorem 1.5, for a formal statement. The process XN is called infinite rate mu-
tually catalytic branching process or MCB(∞) since it was introduced as infinite
branching rate limit of mutually catalytic branching processes as will be discussed
in the next subsection.

We will show that there is a time scale βN such that (XN
βN t

)t≥0 converges in
the Skorohod topology to a process that solves the two-dimensional analogue of
(1.1) with g((u, v)) = (8/π)uv, the fixed shape of the transformation g �→ g∗ in
two dimensions. Furthermore, we will develop the finite systems scheme in the
sense of (1.9) and (1.10). Unlike the voter model, the limiting process XN lacks
second moments (but possesses all pth moments for p < 2) and is described by
a jump type stochastic differential equation. Hence, usual standard arguments of
computing the square variation process do not work. Furthermore, the typical scal-
ing in the presence of variances does not work properly and we have to employ a
logarithmic correction:

(1.11) βN = N

logN
.

1.3. Mutually catalytic branching processes. In this subsection, we define the
universal infinite rate limiting process XN of two-dimensional interacting diffu-
sion processes on R

2+ with sites space SN . The process is introduced as infinite
rate limit of mutually catalytic branching processes and can be characterized as
solution to a stochastic equation.

Dawson and Perkins [9] introduced a spatial two-type branching model where
the local branching rate of type 1 is proportional to the amount of type 2 particles
at the same site and vice versa. Furthermore, the infinitesimal individuals migrate
through space according to some Markov kernel. In our setting with mean-field
interaction AN on SN , the model can be described as the (unique weak) solution
of the system of stochastic differential equations driven by independent Brownian
motions

dX
N,γ,i
t (k) =ANX

N,γ,i
t (k) dt +

√
γXN,γ,1(k)XN,γ,2(k) dBi

t (k)(1.12)

for i = 1,2, k ∈ SN , γ > 0 and t ≥ 0. This model is called mutually catalytic
branching model with finite rate γ , or MCB(γ ), and solutions

X
N,γ
t (k) = (XN,γ,1

t (k),X
N,γ,2
t (k)

) ∈R
2+
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are called mutually catalytic branching processes. As one can see, this is a partic-
ular case of a two-dimensional interacting diffusion model with g(u, v) = γ uv.

Now we give the description of the infinite rate mutually catalytic branching
process MCB(∞). If in (1.12) we let γ → ∞, then, heuristically, the single co-
ordinates X

N,γ
t (k) are driven to the boundary E of R

2+ immediately. Since the
diffusion is isotropic, the distribution of the exit point does not depend on the
specific diffusion coefficient, and thus is the same as for planar Brownian mo-
tion W = (W 1,W 2) on [0,∞)2, started at W0 = x (this is a consequence of the
Dubins–Schwarz theorem). Let Qx(dy) denote the harmonic measure of planar
Brownian motion on R

2+, started at x ∈ R
2+. That is, Qx(dy) is the distribution of

the exit point of a planar Brownian motion in the quadrant started at x. Loosely
speaking, if site k is populated by type 2, then migration of type 2 individuals re-
sults in deterministic (discrete space heat flow) changes while type 1 immigration
results in jump activity.

Using the explicit Lebesgue densities of the harmonic measures Qx for x ∈
(0,∞)2 (see, e.g., [15], Lemma 1.2), it is easy to show that for x = (x1,0) ∈ E,
the vague limit

νx := lim
ε→0

1

ε
Q(x1,ε)

exists on E \ {x}. The analogous statement holds for x = (0, x2) ∈ E. The measure
νx can be thought of as the prototypic measure for jumps away from x when there
is an immigration of the respective other type. Due to symmetry and a scaling re-
lation, all the measures νx are simple transformations [described below implicitly,
see also [14], discussion before (5.5)] of the measure ν := ν(1,0). This measure ν

on E can be explicitly described in terms of its Lebesgue densities

ν(dy) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

4

π

y1

(1 − y1)2(1 + y1)2 dy1, if y1 ≥ 0, y2 = 0,

4

π

y2

(1 + y2
2)2

dy2, if y1 = 0, y2 ≥ 0,

(1.13)

on E. Properties of ν are collected in some lemmas in the Appendix. The jump
structure of the MCB(∞) process XN is described be means of a Poisson point
process N on N× E ×R

+ ×R
+ with intensity measure

N ′ = 
 ⊗ ν ⊗ λ ⊗ λ.

Here, 
 denotes the counting measure on N and λ the Lebesgue measure on R
+.

In order to describe the intensity of jumps depending on the current state of the
system, let

IN
t (k) := I

N,1
t (k) + I

N,2
t (k)

:= 1{XN,2
t (k)>0}

ANX
N,1
t (k)

X
N,2
t (k)

+ 1{XN,1
t (k)>0}

ANX
N,2
t (k)

X
N,1
t (k)

, k ∈ SN.
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Note that IN
t (k) is well defined because either XN

t (k) is of type 1, that is,
X

N,1
t (k) > 0 and X

N,2
t (k) = 0, or of type 2, that is, X

N,2
t (k) > 0 and X

N,1
t (k) = 0.

Since the off-diagonal entries of AN are nonnegative, the rates I
N,1
t (k), I

N,2
t (k)

and IN
t (k) are nonnegative.

The jumps of MCB(∞) are governed by the function J : E × E →R
2

J (y, x) =
(
J1(y, x)

J2(y, x)

)
,

where the coordinate jumps

J1(y, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(y1 − 1)x1, if x =
(
x1

0

)
,

y2x2, if x =
(

0

x2

)
,

and

J2(y, x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

y2x1, if x =
(
x1

0

)
,

(y1 − 1)x2, if x =
(

0

x2

)
,

depend on the state x = ( x1
x2

)
of the system and a point y = ( y1

y2

)
is chosen from E

according to ν.
The system of stochastic equations characterizing MCB(∞) on SN is

(1.14)

X
N,i
t (k) = X

N,i
0 (k) +

∫ t

0
ANXN,i

s (k) ds

+
∫ t

0

∫ IN
s−(k)

0

∫
E

Ji

(
y,XN

s−(k)
)(
N −N ′)({k}, dy, dr, ds

)
,

for i = 1,2, k ∈ SN and t ≥ 0. The idea is that each coordinate XN
t (k) experiences

a drift towards the mean of all coordinates. In addition, it is a (non-trivial) con-
sequence of the particular form of the jump function J that solutions are forced
to remain only at the boundary E of [0,∞)2: Jumps go from E to E and the
compensator cancels with the drift (compare Section 2 of [15]). Also note that the
dr-contribution does not play a role for the jump target but instead only determines
the jump rate which is proportional to IN .

REMARK 1.2. To facilitate the understanding of equation (1.14) let us recall
the interpretation of the jump mechanism through generalized voter processes in-
stead of types (see [11]): If just before time t voter k has opinion A with a strength
of conviction x1, that is, XN

t−(k) = ( x1
0

)
, then with a rate which is the total convic-

tion strength of all neighbors of opposite opinion B relativized by the conviction
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strength x1 of voter k, voter k chooses to reconsider his/her opinion: he/she chooses
a new opinion according to ν. If the point y ∈ E chosen by ν takes the form (y1,0),
then the opinion of voter k does not change but the strength is multiplied by y1.
Conversely, if the chosen point is (0, y2) then the opinion of voter k changes and
the strength is multiplied by y2. Hence, there are four possible types of jumps:

• opinion A → opinion A:(
x

0

)
�→
(
y1x

0

)
=
(
x

0

)
+
(
y1 − 1

0

)
x =
(
x

0

)
+ J

((
y1
0

)
,

(
x

0

))
,

• opinion A → opinion B:(
x

0

)
�→
(

0
y2x

)
=
(
x

0

)
+
(−1

y2

)
x =
(
x

0

)
+ J

((
0
y2

)
,

(
x

0

))
,

• opinion B → opinion B:(
0
x

)
�→
(

0
y1x

)
=
(

0
x

)
+
(

0
y1 − 1

)
x =
(

0
x

)
+ J

((
y1
0

)
,

(
0
x

))
,

• opinion B → opinion A:(
0
x

)
�→
(
y2x

0

)
=
(

0
x

)
+
(

y2
−1

)
x =
(

0
x

)
+ J

((
0
y2

)
,

(
0
x

))
.

By definition, ν has infinite mass on the positive part of the x-axis with a pole
at
( 1

0

)
whereas the mass of ν on the positive y-axis is finite. This means that in

finite time there are infinitely many tiny changes in strength of conviction without
changing the opinion whereas there are only finitely many changes of opinion.

Here is the main theorem for convergence of MCB(γ ) to MCB(∞):

THEOREM 0 ([15], Theorem 1.5). If XN
0 ∈ ESN

, then (1.14) has a unique
weak solution (XN

t )t≥0 with XN
t (k) ∈ E for all t > 0 and k ∈ SN . The unique

solution of (1.14) is called MCB(∞) and

MCB(γ )
γ→∞=⇒ MCB(∞)

in the sense of weak convergence in the Meyer–Zheng topology.

The claimed universality of MCB(∞) was also established in Theorem 1.5 of
[15]: In fact, the diffusion function is not necessarily g(u, v) = uv as for mutu-
ally catalytic branching. The diffusion function only needs to vanish on E and be
positive on (0,∞)2.
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1.4. Our results. We will establish a finite systems scheme for MCB(∞) in
the sense of (1.9) and (1.10) with βN = N/ logN as in (1.11) and with P g re-
placed by the semigroup P 8/π of MCB(8/π ). Since the major part of the work
is proving convergence of the average process, we formulate this statement in a
separate theorem first.

Let

Z
N,i
t := 1

N

N∑
k=1

X
N,i
t (k), i = 1,2, k ∈ SN, t ≥ 0,

and ZN
t := (Z

N,1
t ,Z

N,2
t ) be the average processes. Define the time-rescaled pro-

cesses

(1.15) X̃
N,i
t (k) := X

N,i

βN t
(k), k ∈ SN, i = 1,2, t ≥ 0,

and Z̃N
t := ZN

βN t
, where βN is given by (1.11). We will also write Ĩ N

t (k) := IN
βN t

(k)

for the scaled jump rates.

THEOREM 1. Suppose XN is MCB(∞) on SN with mean-field interaction
AN . Assume that supN∈N E[(ZN,i

0 )2] < ∞ for i = 1,2 and Z̃N
0 ⇒ z ∈R

2+ as N →
∞. Furthermore, assume that there exists a p ∈ (1,2) such that

(1.16) Cp := 1 + sup
N∈N,i=1,2

1

N

N∑
k=1

E
[(

X
N,i
0 (k)

)p]
< ∞.

Then (
Z̃N

t

)
t≥0

N→∞=⇒ (Zt )t≥0,

weakly in the Skorokhod space on R
2+. Here, Z = (Z1,Z2) takes values in R

2+ and
is the unique strong solution of

dZi
t =
√

γ ∗Z1
t Z

2
t dBi

t , i = 1,2, t ≥ 0,(1.17)

driven by independent Brownian motions B1,B2 with initial condition Z0 = z. The
branching rate is γ ∗ = 8

π
.

