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CONTAGIOUS SETS IN RANDOM GRAPHS

BY URIEL FEIGE1, MICHAEL KRIVELEVICH2 AND DANIEL REICHMAN3

Weizmann Institute of Science, Tel Aviv University and University of California,
Berkeley

We consider the following activation process in undirected graphs: a ver-
tex is active either if it belongs to a set of initially activated vertices or if at
some point it has at least r active neighbors. A contagious set is a set whose
activation results with the entire graph being active. Given a graph G, let
m(G, r) be the minimal size of a contagious set.

We study this process on the binomial random graph G := G(n,p) with

p := d
n and 1 � d � (

n log logn

log2 n
)

r−1
r . Assuming r > 1 to be a constant that

does not depend on n, we prove that

m(G, r) = �

(
n

d
r

r−1 logd

)
,

with high probability. We also show that the threshold probability for
m(G, r) = r to hold is p∗ = �( 1

(n logr−1 n)1/r
).

1. Introduction. In r-neighbor bootstrap percolation we are given an undi-
rected graph G = (V ,E) and an integer r > 1. Every vertex is either active or
inactive. A set of vertices composed entirely of active vertices is called active. Ini-
tially, a set of vertices A0 is activated. These vertices are called seeds. A contagious
process evolves in discrete steps where for i > 0,

Ai = Ai−1 ∪ {
v : ∣∣N(v) ∩ Ai−1

∣∣ ≥ r
}
,

and N(v) is the set of neighbors of v. In words, a vertex becomes active in a given
step if it has at least r active neighbors. In this case, we shall say the vertex is
infected.4 We refer to r throughout this paper as the threshold. Set

〈A0〉 := ⋃
i

Ai.
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DEFINITION 1. Given G = (V ,E) and a threshold r , a set A0 ⊆ V is called
contagious if 〈A0〉 = V . That is, activating A0 results with the entire graph being
activated. The minimal cardinality of a contagious set in G is denoted in G by
m(G, r). The number of generations of a (not necessarily contagious) set A0 which
we denote by τ := τ(A0) is the minimal integer such that

⋃
i≤τ Ai = 〈A0〉.

Bootstrap percolation has been studied for a variety of graphs [5–7, 9, 20, 21].
Here, we focus on the random graph G(n,p) on n labeled vertices, where every
possible edge appears independently with probability p. Our interest is in provid-
ing both upper and lower bounds on the typical size of a contagious set of minimal
cardinality. We remark that the term “bootstrap percolation” is often used with
respect to choosing vertices independently with some probability q to the set of
seeds. In contrast, in this work we do not restrict ourselves to the study of ran-
domly generated contagious sets.

Studying the behavior of combinatorial quantities in G(n,p) has a long and
rich history [10], and has resulted in a plethora of ideas which have proven useful
in other contexts as well. In addition, there is much interest in studying compu-
tational problems on random graphs [19]. Furthermore, combinatorial and algo-
rithmic ideas originating from the study of the model G(n,p) of random graphs
are often useful in the study of more general families of random graphs. Hence,
beyond the intrinsic value of studying the value of m(G, r) in G(n,p) which we
consider to be of interest of its own right, we believe the ideas in the current work
may prove applicable in other contexts where contagious processes are studied.

1.1. Our results. Consider G(n,p), and let p := d
n

. We obtain a nearly tight
characterization of the probable value of m(G, r). We say an event in the probabil-
ity space G(n,p) occurs “typically” or “with high probability” (w.h.p.) if it occurs
with probability 1 − o(1), where o(1) represents a term that tends to 0 as n tends
to infinity. For two integer-valued functions f (n), g(n), we say that f (n) � g(n)

if limn→∞ f (n)
g(n)

= 0.

THEOREM 1.1. Let G ∼ G(n,p) with p := d
n

and

1 � d �
(

n log logn

log2 n

) r−1
r

.

Then with high probability

m(G, r) = �

(
n

d
r

r−1 logd

)
.

The upper bound in Theorem 1.1 is constructive in the sense that it is derived
by analyzing a polynomial time algorithm that typically finds a contagious set of
size at most O( n

d
r

r−1 logd
).



