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ASYMPTOTICALLY OPTIMAL CONTROL FOR A MULTICLASS
QUEUEING MODEL IN THE MODERATE DEVIATION

HEAVY TRAFFIC REGIME1

BY RAMI ATAR AND ASAF COHEN

Technion–Israel Institute of Technology and University of Michigan

A multi-class single-server queueing model with finite buffers, in which
scheduling and admission of customers are subject to control, is studied in the
moderate deviation heavy traffic regime. A risk-sensitive cost set over a finite
time horizon [0, T ] is considered. The main result is the asymptotic optimal-
ity of a control policy derived via an underlying differential game. The result
is the first to address a queueing control problem at the moderate deviation
regime that goes beyond models having the so-called pathwise minimality
property. Moreover, despite the well-known fact that an optimal control over
a finite time interval is generically of a nonstationary feedback type, the pro-
posed policy forms a stationary feedback, provided T is sufficiently large.

1. Introduction. This paper continues a line of research started in [1] that
aims at analyzing queueing control problems (QCPs) at the moderate deviation
(MD) heavy traffic regime. The model under consideration consists of a server
that serves customers from a number of classes, where allocation of the effort
among classes is dynamically controlled. Customers are kept in buffers of finite
size, one buffer for each class, and those that arrive to find a full buffer are lost. It
is also possible to reject arrivals when buffers are not full. This control system is
considered with a risk-sensitive (RS) cost, that accounts for holding of customers
in the buffers as well as for rejections. At the heart of the analysis lies a differential
game (DG) that has been analyzed in [2]. This paper proves the validity of the
prediction of [2] that the DG governs the scaling limit, by showing that the QCP’s
value converges to the DG’s value, and identifying an asymptotically optimal (AO)
policy for the former that is constructed based on the latter. The limit result for the
model treated in [1] was built on pathwise minimality, a property that considerably
simplifies the analysis, which does not hold in our setting. Instead, the proof here
is based on the Bellman (or the dynamic programming) equation and, specifically,
a free boundary point characterized by it governs the asymptotic behavior.

Traditionally, heavy traffic analysis of queueing models, and particularly QCPs,
is carried out under the regime of diffusion-scale deviation (sometimes also re-
ferred to as ordinary deviation), but it is also relevant at the MD scale, where
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relatively few results exist [16, 20, 21]. The roots of large deviation (LD) anal-
ysis of control systems go back to Fleming [11], who studies the associated
Hamilton–Jacobi equations. The connection of RS cost to DG was made by Ja-
cobson [18]. Analyzing RS control by LD tools and the formulation of the cor-
responding maximum principle are due to Whittle [24]. Various aspects of this
approach have been studied for controlled stochastic differential equations, for ex-
ample, in [10, 13, 15]. The treatment of a QCP at the MD scale is similar to that at
the LD scale (in papers such as [3]) as far as the tools are concerned, but there are
reasons to believe that the games obtained in the MD regime are solvable more of-
ten than in the LD regime. This statement is supported by the fact that the paper [1]
solves a DG for the MD scale, whereas a solution of an analogous DG for the LD
regime is not known in general (see [5] for a partial solution of the latter, and an
open problem regarding its general solution). Similarly, the DG of this paper has
been solved in [2], but an explicit solution for the LD analogue is not known. An
additional advantage the MD regime has over LD is the invariance to the stochastic
data, specifically, the arrival and service time distributions, as long as they possess
exponential moments, where LD results are more sensitive. The combination of
these properties provides a great deal of motivation for working at the MD scale.

The aforementioned pathwise minimality property has been the basis for solv-
ing QCPs in diffusion scale heavy traffic asymptotics in various works in the past
(e.g., [17]). To describe this property, consider the simple diffusion control prob-
lem of minimizing a cost J (ζ ) over all control processes ζ having R+-valued
nondecreasing sample paths. The cost takes the form

J (ζ ) = E

∫ T

0
h(ξt ) dt,

where h : R+ → R+ is nondecreasing, ξt = x + wt + ζt , x ≥ 0 and T > 0 are
fixed, w is a standard Brownian motion and the constraint ξt ≥ 0 for all t ≥ 0 must
be met. The solution is to set ζt = − infs≤t [(x + ws) ∧ 0], making ξ a reflected
Brownian motion starting from x, reflecting at 0. This follows by the well-known
fact that a.s., for all t , x + wt + ζt ≤ x + wt + ζ̃t , for any control ζ̃ meeting the
constraint (see, e.g., Section 2 of [8]). Although this problem is simpler than typical
diffusion control problems in the literature, pathwise solutions of these problems
owe to this simple property (or sometimes multidimensional versions thereof).

The DG of [1], identifying the MD asymptotics of a QCP, was also solved
by such a consideration. A simplified version of this game, presented with one-
dimensional instead of multidimensional dynamics, is as follows. It is a zero-sum
game with payoff

(1) J̃ (λ̃, μ̃, ζ ) =
∫ T

0
h(ϕt ) dt −

∫ T

0

(
aλ̃2

t + bμ̃2
t

)
dt,

and dynamics

(2) ϕt = x +
∫ t

0
(λ̃s − μ̃s) ds + ζt .
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Here, x, T , a and b are positive constants, and h is again nondecreasing. The
function ζ is a control for the minimizing player, taking values in R+ and is non-
decreasing, while the functions λ̃ and μ̃ form a control for the maximizing player,
and are nonnegative. The constraint ϕt ≥ 0 for all t must be satisfied. In this game,
the functions ϕ and ζ represent MD-scaled queue length and idleness processes,
while λ̃ and μ̃ stand for MD-scaled perturbations of the arrival and service pro-
cesses. The function h is the running cost in the underlying RS cost, while the
second term in (1) corresponds to penalty associated with changes of measure, and
its form originates from the LD rate function (background on the structure of DGs
governing RS control asymptotics appears in [12] and [14]).

It is easy to see how pathwise minimality can be used once again to find
an optimal strategy for the minimizer. Namely, for (λ̃, μ̃) given, setting ζt =
− infs≤t (ψs ∧ 0), where ψt = x + ∫ t

0 (λ̃s − μ̃s) ds, results with ϕ that bounds from
below any other dynamics adhering to the constraint. Significantly, this pathwise
minimality property provides not only a solution to the game but also the basis of
the AO proof in [1], as one can mimic the behavior of this strategy to come up with
a policy for the queueing model that is automatically AO.

It turns out that one cannot argue along the same lines for the game obtained
under LD scaling. Indeed, note carefully that the solution method just presented
uses the fact that the second term in (1) does not depend on the control for the
minimizing player. However, under LD scaling, the corresponding penalty term,
accounting for changes of measure, involves controls of both players. This makes
it impossible to obtain a pathwise solution in the same fashion. This point is ex-
plained in detail in Section 1 of [1].

Although pathwise minimality is useful when it applies, it is not generic even
under the diffusion and MD regimes. A natural approach to handle more general
settings, that has been used in numerous papers on diffusion scale asymptotics, is to
appeal to dynamic programming methods to solve diffusion control problems and
then use these solutions as a vehicle for analyzing the QCP (for a small sample of
these papers, see [4, 7, 23]). This approach has not been considered before for MD
asymptotics of QCPs. The model studied in this paper is indeed suitable for such
an approach, and in fact constitutes a prototype for QCPs that are too complex
to possess directly solvable DGs, while a solution via dynamic programming is
available.

The DG for our model differs from the one presented above. Again, we present
it in a slightly simplified way; the precise details appear in Section 2. The payoff
(1) has an additional term �T , the dynamics (2) has an additional term −�t and
the constraint ϕt ≥ 0 is strengthened to ϕt ∈ [0,D] for all t , where D is a constant.
The R+-valued nondecreasing function � represents cumulative rejections, and is
considered part of the control for the minimizing player; that is, in this game the
minimizing player controls the pair (ζ, �). The constraint stems from the finiteness
of the buffer, and the constant D is related to the buffer size (in fact, it is the buffer
size measured in units of MD-scaled workload). In [2], this game was analyzed
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via a free boundary value problem, and solved for the value function and optimal
strategy. The contribution of this paper is to substantiate the relation of the queue-
ing model to the game in a rigorous manner, showing that the latter indeed governs
the MD asymptotics. This is established by proving that the value of the RS QCP
converges to that of the DG, and translating the DG’s optimal strategy into an AO
policy for the QCP.

The proof of convergence of the RS value to the DG value is performed in two
main steps, namely bounding the former from below and from above by the latter.
We refer to them as the lower and upper bound, respectively.

The proof of an asymptotic lower bound of a RS cost in models that do not have
control is often based on the classical proof of (the lower bound in) Varadhan’s
lemma [9] for a sequence of processes satisfying the large deviations principle.
This is the case, for example, for queueing models that are studied under a spec-
ified policy. It relies on the identification of a “behavior” that contributes most to
the cost, such as when the underlying stochastic dynamics (say, the suitably nor-
malized multidimensional queue length) lie close to a specific path. In the case of
controlled dynamics, this path is formulated as the control selected by the maxi-
mizing player in the DG. To obtain the lower bound, one must consider an arbitrary
sequence of policies, and then the challenge stems from the fact that different poli-
cies for the queueing model may give rise to different such paths. A brute force
approach of identifying an optimal path for each arbitrary policy seems intractable.

The argument uses instead properties of the DG studied in [2]. It has been shown
that this DG, specified in terms of multi-dimensional dynamics, can be reduced to
one dimension. The one-dimensional state corresponds to the (suitably normal-
ized) total workload in the system. Moreover, there is a threshold, denoted by β0,
dictating the behavior of both players. When the workload is below this threshold,
there is a certain fixed path that guarantees attaining at least the game’s value under
any action of the minimizer (although it need not be optimal). When the threshold
is exceeded, there is no such fixed path. However, the following fact can be used.
As long as the workload remains above the level β0, the minimizer encounters an
accumulated loss, which is higher than the cost of an immediate rejection to the
level β0. We identify a suitable path for the maximizer that is effective until the
time when the threshold is reached. We focus on this path when workload is above
β0, and switch to the path alluded to above, when it is below β0. However, this
switching time depends on the policy, and so it is random and varies with the scal-
ing parameter. Accordingly, the argument uses time discretization, where each one
of a finite collection of possible switching times is estimated separately.

The upper bound is obtained by constructing a policy for the QCP for which
the cost converges to the DG’s value. There is a naive way of interpreting the DG
solution as a control policy for the QCP. However, the two components of this pol-
icy, corresponding to rejection and service effort allocation, impose contradictory
requirements. For rejections must occur only from a specific class, and only when
the total workload in the system exceeds the aforementioned threshold. On the
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other hand, it stems from the game solution that the service allocation policy must
cause the (suitably normalized) multidimensional queue length processes to evolve
along a certain curve in state space, denoted in this paper by γ . One can express
the fact that buffers are finite by requiring that these queueing processes always lie
in a certain hyper-rectangular domain, denoted by X ; the curve γ happens to inter-
sect the boundary of the domain X . When the multidimensional queueing process
is on (certain parts of) that boundary, one of the buffers must be full, and then even
small stochastic fluctuations require rejections so as to meet the buffer size con-
straint. As a consequence, rejections will not always adhere to the rejection policy
alluded to above.

We address this issue by aiming at a curve γ a , that approximates γ but does
not intersect the boundary of the domain. The main body of work is to develop
estimates that show that the queueing processes evolve along this approximate
curve, up to negligible probabilities, and that as a result both elements of the policy
are respected with sufficiently high probability.

It is well known that an optimal control over a finite time interval is generically
of a nonstationary feedback type (see, e.g., Sections III.8–9 in [14], where the
nonstationary optimal feedback is characterized by (8.5) and the stationary optimal
feedback by (9.9), corresponding to a problem set on a finite time horizon and,
respectively, an infinite time horizon with a discounted cost). Despite that, it was
anticipated in [2], and established in this paper, that for the setting studied here,
a RS cost set over a finite time horizon [0, T ] gives rise to a stationary feedback
provided that T is sufficiently large. Indeed, the policy we present for the QCP
has this feature, which makes it simple as compared to policies based on time-
varying characteristics. We consider this as one of the main aspects of this paper’s
contribution.

The organization of the paper is as follows. Section 2 presents the model, the
MD scaling and the main result, which states that the MD QCP’s value converges
to that of the DG. Section 3 collects a few results from [2] required for the proof.
Section 4 gives a lower bound on the QCP’s value asymptotics in terms of the
DG’s value, and Section 5 finds a nearly optimal policy derived from the game’s
optimal strategy. Together, Sections 4 and 5 provide the proof of the main result.
Some auxiliary results appear in the Appendix.

We use the following notation. For a positive integer k and a, b ∈ Rk , a · b de-
notes the usual scalar product, while ‖ · ‖ denotes Euclidean norm. {e1, . . . , ek}
is the standard basis of Rk . We denote [0,∞) by R+. For 0 < T < ∞ and a
function f : R+ → Rk , ‖f ‖T = sup[0,T ] ‖f ‖, while oscT (δ, f ) = sup{‖f (u) −
f (t)‖ : 0 ≤ u ≤ t ≤ (u + δ) ∧ T }. Denote by AC([0, T ],Rk), C([0, T ],Rk) and
D([0, T ],Rk) the spaces of absolutely continuous functions [resp., continuous
functions, functions that are right-continuous with finite left limits (RCLL)] map-
ping [0, T ] → Rk . Write AC0([0, T ],Rk) and C0([0, T ],Rk) for the subsets of
the corresponding function spaces, of functions that start at zero. Endow the space
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D([0, T ],Rk) with the usual Skorohod topology. For a collection xi ∈ R indexed
by i ∈ {1, . . . , I } (I being a positive integer), x denotes the vector (xi). A sim-
ilar convention holds for R-valued random variables Xi and stochastic process
{Xi(t), t ∈ R+}, i ∈ {1, . . . , I }, where X and {X(t), t ∈ R+} denote the RI -valued
random variable and process.

2. Model and results.

2.1. Model description. We consider a model with I customer classes and a
single server. A buffer with finite room is dedicated to each customer class, and
upon arrival, customers are queued in the corresponding buffers, or rejected by
the system administrator. Within each class, customers are served at the order of
arrival, where the server may only serve the customer at the head of each line.
Processor sharing is allowed, and so the server is capable of serving up to I cus-
tomers of distinct classes simultaneously. The model is defined on a probability
space (Ω,F,P). Expectation with respect to P is denoted by E. The parame-
ters and processes we introduce depend on an index n ∈ N, serving as the scal-
ing parameter. Arrivals occur according to independent renewal processes, and
service times are independent and identically distributed across each class. Let
I = {1,2, . . . , I }. Let λn

i > 0, n ∈ N, i ∈ I be given parameters, representing the
reciprocal mean inter-arrival times of class-i customers. Let {IAi (l) : l ∈ N}i∈I be
I sequences of positive i.i.d. random variables with mean E[IAi (1)] = 1 and vari-
ance σ 2

i,IA = Var(IAi (1)) ∈ (0,∞). With
∑0

1 = 0, the number of arrivals of class-i
customers up to time t , for the nth system, is given by

(3) An
i (t) := sup

{
l ≥ 0 :

l∑
k=1

IAi (k)

λn
i

≤ t

}
, t ≥ 0.

