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DISTANCE-BASED SPECIES TREE ESTIMATION UNDER THE
COALESCENT: INFORMATION-THEORETIC TRADE-OFF

BETWEEN NUMBER OF LOCI
AND SEQUENCE LENGTH

BY ELCHANAN MOSSEL1 AND SEBASTIEN ROCH2

Massachusetts Institute of Technology and University of Wisconsin–Madison

We consider the reconstruction of a phylogeny from multiple genes under
the multispecies coalescent. We establish a connection with the sparse sig-
nal detection problem, where one seeks to distinguish between a distribution
and a mixture of the distribution and a sparse signal. Using this connection,
we derive an information-theoretic trade-off between the number of genes,
m, needed for an accurate reconstruction and the sequence length, k, of the
genes. Specifically, we show that to detect a branch of length f , one needs
m = �(1/[f 2√

k]) genes.

1. Introduction. In the sparse signal detection problem, one is given m

i.i.d. samples X1, . . . ,Xm and the goal is to distinguish between a distribution
P

(m)
0

H
(m)
0 : Xi ∼ P

(m)
0 ,

and the same distribution corrupted by a sparse signal P(m)
1

H
(m)
1 : Xi ∼ Q(m) := (1 − σm)P

(m)
0 + σmP

(m)
1 .

Typically, one takes σm = m−β , where β ∈ (0,1). This problem arises in a number
of applications [7, 19, 28, 31]. The Gaussian case in particular is well studied [5,
20, 27]. For instance it is established in [20, 27] that, in the case P

(m)
0 ∼ N(0,1)

and P
(m)
1 ∼ N(λm,1) with λm = √

2r logm, a test with vanishing error probability
exists if and only if r exceeds an explicitly known detection boundary r∗(β).

In this paper, we establish a connection between sparse signal detection and the
reconstruction of phylogenies from multiple genes or loci under the multispecies
coalescent, a standard population-genetic model [45]. The latter problem is of great
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practical interest in computational evolutionary biology and is currently the subject
of intense study; see, for example, [2, 17, 32, 44] for surveys. The problem is also
related to the reconstruction of demographic history in population genetics [4, 30,
43].

By taking advantage of the connection to sparse signal detection, we derive a
“detection boundary” for the multilocus phylogeny problem and use it to charac-
terize the trade-off between the number of genes needed to accurately reconstruct
a phylogeny and the quality of the signal that can be extracted from each separate
gene. Our results apply to distance-based methods, an important class of recon-
struction methods. Before stating our results more formally, we begin with some
background; see, for example, [50] for a more general introduction to mathemati-
cal phylogenetics.

Species tree estimation. An evolutionary tree, or phylogeny, is a graphical rep-
resentation of the evolutionary relationships between a group of species. Each leaf
in the tree corresponds to a current species while internal vertices indicate past
speciation events. In the classical phylogeny estimation problem, one sequences a
single common gene (or other locus such as pseudogenes, introns, etc.) from a rep-
resentative individual of each species of interest. One then seeks to reconstruct the
phylogeny by comparing the genes across species. The basic principle is simple:
because mutations accumulate over time during evolution, more distantly related
species tend to exhibit more differences between their genes.

Formally, phylogeny estimation boils down to learning the structure of a latent
tree graphical model from i.i.d. samples at the leaves. Let T = (V ,E,L, r) be a
rooted leaf-labelled binary tree, with n leaves denoted by L = {1, . . . , n} and a
root denoted by r . In the Jukes–Cantor model [29], one of the simplest Marko-
vian models of molecular evolution, we associate to each edge e ∈ E a mutation
probability

(1.1) pe = 1 − e−νete ,

where νe is the mutation rate and te is the time elapsed along the edge e. (The an-
alytical form of (1.1) derives from a continuous-time Markov process of mutation
along the edge; see, e.g., [50].) The Jukes–Cantor process is defined as follows:

• Associate to the root a sequence sr = (sr,1, . . . , sr,k) ∈ {A,C,G,T}k of length k

where each site sr,i is uniform in {A,C,G,T}.
• Let U denote the set of children of the root.
• Repeat until U = ∅:

– Pick a u ∈ U .
– Let u− be the parent of u.
– Associate a sequence su ∈ {A,C,G,T}k to u as follows: su is obtained from

su− by mutating each site in su− independently with probability p(u−,u); when
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a mutation occurs at a site i, replace su,i with a uniformly chosen state in
{A,C,G,T}.

– Remove u from U and add the children (if any) of u to U .

Let T −r be the tree T where the root is suppressed, that is, where the two edges
adjacent to the root are combined into a single edge. We let L[T , (pe)e, k] be
the distribution of the sequences at the leaves s1, . . . , sn under the Jukes–Cantor
process. We define the single-locus phylogeny estimation problem as follows:

Given sequences at the leaves (s1, . . . , sn) ∼ L[T , (pe)e, k], recover the (leaf-labelled)
unrooted tree T −r .

(One may also be interested in estimating the pes, but we focus on the tree. The
root is in general not identifiable.) This problem has a long history in evolutionary
biology. A large number of estimation techniques have been developed; see, for
example, [25]. For a survey of the learning perspective on this problem, see, for
example, [42]. On the theoretical side, much is known about the sequence length—
or, in other words, the number of samples—required for a perfect reconstruction
with high probability, including both information-theoretic lower bounds [36, 37,
41, 51] and matching algorithmic upper bounds [11, 12, 23, 46]. More general
models of molecular evolution have also been considered in this context; see, for
example, [3, 9, 13, 24, 38].

Nowadays, it is common for biologists to have access to multiple genes—or
even full genomes. This abundance of data, which on the surface may seem like a
blessing, in fact, comes with significant challenges; see, for example, [18, 44] for
surveys. One important issue is that different genes may have incompatible evo-
lutionary histories—represented by incongruent gene trees. In other words, if one
were to solve the phylogeny estimation problem separately for several genes, one
may, in fact, obtain different trees. Such incongruence can be explained in some
cases by estimation error, but it can also result from deeper biological processes
such as horizontal gene transfer, gene duplications and losses, and incomplete lin-
eage sorting [35]. The latter phenomenon, which will be explained in Section 2, is
the focus of this paper.

Accounting for this type of complication necessitates a two-level hierarchical
model for the input data. Let S = (V ,E,L, r) be a rooted leaf-labelled binary
species tree, that is, a tree representing the actual succession of past divergences
for a group of organisms. To each gene j shared by all species under consideration,
we associate a gene tree Tj = (Vj ,Ej ,L), mutation probabilities (p

j
e )e∈Ej

, and se-

quence length kj . The triple (Tj , (p
j
e )e∈Ej

, kj ) is picked at random according to
a given distribution G[S, (νe, te)e∈E] which depends on the species tree, mutation
parameters νe and inter-speciation times te. It is standard to assume that the gene
trees are conditionally independent given the species tree. In the context of incom-
plete lineage sorting, the distribution of the gene trees, G, is given by the so-called
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multispecies coalescent, which is a canonical model for combining speciation his-
tory and population genetic effects [45]. (Readers familiar with the multispecies
coalescent may observe that our model is a bit richer than the standard model, as
it includes mutational parameters in addition to branch length information. Note
that we also incorporate sequence length in the model.) The detailed description
of the model is deferred to Section 2, as it is not needed for a high-level overview
of our results. For the readers not familiar with population genetics, it is useful to
think of Tj as a noisy version of S [which, in particular, may result in Tj having a
different (leaf-labelled) topology than S].