CONTAGIOUS SETS IN RANDOM GRAPHS 2677

Clearly, it is always the case that m(G, r) ≥ r . We examine how large p needs
to be in order for G(n,p) to satisfy that typically m(G, r) = r . The property of
having a contagious set of size r is a monotone property, hence it has a sharp
threshold [13]. We determine this threshold up to constant multiplicative factors.

THEOREM 1.2. Let G ∼ G(n,p) and suppose r ≥ 2 is an integer. There exist
0 < c < C, such that the following holds: if p < c

(n logr−1 n)1/r
, then with high prob-

ability no set of size r is contagious. If p > C

(n logr−1 n)1/r
, then with high probability

there is a contagious set of size r . Moreover, with high probability there is a choice
of a contagious set B0 of size r for which τ(B0) = O(log logn). This upper bound
on τ(B0) is best possible up to constant factors—with high probability there is no
contagious set B of size r with τ(B) = o(log logn), as long as p = o(n−1/r ).

1.2. Related work. Bootstrap percolation was introduced by Chalupa, Leath
and Reich [14], motivated by applications in statistical physics. Other early works
include [1, 28]. Initially, the study of bootstrap percolation focused mostly on lat-
tices and grids. More recently, it has been studied on other families of graphs such
as random d-regular graphs [9, 20], hypercubes [5] and several models of random
graphs with a given degree sequence (e.g., [2, 3]). These works studied the case
in which the set of seeds is selected independently at random. The smallest conta-
gious set [the value of m(G, r)] was studied for some families of graphs such as
hypercubes [5, 23] and grids [8].

The critical size of a random set needed for full activation (with high probabil-
ity) of the binomial random graph G(n,p) was first studied in [27]. The results in
[27] were generalized and extended by [21] (using ideas from [25]), where the crit-
ical size of a random set required for complete activation of G(n,p) for arbitrary
constant threshold r is determined in great detail of precision. We shall apply the
following theorem from [21] (which follows from Theorem 3.1, page 1996, and
Theorem 3.10, page 2000, in [21]).

THEOREM 1.3. Let r ≥ 2 be a fixed integer independent of n. Suppose G ∼
G(n,p) with n−1 � p � n−1/r . Let

ac :=
(

1 − 1

r

)
·
(

(r − 1)!
npr

)1/(r−1)

.

Consider a fixed set A of vertices that are activated as seeds. Then for every fixed
δ > 0, with high probability the following hold:

1. If |A| = (1 + δ)ac, then at least n − O(n(pn)r−1e−pn) vertices will be acti-
vated. Furthermore, τ(A) = ln ln(np)

ln r
+ lnn

np
+ O(1).

2. If |A| ≤ (1 − δ)ac, then at most 2( (r−1)!
npr )1/(r−1) vertices will be activated.
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For example, Theorem 1.3 implies that when G ∼ G(n,p) with p as above, then
with high probability m(G,2) ≤ 1+δ

2np2 . [Observe that n2pe−pn = o(n/d2) for the
range of p in Theorem 1.3, and hence the set of vertices not infected by A is small
and can be added to the set of seeds with only negligible effect on the total number
of seeds.] To the best of our knowledge, the upper bound m(G, r) ≤ (1 + δ)ac was
the best upper bound known on m(G, r) in random graphs prior to our work.

The lower bound of Theorem 1.3 implies that a randomly chosen set of (1−δ)ac

vertices has only negligible probability of being contagious. Our upper bound in
Theorem 1.1 (whose proof involves a more sophisticated choice of set of seeds)
implies that for such graphs m(G, r) is with high probability significantly smaller
than ac. This shows that choosing an initial set of seeds carefully (rather than
uniformly at random) is typically beneficial for this key model of random graphs.

It is proven in [21] that when p � n−1/r , an arbitrary set of size r of activated
vertices will activate the whole of G(n,p) w.h.p. Similarly, Theorem 1.1 and The-
orem 1.2 demonstrates that a careful choice of the seeds results in a contagious set
of size r for p much smaller than n−1/r .

Theorem 1.1 and the constructive nature of the upper bound there imply that
there is a polynomial time algorithm that for most graphs (from the distribu-
tion specified in Theorem 1.1) returns a contagious set whose size is within a
constant factor of the minimum possible. In contrast, on worst-case instances,
approximating the minimal size of a contagious set within a ratio better than
O(2log1−δ n) (n is the number of vertices) is intractable for every δ ∈ (0,1), un-
less NP ⊆ DTIME(npoly(logn)) [15].