For a collection ξi , i ∈ I of stochastic processes, we will always write ξ for (ξi)i∈I .
Thus, in particular, An is the I -dimensional process (An

i )i∈I .
Similarly, we consider another set of parameters μn

i > 0, n ∈ N, i ∈ I , repre-
senting reciprocal mean service times. We are also given I independent sequences
{ST i (l) : l ∈ N}i∈I of positive i.i.d. random variables (independent also of the
sequences {IAi}) with mean E[ST i (1)] = 1 and variance σ 2

i,ST = Var(ST i (1)) ∈
(0,∞). The time required to complete the service of the lth class-i customer is
given by ST i (l)/μ

n
i , and the potential service time processes are defined as

Sn
i (t) := sup

{
l ≥ 0 :

l∑
k=1

ST i (k)

μn
i

≤ t

}
, t ≥ 0.

We consider the moderate deviations rate parameters {bn}, that form a sequence,
fixed throughout, with the property that limbn = ∞ while limbn/

√
n = 0, as
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n → ∞. The arrival and service parameters are assumed to satisfy the following
conditions. As n → ∞,

λn
i

n
→ λi ∈ (0,∞),

μn
i

n
→ μi ∈ (0,∞),(4)

λ̃n
i := 1

bn

√
n

(
λn

i − nλi

) → λ̃i ∈ (−∞,∞),

μ̃n
i := 1

bn

√
n

(
μn

i − nμi

) → μ̃i ∈ (−∞,∞).

(5)

The system is assumed to be critically loaded in the sense that the overall traffic
intensity equals 1, namely

∑I
1 ρi = 1 where ρi = λi/μi for i ∈ I .

For i ∈ I , let Xn
i be a process representing the number of class-i customers in

the nth system. Denote the number of rejection of class-i arrivals until time t in the
nth system by Rn

i (t). With S = {x = (x1, . . . , xI ) ∈ RI+ : ∑
xi ≤ 1}, let Bn be an

S-values process, whose ith component represents the fraction of effort devoted
by the server to the class-i customer at the head of the line. Then the number
of service completions of class-i jobs during the time interval [0, t] is given by
Sn

i (T n
i (t)), where

(6) T n
i (t) :=

∫ t

0
Bn

i (u) du

is the time devoted to class-i customers by time t . With an abuse of notation, we
often write Sn ◦ T n for (Sn

1 ◦ T n
1 , . . . , Sn

I ◦ T n
I ). We have the balance equation

(7) Xn
i (t) = Xn

i (0) + An
i (t) − Sn

i

(
T n

i (t)
) − Rn

i (t).

For simplicity, the initial conditions Xn(0) = (Xn
1(0), . . . ,Xn

I (0)) are assumed to
be deterministic. We also assume

X̃n(0) → x̄ = (x1, . . . , xI ) as n → ∞, i ∈ I.

Note that, by construction, the arrival and potential service processes have RCLL
paths, and accordingly, so does Xn.

The MD-scaled version of the queue length process satisfies

(8) X̃n(t) := 1

bn

√
n
Xn(t) ∈ X :=

I∏
i=1

[0,Di], t ≥ 0,

where Di > 0 are fixed constants. Thus, the size of buffer i is given by bn

√
nDi .

Additional MD-scaled processes are

Ãn
i (t) = 1

bn

√
n

(
An

i (t) − λn
i t

)
,

S̃n
i (t) = 1

bn

√
n

(
Sn

i (t) − μn
i t

)
, R̃n

i (t) = 1

bn

√
n
Rn

i (t).
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The process Un := (Bn,Rn) is regarded as a control, that is determined based
on observations from the past events in the system. The precise definition of an
admissible control is as follows. Given n, the processes Un and Xn are said to be
an admissible control and the corresponding queue length process if the sample
paths of Un lie in D([0,∞),S), (8) holds, and:

• Un is adapted to the filtration σ {An
i (u), Sn

i (T n
i (u)), i ∈ I, u ≤ t}, where T n is

given by (6);
• For i ∈ I and t ≥ 0, one has

(9) Xn
i (t) = 0 implies Bn

i (t) = 0.

Denote the class of all admissible controls Un by Un. Note that this class depends
on An and Sn, but we consider these processes to be fixed. For Un ∈ Un and the
corresponding queue length process Xn, the processes R̃n and X̃n are referred as
the scaled rejection and queue length process corresponding to Un.

Throughout, we assume the finite exponential moment condition, namely

ASSUMPTION 2.1. There exists u0 > 0 such that for i ∈ I , E[eu0IAi ] and
E[eu0ST i ] are finite.

As shown in [22], under this condition, the scaled processes (Ãn, S̃n) satisfy a
moderate deviation principle. Namely, for k = 1,2, let Jk(T , ·) be functions map-
ping D([0, T ],RI ) to [0,∞] given by

Jk(T ,ψ)

=

⎧⎪⎪⎨
⎪⎪⎩

I∑
i=1

si,k

∫ T

0
ψ̇i(u)2 du if all ψi ∈ AC0

([0, T ],R)
,

∞ otherwise,

k = 1,2,
(10)

for ψ = (ψ1, . . . ,ψI ) ∈ D([0, T ],RI ), where

si,1 = 1

2λiσ
2
i,IA

and si,2 = 1

2μiσ
2
i,ST

, i ∈ I.

Let J(T ,ψ) = J1(T ,ψ1) + J2(T ,ψ2) for ψ = (ψ1,ψ2) ∈ D([0, T ],R2I ). Note
that J is lower semicontinuous with compact level sets. Then one has

PROPOSITION 2.1 ([22]). Under Assumption 2.1, for T > 0 fixed, the follow-
ing holds. For every closed set F ⊂ D([0, T ],R2I ),

lim sup
1

b2
n

logP
((

Ãn, S̃n) ∈ F
) ≤ − inf

ψ∈F
J(T ,ψ),

and for every open set G ⊂D([0, T ],R2I ),

lim inf
1

b2
n

logP
((

Ãn, S̃n) ∈ G
) ≥ − inf

ψ∈G
J(T ,ψ).
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To present the RS control problem, fix h̄, r̄ ∈ (0,∞)I . Given T ∈ (0,∞) and n,
the cost associated with a control Un ∈ Un is given by

Jn(
T , X̃n(0),Un) = 1

b2
n

logE
[∫ T

0
eb2

n[∫ t
0 h̄·X̃n(u) du+r̄·R̃n(t)] dt

]
,

where X̃n and R̃n are the rescaled queue length and rejection processes corre-
sponding to Un. In the above notation, we have emphasized the dependence on the
initial state X̃n(0). For background and a motivating discussion about this type of
cost, the reader is referred to [12]. The value of interest is given by

V n(
T , X̃n(0)

) = inf
Un∈Un

J n(
T , X̃n(0),Un)

.

2.2. The differential game and main result. Whereas the scaled queue length
process X̃n is multidimensional, it is suggested in [2] that it is governed by a DG
defined in terms of one-dimensional dynamics. The main result of this paper is the
proof of this claim. Before presenting the formulation of this game, it is useful to
draw attention to several stochastic processes that are themselves one-dimensional
because the structure of the DG is closely related to them. Let

θn =
(

n

μn
1
, . . . ,

n

μn
I

)
, θ =

(
1

μ1
, . . . ,

1

μI

)
,

and note that θn → θ , by (4). Denote θmin = maxi θi and θmax = maxi θi . Let also

Dn = ∑
i

θn
i Di, D = ∑

i

θiDi.

It follows from the balance equation (7) that

(11) X̃n
i = Ỹ n

i + Ãn
i − S̃n

i ◦ T n
i + Z̃n

i − R̃n
i ,

where we denote

Z̃n
i (t) = μn

i

n

√
n

bn

(
ρit − T n

i (t)
)
,

ỹn
i = λ̃n

i − ρiμ̃
n
i , Ỹ n

i (t) = X̃n
i (0) + ỹn

i t.

(12)

Define

X̌n = θn · X̃n, Ǎn = θn · Ãn, Šn = θn · S̃n,

Řn = θn · R̃n, Y̌ n = θn · Ỹ n, Žn = θn · Z̃n, y̌n = θn · ỹn.
(13)

Also, let

S̃
n
(t1, . . . , tI ) = (

S̃n
1 (t1), . . . , S̃

n
I (tI )

)
,

Š
n
(t1, . . . , tI ) = θn · S̃n

(t1, . . . , tI ) = ∑
i

θn
i S̃n

i (ti).
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Note that the sample paths of S̃n (resp., Šn, S̃
n
, Š

n
) map R+ → RI (resp., R+ →

R+, RI+ →RI , RI+ →R). Next, the process

(14) Žn = ∑
i

n

μn
i

Z̃n
i is nonnegative and nondecreasing,

thanks to the fact that
∑

i B
n
i ≤ 1 while

∑
i ρi = 1. Also, for every i ∈ I , the pro-

cess R̃n
i is nondecreasing. Thus, by (11),

(15) X̌n = Y̌ n + Ǎn − Š
n ◦ T n + Žn − Řn,

where Žn and Řn are nonnegative, nondecreasing processes. Moreover,

(16) X̌n(t) ∈ [
0,Dn]

, t ≥ 0.

It follows from the contraction principle that (Ǎn(t), Šn(t)), t ∈ [0, T ], satisfy
the MDP with the rate function I(T ,ψ) = I1(T ,ψ1)+ I2(T ,ψ2), ψ = (ψ1,ψ2) ∈
D([0, T ],R2), where

Ik
(
T ,ψk) =

⎧⎪⎨
⎪⎩

sk

∫ T

0

(
ψ̇k)2

(u) du if ψk ∈ AC0
([0, T ],R)

,

∞ otherwise,
(17)

s1 :=
(

I∑
i=1

2ρiσ
2
i,IA

μi

)−1

and s2 :=
(

I∑
i=1

2ρiσ
2
i,ST

μi

)−1

.(18)

See Lemma A.2.
To define the DG, denote x = θ · x̄, y := lim y̌n = ∑

i θi(λ̃i − ρiμ̃i), and

y(t) = x + yt, t ∈ R+,

and let

(19) P = C0
([0,∞),R

)
, E = {

ξ ∈ D
([0,∞),R+

) : ξ is nondecreasing
}
.

Endow both spaces with the topology of uniform convergence on compacts. Given
ψ = (ψ1,ψ2) ∈ P2 and (ζ, �) ∈ E2, the dynamics associated with the initial con-
dition x and the data ψ , ζ , � is defined as

(20) ϕ = y + ψ1 − ψ2 + ζ − �.

The game is played by a maximizing player that selects ψ = (ψ1,ψ2) and a min-
imizing player that selects (ζ, �). We sometimes write the dependence of the dy-
namics on the data as ϕ[x,ψ, (ζ, �)]. There is an analogy between the above equa-
tion and equation (15), and between the condition that ζ and � are nondecreasing
and property (14). The control ζ stands for the scaled idle time process Z̃n and �

stands for the scaled rejection process R̃n. The following condition, analogous to
property (16), will also be required, namely

(21) ϕ(t) ∈ [0,D], t ≥ 0,
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where

D =
I∑

i=1

θiDi = lim
n→∞Dn.

A measurable mapping α : P2 → E2 is called a strategy for the minimizing player
if it satisfies the causality property: for every ψ, ψ̃ ∈ P2 and t ∈ [0,∞),

ψ(u) = ψ̃(u) for every u ∈ [0, t] implies

α[ψ](u) = α[ψ̃](u) for every u ∈ [0, t].
(22)

Given an initial condition x, a strategy α is said to be admissible for the initial
condition x if, whenever (ψ1,ψ2) ∈ P2 and (ζ, �) = α[ψ], the corresponding
dynamics (20) satisfies the buffer constraint (21). We denote by Ax the collection
of admissible strategies for the initial condition x.

We now describe the components of the cost function. For w ∈ R+, denote

(23) h(w) = inf{h̄ · ξ : ξ ∈X , θ · ξ = w}.
By the convexity of the set X , h is convex. Moreover, h(w) ≥ 0 for w ≥ 0 and
equality holds if and only if w = 0. Therefore, h is strictly increasing on [0,D].
Let

r = min
{
r̄ · ξ : ξ ∈ R

I+, θ · ξ = 1
}
.

It is easy to see that

(24) r = min{riμi : i ∈ I} = ri∗μi∗,

where i∗ is an index (fixed throughout) that minimizes riμi .
The index i∗ indicates the class that has lowest rejection cost per unit of work-

load. It plays an important role in Section 5 where our AO policy is presented;
specifically, the policy is aimed at rejecting jobs from this class only.

Given x ∈ [0,D], T ∈ R+, ψ = (ψ1,ψ2) ∈ P2, and (ζ, �) ∈ E2, we define the
cost until time T by

(25) c(x, T ,ψ, ζ, �) =
∫ T

0
h
(
ϕ(t)

)
dt + r�(T ) − I(T ,ψ),

where ϕ is the corresponding dynamics. The value of the game is defined by

(26) V (x) = inf
α∈Ax

sup
ψ∈P2,T ∈R+

c
(
x,T ,ψ,α[ψ]).

We call ψ the path control and the T a time control, or sometimes the termination
time. Note that both are controlled by the maximizing player.

We sometimes use the notation Vh,r for V when we want to emphasize the
dependence on the function h and the constant r . Namely, V

ĥ,r̂
(x) is defined as

V (x) with (ĥ, r̂) in place of (h, r) in (25).
Recall that limn→∞ X̃n(0) = x. Our first main result is the following.
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THEOREM 2.1. Let Assumption 2.1 hold. Then for all sufficiently large T ,

lim
n→∞V n(

T , X̃n(0)
) = V (x).

The second main result of this paper is Theorem 5.1, that constructs a policy for
the QCP, which is AO.

3. Some useful properties of the game. We briefly mention some results
from [2] regarding the DG, to be used in the sequel. Set s = (s−1

1 + s−1
2 )−1. The

following proposition follows by Lemma 3.1, Proposition 3.1 and Theorems 3.1,
3.2 and 3.5 in [2]. The contribution of the latter is to deduce part (i) below.