Now we come to the formulation of the finite systems scheme. Denote by
(P

8/π
t )t≥0 the semigroup of MCB(8/π ), that is,

P
8/π
t

(
z, dz′)= P

[
Zt ∈ dz′ | Z0 = z

]
with Z from Theorem 1. As an analogue to (1.6), we consider the (unique strong)
solution in [0,∞)2 of the equation

(1.18) dY
θ,γ,i
t = (θi − Y

θ,γ,i
t

)
dt +
√

γ Y
θ,γ,1
t Y

θ,γ,2
t dWi

t , i = 1,2, t ≥ 0,
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where W 1, W 2 are two independent Brownian motions and θ = (θ1, θ2) ∈
[0,∞)2. It was shown in [14], Theorem 1.3, that the limit Y θ of Y θ,γ =
(Y θ,γ,1, Y θ,γ,2) as γ → ∞ exists in the sense of weak convergence of finite di-
mensional distributions. Furthermore, the transition semigroup can be computed
explicitly:

(1.19) P
[
Y θ

t ∈ dy′ | Y θ
0 = y

]= Qe−t y+(1−e−t )θ

(
dy′).

The invariant distribution of Y θ is the harmonic measure Qθ of planar Brown-
ian motion on (R+)2 started at θ . Furthermore, let Q̌θ denote the law of the
stationary process, that is of Y θ started with initial distribution Qθ . Recall that
βN = N/ logN .

THEOREM 2. Under the assumptions of Theorem 1, we have, in the sense of
weak convergence of the finite dimensional distributions: for any t > 0, (i)

(1.20) L
((

Z̃N
t ,
(
X̃N

t (k) : k ∈ SN ))) N→∞−→
∫

P
8/π
t

(
z, dz′)(δz′ ⊗ Q⊗N

z′
)

(ii) and

(1.21) L
((

ZN
βN t

,
((

XN
βNt+s

(k)
)
s≥0 : k ∈ SN ))) N→∞−→

∫
P

8/π
t

(
z, dz′)(δz′ ⊗ Q̌⊗N

z′
)
.

Theorem 2 shows that in fact a mean field finite systems scheme in the of (1.9)
and (1.10) holds.

1.5. Outline. The proof of Theorem 1 follows a general strategy:

(i) Prove tightness of the sequence (Z̃N)N∈N.
(ii) Prove that any limit point of (Z̃N)N∈N is a weak solution of the SDE (1.17)

with γ ∗ = 8
π

.
(iii) Prove that all limit points are equal.

Step (i) is carried out by fine moment estimates, (ii) is proved using the method of
characteristics for semimartingales and (iii) is a consequence of (ii) and the strong
uniqueness of solutions to the SDE (1.17).

The proof of Theorem 2 makes use of an approximate duality of MCB(∞) to
some deterministic process in order to compare the coordinate processes of XN

with Y θ from (1.19).
The article is organized as follows: In Section 2, the proof of Theorem 1 is

given: We start with a rough heuristics in Section 2.1. Auxiliary moment estimates
are gathered in Section 2.3, tightness arguments are given in Section 2.4 and the
final convergence proof is given in Section 2.5. In order to make the article more
accessible to the reader not familiar with the general theory of semimartingales,
definitions of semimartingale characteristics are recalled in Section 2.2. Finally, in
Section 3, we establish the approximate duality and prove Theorem 2.
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Notation. Throughout this article, C denotes a generic constant that can vary
from line to line.

2. Proof of Theorem 1.

2.1. Heuristics. In this subsection, we give a rough and oversimplified idea
why βN = N/ log(N) is the right scaling and why the limiting process is the mu-
tually catalytic branching process with rate 8/π . Assume that N is even and that

X̃N
t (k) =

{(
2Z̃

N,1
t ,0

)
if k ≤ N/2,(

0,2Z̃
N,2
t

)
if k > N/2.

That is, at time βNt , the MCB(∞) process is such that:

• type 1 is constant on sites k ≤ N/2,
• type 2 is constant on sites k > N/2.

We next argue that large jumps disappear in the limit whereas small jumps lead to
a quadratic variation part including our factor 8/π . As explained in Remark 1.2,
there are different sorts of jumps: big, small, no change of types and change of
types. Analyzing their effects separately explains the limiting process. By symme-
try, it is enough to consider the changes in the first coordinate Z̃

N,1
t .

Large Jumps; case 1. Jumps of Z̃
N,1
t of size larger than ε due to a jump at some

coordinate k ≤ N/2 (no change of type).
The jumps of Z̃N,1 of size ε at time t are due to all jumps of XN of size εN

at all sites k ≤ N/2. We calculate the rate of such jumps: plugging the definition
of AN into the definition of IN , multiplying with N/ log(N) for the time-scaling,
multiplying by N/2 since there are N/2 possibilities to have such a jump and,
finally, multiplying by the mass of the intensity measure on E so that such a jump
occurs gives the total jump rate

N

logN

N

2

Z̃
N,2
t

2Z̃
N,1
t

ν
({

y : |y1 − 1| > εN/
(
2Z̃

N,1
t

)})

≤ N

logN

N

2

Z̃
N,2
t

2Z̃
N,1
t

2

π

(
2Z̃

N,1
t /(εN)

)2

= 1

logN

1

ε2

2

π
Z̃

N,1
t Z̃

N,2
t

N→∞−→ 0,

where the inequality for ν comes from the Appendix and for the last convergence
to zero we used the stochastic boundedness of the sequences Z̃

N,i
t , i = 1,2. The

stochastic boundedness is a consequence of tightness in N which is proved before
using moment bounds.
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Large Jumps; case 2. Jumps of Z̃N,1 of size larger than ε at time t due to a jump
at some coordinate k > N/2 (implying a change of type from 2 to 1).

The jump rate for such jumps is calculated and estimated as above:

N

logN
Z̃

N,1
t

N

2

1

2Z̃
N,2
t

ν
({

y : y2 > εN/
(
2Z̃

N,2
t

)})

≤ N

logN
Z̃

N,2
t

N

2

1

2Z̃
N,2
t

2

π

(
2Z̃

N,2
t /(εN)

)2

= 1

logN

1

ε2

2

π
Z̃

N,1
t Z̃

N,2
t

N→∞−→ 0.

Quadratic variation; Case 1. The quadratic variation of Z̃N,1 at time t due to
jumps of size ≤ ε originating from jumps of XN of size ≤ εN at sites k ≤ N/2
grows at rate (compare Lemma A.4 for the asymptotic equivalence)

N

logN

N

2

Z̃
N,2
t

2Z̃
N,1
t

∫
{|y1−1|<εN/(2Z̃

N,1
t )}

(y1 − 1)2
(

2Z̃
N,1
t

N

)2
ν(dy)

= 1

logN
Z̃

N,1
t Z̃

N,2
t

∫
{|y1−1|<εN/(2Z̃

N,1
t )}

(y1 − 1)2ν(dy)

N→∞∼ 1

logN
Z̃

N,1
t Z̃

N,2
t

4

π
log
(
εN/
(
2Z̃

N,1
t

))
N→∞∼ 4

π
Z̃

N,1
t Z̃

N,2
t .

Quadratic variation; Case 2. The quadratic variation of Z̃N,1 at time t due to
jumps of size ≤ ε originating from jumps of XN of size ≤ εN at sites k > N/2
grows at rate (compare Lemma A.3 for the asymptotic equivalence)

N

logN

N

2

Z̃
N,1
t

2Z̃
N,2
t

∫
{y2<εN/(2Z̃

N,2
t )}

y2
2

(
2Z̃

N,2
t

N

)2
ν(dy)

= 1

logN
Z̃

N,1
t Z̃

N,2
t

∫
{y2<εN/(2Z̃

N,2
t )}

y2
2ν(dy)

N→∞∼ 1

logN
Z̃

N,1
t Z̃

N,2
t

4

π
log
(
εN/
(
2Z̃

N,2
t

))
N→∞∼ 4

π
Z̃

N,1
t Z̃

N,2
t .

Summing up, we see that asymptotically there are no jumps of size ≥ ε and the
square variation grows at rate 8

π
Z̃

N,1
t Z̃

N,2
t . However, this is exactly the character-

ization of MCB(8/π ). In the next subsections, we make this reasoning precise and
rigorous by applying general semimartingale theory.
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2.2. Semimartingale setup. The proof of Theorem 1 is based on general limit
theorems for semimartingales that can be found in [13]. For convenience, we col-
lect here some basic facts and definitions. All processes are defined on the state
space

D = {α :R+ →R+ ×R+, α right-continuous with left limits}
equipped with the Skorohod topology. For definitions and properties, the reader
might consult Chapter VI of [13]. Since all appearing processes are semimartin-
gales, we can use criteria for convergence based on the semimartingale character-
istic triplet. In order to describe the triplet of a two-dimensional semimartingale,
let h = ( h1

h2

) :R2 →R
2 be a truncation function [that is, compactly supported with

h(x) = x around the origin]. The truncation function is fixed in the background
and all results of interest are independent of its choice. The characteristic triplet
(see [13], Definition II.2.6) of a two-dimensional semimartingale Y = ( Y 1

Y 2

)
on a

filtered probability space (
,F, (Ft )t≥0,P) is the triplet (B,C,μ) consisting of:

• B = (B1

B2

)
, a predictable process of bounded variation,

• C = (Ci,j )i,j=1,2 = (〈Y i,c, Y j,c〉)i,j=1,2, where Yc = ( Y 1,c

Y 2,c

)
is the continuous

martingale part of Y,
• the compensator measure μ on (R2 × R+,B(R2 × R+)) of the point process

μ� of jumps of Y, also abbreviated as μt(·) = μ(·× [0, t]),
so that the canonical representation of Y holds:

Yt = Y0 + Yc
t + h ∗ (μ�

t − μt

)+ h̄ ∗ μ�
t + Bt , t ≥ 0,

where h̄(x) = x − h(x) and ∗ denotes integration against point processes (see for
instance Section II.1 of [13]). Note that—comparing with the special case of a
Lévy process written in Lévy–Itô form—the canonical representation looks more
familiar when h(x) = x1{|x|≤1}, namely,

(2.1)

Yt = Y0 + Yc
t +
∫ t

0

∫
|x|≤1

x
(
μ� − μ

)
(dx, ds)

+
∫ t

0

∫
|x|>1

xμ�(dx, ds) + Bt , t ≥ 0.

The characteristic triplet depends on the choice of the truncation function h but
since h is kept fixed during the proof, we suppress the dependence on h in the
notation. From now on, we fix the standard truncation function with

h(x) = x1{|x|≤1}.(2.2)
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LEMMA 2.1. For every p ∈ [1,2), i = 1,2 and N ∈N, the processes Z̃N,i are
Lp-martingales and can be written as two-dimensional stochastic integral equa-
tions

Z̃N
t = Z̃N

0 +
N∑

k=1

∫ βN t

0

∫ IN
s−(k)

0

∫
E

1

N
J
(
y,XN

s−(k)
)

× (N −N ′)({k}, dy, dr, ds
)
.