Our two-level model of sequence data is then as follows. Given a species tree S,
parameters (νe, te)e∈E and a number of genes m:

1. [First level: gene trees.] Pick m independent gene trees and parameters(
Tj ,

(
pj

e

)
e∈Ej

, kj

) ∼ G
[
S, (νe, te)e∈E

]
, j = 1, . . . ,m.

2. [Second level: leaf sequences.] For each gene j = 1, . . . ,m, generate se-
quence data at the leaves L according to the (single-locus) Jukes–Cantor process,
as described above,(

sj
1, . . . , sj

n

) ∼ L
[
Tj ,

(
pj

e

)
e, kj

]
, j = 1, . . . ,m,

independently of the other genes.

We define the multilocus phylogeny estimation problem as follows:

Given sequences at the leaves (sj1, . . . , sjn), j = 1, . . . ,m, generated by the process
above, recover the (leaf-labelled) unrooted species tree S−r .

In the context of incomplete lineage sorting, this problem is the focus of very active
research in statistical phylogenetics [2, 17, 32, 44]. In particular, there is a number
of theoretical results, including [1, 10, 14–16, 33, 39, 47–49]. However, many of
these results concern the statistical properties (identifiability, consistency, conver-
gence rate) of species tree estimators that (unrealistically) assume perfect knowl-
edge of the Tj s. A very incomplete picture is available concerning the properties
of estimators based on sequence data, that is, that do not require the knowledge of
the Tj s. (See below for an overview of prior results.)

Here, we consider the data requirement of such estimators based on sequences.
To simplify, we assume that all genes have the same length, that is, that kj = k

for all j = 1, . . . ,m for some k. (Because our goal is to derive a lower bound,
such simplification is largely immaterial.) Our results apply to an important class
of methods known as distance-based methods, which we briefly describe now. In
the single-locus phylogeny estimation problem, a natural way to infer T −r is to
use the fraction of substitutions between each pair, that is, letting ‖ · ‖1 denote the
�1-distance,

(1.2) θ(sa, sb) := ‖sa − sb‖1 ∀a, b ∈ [n].
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We refer to reconstruction methods relying solely on the θ(sa, sb)s as distance-
based methods. Assume for instance that νe = ν for all e, that is, the so-called
molecular clock hypothesis. Then it is easily seen that single-linkage clustering
(e.g., [26]) applied to the distance matrix (θ(sa, sb))a,b∈[n] converges to T −r as
k → +∞. (In this special case, the root can be recovered as well.) In fact, T can
be reconstructed perfectly as long as, for each a, b, 1

k
θ(sa, sb) is close enough to

its expectation (e.g., [50])

θa,b := k−1E
[
θ(sa, sb)

] = 3

4

(
1 − e−dab

)
with dab := ∑

e∈P(a,b)

νete,

where P(a, b) is the edge set on the unique path between a and b in T . Here, “close
enough” means O(f ) where f := mine νete. This observation can been extended
to general νes; see, for example, [23] for explicit bounds on the sequence length
required for perfect reconstruction with high probability.

Finally, to study distance-based methods in the multilocus case, we restrict our-
selves to the following multilocus distance estimation problem:

Given an accuracy ε > 0 and distance matrices θ(sja, sjb)a,b∈[n], j = 1, . . . ,m, estimate
dab as defined above within ε for all a, b.

Observe that, once the dabs are estimated within sufficient accuracy, that is, within
O(f ), the species tree can be reconstructed using the techniques referred to in the
single-locus case.

Our results. How is this related to the sparse signal detection problem? Our
main goal is to provide a lower bound on the amount of data required for perfect
reconstruction, in terms of m (the number of genes) and k (the sequence length).
Consider the three possible (rooted, leaf-labelled) species trees with three leaves,
as depicted in Figure 1, where we let the time to the most recent divergence be
1 − f (from today) and the time to the earlier divergence be 1. Thus, f is the
time between the two divergence events. In order for a distance-based method to
distinguish between these three possibilities, that is, to determine which pair is
closest, we need to estimate the dabs within O(f ) accuracy. Put differently, within
the multilocus distance estimation problem, it suffices to establish a lower bound
on the data required to distinguish between a two-leaf species tree S with d12 = 2
and a two-leaf species tree S+ with d12 = 2 − 2f , where in both cases νe = 1 for
all e. We are interested in the limit f → 0.

Let P0 and Q be the distributions of θ(s1
1, s1

2) for a single gene under S and
S+, respectively, where for ease of notation the dependence on k is implicit. For m

genes, we denote the corresponding distributions by P⊗m
0 and Q⊗m. To connect the

problem to sparse signal detection, we observe below that, under the multispecies
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FIG. 1. Three species trees.

coalescent,Q is in fact a mixture of P0 and a sparse signal P1, that is,

(1.3) Q = (1 − σf )P0 + σfP1,

where σf = O(f ) as f → 0.
When testing between P⊗m

0 and Q⊗m, the optimal sum of Type-I (false positive)
and Type-II (false negative) errors is given by (see, e.g., [8])

(1.4) inf
A

{
P⊗m

0 (A) +Q⊗m(
Ac)} = 1 − ∥∥P⊗m

0 −Q⊗m
∥∥

TV,

where ‖ · ‖TV denotes the total variation distance. Because σf = O(f ), for any
k, in order to distinguish between P0 and Q one requires that, at the very least,
m = 
(f −1). Otherwise the probability of observing a sample originating from
P1 under Q is bounded away from 1. In [39], it was shown that, provided that k =

(f −2 logf −1), m = 
(f −1) suffices. At the other end of the spectrum, when
k = O(1), a lower bound for the single-locus problem obtained by [51] implies that
m = 
(f −2) is needed. An algorithm achieving this bound under the multispecies
coalescent was recently given in [10].

We settle the full spectrum between these two regimes. Our results apply when
k = f −2+2κ and m = f −1−μ where 0 < κ,μ < 1 as f → 0.

THEOREM 1 (Lower bound). For any δ > 0, there is a c > 0 such that∥∥P⊗m
0 −Q⊗m

∥∥
TV ≤ δ,

whenever

m ≤ c
1

f 2
√

k
.
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Notice that the lower bound on m interpolates between the two extreme regimes
discussed above. As k increases, a more accurate estimate of the gene trees can be
obtained and one expects that the number of genes required for perfect recon-
struction should indeed decrease. The form of that dependence is far from clear
however. We in fact prove that our analysis is tight.