PROPOSITION 3.1. (i) For T ∈ R+, set

V (T , x) = inf
α∈Ax

sup
ψ∈P2,t∈[0,T ]

c
(
x, t,ψ,α[ψ])

[compare with (26)]. Then V (T , x) = V (x) for all sufficiently large T .

(ii) If −y < r/(4s), then for every x ∈ [0,D] one has V (x) = ∞.
(iii) If −y ≥ r/(4s), then

(27) V (x) =
⎧⎪⎨
⎪⎩

∫ x

0
2s

(
−y −

√
y2 − h(u)

s

)
du, 0 ≤ x ≤ β0,

V (β0) + r(x − β0), β0 < x ≤ D,

where2

(28) β0 =

⎧⎪⎪⎨
⎪⎪⎩

h−1
(−r2

4s
− ry

)
, −h(D) ≤ r2

4s
+ ry ≤ −h(0),

D,
r2

4s
+ ry < −h(D).

We now present an optimal strategy for the minimizer. This strategy plays an
important role in proving the upper bound and in finding an AO policy in the
multidimensional stochastic problem. The minimizer’s optimal strategy is of a β-
barrier form. Informally, this is a strategy that uses the minimal control (ζ, �) so
as to keep the dynamics ϕ in [0, β] at all times. In the definition that follows, and
throughout the paper, we denote the Skorohod map on an interval [a, b] by Γ[a,b];
see Appendix A.1.

DEFINITION 3.1. Fix (x,β) ∈ [0,D]2. The strategy αβ = (αβ,1, αβ,2) is
called a β-barrier strategy if for every ψ ∈ P2 one has (ϕ,αβ,1, αβ,2)[ψ] =
Γ[0,β](ψ).

2In case r2

4s
+ ry ≥ −h(0) = 0, we get by (i) above that V (x) = ∞ and we do not define β0.
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The next proposition follows by Proposition 3.1 and Theorems 3.1, 3.2 and 3.4
in [2].

PROPOSITION 3.2. The β0-barrier strategy, αβ0 , is an optimal strategy.

We provide two propositions that are useful in the proof of the lower bound. For
this, we present two path controls, ψ∗ and ψ

�
x associated with an initial state in the

intervals (β0,D] and [0, β0), respectively.
Fix x ∈ (β0,D]. Let Δ > 0 be such that x > β0 + Δ. Fix (ζ, �) ∈ P2. Define

ψ�(t) = (
rt/(2s1),−rt/(2s2)

)
, 0 ≤ t ≤ τΔ,

where

τΔ = τ(ζ,�),Δ := inf
{
t ≥ 0 : ϕ[

x,ψ�, (ζ, �)
] ≤ β0 + Δ

}
is the first time that the dynamics, ϕ := ϕ[x,ψ�, (ζ, �)], cross β0 +Δ. The follow-
ing proposition is Proposition 3.2 in [2].

PROPOSITION 3.3. For every (ζ, �) ∈ P2 such that �(0) − ζ(0) < x − (β0 +
Δ), one has

(29)
∫ τΔ

0
h
(
ϕ(t)

)
dt + r�(τΔ) − I

(
τΔ,ψ�) > r

(
x − (β0 + Δ)

)
.

Note that the left-hand side is the cost associated with x,ψ�, and (ζ, �) incurred
until the time the dynamics cross β0 +Δ, whereas the right-hand side gives the cost
of an immediate rejection of x − (β0 + Δ). The result thus implies that if x > β0
then the minimizer will reject x − β0 units of mass at time zero.

Next, fix x ∈ [0, β0). Let

(30) ψ∗
x =

(
s

s1
ω∗

x,
−s

s2
ω∗

x

)
,

where ω∗
x ∈ C([0, τ ∗

x ),R) is the unique solution of

(31) ω̇∗
x(t) = V̇ (x + yt + ω∗

x(t))

2s
, t ≥ 0,

with ω∗
x(0) = 0 and

(32) τ ∗
x =

∫ x

0
1/

√
y2 − h(ξ)/s dξ.

Existence and uniqueness for ω∗
x over the time interval [0, τ ∗

x ] are shown in Sec-
tion 3.6.2 in [2].

The next proposition, which follows by Proposition 3.3, Theorem 3.5, and equa-
tion (87) in [2], states that by using the path control ψ∗

x and by choosing the time
control to be the first time that the actual dynamics of the game hit zero the max-
imizer can guarantee that the cost will be at least V (x). The proposition is valid
since the function h is convex.
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PROPOSITION 3.4. Fix x ∈ [0, β0). For every � ∈P , one has

(33) c
(
x, τx,ψ

∗
x , (0, �)

) ≥ V (x),

where τx := τ [x,ψ∗
x , (0, �)] is the first time that the dynamics ϕ[x,ψ∗

x , (0, �)] hits
zero. Moreover,

(34) τx ≤ τ ∗
x = inf

{
t ≥ 0 : y(t) + ψ∗,1

x (t) − ψ∗,2
x (t) = 0

}
.

4. Lower bound. Recall that from Proposition 3.1(i), for sufficiently large T ,
V (T , x) = V (x). Hence, now onwards we compare the value function of the QCP
to V (x).

THEOREM 4.1. Let Assumption 2.1 hold. Then for T sufficiently large,

lim inf
n→∞ V n(

T , X̃n(0)
) ≥ V (x).

We present two lemmas that together yield Theorem 4.1. The first provides
a lower bound on the RS cost for an arbitrary sequence of policies in terms of
an expression involving only the one-dimensional processes. The latter is further
bounded by the DG value function, in the second lemma.

LEMMA 4.1. Fix a sequence of admissible controls {Un ∈ Un}, n ∈ N. Then
for every T > 0, δ ∈ (0, T ) and ε > 0 one has

lim inf
n→∞ Jn(

T , X̃n(0),Un)

≥ lim inf
n→∞

1

b2
n

logE
[
eb2

n(
∫ T −δ

0 h(X̌n(u)) du+r(1−ε)Řn(T −δ))] − ε.

LEMMA 4.2. Fix {Un} as in Lemma 4.1. Then there exists T̄ > 0 such that for
every 0 < ε < 1/2 one has

(35) lim inf
n→∞

1

b2
n

logE
[
eb2

n(
∫ T̄

0 h(X̌n(u)) du+r(1−ε)Řn(T̄ ))] ≥ Vh,r(1−ε)(x).

PROOF OF THEOREM 4.1. Combining Lemma 4.1 and Lemma 4.2, for any T

and δ > 0 such that T − δ > T̄ , and any ε ∈ (0,1/2),

lim inf
n→∞ Jn(

T , X̃n(0),Un) ≥ lim inf
n→∞ Jn(

T̄ , X̃n(0),Un) ≥ Vh,r(1−ε)(x) − ε.

From (27)–(28), it follows that

lim
ε→0

Vh,r(1−ε)(x) = Vh,r(x) = V (x),

and the result follows. �
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PROOF OF LEMMA 4.1. Fix {Un}, T > 0, δ > 0 and ε > 0. Then

(36)
∫ T

0
eb2

n(
∫ t

0 h̄·X̃n(u) du+r̄·R̃n(t)) dt ≥ eb2
n(

∫ T −δ
0 h̄·X̃n(u) du+r̄·R̃n(T −δ))δ,

where we used monotonicity of the integrand with respect to t . Next, by the defi-
nition of h and r ,

(37) h̄ · X̃n ≥ h
(
θ · X̃n)

and r̄ · R̃n ≥ rθ · R̃n.

Since θn → θ , X̃n takes values in a fixed, compact set, and h is uniformly contin-
uous on this set, it follows that for sufficiently large n,∫ T

0
h
(
θ · X̃n(u)

)
du ≥

∫ T

0
h
(
X̌n(u)

)
du − ε and

θi ≥ θn
i (1 − ε), i ∈ I.

(38)

Combining (36), (37) and (38) yields the result. �

In the rest of this section, we prove Lemma 4.2.

PROOF OF LEMMA 4.2. Rather than working with general ε ∈ (0,1/2), we
consider a general r > 0. For every r > 0 we find T̄ = T̄ (r) [in (40)] that satisfies
(35) with ε = 0. As we will see, T̄ is continuous w.r.t. r and finite for r > 0.
Hence, we obtain that (35) is valid with a fixed T̄ and all ε ∈ (0,1/2). We thus
turn to proving

(39) lim inf
1

b2
n

logE
[
eb2

n(
∫ T̄

0 h(X̌n(u)) du+rŘn(T̄ ))] ≥ V (x).

Sketch of the proof : The lemma relates the stochastic control problem to the DG.
The strategies in the game are analogues of the policies in the stochastic problem,
whereas the controls selected by the maximizing player play a similar role to the
variational problem in Varadhan’s lemma (Theorem 4.3.1 of [9]). Following the
spirit of the proof of Varadhan’s lemma, one focuses on the event that the paths
(Ãn, S̃n), projected in the θn direction, are in a neighborhood of a specific P2-
path control. The latter is referred to as the reference path. One then shows that
the process X̌n is in a neighborhood of the game dynamics obtained when the
reference path is selected by the maximizing player.

We now describe the reference path. First, recall the balance equation (15). Con-
sider paths (Ãn, S̃n) such that (Ǎn, Š

n◦T n) are close to some path ψ = (ψ1,ψ2) ∈
P2. Then X̌n is close to

y + ψ1 − ψ2 + Žn − Řn.

By the nonnegativity of Žn, we have that X̌n is bounded from below by

ϕn = y + ψ1 − ψ2 − Řn,
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up to a small error term. The proof proceeds by comparing the process ϕn to the
game dynamics with initial state x, maximizer’s path control ψ , and minimizer’s
control given by (0, Řn). This process cannot be regarded game dynamics because
of the stochasticity of the minimizer’s control term, and the fact that it is not at-
tained by a strategy in the sense of the game. Moreover, it is not guaranteed that
ϕn takes values in [0,D].

However, these obstacles can be treated. Let us first describe the case x ≤ β0,
where the treatment is least complicated. In this case, we consider the event, de-
noted by On, that the paths (Ãn, S̃n) are close to the path ψ∗

x identified in Proposi-
tion 3.4 (in this rough sketch we do not quantify the term “close”). We then obtain

lim inf
1

b2
n

logE
[
eb2

n(
∫ T̄

0 h(X̌n(u)) du+rŘn(T̄ ))]

≥ lim inf
1

b2
n

logE
[
eb2

n(
∫ T̄

0 h(X̌n(u)) du+rŘn(T̄ ))1On

]
≥ c

(
x, τx,ψ

∗
x , (0, �)

) ≥ V (x),

where the second inequality follows using the closeness of the data to ψ∗
x and the

structure of the function c, while the last inequality follows from Proposition 3.4.
Thus, Proposition 3.4 allows us to focus on data that is close to one fixed path, ψ∗

x ,
for every n ∈ N.

The situation is more subtle in the case where x > β0, as we do not have an ana-
logue of Proposition 3.4. That is, we are unable to identify a single path that guar-
antees V (x) as a lower bound on the cost under all strategies. Proposition 3.3 pro-
poses how the maximizer in the game should act until the threshold β0 is reached,
namely to use the control ψ� (note that the time when the threshold is reached de-
pends on the minimizier’s strategy). Therefore, we focus on data (Ãn, S̃n) close to
ψ� until the workload in the stochastic model hits β0. The proposition then guar-
antees that up to this time the cost incurred is bounded below by r(x − β0). Once
β0 is reached, ψβ0 is used as explained above, and (27) is used to obtain V (x) as a
lower bound.

As we already mentioned, in the game, the time when one switches from ψ� to
ψ∗

β0
depends on the strategy. As far as the QCP is concerned, this means that one

has no control over the switching time, which may be random and vary with n. The
argument therefore uses time discretization (see Lemma 4.4), with which each one
of a finite collection of switching times is estimated separately.

Proof in details: We first prove the lower bound for the case x > β0. The other
case, which is simpler, is addressed at the end of the proof. Fix x > β0 and ε1 > 0.
Let Δ > 0 be small enough so that

x > β0 + Δ and rΔ + V (β0) − V (β0 − Δ) ≤ ε1.
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Such a Δ exists since V is continuous; see (27). Let

T1 = V (x) + 3 + r(2 + D − x)

h(β0 + Δ/2) − h(β0)
,

T2 =
∫ β0−Δ

0
1/

√
y2 − h(ξ)/s dξ + 1,

T̄ = T1 + T2.(40)

Above, T1 is obtained by considerations along these lines. Start with (76), and
consider only those policies for which

V (x) + 1 > b−2
n logE exp

{
b2
n

(∫ T1

0
h
(
X̌n(u)

)
du + rŘn(T1)

)}
.

Obtain a further lower bound on V (x) + 1 by putting on the right-hand side the
indicator of a certain event that assures

∫ T1
0 h(X̌n(u)) du ≥ h(β0 +�/2)T1. More-

over, we show that Řn(T1) ≥ x − D − 2 + (y + r
2s

)T1. When combined together
with the definition of β0 in (28), we get the above formula for T1. The formula for
T2 is based on the termination time of the game (32).

The proof proceeds in several steps. In Step 1, we analyze the process T n. In
Step 2, we consider the process

(41) ϕn
1 := y + ψ�,1 − ψ�,2 − Řn

and the time τn
1 when this process first hits β0 + Δ. We show that for any policy

that is nearly optimal τn
1 < T1 with probability that is significant in the MD scale.

Next, in Step 3, we modify the construction of ϕn
1 on the time interval [τn

1 ,∞),
and in Step 4 show that the process thus constructed hits zero before time T̄ , with
probability 1. In Step 5, we combine these results to obtain a lower bound on the
cost. Finally, in Step 6 we we take limits and obtain the result.

Step 1 (Limit property of T n): Without loss of generality assume that the se-
quence of policies {Un} satisfies

(42) V (x) + 1 >
1

b2
n

logE
[
eb2

n(
∫ T̄

0 h̄·X̃n(u) du+r̄·R̃n(T̄ ))].
Denote

ρ(t) = ρt, t ∈R+.