(2.3)

PROOF. The proof of the statement can be found in [15], pages 540–542. Here,
we only give a brief outline of the argument.

Note that (2.3) is an immediate consequence of the definition in (1.14) and the
fact that AN is a q-matrix, and hence all the drift terms cancel. In order to show
that ZN,i is an Lp-martingale, it is enough to show that (for all p ∈ [1,2), t > 0
and k ∈ SN )

(2.4) E

[∫ t

0
IN
s−(k)

∫
E

∣∣J (y,XN
s−(k)
)∣∣pN ′({k}, dy, [0,1], ds

)]
< ∞.

This, however, is a consequence of the fact (which can be checked by a direct
computation) that, by definition of ν,∫

E

∣∣y − (1,0)
∣∣pν(dy) < ∞ for all p ∈ [1,2). �

PROPOSITION 2.2. For the truncation function h(x) = x1{|x|≤1}, the two-
dimensional semimartingale (Z̃N

t )t≥0 from Theorem 1 has the characteristic triplet
(BN,CN,μN) with

BN
t = −βN

N∑
k=1

∫ t

0

∫
E

h̄

(
1

N
J
(
y, X̃N

s (k)
))

ν(dy)ĨN
s (k) ds

= −βN
N∑

k=1

∫ t

0

∫
E

1

N
J
(
y, X̃N

s (k)
)
1{|J (y,X̃N

s (k))|/N>1}ν(dy)ĨN
s (k) ds,

CN = 0,

μN
t (A) = βN

N∑
k=1

∫ t

0

∫
E

1A\{0}
(

1

N
J
(
y, X̃N

s (k)
))

ν(dy)ĨN
s (k) ds,

for t ≥ 0 and A ∈ B(R2).

PROOF. The drift terms of XN cancel in the total mass because the migra-
tion operator AN is a q-matrix. By linearity of the Poissonian integral, we split
the integral over E into two integrals containing the small and the large jumps,
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respectively:

(2.5)

Z̃N
t = Z̃N

0 +
N∑

k=1

∫ βN t

0

∫ IN
s−(k)

0

∫
E

1{|J (y,XN
s−(k))|/N≤1}

× 1

N
J
(
y,XN

s−(k)
)(
N −N ′)({k}, dy, dr, ds

)

+
N∑

k=1

∫ βN t

0

∫ IN
s−(k)

0

∫
E

1{|J (y,XN
s−(k))|/N>1}

× 1

N
J
(
y,XN

s−(k)
)(
N −N ′)({k}, dy, dr, ds

)
.

By Lemma 2.15 below, we have

(2.6)
IN
s−(k)

∫
E

1{|J (y,XN
s−(k))|/N>1}

1

N

∣∣J (y,XN
s−(k)
)∣∣ν(dy)

≤ IN
s−(k)

8

N2

[(
X

N,1
s− (k)

)2 + (XN,2
s− (k)

)2]
.

Let DN < ∞ be as in Lemma 2.3 below. Then, for all k ∈ SN and all s ≥ 0, we
have

IN
s−(k) = ANX

N,i
s− (k)

X
N,3−i
s− (k)

≤ DN

X
N,3−i
s− (k)

if X
N,3−i
s− (k) > 0.

Hence the right-hand side of (2.6) is bounded by 8D2
N/N2 < ∞.

Recall that N ′({k}, dy, dr, ds) = ν(dy) dr ds. Since the right-hand side of (2.6)
is bounded, the compensator integral of the large jumps in (2.5) is well defined,
and we can split the compensated integral of large jumps:

Z̃N
t = Z̃N

0 +
N∑

k=1

∫ βN t

0

∫ IN
s−(k)

0

∫
E

1{|J (y,XN
s−(k))|/N≤1}

× 1

N
J
(
y,XN

s−(k)
)(
N −N ′)({k}, dy, dr, ds

)

+
N∑

k=1

∫ βN t

0

∫ IN
s−(k)

0

∫
E

1{|J (y,XN
s−(k))|/N>1}

(2.7)

× 1

N
J
(
y,XN

s−(k)
)
N
({k}, dy, dr, ds

)

−
N∑

k=1

∫ βN t

0

∫ IN
s−(k)

0

∫
E

1{|J (y,XN
s−(k))|/N>1}

× 1

N
J
(
y,XN

s−(k)
)
N ′({k}, dy, dr, ds

)
.
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Using the definition of N ′, integrating out dr and substituting βN gives the
claim. Note that this final step is also referred to as Grigolionis representation and
can be found for jump diffusion processes for instance in Chapter III.2 of [13]. �

2.3. Moment estimates. In this section, moment bounds are derived. They will
be needed for the tightness proof.

LEMMA 2.3. For every K > 0, we have

P
[
Z

N,i
t ≥ K for some t ≥ 0

]≤ E[ZN,i
0 ]

K
, i = 1,2,N ∈N.

In particular, for all N , we have

DN := sup
t≥0,k∈SN ,i=1,2

X
N,i
t (k) < ∞ a.s.

PROOF. Recall that ZN,i is a martingale (Lemma 2.1). Hence, the claim is a
direct consequence of Doob’s inequality. �

LEMMA 2.4. Let (ZN)N∈N be as in Theorem 1, then

E
[
Z

N,1
t Z

N,2
t

]≤ E
[
Z

N,1
0 Z

N,2
0

]
for all t ≥ 0.

PROOF. Recall from (1.3) the transition semigroup etAN
of AN . By Lem-

ma 3.7 of [15], we get the mixed second moment bound

E
[
X

N,1
t (k)X

N,2
t (l)

]≤ E
[(

etAN

X
N,1
0

)
(k)
(
etAN

X
N,2
0

)
(l)
]
, t ≥ 0.

As in the previous proof, we get

E
[
Z

N,1
t Z

N,2
t

]= E

[
1

N2

N∑
k,l=1

X
N,1
t (k)X

N,2
t (l)

]

≤ E

[
1

N

N∑
k=1

(
etAN

X
N,1
0

)
(k)

1

N

N∑
l=1

(
etAN

X
N,2
0

)
(l)

]
= E
[
Z

N,1
0 Z

N,2
0

]

for all t ≥ 0 and N ∈ N. �

LEMMA 2.5. There exists a constant C < ∞ such that (with the convention
0 log 0 = 0)

1

N

N∑
k=1

E
[∣∣XN,i

t (k) log
(
X

N,i
t (k)

)∣∣]≤ C for all t ≥ 0,N ∈N, i = 1,2.(2.8)
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PROOF. Let p ∈ (1,2) as in the formulation of Theorem 1. Note that
|x log(x)| ≤ 1 for x ∈ [0,1]. Furthermore, for x ≥ 1, we have log(x) = 1

p−1 ×
log(xp−1) ≤ xp−1

p−1 . Summing up, we have

∣∣x log(x)
∣∣≤ 1 + xp

p − 1
for all x ≥ 0.

Hence, the left-hand side in (2.8) is bounded by

(2.9) 1 + 1

p − 1

1

N

N∑
k=1

E
[(

X
N,i
t (k)

)p]
.

Recall that Qx(dy) denotes the harmonic measure of planar Brownian motion on
[0,∞)2 started at x = (x1, x2) ∈ [0,∞)2. By Theorem 2 of [16], we get

(2.10) E
[
X

N,i
t (k)p

]= E

[∫
E

y
p
i Q

(etAN
XN

0 )(k)
(dy)

]
.

By Lemma 2.3 of [16], we have

(2.11)
∫
E

y
p
i Qx(dy) ≤ π

sin(p/2)

sin((π/2)p)

(
x2

1 + x2
2
)p/2 for x ∈ [0,∞)2.

Note that φ : [1,2] →R, p �→ (2−p) sin(p/2)/ sin((π/2)p) is maximal for p = 2
with φ(2) = 2 sin(1)/π ≤ 2/π . Further, note that (x2

1 + x2
2)p/2 ≤ x

p
1 + x

p
2 . Con-

cluding, we have

(2.12)
∫
E

y
p
i Qx(dy) ≤ 2

2 − p

(
x

p
1 + x

p
2

)
for x ∈ [0,∞)2.

Combining (2.10) and (2.12), using Jensen’s inequality in the second line and the
assumption (1.16) in the fourth line, we obtain

1

N

N∑
k=1

E
[(

X
N,i
t (k)

)p]≤ 2

2 − p

1

N

N∑
k=1

E
[((

etAN

X
N,1
0

)
(k)
)p + ((etAN

X
N,2
0

)
(k)
)p]

≤ 2

2 − p

2∑
j=1

1

N

N∑
k,l=1

E
[
etAN

(k, l)
(
X

N,j
0 (l)

)p]

= 2

2 − p

2∑
j=1

1

N

N∑
l=1

E
[(

X
N,j
0 (l)

)p]≤ 4Cp

2 − p
.

Hence, the claim holds with C := 1 + 4Cp

(2−p)(p−1)
. �

COROLLARY 2.6. Define

(2.13) Y
N,i
t := 2

N

N∑
k=1

X̃
N,i
t (k)

(
2 + ∣∣log

(
X̃

N,i
t (k)

)∣∣),
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then there exists a constant C < ∞ such that

E
[
Y

N,i
t

]≤ C for all t ≥ 0,N ∈ N, i = 1,2.

The next identity will be used frequently. It is a result of the choice of AN .

LEMMA 2.7. For i = 1,2, we have

X̃N,i
s (k)ĨN,3−i

s (k) = 1{X̃N,i
s (k) �=0}A

NX̃N,3−i
s (k) = 1{X̃N,i

s (k) �=0}Z̃
N,3−i
s

for any k = 1, . . . ,N .

PROOF. The first equality is immediate from the definition of Ĩ N,3−i
s (k).

The second equality is a direct consequence of the definition of IN , Z̃N and
AN . In fact, note that {X̃N,i

s (k) �= 0} ⊂ {X̃N,3−i
s (k) = 0}. Hence,

1{X̃N,i
s (k) �=0}A

NX̃N,3−i
s (k) = 1{X̃N,i

s (k) �=0}

(
N∑

l=1

1

N
X̃N,3−i

s (l) − X̃N,3−i
s (k)

)

= 1{X̃N,i
s (k) �=0}

(
N∑

l=1

1

N
X̃N,3−i

s (l)

)

= 1{X̃N,i
s (k) �=0}Z̃

N,3−i
s .

This proves the second equality. �

The tightness proof requires a subtle choice of the order pN of the moments to
be computed.

LEMMA 2.8. Define pN = 2 − 1
logN

∈ (1,2) for N = 3,4, . . . . Then

N2

NpN logN

1

2 − pN

= e.