Theorem 1.3 (taken from [21]) considers also τ , the number of generations until
complete activation. The parameter τ has been studied also in families of graphs
such as grids [11, 12] and dense graphs [17]. We consider τ in the context of
Theorem 1.2 but not in the context of Theorem 1.1. We briefly discuss τ further in
Section 5.

The minimal number of edges that forces an n-vertex graph to satisfy m(G, r) =
r was considered in [17]. For example, it is proven that a graph having at least(n−1

2

) + 1 edges must satisfy m(G,2) = 2. This result is tight, as m(G,2) = 3 (for
n ≥ 3) when G is a clique on n − 1 vertices along with an additional isolated
vertex.

The current paper is one part of a larger body of work whose preliminary ver-
sion is available in [16]. Other parts of that work will be published separately,
and they concern contagious sets in d-regular graphs. For example, it is shown
there that sufficiently strong expansion properties [e.g., spectral gap d − O(

√
d),

or girth �(log logd)] ensure that m(G,2) ≤ O(n/d2), where n = |V (G)|. (Recall
in contrast that the best general upper bound for the value of m(G,2) for d-regular
graphs on n vertices is m(G,2) ≤ 2n

d+1 [24]; this bound is easily seen to be tight.)
In addition, it is shown that when G is a random d-regular graph over n vertices
(which, with high probability, is an excellent spectral expander; see [18]), it holds
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that m(G,2) ≥ �( n
d2 logd

) with high probability. That lower bound regarding ran-
dom d-regular graphs is established using ideas similar to those used to establish
the lower bound in Theorem 1.1.

1.3. Overview of proof techniques. The proof of the upper bound in Theo-
rem 1.1 is based on the following observation (we consider r = 2 throughout this
section—similar reasoning applies for r > 2). For a subset A ⊆ V , we denote by
N(A) the set of all vertices in V \ A having a neighbor in A. Suppose we have an
initial set A of seeds, and consider N(A). Given that the graph is random, one can
analyze the distribution of the sizes of the connected components of the subgraph
induced by N(A). Introducing a single seed in a connected component of size k

activates the whole component, thus giving k − 1 infected vertices per investment
of one seed. It turns out that we can activate a set of size n

d2 = 1
np2 in G by choosing

O(n
log logd

d2 logd
) seeds in this way. Thereafter, the results of [21] can be used in order

to deduce that G (apart from a set of negligible cardinality which can be activated
separately) is activated with high probability.

To achieve the improved upper bound in Theorem 1.1, we repeat the proce-
dure above iteratively. In iteration 0, choose an arbitrary set A0 of seeds of size

n
d2 logd

. Next, for each 1 ≤ i ≤ log logd , consider the external neighborhood of the
vertices activated in iteration i − 1. Within this neighborhood, identify the largest
connected component, and activate a set Bi that includes one vertex from each
component (thus activating the whole component), until the sum of sizes of ac-
tivated components reaches 2in

d2 logd
. After log logd iterations, we have n

d2 active
vertices, which as previously noted suffices to activate the whole of G (apart from
a set of negligible cardinality treated separately). The total number of activated ver-
tices is |A0|+∑log logd

i=1 |Bi |. We show that the latter sum is bounded by O( n
d2 logd

),
with high probability.

Our lower bound in Theorem 1.1 is based on observing that if there is a con-
tagious set of size t0, then adding to it the first t − t0 infected vertices gives an
induced subgraph with t vertices and at least 2(t − t0) edges. For a choice of
t0 < n

6d2 logd
and t = n

3d2 , a simple probabilistic argument shows that a random
graph with high probability does not contain any such subgraph.

For Theorem 1.2, the proof of the lower bound on the threshold probability for
m(G,2) = 2 follows the same principles as the lower bound for Theorem 1.1 (but
with t0 = 2). For the proof of the upper bound (the typical existence of a contagious
set of size 2 when p ≥ C√

n logn
), we represent G as a union of two random graphs

G1 and G2 with edge probabilities 1√
n logn

and C1√
n logn

, respectively. We first show
that in G1, a random set of two vertices has probability significantly higher than
logn

n
of infecting �(logn) additional vertices. We then show that this implies that

with high probability, there is at least one pair of vertices that infects a set S of
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size �(logn) in G1. Finally, the results of [21] are used to prove that with high
probability S will activate the whole of G2, and thus the whole of G.