LEMMA 4.3. For every m > 0 there exists K > 0 such that for every i ∈ I one
has

(43) lim sup
1

b2
n

logP
(∥∥T n

i − ρi

∥∥
T̄ ≥ bn√

n
K

)
≤ −m.
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PROOF. Fix i ∈ I . By (12), the left-hand side of (43) equals lim sup 1
b2
n
×

logP( n
μn

i
‖Z̃n

i ‖T̄ ≥ K). Using (11) and the fact that μn/n → μ, it suffices to prove

that for every m > 0 there exists K such that

(44) lim sup
1

b2
n

logP
(∥∥Ln

∥∥
T̄ ≥ K

) ≤ −m,

for Ln = X̃n
i , Ãn

i , S̃
n
i ◦ T n

i and R̃n
i . As far as X̃n

i is concerned, the above is im-
mediate because the process is bounded. For Ln = Ãn

i , this property follows from
Proposition 2.1 and from the fact that for sufficiently large K one has

inf
{
J1(T̄ ,ψ) : ψ ∈PI and ‖ψ · ei‖T̄ ≥ K

}
= J1

(
T̄ , (Kt/T̄ )ei

) = 1

2μσ 2
IA

· K2

T̄
.

(45)

Since the time change T n
i (t) ≤ t for all t , a similar conclusion holds for S̃n

i ◦ T n
i .

Finally, for R̃n
i , note that by (42)

V (x) + 1 ≥ 1

b2
n

logE
[
eb2

nri R̃
n
i (T̄ )].

Hence by the Chebyshev’s inequality, P(R̃n
i (T̄ ) ≥ K) ≤ e−b2

n(K+V (x)+1). The re-
sult follows since, by the monotonicity, R̃n

i (T̄ ) = ‖R̃n
i ‖T̄ . �

Step 2 (Estimate on the time τn
1 ): We introduce some notation that will be needed

in the remainder of the proof. Since h is uniformly continuous on [0,D], one can
find δ1 > 0 such that

(46) oscD(2δ1, h) < ε1.

One may take δ1 so that

(47) δ1 < min{Δ/4,1}.
Fix m > I(T̄ ,ψ∗) + I(T̄ ,ψ�) + 1 + 6ε1. Define the event

En = En(K) =
{∥∥T n

i − ρi

∥∥
T̄ <

bn√
n
K, for all i ∈ I

}
.

Using Lemma 4.3, fix K > 0 such that for all sufficiently large n

(48)
1

b2
n

logP
((

En)c) ≤ −m.

From Lemma A.2, it follows that there exists ψ̄� = (ψ̄�,1, ψ̄�,2) ∈ P2I such that

(49)
(
θ · ψ̄�,1, θ · ψ̄�,2 ◦ ρ

) = (
ψ�,1,ψ�,2)
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and

(50) Jk

(
T , ψ̄�,k) = Ik

(
T ,ψ�,k), k = 1,2.

Note that for all large n,

(51) oscT

(
bn√
n
K,ψ

�,2
i

)
< δ2, i ∈ I.

For ψ = (ψ1,ψ2) ∈ P2I , and 0 < δ, t < ∞, let

(52) Aδ,t (ψ) = {
ψ̄ ∈ D

([0, T̄ ],R2I ) : ‖ψ̄ − ψ‖t < δ
}

and

(53) Ωn
δ,t (ψ) = {(

Ãn, S̃n) ∈Aδ,t (ψ)
}
.

Recall from (41) the definition of ϕn
1 , and let

τn
1 = inf

{
t ≥ 0 : ϕn

1 (t) ≤ β0 + Δ
}
.

Divide the time interval [0, T̄ ] into (T̄ /ν) ∈ N intervals of size ν where3

(54) ν ≤ min
{

4sε1

r2 ,
ε1

sy2 ,
Δ

|r/(2s) + y|
}
.

Denote the intervals by Nj = Nj(ν) = [νj, ν(j + 1)). For every n, we define an
index 0 ≤ jn

1 ≤ 
T̄1/ν� in such a way that we can estimate, from below, the prob-
ability that the time τn

1 belongs to the interval Njn
1

. Let

jn
1 = arg max

j∈{0,...,
T1/ν�}
P

(
τn

1 ∈ Nj |Ωn
δ3,T1

(
ψ̄�)),

where δ2 = δ1/(8θmax
√

I ).

LEMMA 4.4. Fix ψ ∈ D([0, T̄ ],RI ) such that ψ = ψ̄� on [0, (jn
1 +1)ν]. Then

(55) lim inf
n→∞ P

(
τn

1 ∈ Njn
1
|Ωn

δ3,(j
n
1 +1)ν(ψ)

) ≥ −2ε1.

The proof of this lemma is differed to the end of the section.

Step 3 (Constructing a path beyond time τn
1 ): In Lemma 4.4, we focused on

data for which the process (Ǎn, Š
n ◦ T n) is near ψ�. Now we will consider data

for which this process is near ψ� up to time (jn
1 + 1)ν, and from that time on, near

ψ∗
β0−Δ. Thus, we focus on the reference path:

ψ0(t) = ψn,0(t)

:=
{
ψ�(t), 0 ≤ t ≤ (

jn
1 + 1

)
ν,

ψ�((jn
1 + 1

)
ν
) + ψ∗

β0−Δ

(
t − (

jn
1 + 1

)
ν
)
, t >

(
jn

1 + 1
)
ν.

3We use the convention that Δ/0 = ∞.
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Recall that τn
1 is defined as the first time when ϕn

1 ≤ β0 +Δ. Since y +ψ�,1 −ψ�,2

is continuous, and the jumps of Řn are of size (bn

√
n)−1, one has for sufficiently

large n, β0 < ϕn
1 (τn

1 ) ≤ β0 + Δ. Moreover, since on the interval (τn
1 , (jn

1 + 1)ν)

one has y + ψ̇�,1 − ψ̇�,2 = y + r/(2s) and we assumed that ν ≤ Δ/|r/(2s) + y|,
it follows that

ϕn
1
((

jn
1 + 1

)
ν
) = ϕn

1
(
τn

1
) + (

y + r/(2s)
)((

jn
1 + 1

)
ν − τn

1
)

− (
Řn((

jn
1 + 1

)
ν
) − Řn(

τn
1
))

> β0 − Δ − (
Řn((

jn
1 + 1

)
ν
) − Řn(

τn
1
))

.

We now define a new process that starts at time (jn
1 + 1)ν, having the form of the

game dynamics with the initial state β0 − Δ, the path ψ∗ := ψ∗
β0−Δ, and rejection

process �n. For t ≥ (jn
1 + 1)ν, set

ϕn
2 (t) = β0 − Δ + y

(
t − (

jn
1 + 1

)
ν
) + ψ∗,1(

t − (
jn

1 + 1
)
ν
)

− ψ∗,2(
t − (

jn
1 + 1

)
ν
) − �n(

t − (
jn

1 + 1
)
ν
)
,

where �n(s) = Řn(s) − Řn(τn
1 ), s ≥ 0. Notice that at time t = (jn

1 + 1)ν there is
an initial amount of rejections (Řn((jn

1 + 1)ν) − Řn(τn
1 )) ≥ 0 and, therefore,

ϕn
1
((

jn
1 + 1

)
ν
)
> β0 − Δ − (

Řn((
jn

1 + 1
)
ν
) − Řn(

τn
1
)) = ϕn

2
((

jn
1 + 1

)
ν
)
.

Therefore,

(56) ϕn
3 := y + ψ0,1 − ψ0,2 − Řn ≥ ϕn

2 on the interval
[(

jn
1 + 1

)
ν, T̄

]
.

Let

τn
2 := inf

{
t ≥ (

jn
1 + 1

)
ν : ϕn

2 (t) ≤ 0
}
.

From (34), it follows that it takes
∫ β0−Δ

0 1/

√
y2 − h(ξ)/s dξ time units for the path

β0 − Δ + y · +ψ∗,1(·) − ψ∗,2(·) to reach the level zero. Therefore,

(57) τn
2 < T2 with probability 1.

Define

ϕn(t) =
{
ϕn

1 (t), 0 ≤ t ≤ (
jn

1 + 1
)
ν,

ϕn
2 (t),

(
jn

1 + 1
)
ν < t ≤ (

jn
2 + 1

)
ν.

Step 4 (Estimate on the time τn
2 ): Consider the P2I -path ψ̄0, which is de-

fined in a similar way to ψ̄�. From Lemma A.2, it follows that there exists
ψ̄0 = (ψ̄0,1, ψ̄0,2) ∈ P2I such that

(58)
(
θ · ψ̄0,1, θ · (

ψ̄0,2 ◦ ρ
)) = (

ψ0,1,ψ0,2)



2882 R. ATAR AND A. COHEN

and

(59) Jk

(
T , ψ̄0,k) = Ik

(
T ,ψ0,k), k = 1,2.

Let

Hn
k = {

τn
k ∈ Njn

k

}
, k = 1,2,

and similarly to Step 2, set

jn
2 = arg max

j∈{jn
1 +1,...,jn

1 +
T2/ν�+2}
P

(
τn

2 ∈ Nj |Ωn
δ3,(j

n
1 +1)ν+T2

(
ψ̄0) ∩ Hn

1
)
.

LEMMA 4.5. One has

lim inf
n→∞

1

b2
n

logP
(
Hn

2 |Ωn
δ3,(j

n
2 +1)ν

(
ψ̄0) ∩ Hn

1
) ≥ −2ε1.

PROOF. Recall that τn
2 ∈ [(jn

1 +1)ν, (jn
1 +1)ν+T2) with probability 1. There-

fore,

P
(
Hn

2 |Ωn
δ3,(j

n
1 +1)ν+T̄2

(
ψ0) ∩ Hn

1
) ≥ 1

(
T2/ν� + 1)
.

The rest of the proof is similar to the proof of Lemma 4.4 and is therefore omitted.
�

Step 5 (Bounding the cost from below): Let us denote

Ωn
2 = Ωn

δ3,(j
n
2 +1)ν

(
ψ̄0)

.

Consider the event Ωn
3 := Hn

1 ∩ Hn
2 ∩ Ωn

2 ∩ En. On this event, we bound from
below the sum ∫ τn

2

0
h
(
X̌n(s)

)
ds + rŘn(

τn
2
)
.

By (75), X̌n ≥ ϕn
1 − 2δ1 on [0, (jn

1 + 1)ν], and X̌n ≥ ϕn
3 − 2δ1 on [(jn

1 + 1)ν, τn
2 ]

(thanks to the fact that in Lemma 4.4, ψ is arbitrary on the latter time interval).
Therefore, by (77) and the definition of ϕn, on the time interval [0, τ n

2 ),

X̌n ≥ ϕn − 2δ1.

Since we chose δ1 such that oscD(2δ1, h) < ε1 it follows that∫ τn
2

0
h
(
X̌n(t)

)
dt + rŘn(

τn
2
)

≥
∫ τn

2

0
h
(
ϕn(t)

)
dt + rŘn(

τn
2
) − ε1τ

n
2

≥
[∫ τn

1

0
h
(
ϕn

1 (t)
)
dt + rŘn(

τn
1
)]

+
[∫ τn

2

(jn
1 +1)ν

h
(
ϕn

2 (t)
)
dt + r

(
Řn(

τn
2
) − Řn(

τn
1
))] − ε1τ

n
2 ,

(60)
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where the last inequality follows since h is nonnegative and τn
1 < (jn

1 + 1)ν. We
now bound from below the three terms above. From inequality (29), the inequality
τn

1 ≥ jn
1 ν, the definitions of ψ0 and ψ�, and (54) it follows that∫ τn

1

0
h
(
ϕn

1 (t)
)
dt + rŘn(

τn
1
)

≥ r
(
x − (β0 + Δ)

) + I
(
τn

1 ,ψ�) ≥ r
(
x − (β0 + Δ)

) + I
(
jn

1 ν,ψ�)
= r

(
x − (β0 + Δ)

) + I
((

jn
1 + 1

)
ν,ψ0)

−
∫ (jn

1 +1)ν

jn
1 ν

[
s1

(
ψ̇�,1)2

(t) + s2
(
ψ̇�,2)2

(t)
]
dt

= r
(
x − (β0 + Δ)

) + I
((

jn
1 + 1

)
ν,ψ0) − r2ν/(4s)

≥ r
(
x − (β0 + Δ)

) + I
((

jn
1 + 1

)
ν,ψ0) − ε1.

(61)

To bound the second term, notice that

ϕ̄n
2 (s) := ϕn

2
(
s+(

jn
1 +1

)
ν
) = β0 −Δ+ys+ψ∗,1(s)−ψ∗,2(s)−�n(s), s ≥ 0.

Denote τ̌ n
2 = τn

2 − (jn
1 + 1)ν. This is the first time when ϕ̄n

2 hits zero. Therefore,
from the definitions of I, τ̌ n

2 , and ψ0, the inequality τn
2 ≥ jn

2 ν, and from inequality
(33) it follows that∫ τn

2

(jn
1 +1)ν

h
(
ϕn

2 (t)
)
dt + r

(
Řn(

τn
2
) − Řn(

τn
1
))

=
∫ τ̌ n

2

0
h
(
ϕ̄n

2 (u)
)
du + r�n(

τn
2
)

= c
(
β0 − Δ, τ̌ n

2 ,ψ∗, �n) + I
(
τ̌ n

2 ,ψ∗)
= c

(
β0 − Δ, τ̌ n

2 ,ψ∗, �n) + I
(
τn

2 ,ψ0) − I
((

jn
1 + 1

)
ν,ψ0)

≥ c
(
β0 − Δ, τ̌ n

2 ,ψ∗, �n) + I
(
jn

2 ν,ψ0) − I
((

jn
1 + 1

)
ν,ψ0)

≥ V (β0 − Δ) + I
(
jn

2 ν,ψ0) − I
((

jn
1 + 1

)
ν,ψ0)

.

(62)

Inequality (57) gives a lower bound on the third term. Combining inequalities (60),
(61) and (62), we obtain∫ τn

2

0
h
(
X̌n(t)

)
dt + rŘn(

τn
2
)

≥ r
(
x − (β0 + Δ)

) + V (β0 − Δ) − ε1(T̄ + 1) + I
(
jn

2 ν,ψ0)
.

(63)

Step 6 (Bounding the limit from below): We are now ready to prove (39). First,
notice that there are only finitely many possible pairs {(j1, j2) ∈ N2 : 0 ≤ j1 ≤ j2 ≤
T̄ /ν − 1}. For each such pair, define

N(j1,j2) = {
n ∈N : (

jn
1 , jn

2
) = (j1, j2)

}
.
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If we show that for each pair (j1, j2),

(64) lim inf
N(j1,j2)

1

b2
n

logE
[
eb2

n(
∫ T̄

0 h(X̌n(u)) du+rŘn(T̄ ))] ≥ V (x) + C0ε1,

where C0 is a constant independent of n and ε1, then (39) will follow on apply-
ing Lemma 4.1 and taking ε1 → 0. Thus, in the rest of the proof we focus on a
fixed (j1, j2), and prove (64). Hereafter, lim inf denotes the limit inferior along the
subset. Denote Ω̂n

2 = Ωn
δ3,(j2+1)ν(ψ̄

0). From (63), and since τn
2 ≤ T̄ it follows that

lim inf
1

b2
n

logE
[
eb2

n(
∫ T̄

0 h(X̌n(u)) du+rŘn(T̄ ))1{Hn
1 ∩Hn

2 ∩Ω̂n
2 ∩En}

]
≥ r

(
x − (β0 + Δ)

) + V (β0 − Δ) − ε1(T̄ + 1) + I
(
j2ν,ψ0)

+ lim inf
1

b2
n

logP
(
Hn

1 ∩ Hn
2 ∩ Ω̂n

2 ∩ En)
.