PROOF. Plugging-in. �

LEMMA 2.9. Let (Z̃N)N∈N be as in Theorem 1 and pN = 2 − 1
logN

, then

sup
N≥2

E

[
sup
t≤T

∣∣Z̃N,i
t − Z̃

N,i
0

∣∣pN
]
≤ 1218TE

[
Z

N,1
0 Z

N,2
0 + Z

N,1
0 + Z

N,2
0

]
,

for T > 0 and i = 1,2.
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PROOF. We only deal with the case i = 1, the argument for i = 2 is analogous.
Using (2.3) gives

E

[
sup
t≤T

∣∣Z̃N,1
t − Z̃

N,1
0

∣∣pN
]
= E

[
sup
t≤T

∣∣∣∣∣ 1N
N∑

k=1

M
N,1
βN t

(k)

∣∣∣∣∣
pN
]

=: 1

NpN
E

[
sup
t≤T

∣∣UN,1
βN t

∣∣pN
]

with the martingales

M
N,1
t (k) =

∫ t

0

∫ IN
s−(k)

0

∫
E

J1
(
y,XN

s−(k)
)(
N −N ′)({k}, dy, dr, ds

)
.

The Burkholder–Davis–Gundy inequality (see, e.g., [10], Theorem VII.92) applied
to the martingale UN,1 gives

1

NpN
E

[
sup
t≤T

∣∣UN,1
βN t

∣∣pN
]
≤ CpN

NpN
E
[[

UN,1· ,UN,1·
]pN/2
βNT

]
,(2.14)

where Cp = (4p)p is the Burkholder–Davis–Gundy constant and [UN,1· ,UN,1· ] is
the quadratic variation of the pure jump martingale UN,1. Note that supp∈[1,2] Cp =
64 < ∞, so CpN

is bounded from above by 64. Next, we need to bound the right-
hand side of (2.14) from above. Note that [UN,1· ,UN,1· ]t is the sum of the squared
jumps of UN,1 up to time t . Hence,[

UN,1· ,UN,1·
]pN/2
βN t

=
(

N∑
k=1

∫ βN t

0

∫ IN
s−(k)

0

∫
E

J1
(
y,XN

s−(k)
)2N ({k}, dy, dr, ds

))pN/2

(2.15)

≤
N∑

k=1

∫ βN t

0

∫ IN
s−(k)

0

∫
E

∣∣J1
(
y,XN

s−(k)
)∣∣pNN

({k}, dy, dr, ds
)
,

where the last inequality follows from the elementary inequality (
∑

i ai)
q ≤∑i a

q
i

for all ai ≥ 0 and 0 < q ≤ 1. In fact, the sum over the triple integral in the second
line is an infinite sum with summands ai = J1(yi,X

N
si−(ki))

2 for certain random
points (yi, si, ki) since we integrate against a Poisson point measure.

Now take expectations on both sides of (2.15), recall that N ′ is the compensator
measure of N , to get

E
[[

UN,1· ,UN,1·
]pN/2
βN t

]

≤ E

[
N∑

k=1

∫ βN t

0

∫ IN
s−(k)

0

∫
E

∣∣J1
(
y,XN

s−(k)
)∣∣pNN ′({k}, dy, dr, ds

)]
.
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Applying the definition of N ′, substituting βN = N
logN

in the time-index and plug-
ging in the definition of J gives for (2.14) the upper bound

64N

NpN logN
E

[
N∑

k=1

∫ T

0

∫ Ĩ N
s (k)

0

∫
E

∣∣J1
(
y, X̃N

s (k)
)∣∣pNN ′({k}, dy, dr, ds

)]

= 64N2

NpN logN
E

[
1

N

N∑
k=1

∫ T

0

∫ ∞
0

∣∣(y1 − 1)X̃N,1
s (k)

∣∣pN

× Ĩ N,2
s (k)

4

π

y1

(1 − y1)2(1 + y1)2 dy1 ds

]

+ 64N2

NpN logN
E

[
1

N

N∑
k=1

∫ T

0

∫ ∞
0

∣∣−X̃N,1
s (k)

∣∣pN(2.16)

× Ĩ N,2
s (k)

4

π

y2

(1 + y2
2)2

dy2 ds

]

+ 64N2

NpN logN
E

[
1

N

N∑
k=1

∫ T

0

∫ ∞
0

∣∣y2X̃
N,2
s (k)

∣∣pN

× Ĩ N,1
s (k)

4

π

y2

(1 + y2
2)2

dy2 ds

]
.

Let us recall the discussion before the statement of Theorem 1 to explain the reason
for the three cases on the right-hand side of the equality: In order to change the
first coordinate at some given site k only three of the four types of jumps are being
counted: (

x
0

)
�→
(
y1x
0

)
or
(
x
0

)
�→
(

0
y2x

)
or
(

0
x

)
�→
(
y2x
0

)
and these correspond to the three integrals in the same order. To bound the in-
tegrands of the summands, we first use the trivial bound apN−1 ≤ 1 + a and
Lemma 2.7 to get

1

N

N∑
k=1

(
X̃N,i

s (k)
)pN ĨN,3−i

s (k)

= 1

N

N∑
k=1

(
X̃N,i

s (k)
)pN−11{X̃N,i

s (k) �=0}A
NX̃N,3−i

s (k)

(2.17)

≤ 1

N

N∑
k=1

(
1 + X̃N,i

s (k)
)
1{X̃N,i

s (k) �=0}Z̃
N,3−i
s

≤ Z̃N,3−i
s + Z̃N,1

s Z̃N,2
s .
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Using the Fubini–Tonelli theorem and plugging in (2.17) then yields as an upper
bound for (2.16)

64N2

NpN logN

(∫ ∞
0

|y1 − 1|pN y1

(1 − y1)2(1 + y1)2 dy1

+
∫ ∞

0

y2

(1 + y2
2)2

dy2 +
∫ ∞

0

y
pN+1
2

(1 + y2
2)2

dy2

)

×E

[∫ T

0
Z̃N,1

s Z̃N,2
s ds +

∫ T

0
Z̃N,1

s ds +
∫ T

0
Z̃N,2

s ds

]
.

We compute∫ ∞
0

y2

(1 + y2
2)2

dy2 = π

4
≤ 1

2 − pN

,

∫ ∞
0

y
pN+1
2

(1 + y2
2)2

dy2 ≤ 1 +
∫ ∞

1
y

pN−3
2 = 1 + 1

2 − pN

≤ 2

2 − pN

and ∫ ∞
0

|y1 − 1|pN y1

(1 − y1)2(1 + y1)2 dy1

≤
∫ 2

0
|1 − y1|pN−2 dy1 +

∫ ∞
1

(y1 − 1)pN y1

(1 − y1)2(1 + y1)2 dy1

≤ 2

2 − pN

+
∫ ∞

0

y
pN+1
1

(y2
1 + 1)2

dy1 ≤ 4

2 − pN

.

Summing up, we get as an upper bound for (2.16)

448
N2

NpN logN

1

2 − pN

E

[∫ T

0
Z̃N,1

s Z̃N,2
s ds +

∫ T

0
Z̃N,1

s ds +
∫ T

0
Z̃N,2

s ds

]
.

Lemma 2.8 and the choice pN = 2 − 1
logN

gives

N2

NpN logN

1

2 − pN

≡ e.

Lemmas 2.1 and 2.4 then imply the final bound

E

[
sup
t≤T

∣∣Z̃N,1
t − Z̃

N,1
0

∣∣pN
]
≤ 448eTE

[
Z

N,1
0 Z

N,2
0 + Z

N,1
0 + Z

N,2
0

]

and the proof is complete. �
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2.4. Tightness arguments. The tightness of (Z̃N)N∈N is proved with Aldous’s
tightness criterion (see Aldous [1], Theorem 1, or [17], Theorem 6.8). According
to that, in order to prove that (Z̃N)N∈N is tight in the Skorokhod space, it is enough
to show that:

(i) for every fixed t ≥ 0, the set of random variables (Z̃N
t )N∈N is tight,

(ii) for every sequence of stopping times (τN)N∈N for the filtrations generated
by (Z̃N)N∈N, bounded above by some T > 0, and for every sequence of positive
real numbers (δN)N∈N converging to 0, |Z̃N

τN+δN
− Z̃N

τN
| → 0 in probability as

N → ∞.

We start with (i).

LEMMA 2.10. Under the assumptions of Theorem 1, the sequence (Z̃N
t )N∈N

(with values in [0,∞)2) is tight for any t > 0.

PROOF. From Doob’s inequality and Lemma 2.1, we obtain, for T > 0 and
K > 0,

lim sup
N→∞

P

[
sup
t≤T

Z
N,i
t > K

]
≤ lim sup

N→∞
E[ZN,i

0 ]
K

< ∞, i = 1,2.

Hence, the tightness of (Z̃N
t )N∈N follows immediately for any t ≥ 0. �

Let us next deal with (ii).

LEMMA 2.11. Let (Z̃N)N∈N and Cp be as in Theorem 1 and suppose
(τN)N∈N is a sequence of stopping times for the filtrations generated by (Z̃N)N∈N,
uniformly bounded by some T > 0. Then, for every δ ∈ (0,1) and N ∈ N we have

E
[∣∣Z̃N,i

τN+δ − Z̃N,i
τN

∣∣3/2]≤ 105Cp

√
δ, i = 1,2.

In particular, if δN → 0, then

∣∣Z̃N,i
τN+δN

− Z̃N,i
τN

∣∣ P−→ 0, i = 1,2,

as N → ∞.

PROOF. The lemma is mostly a consequence of the moment bounds and the
strong Markov property: Using Lemma 2.9 and Jensen’s inequality for conditional
expectations with pN = 2 − 1

logN
∈ (1,2) gives

E
[∣∣Z̃N,i

τN+δ − Z̃N,i
τN

∣∣pN/2]
≤ E
[
E
[∣∣Z̃N,i

τN+δ − Z̃N,i
τN

∣∣pN | FτN

]1/2]
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= E
[
E

Z̃N
τN

[∣∣Z̃N,i
δ − Z̃

N,i
0

∣∣pN
]1/2]

≤ √
1218

√
δE
[(

Z̃N,1
τN

Z̃N,2
τN

+ Z̃N,1
τN

+ Z̃N,2
τN

)1/2]
≤ 35

√
δ
(
E
[(

Z̃N,1
τN

Z̃N,2
τN

)1/2]+E
[(

Z̃N,1
τN

)1/2]+E
[(

Z̃N,2
τN

)1/2])
.

For the last inequality, we used the elementary inequality
√

a + b + c ≤ √
a +√

b + √
c, a, b, c ≥ 0. Since Z̃N,i is a nonnegative supermartingale, by the op-

tional sampling theorem, we get E[Z̃N,i
τN

] ≤ E[ZN,i
0 ]. Hence, also using Hölder’s

inequality,

E
[(

Z̃N,i
τN

)1/2]≤ 1 +E
[
Z̃N,i

τN

]≤ 1 +E
[
Z

N,i
0

]≤ Cp,

E
[(

Z̃N,1
τN

Z̃N,2
τN

)1/2]≤ E
[
Z̃N,1

τN

]1/2
E
[
Z̃N,2

τN

]1/2 ≤ (E[ZN,1
0

]
E
[
Z

N,2
0

])1/2
.