1.4. Preliminaries and notation. Let H = (V ,E) be an undirected graph. For
A,B ⊆ V , we define E(A) to be the set of all edges spanned by A and E(A,B)

the set of all edges with one endpoint in A and one endpoint in B . The notation
log denotes logarithms in base 2 and ln denotes natural logarithms. The set of
integers {1, . . . , �} for � ≥ 1 is denoted by [�]. We will reserve the notation G for
G(n,p) throughout this paper, omitting the dependency on n,p when clear from
the context.

We shall use the term infected vertex to describe an activated vertex that is
not one of the seeds, but has rather become activated by having at least 2 active
neighbors. We say a set S ⊆ V is activated if every vertex of S becomes active
(either as a seed or by becoming infected).

We close this section with a version of Chernoff’s inequality (see, e.g., [22]).

LEMMA 1.1. Suppose that X = ∑m
i=1 Xi , where every Xi is a {0,1}-random

variable with Pr(Xi = 1) = p and the Xis are jointly independent. Then for arbi-
trary η ∈ (0,1), it holds that

Pr
(
X < (1 − η)pm

) ≤ exp
(−pmη2/2

)
and

Pr
(
X > (1 + η)pm

) ≤ exp
(−pmη2/3

)
.

1.5. Organization. We first present our results when r = 2 as this case is more
transparent, making it easier to present the main ideas behind the proofs. In Sec-
tion 2, we prove that with high probability m(G,2) = �( n

d2 logd
), dealing first with

the upper bound and then establishing a lower bound. In Section 3, we determine
the asymptotic threshold of having a contagious set of size 2. In Section 4, we
discuss how to generalize the results of Sections 2 and 3 to the case where r > 2.
In Section 5, we present some concluding comments.

2. m(G,2) in random graphs. In this section, we prove Theorem 1.1 for the
case r = 2. Unless explicitly stated, we will always focus on G(n,p) where p := d

n
is as in the range of Theorem 1.1.

2.1. Upper bound. The following lemma can be derived from known results
(e.g., [10]) but we present a self-contained proof for completeness.

LEMMA 2.1. Let H := G(n0, q) be the binomial random graph with n0 ver-
tices and edge probability q (we assume n0 is large enough). Let k = O(logn0)

be an integer and q = c
n0

. Then for every c < 1/20, the probability a given vertex
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v belongs to a connected component of size at least k is at least ( c
3)k−1. Further-

more, with probability at least 1 − exp (−�(
n0
k

( c
3)k−1)) the number of vertices

lying in components of size at least k is at least ( c
3)k−1 · n0/4.

PROOF. Consider the following iterative procedure of exposing edges in H .
Every vertex has a mark: either it is used or it is unused. In the beginning of the
algorithm, all vertices are marked as unused and all edges of H are not exposed.
We continue the process as long as the number of unused vertices is at least n0

2 + k

(or, differently put, the number of used vertices is at most n0
2 − k).

In the beginning of every iteration, we choose an unused vertex v in H , and
attempt to expose a simple path in H containing v as follows. Consider a set S

of exactly n0/2 unused vertices. Expose all edges between v and S. If there is a
vertex v2 ∈ S connected to v, add v2 to the path. Continue in this fashion (attaching
a vertex to the last vertex appended to the path) until either one of two cases occurs:
a success, meaning that the size of the path containing v reaches k, or a failure,
meaning that we have failed to find a path of k vertices containing v (namely, we
constructed a path P of l < k vertices, and the last vertex on the path has no edge
to any of the vertices of the corresponding set S). Finally, proceed by marking all
the vertices that are in the path rooted at v as used.

The probability that all vertices in a set U of n0/2 unused vertices are not con-
nected to a vertex w /∈ U is (1 − q)n0/2. It follows that the probability that during
an iteration we can append a new vertex to a path of length smaller than k is

1 − (1 − q)n0/2 ≥ n0q

3
(here we use our assumption on q , c) and this holds independently of the length
of the path we have constructed thus far. Hence, the probability we succeed in
growing a path of length k (and hence in a connected component of size at least k)
at a given iteration is at at least(

n0q

3

)k−1
=

(
c

3

)k−1
.