THEOREM 2 (Matching upper bound). For any δ > 0, there is a c′ > 0 such
that ∥∥P⊗m

0 −Q⊗m
∥∥

TV ≥ 1 − δ,

whenever

m ≥ c′ 1

f 2
√

k
.

Moreover, there is an efficient test to distinguish between P⊗m
0 and Q⊗m in that

case.

Our proof of the upper bound actually gives an efficient reconstruction algo-
rithm under the molecular clock hypothesis. We expect that the insights obtained
from proving Theorems 1 and 2 will lead to more accurate practical methods as
well in the general case.

Our results were announced without proof in abstract form in [40].

Proof sketch. Let Z be an exponential random variable with mean 1. We first
show that, under P0 (resp., Q), θ(s1

1, s1
2) is binomial with k trials and success proba-

bility 3
4(1−e−2(ζ+Z)), where ζ = 1 (resp., ζ = 1−f ). Equation (1.3) then follows

from the memoryless property of the exponential, where σf is the probability that
Z ≤ f .

A recent result of [6] gives a formula for the detection boundary of the sparse
signal detection problem for general P0, P1. However, applying this formula here is
nontrivial. Instead, we bound directly the total variation distance between P⊗m

0 and
Q⊗m. Similarly to the approach used in [6], we work with the Hellinger distance
H 2(P⊗m

0 ,Q⊗m) which tensorizes as follows (see, e.g., [8]):

(1.5)
1

2
H 2(

P⊗m
0 ,Q⊗m) = 1 −

(
1 − 1

2
H 2(P0,Q)

)m

,

and further satisfies

(1.6)

∥∥P⊗m
0 −Q⊗m

∥∥2
TV

≤ H 2(
P⊗m

0 ,Q⊗m)[
1 − 1

4
H 2(

P⊗m
0 ,Q⊗m)]

.
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All the work is in proving that, as f → 0,

H 2(P0,Q) = O
(
f 2

√
k
)
.

The details are in Section 3.
The proof of Theorem 2 on the other hand involves the construction of a statisti-

cal test that distinguishes between P⊗m
0 and Q⊗m. In the regime k = O(1), an op-

timal test (up to constants) compares the means of the samples [10]. See also [34]
for a related method (without sample complexity). In the regime k = ω(f −2), an
optimal test (up to constants) compares the minima of the samples [39]. A natural
way to interpolate between these two tests is to consider an appropriate quantile.
We show that a quantile of order 1/

√
k leads to the optimal choice.

Organization. The gene tree generating model is defined in Section 2. The
proof of Theorem 1 can be found in Section 3. The proof of Theorem 2 can be
found in Section 4.

2. Further definitions. In this section, we give more details on the model.

Some coalescent theory. As we mentioned in the previous section, our gene
tree distribution model G[S, (νe, te)e∈E] is the multispecies coalescent [45]. We
first explain the model in the two-species case. Let 1 and 2 be two species and
consider a common gene j . One can trace back in time the lineages of gene j from
an individual in 1 and from an individual in 2 until the first common ancestor. The
latter event is called a coalescence. Here, because the two lineages originate from
different species, coalescence occurs in an ancestral population. Let τ be the time
of the divergence between 1 and 2 (back in time). Then, under the multispecies co-
alescent, the coalescence time is τ +Z where Z is an exponential random variable
whose mean depends on the effective population size of the ancestral population.
Here, we scale time so that the mean is 1. (See, e.g., [22] for an introduction to
coalescent theory.)

We get for the two-level model of sequence data.

LEMMA 1 (Distance distribution). Let S be a two-leaf species tree with d12 =
2τ and νe = 1 for all e and let θ(s1

1, s1
2) be as in (1.2) for some k. Then the (random)

distribution of θ(s1
1, s1

2) is binomial with k trials and success probability 3
4(1 −

e−2(τ+Z)).

The memoryless property of the exponential gives the following.

LEMMA 2 (Mixture). Let S be a two-leaf species tree with d12 = 2 and let S+
be a two-leaf species tree with d12 = 2 − 2f , where in both cases νe = 1 for all e.
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Let P0 and Q be the distributions of θ(s1
1, s1

2) for a single gene under S and S+
respectively. Then there is P1, such that

Q= (1 − σf )P0 + σfP1,

where σf = O(f ), as f → 0.

PROOF. The proof of the lemma is straightforward: We couple perfectly the
coalescence time for Q conditioned on Z ≥ f and the unconditional coalescence
time for P0 and this extends to a coupling of the distances between the sequences.
Thus, P1 is obtained by conditioning Q on the event that Z is ≤ f and σf is the
probability of that event. �

More generally (this paragraph may be skipped as it will not play a role below),
consider a species tree S = (V ,E;L, r) with n leaves. Each gene j = 1, . . . ,m

has a genealogical history represented by its gene tree Tj distributed according to
the following process: looking backwards in time, on each branch of the species
tree, the coalescence of any two lineages is exponentially distributed with rate 1,
independently from all other pairs; whenever two branches merge in the species
tree, we also merge the lineages of the corresponding populations, that is, the co-
alescence proceeds on the union of the lineages. More specifically, the probability
density of a realization of this model for m independent genes is

m∏
j=1

∏
e∈E

exp

(
−

(
Oe

j

2

)[
σ

e,Oe
j +1

j − σ
e,Oe

j

j

])

×
I e
j −Oe

j∏
�=1

exp

(
−

(
�

2

)[
σ

e,�
j − σ

e,�−1
j

])
,

where, for gene j and branch e, I e
j is the number of lineages entering e, Oe

j is

the number of lineages exiting e, and σ
e,�
j is the �th coalescence time in e; for

convenience, we let σ
e,0
j and σ

e,I e
j −Oe

j +1
j be respectively the divergence times of e

and of its parent population. The resulting trees Tj s may have topologies that differ
from that of the species tree S. This may occur as a result of an incomplete lineage
sorting event, that is, the failure of two lineages to coalesce in a population; see
Figure 2 for an illustration.

A more abstract setting. Before proving Theorem 1, we reset the problem in a
more generic setting that will make the computations more transparent. Let P0 and
P1 denote two different distributions for a random variable X supported on [0,1].
Given these distributions, we define two distributions, which we will also denote



SPECIES TREE ESTIMATION UNDER THE COALESCENT 2935

FIG. 2. An incomplete lineage sorting event. Although 1 and 2 are more closely related in the
species tree (fat tree), 2 and 3 are more closely related in the gene tree (thin tree). This incongruence
is caused by the failure of the lineages originating from 1 and 2 to coalesce within the shaded branch.

by P0 and P1, for a random variable θ taking values in {0, . . . , k} for some k. These
are defined by

(2.1) Pi[θ = �] =
(
k

�

)
Ei

[
X�(1 − X)k−�],

where Ei is the expectation operator corresponding to Pi for the random variable
X defined on [0,1]. As before, we let

Q = (1 − σf )P0 + σfP1,

for some σf = O(f ). We make the following assumptions which are satisfied in
the setting of the previous section.