By Markov’s inequality and the moment assumption on the initial conditions, the
right-hand sides of each of the above inequalities are bounded by Cp . Hence, the
claim follows. �

Next, we prove that the sequence (Z̃N)N∈N is C-tight, that is, it is tight and all
possible limit points are continuous processes. The next proof is also needed in the
final step of the proof of Lemma 2.14 below.

LEMMA 2.12. Under the assumptions of Theorem 1, the sequence (Z̃N)N∈N
is C-tight.

PROOF. By Proposition VI.3.26(iii) of [13], we need to show that

lim
N→∞P

[
sup
s≤t

∣∣�Z̃N,i
s

∣∣> ε
]
= 0(2.18)

for all t, ε > 0. According to Lemma VI.4.22 of [13] this can be deduced from

lim
N→∞E

[
μN

t

({|x| > ε
})]= 0,(2.19)

with μN from Proposition 2.2. By Corollary A.6 of [15], we have

ν
({

y : ∣∣J (y, (1,0)
)∣∣≥ L

})≤ 2L−2 for all L > 0.

Note that

J
(
y, (x1,0)

)= x1J
(
y, (1,0)

)
and Ji

(
y, (0, x2)

)= J3−i

(
(y2, y1), (x2,0)

)
for x1 ≥ 0, y ∈ E and i = 1,2. Hence, we infer

ν
({

y : ∣∣J (y, x)
∣∣≥ L
})≤ 2

x2
1 + x2

2

L2 for all x ∈ E,L > 0.
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Hence, using Proposition 2.2, Lemma 2.7 and Lemma 2.4,

E
[
μN

t

({
x : |x| > ε

})]

= E

[
N

logN

N∑
k=1

∫ t

0

∫
E

1{|J (y,X̃N
s (k))|/N>ε}ν(dy)ĨN

s (k) ds

]

≤ E

[
2

logN
ε−2 1

N

N∑
k=1

∫ t

0

[
X̃N,1(k)2Ĩ N,2

s (k) + X̃N,2(k)2Ĩ N,1
s (k)

]
ds

]
(2.20)

= 4

logN
ε−2
∫ t

0
E
[
Z̃N,1

s Z̃N,2
s

]
ds

≤ 4t

logN
ε−2

E
[
Z

N,1
0 Z

N,2
0

] N→∞−→ 0. �

2.5. Proof of convergence. To prove convergence of (Z̃N)N∈N to a solution of
(1.17), we use general semimartingale theory; see Chapter IX of [13]. By Theo-
rem IX.2.4 of [13], if (YN)N∈N is a sequence of two-dimensional semimartingales
with modified characteristics (BN, C̃N,μN) and(

YN,BN, C̃N ) N→∞=⇒ (Y,B, C̃),

(
YN,g ∗ μN ) N→∞=⇒ (Y, g ∗ μ),

(2.21)

then Y is a semimartingale with characteristic triplet (B,C,μ). The test functions
g : R2 → R are continuous, bounded and vanish in a neighbourhood of the origin
(in the terminology of [13] this is the class C2(R

2) ⊃ C1(R
2) defined in [13],

VII.2.7) and the modified characteristic C̃N is defined as

C̃N,i,j := CN,i,j + (hihj ) ∗ μN −∑
s≤·

�BN,i
s �BN,j

s , i, j = 1,2.

The convergence results for semimartingales are independent of the choice of the
continuous and bounded truncation function h = ( h1

h2

) : R2 → R
2 which appears

in the definition of the characteristic triplet.

REMARK 2.13. The reader may recall that in (2.2) we chose the truncation
function h = ( h1

h2

)
with

hi(x) = xi1{|x|≤1}, i = 1,2.(2.22)

Of course, h is not continuous but our proofs are valid nonetheless as explained in
the proof of the next lemma.

In the next lemma, we identify the characteristics of any limiting point of the
sequence (Z̃N)N∈N.
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LEMMA 2.14. If Z = (Z1

Z2

)
is a limiting point of the sequence (Z̃N)N∈N from

Theorem 1, then Z is a semimartingale with characteristic triplet:

B = 0, μ = 0 and Ci,j· = 1{i=j}
8

π

∫ ·

0
Z1

s Z
2
s ds, i, j = 1,2.

PROOF. Suppose Z is the weak limit of (Z̃Nk) for some subsequence (Nk). For
ease of notation, we replace the subsequence Nk by the entire sequence of natural
numbers.

By Proposition 2.2, we get C̃N,i,j = (hihj ) ∗ μN because CN = 0 and t �→ BN
t

is continuous (as a sum over integrals over the interval [0, t]). The main task in the
proof of Lemma 2.14 is to show that

(2.23)

(
Z̃N,BN,hihj ∗ μN )

N→∞=⇒
(

Z,0,1{i=j}
8

π

∫ ·

0
Z1

s Z
2
s ds

)
, i, j = 1,2,

and (
Z̃N,g ∗ μN ) N→∞=⇒ (Z,0).(2.24)

With (2.23) and (2.24) at hand one would like to apply (2.21) and Theorem IX.2.4
of [13] to complete the proof of the lemma; however, we have a technical issue.
In order to apply (2.21) and Theorem IX.2.4 of [13], one needs the truncation
function h, which is used in the definition of characteristics, to be continuous.
However, the truncation function h defined in (2.22) is discontinuous. Let us show
that our choice of h suffices to prove the convergence result. Suppose h̃ is another
truncation function such that h̃(x) = h(x) for |x| ≤ 1, supp(h̃) ⊂ {x : |x| ≤ 2}
and h̃ is bounded and continuous and such that | ¯̃h| ≤ |h̄|, where as before h̄(x) =
x − h(x) and ¯̃

h(x) = x − h̃(x). For example, take

h̃(x) =
{
h(x), if |x| ≤ 1,

h
(
x/|x|) · (2 − |x|)+, if |x| ≥ 1.

Now denote by BN(f ) and CN(f ) the modified characteristic with truncation
function f . Then

∣∣BN
t (h̃)
∣∣=
∣∣∣∣∣βN

N∑
k=1

∫ t

0

∫
E

¯̃
h

(
1

N
J
(
y, X̃N

s (k)
))

ν(dy)ĨN
s (k) ds

∣∣∣∣∣
≤ βN

N∑
k=1

∫ t

0

∫
E

∣∣∣∣ ¯̃h
(

1

N
J
(
y, rXN

s (k)
))∣∣∣∣ν(dy)ĨN

s (k) ds

≤ βN
N∑

k=1

∫ t

0

∫
E

∣∣∣∣h̄
(

1

N
J
(
y, rXN

s (k)
))∣∣∣∣ν(dy)ĨN

s (k) ds
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and the right-hand side is later shown to vanish in the limit; see (2.28) and calcu-
lations below it.

Also note that by (2.19),

E
[
h̃i h̃j 1{|·|∈(1,2]} ∗ μN

t

] ≤ ‖h̃i‖∞‖h̃j‖∞E
[
μN

t

({|x| ≥ 1
})]

(2.25)
N→∞−→ 0, t ≥ 0,

so that the identity

C̃
N,i,j
t (h̃) = h̃i h̃j ∗ μN

t = hihj ∗ μN
t + h̃i h̃j 1{|·|∈(1,2]} ∗ μN

t(2.26)

implies that the pointwise limits of C̃
N,i,j
t (h̃) and C̃

N,i,j
t (h) coincide. Thus, ac-

cording to the above and (2.21), the lemma is proved if we can show (2.23) and
(2.24) with h as in (2.22).

Before we start proving (2.23) and (2.24), we use Skorohod’s theorem (Theo-
rem 3.1.8 of [12]) to assume in what follows that (Z̃N)N∈N converges almost surely
in the Skorokhod topology to a limit Z and not only weakly. Later in the proof, we
will assume this almost sure convergence (instead of convergence in probability)
also for two auxiliary processes. Additionally, we proved in Lemma 2.12 that Z
is a continuous process, thus, (Z̃N)N∈N converges to Z locally uniformly in time
(Proposition VI.1.17 of [13]). But then we also have almost sure convergence of

lim
N→∞

∫ t

0
f
(
Z̃N

s

)
ds =
∫ t

0
f (Zs) ds < ∞(2.27)

for any continuous f :R+ ×R+ →R uniformly for t ∈ [0, T ] for all T ≥ 0.
Proof of (2.23). Since the limit Z is continuous, it suffices to prove sepa-

rately Skorokhod convergence of the characteristics for each coordinate (Propo-
sition VI.2.2(b) of [13]). The almost sure convergence of (Z̃N)N∈N to Z can be
assumed as explained above (2.27); the latter two are proved in what follows.

The maps t �→ 8
π

∫ t
0 Z1

s Z
2
s ds and t �→ 0 are nondecreasing; hence, in order to

prove Skorokhod convergence of the coordinates in (2.23), it is enough to prove
the following convergence (Proposition VI.1.17 of [13]): For every t0 > 0, almost
surely, we have uniformly in t ∈ [0, t0],

BN
t

N→∞−→ 0(2.28)

and

hihj ∗ μN
t

N→∞−→ 1{i=j}
8

π

∫ t

0
Z1

s Z
2
s ds.(2.29)

The most delicate part is (2.29) which we prove first. Note that all what follows is
based on the almost sure convergence of (Z̃N)N∈N so that all convergence state-
ments are in the almost sure sense even if not mentioned explicitly.
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Verification of (2.29). Let t0 > 0 and t ∈ [0, t0]. Applying Proposition 2.2, one
finds

hihj ∗ μN
t = βN

N∑
k=1

∫ t

0

∫
E

hi

(
1

N
J
(
y, X̃N

s (k)
))

× hj

(
1

N
J
(
y, X̃N

s (k)
))

Ĩ N
s (k)ν(dy) ds.

Using the definition of J and ν [compare also with the decomposition in four
cases discussed above Theorem 0 or the discussion below (2.16)] yields

hihj ∗ μN
t

= βN
N∑

k=1

∫ t

0

∫ ∞
0

hi

(
y1 − 1

N
X̃N,1

s (k),0
)

× hj

(
y1 − 1

N
X̃N,1

s (k),0
)
Ĩ N,2
s (k)ν

(
d(y1,0)

)
ds

+ βN
N∑

k=1

∫ t

0

∫ ∞
0

hi

(
− 1

N
X̃N,1

s (k),
y2

N
X̃N,1

s (k)

)

× hj

(
− 1

N
X̃N,1

s (k),
y2

N
X̃N,1

s (k)

)
Ĩ N,2
s (k)ν

(
d(0, y2)

)
ds

+ βN
N∑

k=1

∫ t

0

∫ ∞
0

hi

(
0,

y1 − 1

N
X̃N,2

s (k)

)

× hj

(
0,

y1 − 1

N
X̃N,2

s (k)

)
Ĩ N,1
s (k)ν

(
d(y1,0)

)
ds

+ βN
N∑

k=1

∫ t

0

∫ ∞
0

hi

(
y2

N
X̃N,2

s (k),− 1

N
X̃N,2

s (k)

)

× hj

(
y2

N
X̃N,2

s (k),− 1

N
X̃N,2

s (k)

)
Ĩ N,1
s (k)ν

(
d(0, y2)

)
ds

=: T N,1
t + T

N,2
t + T

N,3
t + T

N,4
t .