As �n0/(3k)� ≤
n0
2 −k

k
[recall we assume k = O(logn0)], it follows that the dis-

tribution of the number of successes (until less than n0
2 + k unused vertices re-

main) stochastically dominates the binomial distribution with �n0/(3k)� trials and
success probability ( c

3)k−1 (the exact number of trials depends on the number of
failures, but failures only increase the number of trials). Furthermore, standard
concentration results concerning the binomial distribution imply that probability
at least 1 − exp (−�(

n0
k

( c
3)k−1)), the number of successes is at least n0

4k
( c

3)k−1.
Since every success places k vertices (rather than just one) in a component of size
at least k the lemma is proven. �

We shall also rely on the following lemma.
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LEMMA 2.2. Let the activation threshold be r = 2 and let d0 be a sufficiently
large constant. Then for d = d(n) ≥ d0, a random graph G ∼ G(n,p) is w.h.p.
such that activating any set of size at least n/2 activates all but at most n/d3

vertices.

PROOF. Let A0 be an initially activated set, and let U = [n] − 〈A0〉. Then
|U | ≤ n/2, and every vertex of U has at most one neighbor outside of U , implying
that the number of edges crossing between U and its complement is at most |U |.
The probability of having such a set U of cardinality |U | ≥ n/d3 in G(n,p) can
be estimated from above through Lemma 1.1 as follows:

n/2∑
k=max{1,n/d3}

(
n

k

)
Pr

[
Bin

(
k(n − k),p

) ≤ k
] ≤

n/2∑
k=max{1,n/d3}

(
n

k

)
e− knp

8

≤
n/2∑

k=max{1,n/d3}

(
en

k

)k

e− knp
8 .

We now distinguish between two cases: if d ≤ n1/3 then we upper bound the sum-
mation above by

n/2∑
k=n/d3

(
ed1/3 · e− np

8
)k = o(1).

Otherwise, if d > n/3 the summation can be upper bounded by

n/2∑
k=1

(
en · e−n2/3/8)k = o(1),

as desired. �

THEOREM 2.1. If d = np satisfies 1 � d � (
n log logn

log2 n
)1/2 and G ∼ G(n,p),

then w.h.p. m(G,2) ≤ 13n
d2 logd

.

We give a constructive proof for Theorem 2.1. Namely, we provide an algorithm
that finds a contagious set that is not larger than the upper bound in this theorem.
Our algorithm is composed of three stages described below.

Stage I. Set

� = log logd.

Initialize B0 = C0 = D0 to be a fixed subset of [n] of size n
d2 logd

.
For i = 1, . . . , �, repeat:
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Set

si = logd − 4

� − i + 4
.

Step (i1). Expose edges of G between Ci−1 and V \ ⋃i−1
j=0 Bj . Let Bi be an

arbitrary set of d|Ci−1|
2 neighbors of Ci−1 in V \ ⋃i−1

j=0 Bj . If there is no such set—
declare a failure;

Step (i2). Expose edges of G inside Bi . Let xi be the number of connected
components of G[Bi] and define yi = min{xi,

n
d22�−i si

}. Let Ti1, . . . , Tiyi
be the yi

largest components of G[Bi] (breaking ties arbitrarily). If∣∣∣∣∣
yi⋃

j=1

Tij

∣∣∣∣∣ <
n

d22�−i

—declare a failure. Otherwise form Di by choosing one arbitrary vertex from
each Tij . Clearly,

|Di | = yi ≤ n

d22�−isi
.

Let Ci be an arbitrary subset of
⋃yi

j=1 Tij of size

|Ci | = n

d22�−i
.

Assume that Stage I was successful for every 1 ≤ i ≤ �. Denote

A01 = D0 ∪ D1 ∪ · · · ∪ D�.

The algorithm activates all vertices in A01. Finally, let A02 the set of vertices that
remain inactive after A01 is activated. We activate all vertices in A02 We now prove
a series of propositions that upper bound the size of A01 ∪ A02.

PROPOSITION 2.1. Activating A01 activates
⋃�

j=0 Cj .