(65)

We now estimate the last term above. By Lemmas 4.4 and 4.5, for all n sufficiently
large,

P
(
Hn

1 |Ω̂n
2
)
P

(
Hn

2 |Hn
1 ∩ Ω̂n

2
) ≥ e−5ε1b

2
n .

Hence,

lim inf
1

b2
n

logP
(
Hn

1 ∩ Hn
2 ∩ Ω̂n

2 ∩ En)

≥ lim inf
1

b2
n

log
[
P

(
Hn

1 ∩ Hn
2 ∩ Ω̂n

2
) − P

((
En)c)]

= lim inf
1

b2
n

log
[
P

(
Hn

2 |Hn
1 ∩ Ω̂n

2
)

× P
(
Hn

1 |Ω̂n
2
)
P

(
Ω̂n

2
) − P

((
En)c)]

≥ lim inf
1

b2
n

log
(
e−5ε1b

2
nP

(
Ω̂n

2
) − P

((
En)c))

≥ lim inf
1

b2
n

log
(
e−b2

n[J((j2+1)ν,ψ̄0)+6ε1] − eb2
n(−m+1))

= −I
(
(j2 + 1)ν,ψ0) − 6ε1.

(66)

Above, the third inequality follows by Proposition 2.1 and (48). The last equality
uses (59) and m − 1 > I((j2 + 1)ν,ψ0) + 6ε1. Substituting (66) in (65) yields

lim inf
1

b2
n

logE
[
eb2

n(
∫ T̄

0 h(X̌n(u)) du+rŘn(T̄ ))1{Hn
2 ∩Hn

1 ∩Ãδ3,(j2+1)ν (ψ
0)∩En}

]
≥ r

(
x − (β0 + Δ)

) + V (β0 − Δ) − ε1(T̄ + 7)

+ I
(
j2ν,ψ0) − I

(
(j2 + 1)ν,ψ0)

.

(67)
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Using (30) and then (31) and Proposition 3.1(iii) gives

I
(
j2ν,ψ0) − I

(
(j2 + 1)ν,ψ0)

= −
∫ (j2+1)ν

j2ν

[
s1

(
ψ̇

∗,1
β0−Δ

)2
(t) + s2

(
ψ̇

∗,2
β0−Δ

)2
(t)

]
dt

= −
∫ (j2+1)ν

j2ν

[
s
(
ω̇∗

β0−Δ

)2
(t)

]
dt

= −
∫ (j2+1)ν

j2ν

[
s
(−y −

√
y2 − h

(
x + yt + ω∗

β0−Δ(t)
)
/s

)2
(t)

]
dt

≥ −νsy2 ≥ −ε1,

(68)

where the last two inequalities follow from the negativity of y and (54). From (67)
and (68) and by recalling that for x > β0, one has V (x) = r(x − β0) + V (β0), and
it follows that

lim inf
1

b2
n

logE
[
eb2

n(
∫ T̄

0 h(X̌n(u)) du+rŘn(T̄ ))1{Hn
1 ∩Hn

2 ∩Ωn
δ3,(jn

2 +1)ν
(ψ0)∩En}

]
≥ V (x) − ε1(T̄ + 8).

This proves (64). Hence, the result is proved for the case x > β0.
Finally, consider x ≤ β0. The considerations here are simpler than in the previ-

ous case. In case that the initial state is exactly β0, the decision maker can reject
a (small) amount of Δ at time t = 0. Then the proof that V (x) is a lower bound
requires the focusing only on data near ψ∗

β0−Δ, starting at time zero. In case that
the initial state is lower than β0, one uses the same arguments, with data near ψ∗

x .
�

4.1. Proof of Lemma 4.4. The proof has two parts. On the first, we show that
for sufficiently large n one has

(69) P
(
τn

1 ∈ [0, T1)|Ωn
δ3,T1

(ψ)
) ≥ 1/2.

Since the interval [0, T1] is divided into at most 
T1/ν� + 1 subintervals, there
exists an interval Nj such that the conditional probability of τn

1 ∈ Nj is at least
1

2(
T1/ν�+1)
. Thus, as a result of (69),

(70) P
(
τn

1 ∈ Njn
1
|Ωn

δ3,T1
(ψ)

) ≥ 1

2(
T1/ν� + 1)
.

On the second part, we use this to deduce (55).

Part (a): Set

En
1 = {

τn
1 ≥ T1

}
.
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Write Ωn
δ3,T1

(ψ) as Ωn. We analyze the event Ωn
1 := Ωn ∩ En ∩ En

1 . On this
event, we bound from below the process X̌n on the time interval [0, T1] and the
total number of rejections until time T1. By the triangle inequality it follows that
for every i ∈ I and every n∥∥S̃n

i ◦ T n
i − ψ2

i ◦ ρi

∥∥
T̄ ≤ ∥∥S̃n

i ◦ T n
i − ψ2

i ◦ T n
i

∥∥
T̄

+ ∥∥ψ2
i ◦ T n − ψ2

i ◦ ρi

∥∥
T̄

≤ 2δ2,

(71)

where we have bounded each of the terms on the right-hand side by δ2; the bound
of the first term follows by (52), and the bound of the second follows by the defi-
nition of En and from (51). Similarly,

(72)
∥∥Ãn

i − ψ1
i

∥∥
T̄ ≤ δ2, i ∈ I.

Since θn → θ it follows from (49), (71) and (72) that for sufficiently large n,

∥∥Šn ◦ T n − ψ2 ◦ ρ
∥∥
T̄ = ∥∥θn · S̃n ◦ T n − θ · ψ2 ◦ ρ

∥∥
T̄ <

δ1

2
,(73)

∥∥Ǎ − ψ1∥∥
T̄ = ∥∥θn · Ãn − θ · ψ1∥∥

T̄ <
δ1

4
.(74)

Moreover, for sufficiently large n one has, for t ∈ [0, T̄ ], |X̌n(0) + y̌nt − y(t)| ≤
δ1/4. Using the above inequalities, it follows that for every u ∈ [0, T1] one has

X̌n(u) = X̌n(0) + y̌nt + Ǎn(u) − Š
n ◦ T n(u) + Žn(u) − Řn(u)

≥ ϕn
1 (u) − δ1 − sup

t∈[0,T̄ ]

∥∥X̌n(0) + ỹnt − y(t)
∥∥

− ∥∥Ǎn − ψ1∥∥
T̄ − ∥∥Šn ◦ T n − ψ2∥∥

T̄

≥ ϕn
1 (u) − 2δ1.

(75)

By the definition of En
1 and the choice of δ1 [see (47)],

(76) X̌n(u) ≥ β0 + Δ − 2δ1 ≥ β0 + Δ/2.

By using similar arguments and the inequality X̌n ≤ Dn, one obtains

Řn(T1) ≥ y(T1) − Dn − δ1 + ψ1(T1) − ψ2(T1)

= x − Dn − δ1 + (
y + r/(2s)

)
T1

≥ x − Dn − 1 + (
y + r/(2s)

)
T1

≥ x − D − 2 + (
y + r/(2s)

)
T1,

(77)
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where the equality follows by the definition of ψ�, the second inequality follows
by the choice of δ1, and the last inequality follows since limn→∞ Dn = D. From
(37), (42) and since T1 < T̄ , we obtain4 for sufficiently large n

V (x) + 1 >
1

b2
n

logE
[
eb2

n(
∫ T1

0 h(X̌n(u)) du+rŘn(T1))
]
.

Along with (76) and (77), it follows that

V (x) + 1 >
1

b2
n

logE
[
eb2

n(
∫ T1

0 h(X̌n(u)) du+rŘn(T1))1Ωn
1

]

≥ 1

b2
n

logE
[
eb2

n((h(β0+Δ/2)+yr+r2/(2s))T1+r(x−D−2))1Ωn
1

]
= r(x − D − 2) + (

h(β0 + Δ/2) − h(β0) + r2/(4s)
)
T1

+ 1

b2
n

logP
(
Ωn

1
)
.

The above equality follows since r2/(4s) + ry + h(β0) = 0, which in turn follows
since x > β0 and therefore β0 < D. Since

P
(
Ωn

1
) = P

(
En

1 ∩ Ωn ∩ En) ≥ P
(
En

1 |Ωn)
P

(
Ωn) − P

((
En)c)

,

and using (48), it follows that

P
(
En

1 |Ωn) ≤ eb2
n(V (x)+1+r(2+D−x)−T1(h(β0+Δ/2)−h(β0)−r2/(4s)))

P
(
Ωn)−1

+ e−mb2
nP

(
Ωn)−1

.

We show that for sufficiently large n, each of the terms on the right-hand side can
be bounded by 1/4. From Proposition 2.1 and (50), it follows that, for all large n,

1

b2
n

logP
(
Ωn) ≥ − inf

ψ̄∈Aδ3,T1 (ψ)
J(T1, ψ̄) − 1 ≥ −J(T1,ψ) − 1

= −I
(
T1,ψ

�) − 1 = −r2T1/(4s) − 1.

Hence, by the definition of T1, the first term is bounded by 1/4. Since m >

I(T̄ ,ψ�) and T̄ > T1, so is the second term. As a result, (69) holds.

Part (b): By the definition of an admissible control, Rn is adapted to the fil-
tration Ft := σ {An

i (u), Sn
i (T n

i (u)), i ∈ I, u ≤ t}, hence so is Řn, and, by (41), so
is ϕn

1 . Since T n
i (t) ≤ t , t ≥ 0, and T n

i are themselves adapted to Ft , it follows that
the event {τn

1 ∈ Njn
1
} is measurable on Fn

ν(jn
1 +1)

, where Fn
t = σ {An

i (u), Sn
i (u), i ∈

I, u ≤ t}. Note that Fn
t = σ {Ãn

i (u), S̃n
i (u), i ∈ I, u ≤ t}.

4Recall the convention ε = 0 and generic r .
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Fix v > 0 and a sequence vn, with vn < v (both deterministic). We will show the
following. Given a constant c1 > 0 and a sequence of events Qn ∈ Fn

vn
, for every

ε > 0 there exists δ > 0 and n1 ∈ N, such that

(78) pn
1 := P

(
Qn|Ωn

δ,v(ψ)
) ≥ c1, n ≥ 1,

implies

(79) pn
2 := P

(
Qn|Ωn

δ,vn
(ψ)

) ≥ e−εb2
n, n ≥ n1.

Note that this will prove (55), based on (70) that has now been established by
part (a).

Extending the definition of Ωn
δ,t (ψ) (53), we let

Ωn
δ,a,b(ψ) =

{
sup

s∈[a,b]
∥∥(

Ãn, S̃n)
(u) − ψ(u)

∥∥ < δ
}
,

for 0 ≤ a ≤ b. Also, we drop ψ from the notation Ωn
δ,a and Ωn

δ,a,b. Note that there

is no loss of generality in proving the statement for Ãn (a collection of I indepen-
dent renewal processes) in place of (Ãn, S̃n) (a collection of 2I such processes).
Thus, we will consider only the former.

To prove the aforementioned statement, let ε > 0 be given. Consider the quan-
tities pn

1 and pn
2 , depending on δ. Assume that (78) is valid. Then we can write

pn
1 = P{Qn ∩ Ωn

δ,v}
P{Ωn

δ,v}
= P{Qn ∩ Ωn

δ,vn
∩ Ωn

δ,vn,v}
P{Ωn

δ,vn
∩ Ωn

δ,vn,v}
.

A basic independence property for a renewal process, to be used, is the following.
Let A be a renewal process of the form

A(t) = sup

{
l ≥ 0 :

l∑
k=1

U(k) ≤ t

}
, t ≥ 0,

where {U(k)} are i.i.d. [compare with (3)]. Fix t and let π denote the time of
the first jump at or after t , namely π = inf{u ≥ t : A(u) > A(t−)} [convention:
A(0−) = 0]. Consider an event Q measurable on σ {A(u) : 0 ≤ u ≤ t}. Then, for
each k ∈ Z+, the event Q ∩ {At = k} is statistically independent of the sequence
{Uk+1,Uk+2, . . .}. Based on this, it is not hard to see that, if we let SA denote
the shifted version SA(u) = A(π + u) − A(π), u ≥ 0, of A, we have that Q is
independent of SA. For a collection of independent renewal processes, a similar
statement holds if each of them is shifted according to its own first jump after t .
To state this property for the processes (An

i ), if Q is measurable on Fn
t , then it

is independent of (SAn
i ). Now, let us apply this to study (Ãn). Let πn = (πn

i ) be
defined by πn

i = inf{u ≥ vn : Ãn
i (u) > Ãn

i (vn−)}. If ‖πn‖ := maxi |πn
i − vn|, then

given any k > 0, P{‖πn‖ > δ} ≤ e−kb2
n for all sufficiently large n, as can be verified
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using the exponential moment assumption and applying Chebychev’s inequality.
Hence, given any k, for all large n,

pn
1,1 := P

{
Qn ∩ Ωn

δ,vn
∩ Ωn

δ,vn,v

}
≤ P

{
Qn ∩ Ωn

δ,vn
∩ Ωn

δ,vn,v ∩ {‖πn‖ ≤ δ
}} + e−kb2

n .

Let us denote by ω a modulus [by which we mean a function mapping R+ to itself
with ω(0+) = 0], that dominates the modulus of continuity of ψ̄m for all m ≤ M .
Then, using the definition of Ωn

δ,vn,v , adding and subtracting the shifted version

SÃn and using the triangle inequality gives

pn
1,1 ≤ P

{
Qn ∩ Ωn

δ,vn
∩ {∥∥SÃn − (

ψ(vn + ·) − ψ(vn)
)∥∥

v−vn−δ < δ′}} + e−kb2
n,

where δ′ = 2δ + 2ω(δ). Using the independence alluded to above,

pn
1,1 ≤ P

{
Qn ∩ Ωn

δ,vn

}
P

{∥∥SÃn − (
ψ(vn + ·) − ψ(vn)

)∥∥
v−vn−δ < δ′} + e−kb2

n .