(2.30)

In what follows, we discuss separately the limit of each summand T
N,1
t , . . . , T

N,4
t

of (2.30) for the cases i �= j and i = j .
Convergence of (2.30)—the cases i �= j . First, note that the choice of h yields

h1(x)h2(x) = x1x21{|x|≤1} so that T
N,1
t and T

N,3
t vanish. Next, we only show that

T
N,2
t vanishes in the limit, the bounds for T

N,4
t are precisely the same exchanging
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the roles of XN,1 and XN,2:

∣∣T N,2
t

∣∣≤ βN
N∑

k=1

∫ t0

0

∫ ∞
0

1

N
X̃N,1

s (k)
y2

N
X̃N,1

s (k)

× 1{y2X̃
N,1
s (k)/N≤1}Ĩ

N,2
s (k)ν

(
d(0, y2)

)
ds.

Rearranging terms, Lemma 2.7, Lemma A.5 and plugging-in the definitions leads
to the upper bound

∣∣T N,2
t

∣∣≤
∫

y2ν(dy)

logN

∫ t0

0

1

N

N∑
k=1

X̃N,1
s (k)Z̃N,2

s ds = 1

logN

∫ t0

0
Z̃N,1

s Z̃N,2
s ds.

The right-hand side almost surely converges to zero as N → ∞ due to (2.27). This
completes the proof of (uniformly in t ∈ [0, t0])

lim
N→∞hihj ∗ μN

t = 0 for i �= j.

Bounding (2.30)—the cases i = j . It suffices to discuss i = j = 1 as the case
i = j = 2 follows from the same calculations by symmetry in XN,1 and XN,2. We
deal with the cases T

N,1
t , . . . , T

N,4
t separately.

Claim (i): limN→∞ T
N,1
t = 4

π

∫ t
0 Z1

s Z
2
s ds.

Lemma 2.7 gives

T
N,1
t = βN

N∑
k=1

∫ t

0

∫
(0,∞)×{0}

(y1 − 1)2

N2

(
X̃N,1

s (k)
)2

× 1{|y1−1|X̃N,1
s (k)/N≤1}Ĩ

N,2
s (k)ν(dy) ds

≤ 1

logN

∫ t

0
Z̃N,2

s

1

N

N∑
k=1

X̃N,1
s (k)

∫
(1,1+N/X̃

N,1
s (k))×{0}

(y1 − 1)2ν(dy) ds

+ 1

logN

∫ t

0
Z̃N,2

s

1

N

N∑
k=1

X̃N,1
s (k)

∫
(0,1]×{0}

(y1 − 1)2ν(dy) ds

=: T N,1,1
t + T

N,1,2
t .

By [15], Lemma A.4, for x > 0, we have

(2.31)
∫
(0,x)×{0}

(y1 − 1)2ν(dy) = 4

π

(
log(1 + x) − x

1 + x

)
.

Hence,
∫
(0,1]×{0}(y1 − 1)2ν(dy) ≤ 1 and

∣∣T N,1,2
t

∣∣≤ 1

logN

∫ t0

0
Z̃N,1

s Z̃N,2
s ds

which tends to zero by (2.27).
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We now show that T
N,1,1
t

N→∞−→ 4
π

∫ t
0 Z1

s Z
2
s ds. By (2.31), we get

(2.32)

∣∣∣∣ 4π log(N) −
∫
(1,1+N/x)×{0}

(y1 − 1)2ν(dy)

∣∣∣∣
= 4

π

∣∣∣∣log
(

2

N
+ 1

x

)
− log(2) − 1 + N/x

2 + N/x
+ 1

2

∣∣∣∣≤ 3 + 2
∣∣log(x)

∣∣.
For the last inequality in (2.32), note that by Lemma A.1∣∣∣∣log

(
2

N
+ 1

x

)∣∣∣∣≤ ∣∣log(x)
∣∣+ 2

N
≤ ∣∣log(x)

∣∣+ 1.

Furthermore, we have (1 + N/x)/(2 + N/x) ∈ [1/2,1], and hence∣∣∣∣− log(2) − 1 + N/x

2 + N/x
+ 1

2

∣∣∣∣≤ log(2) + 1

2
.

Finally, since 4
π
(log(2) + 1

2 + 1) ≤ 3, we get the last inequality in (2.32).
Hence, we can write

T
N,1,1
t =: 4

π

∫ t

0
Z̃N,1

s Z̃N,2
s ds + T

N,1,1,1
t

with [recall the definition of YN,i
s from (2.13)]

∣∣T N,1,1,1
t

∣∣≤ 1

logN

∫ t0

0
Z̃N,2

s YN,1
s ds.

By Corollary 2.6, there exists a C < ∞ such that

E
[
YN,1

s

]≤ C for all s ≥ 0,N ∈ N.

Let ε > 0 be arbitrary. Since Z̃N,2 is a nonnegative martingale, Doob’s inequal-
ity (Lemma 2.3) yields that for K = Kε > 0 large enough and for all N ∈ N, we
have

P

[
sup
s≥0

Z̃N,2
s ≥ K

]
≤ 1

K
E
[
Z̃

N,2
0

]≤ ε.

Define the event

Aε :=
{
sup
s≥0

Z̃N,2
s ≤ K

}
.

Hence,

E
[∣∣T N,1,1,1

t

∣∣1Aε

]≤ K · 1

logN

∫ t0

0
E
[
YN,1

s

]
ds ≤ CKt0

logN

N→∞−→ 0.

Together with P[Ac
ε] < ε, this yields that |T N,1,1,1

t | N→∞−→ 0 uniformly in t ∈ [0, t0]
in probability. Hence, the pair (Z̃N,T

N,1,1,1
t )N∈N converges in probability and by
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Skorokhod’s theorem, we can choose a probability space such that the convergence
is even almost sure. Putting everything together we proved Claim (i).

Claim (ii): limN→∞ T
N,2
t = 0.

Lemma 2.7 gives

0 ≤ T
N,2
t ≤ βN

N∑
k=1

∫ t0

0
Z̃N,2

s

1

N2 X̃N,1
s (k)

∫ ∞
0

ν
(
d(0, y2)

)
ds

= ν({0} ×R
+)

logN

∫ t0

0
Z̃N,1

s Z̃N,2
s ds.

By definition, ν({0} ×R+) < ∞; thus, the right-hand side goes to zero by (2.27).
Claim (iii): limN→∞ T

N,3
t = 0.

The integral T
N,3
t equals zero almost surely for all t ≥ 0 and N ∈ N since the

integrand vanishes by definition of hi .
Claim (iv): limN→∞ T

N,4
t = 4

π

∫ t
0 Z1

s Z
2
s ds.

To prove the claim, we establish an upper bound and a lower bound with the
same limit. Lemma 2.7 and the definition of ν give

0 ≤ T
N,4
t

≤ βN
N∑

k=1

∫ t0

0

∫ ∞
0

(
y2

N
X̃N,2

s (k)

)2
1{y2X̃

N,2
s (k)/N≤1}Ĩ

N,1
s (k)ν

(
d(0, y2)

)
ds

= 1

logN

∫ t0

0
Z̃N,1

s

1

N

N∑
k=1

X̃N,2
s (k)

∫
{0}×(0,N/X̃

N,2
s (k))

y2
2ν(dy) ds.

By Lemma A.2 of [15], for x > 0, we have∫
{0}×(0,x)

y2
2ν(dy) = 2

π
log
(
1 + x2)− 2

π

x2

1 + x2 .

Hence, by Lemma A.1,∣∣∣∣ 4π log(N) −
∫
{0}×(0,N/x)

y2
2ν(dy)

∣∣∣∣
≤ N2

x2 + N2 + ∣∣log
(
1 + N2/x2)− 2 log(N)

∣∣
≤ 1 + ∣∣log

(
1/N2 + 1/x2)∣∣

≤ 1 + 1

N2 + 2
∣∣log(x)

∣∣≤ 2 + 2
∣∣log(x)

∣∣.
Recall the definition of YN,i

s from (2.13). We infer

T
N,4
t =: 4

π

∫ t

0
Z̃N,1

s Z̃N,2
s ds + T

N,4,1
t
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with

∣∣T N,4,1
t

∣∣≤ 1

logN

∫ t0

0
Z̃N,1

s YN,2
s ds.

Reasoning as above for T
N,1,1,1
t , we conclude that T

N,4,1
t

N→∞−→ 0 uniformly in
t ∈ [0, t0] a.s. Hence, we proved Claim (iv). �

Verification of (2.28). We start with a lemma for bounding the first moments of
the jumps.

LEMMA 2.15. For all δ > 0 and x ∈ E, we have∫
δ
∣∣J (y, x)

∣∣1(1,∞)

(
δ
∣∣J (y, x)

∣∣)ν(dy) ≤ 8
(
x2

1 + x2
2
)
δ2.

PROOF. By symmetry and linearity of J , it is enough to consider the case
δ = 1 (otherwise replace δx by x̃) and x = (x1,0). The case x = (0, x2) is analo-
gous. Hence,

∣∣J (y, x)
∣∣≤ ∣∣J1(y, x)

∣∣+ ∣∣J2(y, x)
∣∣= (|y1 − 1| + y2

)
x1.

Note that 0 < y2 ≤ (1/x1) − 1 under ν(dy) implies y1 = 0 and |J (y, x)| =
x1

√
y2

2 + 1 ≤ x1(y2 + 1) ≤ 1, thus,

x−1
1

∫
E

∣∣J (y, x)
∣∣1(1,∞)

(∣∣J (y, x)
∣∣)ν(dy)

≤
∫
|y1−1|>1/x1,y2=0

|y1 − 1|ν(dy) +
∫
y2>(1/x1)−1,y1=0

(1 + y2)ν(dy).

Note that (since the first factor in the second integral to come is bounded by 1)∫
|y1−1|>1/x1,y2=0

|y1 − 1|ν(dy)

= 4

π

∫
(0,(1−1/x1)∨0)∪(1+1/x1,∞)

|y1 − 1|y1

(1 + y1)2

1

(1 − y1)2 dy1 ≤ 8

π
x1.