PROOF. We prove by induction that activating D0 ∪ · · · ∪ Di activates⋃i
j=0 Cj . Induction basis follows from the definition of C0, D0. For the induction

step, assume that Ci−1 is already activated. Recall that each vertex in Ti1, . . . , Tiyi

has a neighbor in Ci−1 by the definition of Bi . Activating in addition the vertex v,
where {v} = Di ∩ Tij , activates all of Tij , implying that all of Ci gets activated.

�

Let us now estimate the probability of failure of each round of Stage I, and see
what it delivers assuming its success. Notice first that for all i ∈ [l] we have that
|Ci | ≤ n

d2 , |Bi | ≤ d
2 |Ci−1|, implying that during Stage I the union B0 ∪ B1 ∪ · · ·

always has cardinality at most (� + 1) · d · n/d2 ≤ n/10.
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Next, observe that if there does not exist an index i ∈ [�] for which a failure
occurs in Steps (i1), (i2), then by the definition of the algorithm above we have
that for every i the following equalities hold: |Ci | = n

d22�−i and |Bi | = n
d·2�−i+2

which implies that, |Di | ≤ n
d22�−i si

holds for every i ∈ [�] as well. Indeed, observe

that if xi < n
d22�−i si

, then the union of Tij is the whole set Bi , and thus all of Bi

will be activated. Otherwise, yi = n
d22�−i si

. If the yi largest components of G[Bi]
do not contain all vertices in components of size at least si , then |Tij | ≥ si for
j = 1, . . . , yi , implying |⋃yi

j=1 Tij | ≥ n
d22�−i ; in the opposite case we also have

the same outcome. Thus, Step (i2), if successful, results indeed in a subset Ci of
cardinality |Ci | = n

d22�−i , as declared.

PROPOSITION 2.2. With high probability, there is no i ∈ [�] such that Step (i1)
fails.

PROOF. For Step (i1), the probability that Ci−1 has less than d
2 |Ci−1| neigh-

bors outside of
⋃i−1

j=0 Bj is bounded from above by

Pr
[
Bin

(
9n

10
,1 −

(
1 − d

n

)|Ci−1|) ≤ d|Ci−1|
2

]
= exp

{−�
(
d|Ci−1|)}

= exp
{
−�

(
n

d · 2�−i

)}
,

and the sum of these estimates for i = 1, . . . , � is obviously o(1). �

PROPOSITION 2.3. With high probability, there is no i ∈ [�] such that Step (i2)
fails.

PROOF. Apply Lemma 2.1 with parameters

n0 = |Bi | = n

d · 2�−i+2 , q = d

n
= 1

2�−i+2n0
, k = si .

We derive that with probability 1 − exp{−�(
n0
si

( 1
2�−i+4 )si )} the set Bi has at least

( 1
3·2�−i+2 )si n

d·2�−i+4 vertices in connected components of size at least si . The (abso-
lute value of the) exponent in the exceptional probability above can be estimated
as follows:

n0

si

(
1

2�−i+4

)si = n(� − i + 4)

2�−i+2d(logd − 4)
· 2− (�−i+4)(logd−4)

�−i+4

≥ 4n

d2 logd
· � − i

2�−i
.
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Set K := 4n
d2 logd

, and observe that the requirement d � (
n log logn

log2 n
)1/2 implies that

K � logn
log logn

. By the calculations above, we can upper bound the probability there
is failure in one of the rounds by

�∑
j=1

exp
{
−K · j

2j

}
.

Denoting the j th summand by f (j), we see that f (j+1)
f (j)

= exp( K
2j

j−1
2 ) which

tends to infinity with n for all 1 ≤ j ≤ � = log logd . Therefore,
∑�

j=1 f (j) =
�(f (�)) = exp{−�( n

d2 logd
· log logd

logd
)}. Hence, recalling our assumed upper bound

on d(n), the union bound implies that except for probability o(1), Step (i2) is com-
pleted for every i ∈ [�]. Given that there are no failures in Step (i2), the number of
vertices of Bi in components of size at least si is at least(