Shifting back gives

pn
1,1 ≤ P

{
Qn ∩ Ωn

δ,vn

}
P

{
Ωn

δ′′,vn,v−δ

} + e−kb2
n

for δ′′ that can be made arbitrarily small by taking δ to be small. A similar argument
shows that, for all large n,

pn
1,2 := P

{
Ωn

δ,vn
∩ Ωn

δ,vn,v

} ≥ P
{
Ωn

δ′′′,vn

}
P

{
Ωn

δ′′′,vn,v

} − e−kb2
n,

for suitably chosen δ′′′ > 0, that again, can be made arbitrarily small by taking
small δ. Thus,

pn
1 = pn

1,1

pn
1,2

≤ P{Qn ∩ Ωn
δ,vn

}P{Ωn
δ′′,vn,v−δ} + e−kb2

n

P{Ωn
δ′′′,vn

}P{Ωn
δ′′′,vn,v} − e−kb2

n

= P{Qn|Ωn
δ,vn

}P{Ωn
δ,vn

}P{Ωn
δ′′,vn,v−δ} + e−kb2

n

P{Ωn
δ′′′,vn

}P{Ωn
δ′′′,vn,v} − e−kb2

n

.

Using the LDP and writing I[a, b] for
∑

i

∫ b
a siψ̇(u)2 du [see (10)] gives

pn
1 ≤ pn

2eb2
n(−I[0,vn]+ε′)eb2

n(−I[vn,v−δ]+ε′) + e−kb2
n

eb2
n(−I[0,vn]−ε′)eb2

n(−I[vn,v]−ε′) − e−kb2
n

= pn
2eb2

n(−I[0,v−δ]+2ε′) + e−kb2
n

eb2
n(−I[0,v]−2ε′) − e−kb2

n

,
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for arbitrary ε′ > 0, provided that δ is sufficiently small. Hence, by selecting k

sufficiently large,

pn
1 ≤ pn

2eb2
n(−I[0,v−δ]+2ε′) + e−kb2

n

1
2eb2

n(−I[0,v]−2ε′)

= 2pn
2eb2

n(4ε′+I[v−δ,v]) + 2e−kb2
neb2

n(I[0,v]+2ε′).

Hence, again by selecting k large, for all large n,

pn
2 ≥ 1

2
c1e

−b2
n(4ε′+I[v−δ,v]) − eb2

n(−k+I[0,v−δ]−2ε′) ≥ 1

4
c1e

−b2
n(4ε′+I[v−δ,v]).

Selecting δ > 0 such that 4ε′ + I[v − δ, v] < ε gives (79) for some n1. This com-
pletes the proof of part (b) and the lemma.

5. A nearly optimal policy. In this section, we show that the policy from [6]
is AO for the present setting. While the policy is similar, the proof of AO is quite
different, as the paper [6] addresses the diffusion scale, rather than the MD scale.

Let the classes be labeled so that h1μ1 ≥ h2μ2 ≥ · · · ≥ hIμI . Let γ : [0,D] →
X be a Borel measurable mapping satisfying

(80) γ (w) ∈ arg min
ξ

{h̄ · ξ : ξ ∈X , θ · ξ = w}, w ∈ [0,D].

We note on passing that, as shown in [2], Theorem A.1, one can equivalently work
with one-dimensional dynamics, thanks to the fact that the minimum over queue
length ξ in the above expression is a function of only of the (one-dimensional)
workload w.

Since the mapping ξ̄ �→ h̄ · ξ̄ is linear and the domain X is polyhedral, it can be
assumed, without loss of generality, that γ is continuous and takes values on the
boundary of X . We have, by definition, that θ · γ (w) = w, and h̄ · γ (w) = h(w) ≤
h̄ · ξ for ξ ∈ X for which θ · ξ = w. A particular selection of γ is as follows.
Given w ∈ [0,D], set (j, ξ) = (j, ξ)(w) by w ∈ [D̂j , D̂j−1) and ξ = ξ(w) :=
(w − D̂j )/θj , where

D̂j :=
I∑

i=j+1

θiDi, j ∈ {0, . . . , I }

and one has 0 = D̂I < D̂I−1 < · · · < D̂1 < D̂0 = θ · D̄ = D, D̄ := (D1, . . . ,DI ).
Then

(81) γ (w) =
I∑

i=j+1

Diei + ξej .

Approximate γ by a curve that is bounded away from the part of the boundary of
X that corresponds to the buffer limit, namely ∂X = {x ∈ X : xi = Di for some i}.
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Fix 0 < ε0 < mini Di/4. Let ai = Di − 3ε0, i ∈ I , and a∗ = β0 ∧ (θ · a) < D.
Note that if ε0 is small then a∗ = β0 (unless β0 = D). Define γ a[0,D] → X first
on [0, θ · a] as the function obtained upon replacing the parameters (Di) by (ai)

in (81). That is, for w ∈ [0, θ · a), the variables j = j (w) and ξ = ξ(w) are deter-
mined via

w =
I∑

i=j+1

θiai + θj ξ, j ∈ {1,2, . . . , I }, ξ ∈ [0, aj ),

γ a(w) =
I∑

i=j+1

aiei + ξej .

(82)

Given w ∈ [0, θ · a), we will sometimes refer to the unique pair (j, ξ) alluded to
above as the representation (j, ξ) of w via (82). Next, on [θ · a, θ · D̄] define γ a

as the linear interpolation between the points (θ · a, a) and (θ · D̄, D̄). Also set
âj = ∑I

i=j+1 θiai , j ∈ {0,1, . . . , I }. Let

ha(w) := min
{
h̄ · ξ : ξ ∈X , θ · ξ = w,ξi ≤ γ a

i (w), i = 1, . . . , I
}

= h̄ · γ a(w), w ∈ [0, θ · a].
Note the similarity to the payoff h in (23). Note that the construction depends on
the parameter ε0, and denote

(83) ω1(ε0) = sup
[0,θ ·a]

∣∣ha − h
∣∣.

By the choice of a, it is clear that ω1(0+) = 0.
Before providing the precise construction of the policy, we explain its rationale.

The solution to the DG indicates that rejections should occur when the normalized
workload in the system is above the threshold β0, and that most rejections should
be from a specific class, i∗, defined in (24). The DG solution also indicates that pri-
oritization should be according to (80) (see the proof of (100) in [2], Theorem A.1)
and that, consequently, the resulting normalized queue length processes should be
close to the curve γ . These two goals are contradictory, as parts of the curve γ lie
on the part ∂X of the domain where some of the buffers are full, and so even small
stochastic fluctuations cause rejections due to the buffer size constraints. Such re-
jections do not satisfy the requirement to reject only when the workload is above
the specified threshold, nor that rejections are from class i∗. To address this issue,
we have defined the curve γ a , which approximates γ without intersecting the part
∂X of the boundary. The service policy is designed to keep the normalized queue
length processes close to this curve.

The precise definition of the policy is provided by specifying (Bn(t),Rn(t)) as
a function of Xn(t).

Rejection policy: As under any policy, in order to meet the buffer size constraint
(8), all forced rejections take place. That is, if a class-i arrival occurs at a time t
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when X̃n
i (t−)+ 1

bn
√

n
> Di , then it is rejected. Apart from that, no rejections occur

from any class except class i∗, which is defined through (24), and no rejections
occur (from any class) when θ · X̃n < a∗. When θ · X̃n ≥ a∗, all class-i∗ arrivals
are rejected, and these rejections are called overload rejections.

Service policy: For each x̄ ∈ X , define the class of low priority

L(x̄) = max{i : xi < ai},
provided xi < ai for some i, and set L(x̄) = I otherwise. The complement set is
the set of high priority classes

H(x̄) = I \ {
L(x̄)

}
.

When there is at least one class among H(x̄) having at least one customer in
the system, L(x̄) receives no service, and all classes within H(x̄), having at least
one customer, receive service at a fraction proportional to their traffic intensities.
Namely, denote H+(x̄) = {i ∈ H(x̄) : xi > 0}, and define ρ ′(x̄) ∈ RI as

(84) ρ′
i (x̄) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if x̄ = 0,
ρi1{i∈H+(x̄)}∑

k∈H+(x̄) ρk

if H+(x̄) �= ∅,

eI if xi = 0 for all i < I and xI > 0.

[Note that H+(x̄) = ∅ can only happen if xi = 0 for all i < I , which is covered
by the first and last cases in the above display.] Then, for each t ,

(85) Bn(t) = ρ′(X̃n(t)
)
.

Note that, when H+(x̄) �= ∅,

(86) ρ′
i(x̄) > ρi for all i ∈ H+(x̄).

That is, all prioritized classes receive a fraction of effort strictly greater than the
respective traffic intensity. Also note that

∑
i B

n
i = 1 whenever X̃n is nonzero. This

is therefore a work conserving policy.

THEOREM 5.1. Let Assumption 2.1 hold. For every ε0 > 0 and n ∈ N, denote
the policy constructed above by Un(ε0). Then, for all sufficiently large T ,

lim sup
n→∞

Jn(
T , X̃n(0),Un(ε0)

) ≤ V (x) + ω(ε0),

where ω :R+ →R+ is a function satisfying ω(0+) = 0.

PROOF OF THEOREM 5.1. Introduce the notation

Hn
t =

∫ t

0
h̄ · X̃n(u) du + r̄ · R̃n(t).
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Fix T > 0 sufficiently large for the identity V (T , x) = V (x) stated in Proposi-
tion 3.1(i) to hold. First, notice that

(87) E

∫ T

0
eb2

nHn
t dt ≤ TE

[
eb2

nHn
T
]
.

The argument will be based on a bound on the right-hand side of (87).
Recall the definition (10) of J, and for J > 0, define

ACJ = {
ψ ∈D

([0, T ],R2I ) : J(T ,ψ) ≤ J
}
.

Then ACJ is compact in the J1 topology, and consists of absolutely continuous
paths starting at zero. Fix 0 < ε1 < θminε0/8. Fix also δ1 > 0 such that

(88) δ1 < min
{
ε0/12, ε1/(11C), ε0/(5C),oscD

(
ε0/(5C),h

)}
,

where C is the constant from Lemma A.1. For 0 < δ < t ≤ T and ψ ∈
D([0, T ],R2I ), denote

Aδ,t (ψ) = {
ψ̄ ∈D

([0, T ],R2I ) : ‖ψ̄ − ψ‖t < δ
}

[where we slightly modified the notation (52)]. By the compactness of ACJ

and the continuity of its members, one can find a finite number of members
ψ̄1, ψ̄2, . . . , ψ̄M of ACJ , and positive constants δ1, . . . , δM with δm < δ1, satis-
fying ACJ ⊂ ⋃M

m=1 Am
T , and

(89) inf
{
J(T , ψ̄) : ψ̄ ∈Am

T

} ≥ J
(
T , ψ̄m) − ε0, m = 1,2, . . . ,M,

where, throughout, for 0 ≤ t ≤ T ,

Am
t = Aδm,t

(
ψ̄m)

.

By the continuity of each of the paths ψ̄m, one can find ν1 > 0 such that for
m = 1, . . . ,M ,

(90) oscT

(
ν1, ψ̄

m
i

) ≤ δ1

2(θmax ∨ 1)
√

I
, i ∈ I.

In this proof, C1,C2, . . . denote positive constants that do not depend on n, ε0,
δm or J . Write ψ̄m ∈P2I as (ψ̄m,1, ψ̄m,2). For m = 1, . . . ,M , let

ϕm = y + ψm,1 − ψm,2 + ζm − �m,

where, as before, y(t) = x + yt ,

ψm,1 = θ · ψ̄m,1, ψm,2 = θ · ψ̄m,2

and

(91)
(
ϕn, ζm,�m) = Γ[0,β0]

[
y + ψm,1 − ψm,2]

.
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Denote Λn = ‖Ãn‖T + ‖S̃n‖T . As argued in [6], at the bottom of page 595,

(92)
∥∥R̃n(T )

∥∥ ≤ C1
(
1 + Λn)

.

Since X̃n is bounded, one has Hn
T ≤ C2(1 + Λn). Hence, given any J1 > 0,

Hn
T > J1 implies Λn > C−1

2 J1 − 1 =: G(J1).

Therefore,

E
[
eb2

nHn
T
] ≤ E

[
eb2

n[Hn
T ∧J1]] +E

[
eb2

nHn
T 1{Hn

T >J1}
]

≤ An
1 + An

2 + An
3,

(93)

where, with B = (
⋃M

m=1 Am
T )c,

An
1 =

M∑
m=1

E
[
eb2

n[Hn
T ∧J1]1Ωn,m

]
, Ωn,m = {(

Ãn, S̃n) ∈ Am
T

}
,

An
2 = E

[
eb2

n[Hn
T ∧J1]1{(Ãn,S̃n)∈B}

]
,

An
3 = E

[
eb2

nC2(1+Λn)1{Λn>G(J1)}
]
.

An argument to be presented shortly will show that there exist t1, . . . , tM ∈ [0, T ]
such that for large n,

(94) An
1 ≤ M

M
max
m=1

eb2
n[∫ tm

0 h(ϕm(u)) du+r(1+ε0)�
m(tm)−I(tm,ψm)+ω2(ε0)] + ε0,

where ω2(0+) = 0 (this step translates the multidimensional formulation, by
which Hn

T is defined, into a one-dimensional form, given by ϕm). As for An
2 and

An
3, note, by Proposition 2.1, that for large n,

1

b2
n

logP
((

Ãn, S̃n) ∈ B
) ≤ − inf

ψ∈B I(T ,ψ) + ε0.

Along with the fact that B ⊂ ACc
J and the definition of ACJ , this shows

(95) An
2 ≤ eb2

n[J1−J+ε0].

Also, An
3 ≤ E[eb2

n((C2+1)Λn+C2−G(J1))]. As shown in the Appendix of [1], Assump-
tion 2.1 implies that, for any K < ∞,

lim sup
n→∞

1

b2
n

logE
[
eb2

nK(‖Ãn‖T +‖S̃n‖T )] < ∞.