Similarly (note that the first factor in the second integral is easily bounded by 4),

∫
y2>(1/x1)−1

(1 + y2)ν(dy) = 4

π

∫ ∞
0∨((1/x1)−1)

y2(y2 + 1)3

(y2
2 + 1)2

1

(y2 + 1)2 dy2 ≤ 16

π
x1.

The claim follows since 8+16
π

≤ 8.
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Let t0 > 0 and t ∈ [0, t0]. By Proposition 2.2, Lemma 2.7 and Lemma 2.15 with
δ = 1/N , we get (2.28) since

∣∣BN
t (h)
∣∣≤ βN

N∑
k=1

∫ t0

0

∫
E

1

N

∣∣J (y, X̃N
s (k)
)∣∣1{|J (y,X̃N

s )|/N≥1}ν(dy)ĨN
s (k) ds

≤ 8

logN

∫ t0

0

1

N

N∑
k=1

[(
X̃N,1

s (k)
)2

Ĩ N,2
s (k) + (X̃N,2

s (k)
)2

Ĩ N,1
s )(k)

]
ds

= 16

logN

∫ t0

0
Z̃N,1

s Z̃N,2
s ds

N→∞−→ 0.

Proof of (2.24). By assumption, there are ε, c > 0 so that g(·) ≤ c1{|·|>ε}. For
the indicator, the bounds were already derived in the proof of Lemma 2.12, and
hence we are done. �

Now we are ready to complete the proof of Theorem 1.

PROOF OF THEOREM 1. The previous Lemma 2.14 identifies the semimartin-
gale triplet of any possible limit point of the tight sequence (Z̃N)N∈N. Chap-
ter III.2c of [13] (more precisely Theorem III.2.32) shows that any limit point
Z = (Z1,Z2) is a weak solution to the two-dimensional stochastic differential
equation (1.17) started in Z0 = z = limN→∞(Z

N,1
0 ,Z

N,2
0 ).

Let ε > 0 and define

τε := inf
{
t : (Z1

t ,Z
2
t

)
/∈ [ε,∞)2}.

Note that pathwise uniqueness holds for the SDE (1.20) for t ≤ τε since the noise
coefficient is Lipschitz. Letting ε ↓ 0, we get pathwise uniqueness up to time τ :=
supε>0 τε . Furthermore, we have Zi

t = Zi
τ for t ≥ τ , i = 1,2, since the noise term

vanishes as soon as Z1
t = or Z2

t = 0. Hence, pathwise uniqueness holds for all t ≥
0. Thus, all limit points of (Z̃N)N∈N are identical in distribution. But this proves
weak convergence of (Z̃N)N∈N to the unique solution of (1.20). �

3. Proof of Theorem 2. We will need special classes of convergence de-
termining functions on R

2+ and on E, respectively. For x = (x1, x2) and y =
(y1, y2) ∈R

2, define the lozenge product

(3.1) x � y := −(x1 + x2)(y1 + y2) + i(x1 − x2)(y1 − y2)

(with i = √−1) and set

(3.2) F(x, y) = exp(x � y).

Note that x �y = y �x. By [14], Corollary 2.4, the functions {F(·, z), z ∈R
2+} and

{F(·, z), z ∈ E} are measure and (weak) convergence determining on R
2+ and on



FINITE SYSTEM SCHEME FOR INFINITE RATE MCB 3145

E, respectively. Note that for y ∈ E, the function F(·, y) is harmonic so that, for
θ ∈R

2+ and y ∈ E,

(3.3)
∫
E

Qθ(dx)F (x, y) = F(θ, y).

We start with a lemma that states the approximate duality relation.

LEMMA 3.1. Let s, t ≥ 0, n ∈ N, N ≥ n and k1, . . . , kn ∈ SN . If y(j) =
(y1(j), y2(j)) ∈ E, then, for every θ ∈ R

2+, we have

(3.4)

E

[
n∏

j=1

F
(
XN

t+s(kj ), y(j)
) ∣∣∣Ft

]

=
n∏

j=1

F
(
θ, y(j)

) n∏
j=1

F
((

XN
t (kj ) − θ

)
, e−sy(j)

)

+E

[∫ s

0

(
n∏

j=1

F
(
XN

t+r (kj ), e
r−sy(j)

)
F
(
θ,
(
1 − er−s)y(j)

))

×
(
er−s(ZN

t+r − θ
) � n∑

j=1

y(j)

)
dr
∣∣∣Ft

]
.

Before we prove the lemma, we show how it implies Theorem 2.

PROOF OF THEOREM 2(i). Because F is convergence determining, a simple
application of the Cramér–Wold device shows that in order to prove Theorem 2(i),
it is enough to show that

(3.5)

lim
N→∞E

[
F
(
ZN

βN t
, y
) n∏
j=1

F
(
XN

βNt
(kj ), y(j)

)]

= E

[
F(Zt , y)

n∏
j=1

F
(
Zt , y(j)

)]

for all t > 0, n ∈ N, k(1), . . . , k(n) ∈ N, y(1), . . . , y(n) ∈ E and y ∈ R
2+. Let

t > 0 and recall that βN = N/ logN . Define uN := 2 logN . We use Lemma 3.1
with t replaced by βNt − uN and s replaced by uN . Furthermore, we assume
θ = ZN

βN t−uN
. Note that

(3.6)

E
[∣∣1 − F

(
XN

βNt−uN
(kj ), e

−uN y(j)
)∣∣]≤ e−uN

∣∣y(j)
∣∣NE
[∣∣ZN

βN t−uN

∣∣]
≤ e−uN N

∣∣y(j)
∣∣E[∣∣ZN

0

∣∣]
≤ C/N

and that the first factor in the integral in (3.4) is bounded by 1.
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Since Z̃N is C-tight and since uN/βN N→∞−→ 0, we have ZN
βN t−uN

− ZN
βN t

N→∞−→
0 in probability. Hence, for k1, . . . , kn ∈ SN , y(j) = (y1(j), y2(j)) ∈ E, y(0) ∈
R

2+ and θ ∈ R
2+, we have

(3.7)

lim
N→∞

∣∣∣∣∣E
[
F
(
ZN

βN t
, y(0)
) n∏
j=1

F
(
XN

βNt
(kj ), y(j)

)]

−E

[
F
(
Zt , y(0)

) n∏
j=1

F
(
Zt , y(j)

)]∣∣∣∣∣
= lim

N→∞

∣∣∣∣∣E
[
F
(
ZN

βN t−uN
, y(0)
) n∏
j=1

F
(
XN

βNt
(kj ), y(j)

)]

−E

[
F
(
ZN

βN t−uN
, y(0)
) n∏
j=1

F
(
ZN

βN t−uN
, y(j)

)]∣∣∣∣∣
≤
∫ uN

0
E

[∣∣∣∣∣er−uN
(
ZN

βN t−uN+r
− ZN

βN t−uN

) � n∑
j=0

y(j)

∣∣∣∣∣
]

dr

≤ C sup
r∈[0,uN ]

E
[∣∣ZN

βN t−uN+r
− ZN

βN t−uN

∣∣]

By Lemma 2.9, the random variables

sup
r∈[0,uN ]

∣∣ZN
βN t−uN+r

− ZN
βN t−uN

∣∣, N ≥ 2,

are Lq -bounded for some q > 1 and are hence uniformly integrable. Since they
converge to 0 in probability, the dominated convergence theorem yields

lim
N→∞ sup

r∈[0,uN ]
E
[∣∣ZN

βN t−uN+r
− ZN

βN t−uN

∣∣]= 0.

This completes the proof of Theorem 2(i). �

PROOF OF THEOREM 2(ii). The convergence of finite dimensional distribu-
tions is derived by standard methods and we only sketch the main idea.

Let θ ∈ R
2+ and let Y θ be the stationary process with distribution Q̌θ [recall

that it was defined after (1.19)]. Let m ∈ N and s1 < s2 < · · · < sm as well as
y1, . . . , ym ∈ E. Recall from (1.19) that

P
[
Y θ

sk
∈ dy′ | Y θ

sk−1
= y
]= Q

e−(sk−sk−1)y+(1−e−(sk−sk−1))θ

(
dy′),
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and hence, using also (3.3), we get (for zk ∈R
2+)

E
[
F
(
Y θ

sk
, zk

) | Y θ
s , s ≤ sk−1

]
=
∫
E

Qzk
(dz)E

[
F
(
Y θ

sk
, z
) | Y θ

s , s ≤ sk−1
]

=
∫
E

Qzk
(dz)F

(
Y θ

sk−1
, e−(sk−sk−1)z

)
F
(
θ,
(
1 − e−(sk−sk−1)

)
z
)
.

Iterating the argument, we get

(3.8) E

[
m∏

k=1

F
(
Y θ

sk
, zk

)]= Gm(θ, z1, . . . , zm), z1, . . . , zm ∈ R
2+,

where the functions Gk are defined iteratively by

G1(θ, z1) =
∫
E

Qz1(dz)F (θ, z)

and

(3.9)

Gk(θ, z1, . . . , zk)

=
∫

Qzk
(dz)Gk−1

(
θ, z1, . . . , zk−2, zk−1 + esk−1−sk z

)
× F
(
θ,
(
1 − esk−1−sk

)
z
)
.

In particular, for y1, y2 ∈ E, we have

(3.10) G2(θ, y1, y2) = F
(
θ,
(
1 − es1−s2

)
y2
) ∫

E
Qy1+es1−s2y2

(dz)F (θ, z).

In order to show Theorem 2(ii), we have to show: For n ∈ N and y(j, k) ∈ E,
k = 1, . . . ,m, j = 1, . . . , n, y(0) ∈ R

2+, and k1, . . . , kn ∈ N we have

(3.11)

lim
N→∞E

[
F
(
ZN

βN t
, y(0)
) n∏
j=1

m∏
k=1

F
(
XN

βNt+sk
(kj ), y(j, k)

)]

= E

[
F
(
Zt , y(0)

) n∏
j=1

Gm

(
Zt , y(j,1), . . . , y(j,m)

)]
.