A1. Disjoint supports: X admits a density whose support is (p0,p
0) under P0

and (p0 −φf ,p0) under P1, where 0 < p0 < p0 < 1 (independent of f ) and φf =
O(f ). [In the setting of Lemma 2, p0 = 3

4(1 − e−2), p0 − φf = 3
4(1 − e−(2−2f ))

and p0 = 3/4.]
A2. Bounded density around p0: There exist ρ ∈ (0,1) and p̄ ∈ (p0,p

0), not
depending on f , such that the following holds. Under P0, the density of X on
(p0, p̄) lies in the interval [ρ,ρ−1], that is, for any measurable subset X ⊆ (p0, p̄)

we have

P0[X ∈ X ] ∈ [
ρ|X |, ρ−1|X |],

where |X | is the Lebesgue measure of X . [In the setting of Lemma 2, under P0

the density of X on (p0,p
0) is 4e1/2

3 (1 − 4x/3)−3/4. Notice that this density is not
bounded from below over the entire interval (p0,p

0).]

The first assumption asserts that the supports of X under P0 and P1 are disjoint,
while also being highly concentrated under P1 (as f → 0). The key point being
that, under P1, X lies near the lower end of the support under P0, which partly
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explains the effectiveness of a quantile-based test to distinguish between P0 and Q.
The second, more technical, assumption asserts that, under P0, the density of X is
bounded from above and below in a neighborhood of the lower end of its support.
As we will see in Section 3, the dominant contribution to the difference between
P0 and Q comes from the regime where X lies close to p0 and we will need to
control the probability of observing X there.

3. Lower bound. The proof of the lower bound is based on establishing an
upper bound on the Hellinger distance between P0 and Q. The tensoring property
of the Hellinger distance then allows to directly obtain an upper bound on the
Hellinger distance between P⊗m

0 and Q⊗m. Using a standard inequality, this finally
gives the desired bound on the total variation distance between P⊗m

0 and Q⊗m.
We first rewrite the Hellinger distance in a form that is convenient for asymp-

totic expansion. In the abstract setting of Section 2, the Hellinger distance can be
written as

(3.1)

H 2(P0,Q) =
k∑

j=0

[√
Q[θ = j ] −

√
P0[θ = j ]]2

=
k∑

j=0

[√
1 + σf

(
P1[θ = j ]
P0[θ = j ] − 1

)
− 1

]2
P0[θ = j ]

=
k∑

j=0

[√
1 + σf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ] − 1

)
− 1

]2
P0[θ = j ]

=
k∑

j=0

hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)
P0[θ = j ],

where we define

(3.2) hb(s) := (√
1 + b(s − 1) − 1

)2
.

We will refer to

E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ] =

(k
j

)
E1[Xj(1 − X)k−j ](k

j

)
E0[Xj(1 − X)k−j ] = P1[θ = j ]

P0[θ = j ] ,

as the likelihood ratio and to

P0[θ = j ],
as the null probability.
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We prove the following proposition, which implies Theorem 1.

PROPOSITION 1. Assume that k = f −2+2κ where 0 < κ < 1 and that Assump-
tions A1 and A2 hold. As f → 0,

H 2(P0,Q) = O
(
f 2

√
k
)
.

The proof of Proposition 1 follows in the next section.
Finally, we have the proof of of Theorem 1.

PROOF OF THEOREM 1. The tensorization property of the Hellinger distance,
as stated in (1.5), together with Proposition 1, implies that

1

2
H 2(

P⊗m
0 ,Q⊗m) = 1 −

(
1 − 1

2
H 2(P0,Q)

)m

= 1 − (
1 − O

(
f 2

√
k
))m

< δ,

if m ≤ cf −2k−1/2 for a small enough constant c. Thus, by (1.6), we have

∥∥P⊗m
0 −Q⊗m

∥∥2
TV ≤ H 2(

P⊗m
0 ,Q⊗m)[

1 − 1

4
H 2(

P⊗m
0 ,Q⊗m)]

< δ,

as needed. �

3.1. Proof of Proposition 1. From (3.1), in order to bound the Hellinger dis-

tance from above, we need upper bounds on the likelihood ratio E1[Xj (1−X)k−j ]
E0[Xj (1−X)k−j ] and

on the null probability P0[θ = j ] for each term in the sum. The basic intuition is
that the contributions of those terms where θ is far from its mean under P1 (which
is ≈p0) are negligible. Indeed:

• When θ is much smaller than p0, the null probability is negligible because,
under P0, X is almost surely greater than p0. We establish that this leads to an
overall contribution to the Hellinger distance of o(f 2

√
k); see (3.14).

• When θ is much larger than p0, the likelihood ratio is negligible because X has
a much broader support under P0 than it does under P1. In that case, we show
that the overall contribution to the Hellinger distance is O(f 2). To get a sense
of why that is, note that, as f → 0,

hσf
(0) = [

√
1 − σf − 1]2 = O

(
f 2)

.

See Claims 1, 2 and 3.

On the other hand, by (2.1), under both P0 and P1, the random variable θ con-
ditioned on X is binomial with mean kX and standard deviation of order

√
k. In

the regime considered under Theorem 1, that is, k = f −2+2κ , we have further that
f = o(1/

√
k). Hence, by Assumption A1, under P1, X has support of size O(f )

and the unconditional random variable θ also has standard deviation of order
√

k.
In this bulk regime, our analysis relies on the following insight:
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• How big is each term in the Hellinger sum? In order for E0[Xj(1 − X)k−j ] to
be nonnegligible, X must lie within roughly

√
k of p0, which under Assumption

A2 has probability �(1/
√

k). On the other hand, under P1, X is almost surely
close to p0. That produces a likelihood ratio of order

√
k. Therefore, recalling

that f
√

k = o(1), the term

hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)
=

[√
1 + σf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ] − 1

)
− 1

]2
,

is of order f 2k. Moreover, by the argument above, the overall null probability
of the bulk is of order 1/

√
k. Thus, we expect that the Hellinger distance in

this regime is of order
√

kf 2 as stated in Proposition 1. It will be convenient to
divide the analysis into θ -values below p0 (see Claims 4, 5, 6 and 7) and above
p0 (see Claims 8, 9, 10 and 11).

The full details are somewhat delicate, as we need to carefully consider various
intervals of summands j according to the behavior of the null probability P0[θ =
j ] and the likelihood ratio E1[Xj (1−X)k−j ]

E0[Xj (1−X)k−j ] .
In the next subsection, we introduce some notation and prove some simple esti-

mates that will be used in the proofs.

3.2. Some useful lemmas. The following is Lemma 4 in [6].

LEMMA 3. For b > 0, let hb(s) = (
√

1 + b(s − 1) − 1)2:

1. For any b > 0, the function hb(s) is strictly decreasing on [0,1] and strictly
increasing on [1,+∞).

2. For any b > 0 and s ≥ 1,

hb(s) ≤ [
b(s − 1)

] ∧ [
b(s − 1)

]2 ≤ [bs] ∧ [bs]2.

The following lemmas follow from straightforward calculus.

LEMMA 4. For j ∈ {0, . . . , k} and x ∈ (0,1), let

�j(x) = j

k
logx + k − j

k
log(1 − x).