Hence, there exists a constant C3 such that

(96) An
3 ≤ eb2

nC2+C3−G(J1).
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Combining (93), (94), (95) and (96),

lim sup
1

b2
n

logE
[
eb2

nHn
T
]

≤ max
1≤m≤M

[∫ tm

0
h
(
ϕm(u)

)
du + r(1 + ε0)�

m(
tm

) − I
(
tm,ψm) + ω2(ε0)

]

∨ [J1 − J + ε0] ∨ [
C2 + C3 − G(J1)

]
≤ sup

ψ∈P,t∈[0,T ]
[
cε0

(
x, t,ψ,αβ0[ψ]) + ω2(ε0)

]
∨ [J1 − J + ε0] ∨ [

C2 + C3 − G(J1)
]
,

where the cost cε0 is defined as c with the rejection cost r(1 + ε0) instead of r .
Now, let ε0 → 0 first, then J → ∞, recalling that C2, C3 and G do not depend
on J . Finally let J1 → ∞, so G(J1) → ∞, to obtain

lim supV n(
T , X̃n(0)

) ≤ lim sup
1

b2
n

logE
[
eb2

nHn
T
]

≤ sup
ψ∈P2,t∈[0,T ]

c
(
x, t,ψ,αβ0[ψ]) = V (x),

where in the first inequality we used (87), and in the equality we used the op-
timality of the β0-barrier strategy in the game; see Proposition 3.2, as well as
Proposition 3.1(i).

We thus turn to the proof of (94). We argue in two steps. In step 1, we show the
multidimensional process X̃n lies close to the minimizing curve. Consequently,
we also deduce that no forced rejections occur, provided n is sufficiently large. In
step 2, we deduce (94) from step 1.

Step 1. We show that, for large n,

(97) max
i

∥∥Δn
i

∥∥
T ≤ ε0,

where we denote the difference process

(98) Δn
i (t) = X̃n

i (t) − γ a
i

(
X̌n(t)

)
, t ∈ [0, T ].

Denote by G = {x ∈ X : θ · x ≤ a∗, x = γ a(θ · x)} the set of points lying on
the minimizing curve, and recall ∂+X := {x ∈ X : xi = bi for some i}, the set
corresponding to the buffer limit boundary. By the choice of a and ε0 it fol-
lows that Gε0 and (∂+X )ε0 do not intersect, where for a set A ∈ RI we denote
Aε := {x : dist(x,A) ≤ ε}. Forced rejections occur only at times when X̃n lies in
(∂+X )ε0 (for all n large). As a result, as long as the process X̃n lies in Gε0 , no
forced rejections occur. Thus, by showing (97), one also obtains

(99) R̃n(T ) = R̃n
i∗(T )ei∗ .
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Denote

τn = inf
{
t ≥ 0 : max

i

∣∣Δn
i (t)

∣∣ ≥ ε0

}
.

LEMMA 5.1. For all large n, for every m ∈ {1, . . . ,M}, one has on the event
Ωn,m,

(100)
∥∥S̃n ◦ T n − ψ̄m,2 ◦ ρ

∥∥
T ≤ 3δ1/2,

∥∥Ãn − ψ̄m,1∥∥
T ≤ δ1

and

(101)
∥∥Šn ◦ T n − ψm,2 ◦ ρ

∥∥
T < 2δ1,

∥∥Ǎ − ψm,1∥∥
T < 2δ1.

Moreover, for all large n and all t, u ∈ [0, τ n] such that |t − u| < ν1,

(102)
∣∣X̌n(t) − X̌n(u)

∣∣ ≤ ε1.

LEMMA 5.2. For all large n, (97) holds on the event
⋃M

m=1 Ωn,m.

These two lemmas are proved at the end of the section.

Step 2. As mentioned earlier, for sufficiently small ε0 one has a∗ = β0. More-
over, by Lemma 5.2 and the discussion in the beginning of step 1, no forced rejec-
tions occur on the event under consideration. Consider the balance equation (15)
and recall that Žn and Řn are nonnegative, nondecreasing processes. Recall Y̌ n

defined in (13). Also, these processes are flat on the set of times where X̌n > 0
and X̌n < a∗, respectively, where we used work conservation and the absence of
forced rejections. Recalling from Section A.1 the characterization of the Skorohod
map on an interval, it follows that, on the event under consideration,

(103)
(
X̌n, Žn, Řn)

(t) = Γ[0,β0]
(
Y̌ n + Ǎn − Š

n ◦ T n)
.

Compare this relation with (91). Let n be sufficiently large so that ‖Y̌ n −y‖T ≤ δ1.
Then by (101),∥∥(

Y̌ n + Ǎn − Š
n ◦ T n) − (

y + ψm,1 − ψm,2)∥∥
T ≤ 5δ1.

From the above, using (88), (91) and Lemma A.1 it follows that on the event Ωn.m

one has

(104)
∥∥Řn(T ) − �m(T )

∥∥ ≤ ε0 and
∥∥X̌n − ϕm

∥∥
T ≤ oscD(ε0, h).

Now we bound Hn
T . Let L = ∑

i hi . For sufficiently large n,∫ T

0
h̄ · X̃n(u) du ≤

∫ T

0
h̄ · γ a(

X̌n(u)
)
du + 2Lε0T

=
∫ T

0
ha(

X̌n(u)
)
du + 2Lε0T
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≤
∫ T

0
h
(
X̌n(u)

)
du + (2L + 1)ε0T + T ω1(ε0)

≤
∫ T

0
h
(
ϕm(u)

)
du + (2L + 2)T ε0 + T ω1(ε0),

where the first inequality follows by Lemma 5.2, the equality follows by the defi-
nitions of ha and γ a , the second inequality follows by (83), and the last inequality
follows by (104). Also notice that for sufficiently large n,

r̄ · R̃n = ri∗R̃
n
i∗ = r

μi∗
R̃n

i∗ ≤ r(1 + ε0)θ
n
i∗R̃

n
i∗

= r(1 + ε0)θ
n · R̃n = r(1 + ε0)Ř

n,

where the first and third equalities follow from (99), the second equality follows
since r = ri∗μi∗ , the inequality follows since θn → θ , and the last equality follows
by the definition of Řn. Denote ω2(ε0) = ((2L + 2)T + r(1 + ε0))ε0 + T ω1(ε0).
Then from (83) one has ω2(0+) = 0. Moreover,

E
[
eb2

n[Hn
T ∧J1]1Ωn,m

]
≤ E

[
eb2

n[∫ T
0 h̄·X̃n(u) du+r̄·R̃n(T )]1Ωn,m

]
≤ E

[
eb2

n[∫ T
0 h(ϕm(u)) du+r(1+ε0)�

m(T )+ω2(ε0)]1Ωn,m

]
≤ max

0≤t≤T
eb2

n[∫ t
0 h(ϕm(u)) du+r(1+ε0)�

m(t)+ω2(ε0)]P
[(

Ãn, S̃n) ∈ Am
t

]
.

(105)

Let tm be such that

max
0≤t≤T

[
eb2

n[∫ t
0 h(ϕm(u)) du+r(1+ε0)�

m(t)+ω2(ε0)]P
[(

Ãn, S̃n) ∈ Am
t

]]

≤ eb2
n[∫ tm

0 h(ϕm(u)) du+r(1+ε0)�
m(tm)+ω2(ε0)]P

[(
Ãn, S̃n) ∈ Am

tm
] + ε0.

(106)

By Proposition 2.1 and (89),

1

b2
n

logP
((

Ãn, S̃n) ∈ Am
tm

) ≤ − inf
ψ∈Am

tm

J
(
tm,ψ

) + ε0 ≤ −J
(
tm, ψ̄m) + 2ε0

≤ −I
(
tm,ψm) + 2ε0.

This, along with (106), shows that the right-hand side of (105) is bounded by

eb2
n[∫ tm

0 h(ϕm(u)) du+r(1+ε0)�
m(tm)−I(tm,ψm)+ω2(ε0)] + ε0.

Thus, (94) follows. �

PROOF OF LEMMA 5.1. Recall relation (11) and the fact that X̃n(t) remains
bounded. This, along with (92) give ‖Z̃n‖ ≤ C4(1 + Λn). Denote

(107) ΛJ = sup
ψ∈ACJ

∥∥ψ1∥∥
T + ∥∥ψ2∥∥

T < ∞,
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where the finiteness follows by (45) and the definition of ACJ . Thus, on the event⋃
m Ωn,m, one has ‖Z̃n‖T ≤ ΛJ + 2δ1. Recalling the expression (12) for Z̃n, it

follows that ‖ρ − T n‖T < ν1 for large n. Therefore, for every m ∈ {1, . . . ,M},
‖ψ̄m,2 ◦T n − ψ̄m,2 ◦ρ‖T < δ1/2. Moreover, on the event Ωn,m, ‖S̃n ◦T n − ψ̄m,2 ◦
T n‖T < δ1 and, therefore,∥∥S̃n ◦ T n − ψ̄m,2 ◦ ρ

∥∥
T ≤ 3δ1/2.

Similarly, ‖Ãn − ψ̄m,1‖T ≤ δ1.
By (100), (90), and since θn → θ , it follows that on the event Ωn,m, (101) holds.
It remains to prove (102). Fix 0 ≤ u ≤ t < τn such that t − u < ν1. By the

definition of the time τn, an argument as that leading to (103) shows(
X̌n, Žn, Řn)

(u) = Γ[0,β0]
[
W̌n]

(u), u ∈ [
0, τ n)

,

where

W̌n(u) = X̌n(0) + y̌nu + Ǎn(u) − Šn(
T n(u)

) − Řn(u).

If we show that |W̌n(t) − W̌n(u)| < 11δ1 then the result follows by (88). Using
(101) along with (90) and the fact

lim
n→∞

∥∥Y̌ n − y
∥∥
T = 0

shows that, for large n,∣∣W̌n(t) − W̌n(u)
∣∣ ≤ ∣∣W̌n(t) − (

x + yt + ψm,1(t) − ψm,2(t)
)∣∣

+ ∣∣W̌n(u) − (
x + yu + ψm,1(u) − ψm,2(u)

)∣∣
+ ∣∣ψm,1(t) − ψm,1(u)

∣∣ + ∣∣ψm,2(t) − ψm,2(u)
∣∣ < 11δ1.

This completes the proof. �

PROOF OF LEMMA 5.2. The structure of the proof borrows ideas from the
proof of Lemma 4.1 of [6] (however, the content is different, as [6] addresses
weak convergence). We begin with the case where the initial state lies close to the
minimizing curve. That is,

(108) max
i

∣∣Δn
i (0)

∣∣ ≤ ε0.

At the last step of the proof we relax this assumption.
By reducing to a subsequence of {n}, one then has that there exists an m ∈

{1, . . . ,M} such that on the event (Ãn, S̃n) ∈ Am
T one has τn ≤ T . Let j = jn

and ξn be the corresponding components from the representation (j, ξ) of X̌n(τn)

[with w = X̌n(τn)]. Fix a positive integer K = K(ε1) = [D/ε1], where ε1 ≤
θminε0/8 as defined right before (88). Consider the covering of [0,D] by the
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K − 1 intervals Ξk = B(kε1, ε1), k = 1,2, . . . ,K − 1, where B(x, a) denotes
[x − a, x + a]. Let Ξ̃k = B(kε1,2ε1). From (102), we obtain

(109) if X̌n(
τn) ∈ Ξk, then X̌n(t) ∈ Ξ̃ k for every t ∈ T n := [((

τn − ν1
) ∨ 0

)
, τ n]

.

By considering a further subsequence, we may assume that there exists a k = k(m)

such that X̌n(τn) ∈ Ξk for all n. The value assigned by the policy to Bn [see
(85)] remains fixed as X̌n varies within any of the intervals (âj , âj−1). Aiming at
showing a contradiction for each k, we consider the following four cases:

(i) Ξ̃k ⊂ (0, a∗) and for all j , âj /∈ Ξ̃k .
(ii) Ξ̃k ⊂ (0, a∗) but âj ∈ Ξ̃k for some j ∈ {1,2, . . . , I − 1}.

(iii) 0 ∈ Ξ̃k .
(iv) a∗ ∈ Ξ̃k .

(i) Ξ̃k ⊂ (0, a∗) and for all j , âj /∈ Ξ̃k . Then all points x in Ξ̃k lead to the same
j in the representation (j, ξ) of x given by (82). This j = j (k) depends on k only,
and in particular does not vary with n. Fix i > j (except when j = I ). Note that
γ a
i (X̌n(τn)) = ai (because i > j ). We show first that for sufficiently large n one

has

(110) for every i > j, one has Δn
i (t) < ε0 for all t ∈ [0, T ].

This is done as follows. Assume to the contrary that τn ≤ T and that Δn
i (τ

n) ≥ ε0.
Then, since the jumps of X̃n

i are of size (bn

√
n)−1 it follows that there must exist

ηn ∈ [0, τ n] with the properties that

(111) X̃n
i

(
ηn)

< ai + ε0/2, X̃n
i (t) > ai for all t ∈ [

ηn, τn]
.

Therefore, during the time interval [ηn, τn], i is always a member of H+(X̃n) and,
therefore, by (85)–(86), Bn

i (t) = ρ′
i(X̃

n(t)) > ρi + C4, for some constant C4 > 0.
Thus, by (12),

d

dt
Z̃n

i ≤ − μn
i

bn

√
n
C4.

Moreover, if we define η̂n = ηn ∨ (τn − ν1) then by (109) we get that for all t ∈
[η̂n, τ n] one has X̌n(t) ∈ Ξ̃k ⊂ (0, a∗) and therefore no rejections occur. Using
these facts in (12), we have

(112)

X̃n
i

(
τn) − X̃n

i

(
η̂n) ≤ [

Ãn
i

(
τn) − Ãn

i

(
η̂n)] − [

S̃n
i

(
T n

i

(
τn)) − S̃n

i

(
T n

i

(
η̂n))]

− μn
i

bn

√
n
C4

(
τn − η̂n)

.

Fix a sequence rn > 0 with rn → 0 and rnbn

√
n → ∞. If τn − ηn < rn and n

is sufficiently large then η̂n = ηn, thus by the definitions of τn and ηn, one has
X̃n

i (τ n) − X̃n
i (η̂n) ≥ ε0/2. As a result,

(113)
[
Ãn

i

(
τn) − Ãn

i

(
ηn)] − [

S̃n
i

(
T n

i

(
τn)) − S̃n

i

(
T n

i

(
ηn))] ≥ ε0/2.
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From Lemma 5.1 and inequality (90) it follows that the left-hand side of the above
is smaller than 6δ1. Altogether, 6δ1 > ε0/2, which contradicts the choice of δ1 [see
(88)]. If, on the other hand, τn − ηn ≥ rn then by (112),

(114)
[
Ãn

i

(
τn) − Ãn

i

(
η̂n)] − [

S̃n
i

(
T n

i

(
τn)) − S̃n

i

(
T n

i

(
η̂n))] ≥ C4rnbn

√
n.

The left-hand side of the above is bounded from above by 2Λn, which is bounded
by Lemma 5.1 and the definition of ΛJ ; see (107). This contradicts the fact
C4rnbn

√
n → ∞. Therefore, (110) holds.