For ease of notation, we restrict ourselves to showing (3.11) for m = 2 only.
Using Lemma 3.1, and arguing as in the proof of Theorem 2(i), we get

lim
N→∞E

[
F
(
ZN

βN t
, y(0)
) n∏
j=1

F
(
XN

βNt+s2
(kj ), y(j,2)

)

×
n∏

j=1

F
(
XN

βNt+s1
(kj ), y(j,1)

)]
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= lim
N→∞E

[
F
(
ZN

βN t−uN
, y(0)
) n∏
j=1

F
(
ZN

βN t−uN
,
(
1 − es1−s2

)
y(j,2)

)

× F
(
XN

βNt+s1
(kj ),
(
es1−s2y(j,2) + y(j,1)

))]

= lim
N→∞E

[
F
(
ZN

βN t−uN
, y(0)
) n∏
j=1

F
(
ZN

βN t−uN
,
(
1 − es1−s2

)
y(j,2)

)

×
∫
E

Q(es1−s2y(j,2)+y(j,1))(dz)F
(
XN

βNt+s1
(kj ), z

)]
(3.12)

= lim
N→∞E

[
F
(
ZN

βN t−uN
, y(0)
) n∏
j=1

F
(
ZN

βN t−uN
,
(
1 − es1−s2

)
y(j,2)

)

×
∫
E

Q(es1−s2y(j,2)+y(j,1))(dz)F
(
ZN

βN t−uN
, z
)]

= E

[
F
(
Zt , y(0)

) n∏
j=1

F
(
Zt ,
(
1 − es1−s2

)
y(j,2)

)

×
∫
E

Q(es1−s2y(j,2)+y(j,1))(dz)F (Zt , z)

]

= E

[
F
(
Zt , y(0)

) n∏
j=1

G2
(
Zt , y(j,1), y(j,2)

)]
�

PROOF OF LEMMA 3.1. By [15], Theorem 1.1, we have that

Ms :=
n∏

j=1

F
(
XN

t+s(j), y(j)
)− n∏

j=1

F
(
XN

t (j), y(j)
)

−
∫ s

0

n∏
j=1

F
(
XN

t+r (j), y(j)
) n∑
j=1

(
ZN

t+r − XN
t+r (j)

) � y(j) dr

is a martingale with M0 = 0. Now we replace y(j) by the time dependent function
eu+sy(j) for some u ∈R and subtract the resulting drift to get

M ′
s :=

n∏
j=1

F
(
XN

t+s(j), eu+sy(j)
)
F
(
θ,
(
1 − eu+s)y(j)

)

−
n∏

j=1

F
(
XN

t (j), euy(j)
)
F
(
θ,
(
1 − eu)y(j)

)
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−
∫ s

0

n∏
j=1

F
(
XN

t+r (j), eu+ry(j)
)
F
(
θ,
(
1 − eu+r)y(j)

)

×
n∑

j=1

(
ZN

t+r − XN
t+r (j)

) � (eu+ry(j)
)
dr

−
∫ s

0

n∏
j=1

F
(
XN

t+r (j), eu+ry(j)
)
F
(
θ,
(
1 − eu+r)y(j)

)

×
n∑

j=1

(
XN

t+r (j) − θ
) � (eu+ry(j)

)
dr

=
n∏

j=1

F
(
XN

t+s(j), eu+sy(j)
)
F
(
θ,
(
1 − eu+s)y(j)

)

−
n∏

j=1

F
(
XN

t (j), euy(j)
)
F
(
θ,
(
1 − eu)y(j)

)

−
∫ s

0

n∏
j=1

F
(
XN

t+r (j), eu+ry(j)
)
F
(
θ,
(
1 − eu+r)y(j)

)

×
n∑

j=1

(
ZN

t+r − θ
) � (eu+ry(j)

)
dr

is a martingale with M ′
0 = 0. Choosing u = −s and taking conditional expectations

gives the claim. �

APPENDIX

LEMMA A.1. Let a > 0. For all x > 0 and y ∈ [0, a], we have∣∣log(x + y)
∣∣≤ a + ∣∣log(x)

∣∣.
PROOF. If x + y < 1, then | log(x + y)| ≤ | log(x)|. If x + y ≥ 1, then by

Taylor expansion, we get∣∣log(x + y)
∣∣= log(x + y) ≤ log(x + a) ≤ log(x) + a ≤ ∣∣log(x)

∣∣+ a. �

We collect some basic properties of the measure ν defined in (1.13).

LEMMA A.2. Let ε > 0. We have

ν
({0} × (ε,∞)

)= 2

π

1

(1 + ε)2 ≤ 2

π

(
1 ∧ ε−2)
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and

ν
(([0,∞) \ (1 − ε,1 + ε)

)× {0}) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8

π

1

ε(4 − ε2)
− 2

π
, if ε ≤ 1,

2

π

1

ε(2 + ε)
, if ε ≥ 1,

≤ 2

π

(
ε−1 ∧ ε−2).

PROOF. This is simple calculus. �

LEMMA A.3. For x ≥ 0, we have and∫
{0}×(0,x)

y2
2ν(dy) = 2

π
log
(
1 + x2)− 2

π

x2

1 + x2 ≤ 4

π
log(x),

where the inequality holds if x ≥ 2.

PROOF. This is simple calculus. �

LEMMA A.4. For x > 0, we have∫
(0,x)×{0}

(y1 − 1)2ν(dy) = 4

π

(
log(1 + x) − x

1 + x

)
.

Hence, for ε ∈ (0,1), we get∫
(1−ε,1+ε)×{0}

(y1 − 1)2ν(dy) = 4

π

(
log
(

2 + ε

2 − ε

)
− 2ε

4 − ε2

)
≤ 2

π
ε

PROOF. This is simple calculus. �

LEMMA A.5. We have ∫
E

y2ν(dy) = 1

PROOF. This is simple calculus. �

Acknowledgement. The authors thank Jérôme Blauth for proofreading an
early draft of the article.

REFERENCES

[1] ALDOUS, D. (1978). Stopping times and tightness. Ann. Probab. 6 335–340. MR0474446
[2] BAILLON, J.-B., CLÉMENT, P., GREVEN, A. and DEN HOLLANDER, F. (1993). A variational

approach to branching random walk in random environment. Ann. Probab. 21 290–317.
MR1207227

http://www.ams.org/mathscinet-getitem?mr=0474446
http://www.ams.org/mathscinet-getitem?mr=1207227


FINITE SYSTEM SCHEME FOR INFINITE RATE MCB 3151

[3] BAILLON, J.-B., CLÉMENT, P., GREVEN, A. and DEN HOLLANDER, F. (1995). On the at-
tracting orbit of a non-linear transformation arising from renormalization of hierarchically
interacting diffusions. I. The compact case. Canad. J. Math. 47 3–27. MR1319687

[4] COX, J. T., DAWSON, D. A. and GREVEN, A. (2004). Mutually catalytic super branching
random walks: Large finite systems and renormalization analysis. Mem. Amer. Math. Soc.
171 viii+97. MR2074427

[5] COX, J. T. and GREVEN, A. (1990). On the long term behavior of some finite particle systems.
Probab. Theory Related Fields 85 195–237. MR1050744

[6] COX, J. T., GREVEN, A. and SHIGA, T. (1995). Finite and infinite systems of interacting
diffusions. Probab. Theory Related Fields 103 165–197. MR1355055

[7] DAWSON, D. A. and GREVEN, A. (1993). Hierarchical models of interacting diffusions: Mul-
tiple time scale phenomena, phase transition and pattern of cluster-formation. Probab.
Theory Related Fields 96 435–473. MR1234619

[8] DAWSON, D. A., GREVEN, A., DEN HOLLANDER, F., SUN, R. and SWART, J. M. (2008). The
renormalization transformation of two-type branching models. Ann. Inst. Henri Poincaré
Probab. Stat. 44 1038–1077. MR2469334

[9] DAWSON, D. A. and PERKINS, E. A. (1998). Long-time behavior and coexistence in a mutu-
ally catalytic branching model. Ann. Probab. 26 1088–1138. MR1634416

[10] DELLACHERIE, C. and MEYER, P.-A. (1983). Probabilités et Potentiel. Chapitres IX à XI,
revised ed. Publications de l’Institut de Mathématiques de L’Université de Strasbourg
[Publications of the Mathematical Institute of the University of Strasbourg] XVIII. Her-
mann, Paris. MR0727641

[11] DÖRING, L. and MYTNIK, L. (2012). Mutually catalytic branching processes and voter
processes with strength of opinion. ALEA Lat. Am. J. Probab. Math. Stat. 9 1–51.
MR2876839

[12] ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes: Characterization and Conver-
gence. Wiley, New York. MR0838085

[13] JACOD, J. and SHIRYAEV, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed.
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathemat-
ical Sciences] 288. Springer, Berlin. MR1943877

[14] KLENKE, A. and MYTNIK, L. (2010). Infinite rate mutually catalytic branching. Ann. Probab.
38 1690–1716. MR2663642

[15] KLENKE, A. and MYTNIK, L. (2012). Infinite rate mutually catalytic branching in infinitely
many colonies: Construction, characterization and convergence. Probab. Theory Related
Fields 154 533–584. MR3000554

[16] KLENKE, A. and OELER, M. (2010). A Trotter-type approach to infinite rate mutually catalytic
branching. Ann. Probab. 38 479–497. MR2642883

[17] WALSH, J. B. (1986). An introduction to stochastic partial differential equations. In École
D’été de Probabilités de Saint-Flour, XIV—1984. Lecture Notes in Math. 1180 265–439.
Springer, Berlin. MR0876085

L. DÖRING

SCHOOL OF BUSINESS INFORMATICS

AND MATHEMATICS

UNIVERSITÄT MANNHEIM

MANNHEIM, 68131
GERMANY

E-MAIL: doering@uni-mannheim.de

A. KLENKE

INSTITUT FÜR MATHEMATIK

JOHANNES GUTENBERG-UNIVERSITÄT

MAINZ

STAUDINGERWEG 9
MAINZ, 55099
GERMANY

E-MAIL: math@aklenke.de

http://www.ams.org/mathscinet-getitem?mr=1319687
http://www.ams.org/mathscinet-getitem?mr=2074427
http://www.ams.org/mathscinet-getitem?mr=1050744
http://www.ams.org/mathscinet-getitem?mr=1355055
http://www.ams.org/mathscinet-getitem?mr=1234619
http://www.ams.org/mathscinet-getitem?mr=2469334
http://www.ams.org/mathscinet-getitem?mr=1634416
http://www.ams.org/mathscinet-getitem?mr=0727641
http://www.ams.org/mathscinet-getitem?mr=2876839
http://www.ams.org/mathscinet-getitem?mr=0838085
http://www.ams.org/mathscinet-getitem?mr=1943877
http://www.ams.org/mathscinet-getitem?mr=2663642
http://www.ams.org/mathscinet-getitem?mr=3000554
http://www.ams.org/mathscinet-getitem?mr=2642883
http://www.ams.org/mathscinet-getitem?mr=0876085
mailto:doering@uni-mannheim.de
mailto:math@aklenke.de


3152 L. DÖRING, A. KLENKE AND L. MYTNIK

L. MYTNIK

FACULTY OF INDUSTRIAL ENGINEERING

AND MANAGEMENT

TECHNION—ISRAEL INSTITUTE OF

TECHNOLOGY

HAIFA, 32000
ISRAEL

E-MAIL: leonid@ie.technion.ac.il

mailto:leonid@ie.technion.ac.il

	Introduction and main results
	The ﬁnite systems scheme
	The inﬁnite rate renormalization
	Mutually catalytic branching processes
	Our results
	Outline
	Notation


	Proof of Theorem 1
	Heuristics
	Semimartingale setup
	Moment estimates
	Tightness arguments
	Proof of convergence

	Proof of Theorem 2
	Appendix
	Acknowledgement
	References
	Author's Addresses