Then

�′
j (x) = j

k

1

x
− k − j

k

1

1 − x
= 1

x(1 − x)

(
j

k
− x

)
.

As a result �j is increasing on [0,
j
k
] and decreasing on [ j

k
,1], and �′

j (
j
k
) = 0.
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LEMMA 5. For j ∈ {0, . . . , k}, p ∈ (0,1), and x ∈ [0,p), let

�j,p(x) = j

k
log

p

p − x
+ k − j

k
log

1 − p

1 − p + x
.

Then:

1. The first two derivatives are

� ′
j,p(x) = j

k

1

p − x
− k − j

k

1

1 − p + x

= 1

(p − x)(1 − p + x)

(
j

k
− (p − x)

)

and

� ′′
j,p(x) = j

k

{
1

(p − x)2

}
+ k − j

k

{
1

(1 − p + x)2

}
≥ 1

2

(since the terms in curly brackets are at least 1 and one of j
k

or k−j
k

is greater or
equal than 1/2).

2. By a Taylor expansion around x = 0, we have for x ∈ [0,p) and some x∗ ∈
[0, x]

�j,p(x) = 1

p(1 − p)

(
j

k
− p

)
x + x2

2
� ′′

j,p

(
x∗)

≥ 1

p(1 − p)

(
j

k
− p

)
x + 1

4
x2.

3.3. Proof. Let C be a large constant (not depending on f ) to be determined
later. We divide up the sum in (3.1) into intervals with distinct behaviors. We con-
sider the following intervals for j

k
:

J0 =
[
p0,p0 + C

√
log k

k

]
,

J1 =
[
p0 + C

√
log k

k
,1

]

and

J ′
0 = [p0 − φf ,p0],

J ′
1 =

[
p0 − C

√
log k

k
,p0 − φf

]
,

J ′
2 =

[
0,p0 − C

√
log k

k

]
.
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In words, J ′
1 ∪ J ′

0 ∪ J0 is the bulk of P1, that is, where j/k sampled from P1 takes
its typical values, with J ′

0 being the support of X under P1. (This bulk interval is
further subdivided into three intervals whose analyses are slightly different.) The
intervals J ′

2 and J1 are where j/k takes atypically small and large values under
P1, respectively. For a subset of j

k
-values J , we write the contribution of J to the

Hellinger distance as

H 2(P0,Q)|J = ∑
j :j/k∈J

hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)
P0[θ = j ].

Below, it will be convenient to break up the analysis into three regimes: J1, which
we refer to as the high-substitution regime; J ′

2 ∪ J ′
1 ∪ J ′

0, the low-substitution
regime; and J0, the border regime. (Refer back to Section 3.1 for an overview
of the proof in these different regimes. Note in particular that we combine the
analyses of the atypically low values, J ′

2, and the typical values below p0, J ′
1 ∪ J ′

0,
because they follow from related derivations.)

High substitution regime. We consider J1 first. As we previewed in Sec-
tion 3.1, the argument in this case involves proving that the likelihood ratio is
small. Let

(3.3) J≤1 =
{

0 ≤ j ≤ k : E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ] ≤ 1

}
,

that is, J≤1 is where the likelihood ratio is bounded by 1. Note that Lemma 3
in Section 3.2 says that hσf

is monotone decreasing in the interval [0,1] and
we can therefore bound the sum of terms in J≤1 assuming the likelihood ratio
E1[Xj (1−X)k−j ]
E0[Xj (1−X)k−j ] in fact equals 0, as follows:

∑
j∈J≤1

[√
1 + σf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ] − 1

)
− 1

]2
P0[J = j ]

≤ ∑
j∈J≤1

[
√

1 − σf − 1]2P0[J = j ]

= O
(
σ 2

f

)
= O

(
f 2)

.

We have thus proved the following claim.

CLAIM 1 (Ratio less than 1).

H 2(P0,Q)|J≤1 = O
(
f 2)

.



SPECIES TREE ESTIMATION UNDER THE COALESCENT 2941

Hence, to bound the sum in J1, it suffices to show that J1 ⊆ J≤1, which we
prove in the next claim.

CLAIM 2 (High substitution implies ratio less than 1). It holds that J1 ⊆ J≤1.

Since the support of X under P1 is below p0 while it is above p0 under P0, we
might expect that the likelihood ratio will be bounded by 1 on J1, which is what
we prove next.

PROOF OF CLAIM 2. By Assumption A1, under P1, X is a.s. less than p0.
Since Lemma 4 implies that �j(x) is monotone increasing on [0, j/k], which
includes [0,p0] since j

k
∈ J1, it follows that

E1
[
Xj(1 − X)k−j ] = E1

[
exp

(
k�j (X)

)]
≤ exp

(
k�j (p0)

)
(3.4)

= p
j
0(1 − p0)

k−j .

Let E be the event that

E =
{
X ∈

[
p0 + C

√
log k

k
− 1

k
,p0 + C

√
log k

k

]}
.

By Assumption A2, P0[E] ≥ ρ/k. Hence, using Lemma 4 again, for j
k

∈ J1,

(3.5)

E0
[
Xj(1 − X)k−j ] = E0

[
Xj(1 − X)k−j | E]

P0[E]
+E0

[
Xj(1 − X)k−j | Ec]P0

[
Ec]

≥ ρ

k
pj (1 − p)k−j ,

where p = p0 + C

√
log k

k
− 1

k
.

Combining (3.5) and (3.5), and using Lemma 5 with x = p − p0 ≥ 0 (for k > 1
and C large enough), we have

E0[Xj(1 − X)k−j ]
E1[Xj(1 − X)k−j ] ≥ ρpj (1 − p)k−j

kp
j
0(1 − p0)k−j

= ρ

k
exp

(
k�j,p(p − p0)

)

≥ ρ

k
exp

(
k

{
1

p(1 − p)

(
j

k
− p

)
x + 1

4
x2

})

≥ ρ

k
exp

(
k

4

(
C

√
log k

k
− 1

k

)2)
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≥ ρ

k
exp

(
C2

5
log k

)

≥ 1,

for C large enough (assuming k is large), where on the fourth line we used that

j/k −p ≥ 0 for j/k ∈ J1 = [p0 +C

√
log k

k
,1]. We have thus established J1 ⊆ J≤1.

�

Combining Claims 1 and 2, we thus obtain the following.

CLAIM 3 (High substitution: Hellinger distance).

H 2(P0,Q)|J1 = O
(
f 2)

.

Low substitution regime. In order to estimate the sum in J ′
0 ∪ J ′

1 ∪ J ′
2, we

need to further subdivide it into intervals of doubling length. The basic intuition
is that for far enough intervals the null probabilities P0[θ = j ] are small enough

so we can estimate the likelihood ratio term E1[Xj (1−X)k−j ]
E0[Xj (1−X)k−j ] by its worst value in

the interval. However, when the intervals are close to the mean, the fluctuations in
E1[Xj (1−X)k−j ]
E0[Xj (1−X)k−j ] are too big so we need to work with shorter intervals. The partition
is defined as follows:

I ′
0 =

[
p0 − 1√

k
,p0

]

I ′
� =

[
p0 − 2�

√
k
,p0 − 2�−1

√
k

]
, � ≥ 1.