Next, fix i < j (provided j �= 1). Then γ a
i (X̌n(τn)) = 0 and whenever X̃n

i > 0,
i is a member of the high priority set H+(X̃n). This is due to the fact that there
must exist l > i such that X̃n

l < al ; otherwise, the workload would be at least∑I
p=l apθn

p > X̌n. Hence, the same argument yields a contradiction. Therefore,

(115) for every i < j, Δn
i (t) < ε0 for all t ∈ [0, T ].

Consider now j itself. We will show, for the case j < I , that

(116) Δn
j (t) < ε0 for all t ∈ [0, T ].

Suppose that we show that, for every t ∈ [0, τ n] and every large n,

(117) if Δn
j (t) ∈ (ε0/2, ε0), then j ∈H+(

X̃n(t)
)
.

Then, assuming to the contrary that τn ≤ T and X̃n
j (τn) ≥ γ a

j (X̌n(τn)) + ε0, im-
plies that there exists ηn ∈ [0, τ n] with the properties that

X̃n
j

(
ηn) − γ a

j

(
X̌n(

τn))
< 3ε0/4,

X̃n
j (t) − γ a

j

(
X̌n(

τn))
> ε0/2 for all t ∈ [

ηn, τn]
.

From (117) during the time interval [ηn, τn], j is always a member of H+(X̃n
j (t)).

Therefore, we still have inequality (112) valid. Arguing separately for the cases
τn − ηn < rn and τn − ηn ≥ rn, leads, in analogy to (113) and (114), to a contra-
diction. There is a slight difference in the first case. If τn − ηn < rn and n is suf-
ficiently large then η̂n = ηn, and now X̃n

j (τn) − X̃n
j (η̂n) ≥ ε0/4 + γ a

j (X̌n(τn)) −
γ a
j (X̌n(η̂n)). Recall that τn − η̂n < ν1. Therefore, by taking δ1 to be sufficiently

small, one can verify that |γ a
j (X̌n(τn)) − γ a

j (X̌n(η̂n))| would be significantly
smaller than ε0/2. This argument follows by the continuity of γ a and by simi-
lar arguments to the ones we used in order to prove (102).

Now we show that (117) holds (except in the case j = I ). Since θ · γ a(θ · x̄) =
θ · x̄ for all x̄ ∈ X , θn → θ , γ a is uniformly continuous, and X is bounded, we
have

(118) qn := sup
x̄∈X

∣∣θ · γ a(
θn · x̄) − θ · x̄∣∣ → 0 as n → ∞.

Note by (118) that |θ · X̃n(t) − θ · γ a(X̌n(t))| ≤ qn → 0.
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Fix t ∈ [0, τ n]. If Δn
j (t) ≥ ε0/2, then

−θj ε0/2 ≥ ∑
i �=j

θi

(
X̃n

i (t) − γ a
i

(
X̌n(t)

)) − ‖θ‖qn

≥ ∑
i>j

θi

(
X̃n

i (t) − ai

) − ‖θ‖qn,
(119)

where we used γ a
i (X̌n(t)) = 0 for i < j and γ a

i (X̌n(t)) = ai for i > j . These two
equations hold from (109). For all large n, this implies X̃n

i (t) < ai for at least one
i > j , by which j ∈H+(X̃n).

We can now show that for every t ∈ [0, T ] one has maxi≤I |Δn
i (t)| < ε0. Indeed,

in the case j = I , we have by (115), maxi<I |Δn
i (t)| < ε0. By (118), |θ · Δn(t)| ≤

qn. Since θ ∈ (0,∞)I and qn → 0, we obtain

(120) max
i≤I

∣∣Δn
i (t)

∣∣ < ε0.

In the case j < I , combining (110), (115), (116), we have maxi≤I Δn
i (t) < ε0.

Using again the fact |θ ·Δn(τn)| ≤ qn → 0 shows that (120) is valid in this case as
well.

(ii) Ξ̃k ⊂ (0, a∗) but âj ∈ Ξ̃k for some j ∈ {1,2, . . . , I − 1}. Let (jn(t), ξn(t))

denote the representation (82) for X̌n(t). Note that in the time window T n, jn

varies between two values, namely j and j + 1, and so it is no longer true that
γ a
j+1(X̌

n(t)) = aj+1 on that time interval. However, it is true that

(121) γ a
j+1

(
X̌n(t)

) ≥ aj+1 − 4ε1/θmin ≥ aj+1 − ε0/2, t ∈ T n,

where the second inequality follows since ε1 < θminε0/8. Indeed, we have for any
w ∈ Ξ̃k , |w − âj | ≤ 4ε1, since âj is also in Ξ̃k . Now, if w ≥ âj then γ a

j+1(w) =
aj+1. Otherwise,

w = âj+1 + θj+1ξ = âj − θj+1aj+1 + θj+1ξ,

hence |aj+1 − ξ | ≤ 4θ−1
j+1ε1 and (121) follows.

By the same arguments as in case (i), we get that

for every i �= j + 1, one has Δn
i (t) < ε0 for all t ∈ [0, T ].

As for i = j + 1, assume to the contrary that τn ≤ T and that Δn
j+1(τ

n) ≥ ε0.

Then by (121), we get that X̃n
j+1(τ

n) ≥ aj+1 + ε0/2 and the same arguments as in
case (i) are valid.

Combining all the estimates gives

max
i≤I

Δn
i (t) < ε0, t ∈ [0, T ].

Along with the fact |θ · Δn(τn)| ≤ qn, this gives

max
i≤I

∣∣Δn
i (t)

∣∣ < ε0, t ∈ [0, T ].
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(iii) 0 ∈ Ξ̃k . This differs from case (i) in that during T n, X̃n may hit zero and,
therefore Bn might vanish. Note however that the way case (i) is handled, one
focuses only on time intervals where X̃n �= 0 and, therefore, the proof is valid here
as well. We thus have maxi≤I |Δn

i (t)| < ε0, t ∈ [0, T ].
(iv) a∗ ∈ Ξ̃k . In this case, θ ·X̃n may exceed the threshold a∗, and rejections may

occur. The argument provided in case (i) is then slightly changed. A negative term
is added to the right-hand side of (112), but the consequences of (112) remain valid
with this addition. [Note that for small ε0, âi �= a∗ holds for all i, hence assuming
ε0 is small, we do not need to check case (ii) here.]

Having shown that maxi≤I |Δn
i (t)| < ε0, t ∈ [0, T ] in all cases completes the

proof of the lemma under (108).
The relaxation of (108) is performed by showing that within a short time t ,

maxi |Δn
i (t)| ≤ ε0. This is sufficient, because on the remaining time interval the

argument provided above for the case (108) gives the result.
Fix δ > 0. We will show that for each i and all sufficiently large n, there exists

t ∈ [0, δ] such that |Δn
i (t)| ≤ ε0. Since the proof provided above for the case (108)

treats each i separately, this will assure that once |Δn
i | is bounded by ε0 for some

i, it remains so for the remaining time interval.
We thus fix i and prove that for all sufficiently large n, there exists t ∈ [0, δ]

such that |Δn
i (t)| ≤ ε0. Assume to the contrary that |Δn

i | > ε0 on [0, δ]. Since the
jumps of Δn are of order n−1/2, we either have Δn

i > ε0 on [0, δ], or Δn
i < −ε0 on

[0, δ], provided n is large. In the former case, i is always a member of H+(X̃n(t)),
for every t and, therefore by (85)–(86), Bn

i (t) = ρ′
i (X̃

n(t)) > ρi + C4, for some
constant C4 > 0. Thus, by (12),

d

dt
Z̃n

i ≤ − μn
i

bn

√
n
C4.

Therefore, as was argued in (112), by (12) we obtain that

μn
i

bn

√
n
C4δ ≤ −[

X̃n
i (δ) − X̃n

i (0)
] + [

Ãn
i (δ) − Ãn

i (0)
]

− [
S̃n

i

(
T n

i (δ)
) − S̃n

i

(
T n

i (0)
)] − [

R̃n
i (δ) − R̃n

i (0)
]

≤ 2Di + 2Λn.

The right-hand side of the above bounded from above, as follows from Lemma 5.1
and the fact that ΛJ < ∞ [see (107)]. This contradicts the fact that the left-hand
side goes to infinity.

In case that Δn
i < −ε0 on [0, δ], i is not a member of H+(X̃n(t)) for any t and,

therefore, by (85)–(86), Bn
i (t) = 0. Thus, by (12),

d

dt
Z̃n

i = μn
i

bn

√
n
ρi.
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Hence,

μn
i

bn

√
n
ρiδ = [

X̃n
i (δ) − X̃n

i (0)
] − [

Ãn
i (δ) − Ãn

i (0)
]

+ [
S̃n

i

(
T n

i (δ)
) − S̃n

i

(
T n

i (0)
)] + [

R̃n
i (δ) − R̃n

i (0)
]
.

The right-hand side of the above is bounded, using similar considerations along
with (92), whereas again, the left-hand side tends to infinity with n. �

APPENDIX

A.1. The Skorohod map on a finite interval. Given a and b, a < b, the Sko-
horod map on the interval [a, b] maps D([0,∞),R) to D([0,∞),R3). It is denoted
by Γ[a,b], and is characterized as the solution map ω → (ϕ, η1, η2) to the problem
of finding, for a given ω, a triplet (ϕ, η1, η2), such that

ϕ = ω + η1 − η2, ϕ(t) ∈ [a, b] for all t,

ηi are nonnegative and nondecreasing, ηi(0−) = 0, and∫
[0,∞)

1(a,b](ϕ) dη1 =
∫
[0,∞)

1[a,b)(ϕ) dη2 = 0.

By writing ηi(0−) = 0, we adopt the convention that ηi(0) > 0 is regarded a
jump at zero. This convention, in conjunction with

∫
[0,∞) 1(a,b](ϕ) dη1 = 0 [resp.,∫

[0,∞) 1[a,b)(ϕ) dη2 = 0], means that if ω(0) < a [resp., ω(0) > b] then ϕ(0) = a

(resp., b). If, however, ω(0) ∈ [a, b] then ϕ(0) = ω(0), and ηi have no jump at
zero. See [19] for existence and uniqueness of solutions, and continuity and fur-
ther properties of the map. In particular, we have the following.

LEMMA A.1. Fix b > 0. Then there exists a constant C such that for every
T > 0, δ > 0 and ω, ω̃ ∈ D([0,∞),R),∥∥Γ[0,b](ω) − Γ[0,b](ω̃)

∥∥
T ≤ C‖ω − ω̃‖T

and

oscT

(
δ,Γ[0,b](ω)

) ≤ C osc(δ,ω).

A.2. On the rate functions I and J. For every T ∈ R+ and ψ = (ψ1,ψ2) ∈
P2 set Ĩ(T ,ψ) = Ĩ1(T ,ψ1) + Ĩ2(T ,ψ2),

(122) Ĩ1
(
T ,ψ1) = inf

{
J1

(
T , ψ̄1) : ψ̄1 ∈PI , θ · ψ̄1 = ψ1}

and

(123) Ĩ2
(
T ,ψ2) = inf

{
J2

(
T , ψ̄2) : ψ̄2 ∈ PI , θ · (

ψ̄2 ◦ ρ
) = ψ2}

.

Recall that I is defined in (17) and J in (10).
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LEMMA A.2. For every ψ = (ψ1,ψ2) ∈ P2, there exists ψ̄ = (ψ̄1, ψ̄2) ∈
PI ×PI such that

(124)
(
θ · ψ̄1, θ · (

ψ̄2 ◦ ρ
)) = (

ψ1,ψ2)
and

(125) Ĩk
(
T ,ψk) = Ik

(
T ,ψk) = Jk

(
T , ψ̄k), k = 1,2, T > 0.

PROOF. Define K : [0,∞) ×PI → [0,∞] by

K(T , ψ̄) =

⎧⎪⎪⎨
⎪⎪⎩

I∑
i=1

αi

∫ T

0
ψ̇2

i (u) du if all ψi ∈ AC0
([0, T ],R)

,

∞ otherwise,

where α1, . . . , αI > 0. Then both J1 and J2 are of the form K. Set l1, . . . , lI ∈
(0,1]. Define L : [0,∞) ×P → [0,∞] by

(126) L(T ,ψ) = inf
{
K(T , ψ̄) : ψ̄ ∈ PI , θ · ψ̄(l) = ψ

}
,

where ψ̄(l) = (ψ1(l1t), . . . ,ψI (lI t)). Note that in case l1 = · · · = lI = 1 (resp.,
l1 + · · ·+ lI = 1) the function L gives Ĩ1 (resp., Ĩ2). We show that for every ψ ∈ P
there is ψ̄ such that

(127) θ · ψ̄(l) = ψ

and

(128) L(T ,ψ) = K(T , ψ̄).

We now calculate L:

inf
{
K(T , ψ̄) : ψ̄ ∈ PI , θ · ψ̄(l) = ψ

}

= inf

{
I∑

i=1

αi

∫ T

0
ψ̇2

i (u) du :
I∑

i=1

θiψi(liu) = ψ(u),u ∈ [0, T ]
}

= inf

{
I∑

i=1

αi

∫ liT

0
ψ̇2

i (u) du :
I∑

i=1

θiψi(liu) = ψ(u),u ∈ [0, T ]
}

= inf

{
I∑

i=1

αili

∫ T

0
ψ̇2

i (li t) dt :
I∑

i=1

θiψi(liu) = ψ(u),u ∈ [0, T ]
}

= inf

{
I∑

i=1

αi

li

∫ T

0

(
d

dt
ψi(li t)

)2
dt :

I∑
i=1

θiψi(liu) = ψ(u),u ∈ [0, T ]
}
.

Above, the second equality follows since for every i ∈ I the constraint on ψi exists
only on the time interval [0, liT ]. Hence, we are free to choose ψi on the interval
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(liT , T ]. By simple calculation, the infimum on the right-hand side is attained by
ψ̄ = (ψ1, . . . ,ψI ),

ψi(u) =
⎧⎪⎨
⎪⎩

θili

αi

(
θ2

1 l1

α1
+ · · · + θ2

I lI

αI

)−1
ψ(u/li), 0 ≤ u ≤ liT ,

ψi(liT ), u > liT .

By substitution,

K(T , ψ̄) =
(

θ2
1 l1

α1
+ · · · + θ2

I lI

αI

)−1 ∫ T

0
ψ̇2(t) dt.

By the taking proper li’s and αi’s for each of the cases I1 and I2, one obtains (18).
This completes the proof. �
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