Define L by 2L = C
√

log k (where we may choose C so that it is integer-valued).
We first upper bound E1[Xj(1 − X)k−j ] using Lemma 4 and Assumption A1:

• On J ′
0,

E1
[
Xj(1 − X)k−j ] = E1

[
exp

(
k�j (X)

)]
≤ E1

[
exp

(
k�j (j/k)

)]
(3.6)

= (j/k)j (1 − j/k)k−j .

• On J ′
1 ∪ J ′

2 we have that X ≥ p0 − φf a.s. and, therefore,

(3.7) E1
[
Xj(1 − X)k−j ] ≤ (p0 − φf )j (1 − p0 + φf )k−j .

To lower bound E0[Xj(1 − X)k−j ], we consider the event

E =
{
X ∈

[
p0,p0 +

√
1

k

]}
.
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By Assumption A2 and Lemma 4, on J ′
0 ∪ J ′

1 ∪ J ′
2, arguing as in (3.5),

E0
[
Xj(1 − X)k−j ] ≥ ρ√

k
pj (1 − p)k−j ,(3.8)

where p = p0 +
√

1
k

(assuming k is large). Combining (3.6), (3.7) and (3.8), and
using Lemma 5:

• On J ′
0,

E0[Xj(1 − X)k−j ]
E1[Xj(1 − X)k−j ] ≥ ρ√

k
exp

(
k�j,p(p − j/k)

)

≥ ρ√
k

exp
(
k

(
− 1

p(1 − p)

(
j

k
− p

)2
+ 1

4

(
j

k
− p

)2))

≥ C′
1

ρ√
k
,

for some constant C′
1 (not depending on f ), where we used that φf � √

1/k so
that (

j
k

− p)2 = O(1/k) and, further, p(1 − p) ∈ (0,1/4).
• On J ′

1 ∪ J ′
2,

E0[Xj(1 − X)k−j ]
E1[Xj(1 − X)k−j ]

≥ ρ√
k

exp
(
k�j,p(p − p0 + φf )

)

≥ ρ√
k

exp
(
k

(
1

p(1 − p)

(
j

k
− p

)
(p − p0 + φf ) + 1

4
(p − p0 + φf )2

))

≥ ρ√
k

exp
(
−C1

√
k

(
p − j

k

))

= ρ√
k

exp
(
−C1

√
k

(
p0 +

√
1

k
− j

k

))

= C2
ρ√
k

exp
(
−C1

√
k

(
p0 − j

k

))
,

for some constants C1, C2 (not depending on f ), where again we used that
φf � √

1/k so that (p − p0 + φf )2 = O(1/k2).

By decreasing C2 appropriately, we combine the two bounds into the following.

CLAIM 4 (Low substitution: Likelihood ratio). For all j/k ∈ J ′
0 ∪ J ′

1 ∪ J ′
2,

(3.9)
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ] ≤

√
k

C2
exp

(
C1

√
k

(
p0 − j

k

))
.
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We now bound the integrand in H 2(P0,Q) over J ′
0 ∪ J ′

1 ∪ J ′
2. As noted after the

definition of J≤1 in equation (3.3), Lemma 3 implies that on J≤1:

(3.10) hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)
≤ C0f

2,

for some constant C0 > 0.

• On J ′
0 ∪ J ′

1, we will further use Lemma 3 (Part 2) which, recall, says that for
s ≥ 1 and b > 0

hb(s) ≤ [
b(s − 1)

] ∧ [
b(s − 1)

]2 ≤ [bs] ∧ [bs]2.

In particular observe that, if s ≥ 1, b > 0 and bs < 1, then we have simply
hb(s) ≤ [bs]2. Here, b = σf and s is bounded above by the expression in (3.9).
We show first that bs is therefore small. Indeed,

σf

√
k

C2
exp

(
C1

√
k

(
p0 − j

k

))
= O

(
f κ)

exp
(
O

(√
logf −1

)) = o(1).

Hence, for those j/k-values where the likelihood ratio is bounded below by 1,
we have by Lemma 3 (Part 2) that

hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)
≤ σ 2

f k

C2
2

exp
(

2C1
√

k

(
p0 − j

k

))
.

For those j/k-values where the likelihood ratio is not bounded below by 1,
we instead use (3.10). Changing the constants, we obtain finally the following
bound valid on all of on J ′

0 ∪ J ′
1:

(3.11) hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)
≤ C2f

2k exp
(
C1

√
k

(
p0 − j

k

))
.

• On J ′
2, arguing as in the previous case, we note that the likelihood ratio mul-

tiplied by σf may be larger than 1 this time. Therefore, by Lemma 3 (Part 2)
and (3.10), we have

hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)

≤ C0f
2 ∨

{[
σf

√
k

C2
exp

(
C1

√
k

(
p0 − j

k

))]

∧
[
σf

√
k

C2
exp

(
C1

√
k

(
p0 − j

k

))]2}
.

Changing the constants, we rewrite this expression as

hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)
≤ C2f

√
k exp

(
C1

√
k

(
p0 − j

k

))
,
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where, to upper bound the minimum in square brackets above, we only squared
the exponential (which is larger than 1) and used the fact that f

√
k = o(1)

(which implies that the term σf

√
k

C2
is on the other hand asymptotically smaller

than 1). We also used that f 2 < f
√

k to deal with the maximum above.

We combine the two bounds into the following.

CLAIM 5 (Low substitution: Integrand). For all j/k ∈ J ′
0 ∪ J ′

1 ∪ J ′
2,

(3.12)
hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)

≤ C2
(
f 2k1j/k∈J ′

0∪J ′
1
+ f

√
k1j/k∈J ′

2

)
exp

(
C1

√
k

(
p0 − j

k

))
.

It remains to bound the integrator, for which we rely on Chernoff’s bound. We
let

I0 =
[
p0,p0 + 1√

k

]

I� =
[
p0 + 2�−1

√
k

,p0 + 2�

√
k

]
, � ≥ 1.

Let � > 0 be such that 2� = (p̄ − p0)
√

k. Then, by Assumption A2,

P0
[
θ/k ∈ I ′

�

] = ∑
λ≥0

P0
[
θ/k ∈ I ′

� | X ∈ Iλ

]
P0[X ∈ Iλ]

≤ ∑
λ≥0

P0
[
θ/k ∈ I ′

� | X ∈ Iλ

]2λ−1
√

k
ρ−1

+ ∑
λ>�

P0
[
θ/k ∈ I ′

� | X ∈ Iλ

]
.

By Chernoff’s bound,

P0
[
θ/k ∈ I ′

� | X ∈ Iλ

] ≤ exp
(−2

(
2�−1 + 2λ−1)2)

≤ exp
(−22�−1 − 22λ−1)

.

In particular,∑
λ>�

P0
[
θ/k ∈ I ′

� | X ∈ Iλ

] ≤ exp
(−22�−1) ∑

λ>�

exp
(−22λ−1)

≤ exp
(−22�−1)

exp
(−C′

3k
)
,
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for some constant C′
3 > 0 (not depending on f ). On the other hand,

∑
λ≥0

P0
[
θ/k ∈ I ′

� | X ∈ Iλ

]2λ−1
√

k
ρ−1 ≤ exp(−22�−1)

ρ
√

k

∑
λ≥0

2λ−1 exp
(−22λ−1)

≤ C3 exp(−22�−1)√
k

,

for a constant C3 > 0 (not depending on f ). Combining the bounds and increasing
C3 appropriately, we get the following.

CLAIM 6 (Low substitution: Integrator). For all � ≥ 0,

(3.13) P0
[
θ/k ∈ I ′

�

] ≤ C3 exp(−22�−1)√
k

.

We can now compute the contribution of J ′
0 ∪ J ′

1 ∪ J ′
2 to the Hellinger distance.

Recall that L is defined by 2L = C
√

log k. From (3.12) and (3.13), we get:

• For 0 ≤ � ≤ L,

H 2(P0,Q)|I ′
�
≤ C2f

2k exp
(
C1

√
k

(
2�

√
k

))
C3 exp(−22�−1)√

k

≤ C2C3f
2
√

k exp
(−22�−1 + C12�)

≤ C5f
2
√

k exp
(−C422�),

for some constants C4,C5 > 0. Summing over �, we get

L∑
�=0

H 2(P0,Q)|I ′
�
≤ C6f

2
√

k,

for some constant C6 > 0.
• Similarly, for � > L,

H 2(P0,Q)|I ′
�
≤ C5f exp

(−C422�),
adapting constants C4,C5 > 0. Summing over �, we get

(3.14)
∑
�>L

H 2(P0,Q)|I ′
�
≤ C8f exp

(−C7C
2 log k

) = o
(
f 1+κ) = o

(
f 2

√
k
)
,

by choosing C large enough.

Combining these bounds, we get finally the following.

CLAIM 7 (Low substitution: Hellinger distance).

H 2(P0,Q)|J ′
0∪J ′

1∪J ′
2
= O

(
f 2

√
k
)
.
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Border regime. We now consider J0, that is, the bulk regime above p0. The
high-level argument is similar to the case of J ′

0 ∪ J ′
1 above, although some details

differ. We first bound E1[Xj(1 − X)k−j ] using Lemma 4 and Assumption A1:

(3.15) E1
[
Xj(1 − X)k−j ] ≤ p

j
0(1 − p0)

k−j .

To bound E0[Xj(1 − X)k−j ], we consider the event:

E =
{
X ∈

[
j

k
,
j

k
+

√
1

k

]}
.

By Assumption A2 and Lemma 4, on J0, arguing as in (3.5),

E0
[
Xj(1 − X)k−j ] ≥ ρ√

k
pj (1 − p)k−j ,(3.16)

where p = j
k

+
√

1
k

. Combining (3.15) and (3.16), and using Lemma 5, on J0,

E0[Xj(1 − X)k−j ]
E1[Xj(1 − X)k−j ]

≥ ρ√
k

exp
(
k�j,p(p − p0)

)

≥ ρ√
k

exp
(
k

(
1

p(1 − p)

(
j

k
− p

)
(p − p0) + 1

4
(p − p0)

2
))

.

For j/k ∈ I�, � ≤ L,

E0[Xj(1 − X)k−j ]
E1[Xj(1 − X)k−j ]

≥ ρ√
k

exp
(
k

(
− 1

p(1 − p)

√
1

k

(
2� + 1√

k

)
+ 1

4

(
2�−1 + 1√

k

)2))

≥ C2
1√
k

exp
(
C122�),

for constants C1,C2 > 0.

CLAIM 8 (Border regime: Likelihood ratio). For all j/k ∈ I�, � ≤ L,

(3.17)
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ] ≤

√
k

C2
exp

(−C122�).
We now bound the integrand in H 2(P0,Q). We follow the argument leading up

to (3.11). Because σf

√
k = o(1), by Lemma 3 (Part 2) and (3.10) we have on I�

hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)
≤ C0f

2 ∨ σ 2
f k

C2
2

exp
(−2C122�).
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Changing the constants, we rewrite this expression as

hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)
≤ C0f

2 ∨ C2f
2k exp

(−C122�).
CLAIM 9 (Border regime: Integrand). For all j/k ∈ I�, 0 ≤ � ≤ L,

(3.18) hσf

(
E1[Xj(1 − X)k−j ]
E0[Xj(1 − X)k−j ]

)
≤ C0f

2 ∨ C2f
2k exp

(−C122�).
It remains to bound the integrator. We have by Assumption A2 [recall that 2� =

(p̄ − p0)
√

k]:

P0[θ/k ∈ I�] = ∑
λ≥0

P0[θ/k ∈ I� | X ∈ Iλ]P0[X ∈ Iλ]

≤ ∑
0≤λ≤�

P0[X ∈ Iλ] + ∑
�<λ≤�

P0[θ/k ∈ I� | X ∈ Iλ]P0[X ∈ Iλ]

+ ∑
λ>�

P0[θ/k ∈ I� | X ∈ Iλ]

≤ 2�

√
k
ρ−1 + ∑

�<λ≤�

P0[θ/k ∈ I� | X ∈ Iλ]2λ−1
√

k
ρ−1

+ ∑
λ>�

P0[θ/k ∈ I� | X ∈ Iλ].

By Chernoff’s bound, for λ > �,

P0[θ/k ∈ I� | X ∈ Iλ] ≤ exp
(−2

(−2� + 2λ−1)2)
≤ exp

(−22�+1(
2λ−�−1 − 1

)2)
.

In particular, ∑
λ>�

P0[θ/k ∈ I� | X ∈ Iλ] ≤ exp
(−C′

3k
)
,

for some constant C′
3 > 0 (not depending on f ). On the other hand,

∑
�<λ≤�

P0[θ/k ∈ I� | X ∈ Iλ]2λ−1
√

k
ρ−1 ≤ C32�

√
k

,

for a constant C3 > 0 (not depending on f ). Combining the bounds and increasing
C3 appropriately, we get the following.

CLAIM 10 (Border substitution: Integrator). For all 0 ≤ � < L,

(3.19) P0[θ/k ∈ I�] ≤ C32�

√
k

.
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We can now compute the contribution of J0 to the Hellinger distance. From
(3.18) and (3.19), we get for 0 ≤ � ≤ L

H 2(P0,Q)|I�
≤ [

C0f
2 ∨ C2f

2k exp
(−C122�)]C32�

√
k

.

Summing over �, we get

L∑
�=0

H 2(P0,Q)|I�
≤ C4f

2
√

k,

for some constant C4 > 0.

CLAIM 11 (Border regime: Hellinger distance).

H 2(P0,Q)|J0 = O
(
f 2

√
k
)
.

Wrapping up. We now prove Proposition 1.

PROOF OF PROPOSITION 1.

H 2(P0,Q) ≤ H 2
J1

(P0,Q) + H 2
J ′

0∪J ′
1∪J ′

2
(P0,Q) + H 2

J0
(P0,Q) ≤ O

(
f 2

√
k
)
,

by Claims 3, 7 and 11. That implies Proposition 1. �

4. Matching upper bound. We give two proofs of the upper bound.

4.1. Proof of Theorem 2.

PROOF. We use (1.4) and construct an explicit test A as follows:

• Let W be the number of genes such that θ/k ≤ p0. Let w = P0[θ/k ≤ p0],
w′ = Q[θ/k ≤ p0] and

w∗ = m
w + w′

2
= mw + m

2

(
w′ − w

) = mw′ − m

2

(
w′ − w

)
.

We consider the following event:

A = {
W ≥ w∗}

.

It remains to show that the event A is highly unlikely under P⊗m
0 while be-

ing highly likely under Q⊗m. We do this by bounding the difference w′ − w and
applying Chebyshev’s inequality to W .

Note that W ∼ Bin(m,w) under P⊗m
0 and W ∼ Bin(m,w′) under Q⊗m. By

Assumption A1, X ∈ [p0 − φf ,p0] under P1. By the Berry–Esseen theorem
(e.g., [21]),

(4.1) P1[θ/k ≤ p0] ≥ E1
[
P1[θ ≤ kX | X]] = 1

2
− O

(
1√
k

)
≥ 1

3
,
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for k large enough. Hence,

(4.2)
w′ = σfP1[θ/k ≤ p0] + (1 − σf )w

≥ 1

3
σf + (1 − σf )w,

whereas by the computations in the previous section [more specifically, by sum-
ming over � in (3.13)]

(4.3) w = O

(
1√
k

)

and, similarly, since f
√

k = o(1)

(4.4) w′ = O

(
1√
k

)
,

from (4.2) and (4.3). Consequently,

(4.5) w′ − w ≥ σf

(
1

3
− w

)
= 
(f ).

By Chebyshev’s inequality,

P⊗m
0 [A] ≤ 4mw(1 − w)

m2(w′ − w)2 = O

(
1

mf 2
√

k

)
≤ δ

2
,

for c′ large enough, where we used (4.3) and (4.5). Similarly,

Q⊗m[
Ac] ≤ 4mw′(1 − w′)

m2(w′ − w)2 ≤ δ

2
. �

4.2. Agnostic version. Although Theorem 2 shows that our bound in Theo-
rem 1 is tight, it relies on a test (i.e., the set A) that assumes knowledge of the null
and alternative hypotheses. Here, we relax this assumption.

Pairwise distance comparisons. We assume that we have two (independent)
collections of genes, T1 and T2, one from each model, P0 and Q as in the previous
section. We split the genes into two equal-sized disjoint sub-collections, (T 1

1 ,T 2
1 )

and (T 1
2 ,T 2

2 ). Assume for convenience that the total number of genes is in fact 2m

for each dataset. Let C > 0 be a constant, to be determined later [in equation (4.7)].
We proceed in two steps:

1. We first compute p̂1 and p̂2, the C√
k

-quantiles based on T 1
1 and T 1

2 , respec-

tively. Let p̂ = max{p̂1, p̂2}.
2. Compute the fraction of genes, ŵ1 and ŵ2, with θ/k ≤ p̂ in T 2

1 and T 2
2 ,

respectively.

We infer that the first dataset comes from P⊗2m
0 if ŵ1 < ŵ2, and vice versa.
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REMARK 1. Simply comparing the C√
k

-quantiles breaks down when f � 1
k

,
as it is quite possible that the quantiles will be identical since they can only take
k possible values. However, even if the quantiles are identical, the probability of a
gene being lower than the quantile is bigger if the distance is smaller. This explains
the need for the second phase in our algorithm. We remark further that the partition
of the data into two sets is used for analysis purposes as it allows for better control
of dependencies.

We show that this approach succeeds with probability at least 1 − δ whenever
m ≥ c′ 1

f 2
√

k
, for c′ large enough. This proceeds from a series of claims.

CLAIM 12 (p̂ is close to p0). For c′ large enough, there is C1 > 0 such that

(4.6) p̂ ∈
[
p0,p0 + C1√

k

]

with probability 1 − δ/2.

PROOF. The argument is similar to that in the proof of Theorem 2.
By summing over � in (3.13),

P0[θ/k ≤ p0] ≤ C′
1√
k
,

for some C′
1 > 0. For any C′′

1 > C′
1, there is C1 > 0 such that

P0

[
θ/k ≤ p0 + C1√

k

]
≥ P0

[
θ/k ≤ p0 + C1√

k

∣∣∣ X ∈
[
p0,p0 + C1√

k

]]

× P0

[
X ∈

[
p0,p0 + C1√

k

]]

≥ 1

3

ρC1√
k

≥ C′′
1√
k

by the Berry–Esseen theorem [as in (4.1)], for C1 large enough.
Let

(4.7) C = C′
1 + C′′

1

2
.

Let W be the number of genes (among m) such that θ/k ≤ p0 and w = P0[θ/k ≤
p0]. Repeating the calculations in the proof of Theorem 2,

P⊗m
0

[
W ≥ m

C√
k

]
≤ 4mw(1 − w)k

m2(C − C′
1)

2 = 1

m
O(

√
k) ≤ 1

c′ O
(
f 2k

) ≤ δ

8
,
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for c′ large enough. Similarly, let W̃ be the number of genes such that θ/k ≤
p0 + C1/

√
k and w̃ = P0[θ/k ≤ p0 + C1/

√
k]. Then

P⊗m
0

[
W̃ ≤ m

C√
k

]
≤ δ

8
.

That implies that with probability 1 − δ/4 the C/
√

k-quantile under P⊗m
0 lies in

the interval [p0,p0 + C1√
k
]. By monotonicity, P1[θ/k ≤ p0 +C1/

√
k] ≥ w̃, and we

also have

Q⊗m

[
W̃ ≤ m

C√
k

]
≤ δ

8
,

which implies the claim. �

CLAIM 13 (Test). For c′ large enough, if T1 comes from P⊗2m
0 , T2 comes from

Q⊗2m and (4.6) holds, then

ŵ1 < ŵ2

with probability 1 − δ/2, and vice versa.

PROOF. The proof is identical to that of Theorem 2 with W now being the
number of genes such that θ/k ≤ p̂, w = P0[θ/k ≤ p̂], w′ =Q[θ/k ≤ p̂] and (4.3)
and (4.4) now following from Claim 12 together with (3.13) and (3.19). �

Triplet reconstruction. Consider again the three possible species trees depicted
in Figure 2. By comparing the pairs two-by-two as described in the agnostic algo-
rithm, we can determine which is the correct species tree topology. Such “triplet”
information is in general enough (assuming the molecular clock hypothesis) to re-
construct a species tree on any number of species (e.g., [50]). We leave out the
details.
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