1

3 · 2�−i+2

)si n

d · 2�−i+4 ≥
(

1

2�−i+4

)si n

d · 2�−i+4 = 2− logd+4 · n

d · 2�−i+4

= n

d2 · 2�−i
. �

Now we estimate the size of the set A01 = ⋃�
i=0 Di . Recall that |D0| = n

d2 logd
,

and using Propositions 2.2 and 2.3 we get that with probability 1 − o(1), |Di | ≤
n

d22�−i si
= n(�−i+4)

d22�−i (logd−4)
. It thus follows that

|A01| =
∣∣∣∣∣

�⋃
i=0

Di

∣∣∣∣∣ ≤ n

d2 logd
+ n

d2(logd − 4)

�∑
i=1

� − i + 4

2�−i

= n

d2 logd
+ n

d2(logd − 4)

[
4

�∑
i=1

2−�+i +
�∑

i=1

� − i

2�−i

]
.

Obviously,
∑�

i=1 2−�+i < 2. Also,
∑�

i=1
�−i
2�−i ≤ ∑∞

j=1
j

2j = ∑∞
i=1

∑∞
j=i

1
2j =∑∞

i=1
2
2i = 2. Altogether,

|A01| =
∣∣∣∣∣

�⋃
i=0

Di

∣∣∣∣∣ ≤ n

d2 logd
+ n

d2(logd − 4)
(8 + 2) ≤ 12n

d2 logd
.

To complete the analysis of Stage I observe that assuming it was successful,
the set C� is activated, and no edges between C� and V − ⋃�

i=0 Bi and inside
V − ⋃�

i=0 Bi have been exposed.
Stage II. Denote G2 = G[C� ∪ (V − ⋃�

i=0 Bi)]. We can view G2 as a random
graph with edge probability p, in which the initial seed C� of size |C�| = n

d2 is

activated. Then according to Theorem 1.3, w.h.p. all but O(nde−d/2) < n
4 vertices
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of G2 will be infected. Recalling that |⋃�
i=0 Bi | ≤ n

10 , we arrive at the conclusion
that w.h.p. after Stage II at least n/2 vertices of G are infected, when activating
the initial seed A01.

Stage III. According to Lemma 2.2 above, the random graph G ∼ G(n,p) is
w.h.p. such that activating any set of size n/2 results in all but at most n/d3 vertices
being activated. Apply this lemma to the outcome of Stage II, and denote by A02
the set of vertices that remain unactivated, w.h.p. |A02| ≤ n/d3. Define

A0 = A01 ∪ A02,

then |A0| ≤ 12n
d2 logd

+ n
d3 < 13n

d2 logd
, and 〈A0〉 = [n].

2.2. Lower bound. In our analysis, we shall include two parameters α and β

that can simultaneously be optimized to give the best possible lower bound prov-
able with our current approach. For simplicity of the presentation, rather than op-
timizing α and β , we shall fix α = 3 and β = 2 − 1

logd
.

Let G be a random graph sampled from G(n,p). Let t = n
3d2 . We assume that d

is bounded from below by some sufficiently large constant (that can be computed
explicitly from the proof of Lemma 2.3), and bounded from above by o(

√
n).

LEMMA 2.3. For the setting above, w.h.p. G does not have a subgraph with
t = n

3d2 vertices and βt edges, where β = 2 − 1
logd

.

PROOF. There are
(n
t

) ≤ (3ed2)t possible choices of a set T of t vertices in G.

There are
((t

2)
βt

) ≤ ( et
2β

)βt ways of choosing βt edge locations in T . The probability
that all these choices are indeed edges is (d

n
)βt = ( 1

3dt
)βt . Hence, the probability

that G has a subgraph with t vertices and βt edges is upper bounded by

(
3ed2)t( et

2β

)βt( 1

3dt

)βt

=
(

eβ+1d2−β

3β−12βββ

)t

.

Now in the exponent for d substitute β = 2 − 1
logd

, obtaining d2−β = 2. For the
other terms, we can substitute an approximation β � 2 assuming d is large enough.

The expression eβ+1d2−β

3β−12βββ is then roughly 2e3

48 and is strictly smaller than 1. Raising
to the power of t , the probability tends to 0 as n grows. �

COROLLARY 2.1. For the parameters as above, m(G,2) > n
6d2 logd

w.h.p.

PROOF. Suppose otherwise. Then for t = n
3d2 , the set of t0 = n

6d2 logd
seeds

and first t − t0 infected vertices induces a subgraph with t vertices and 2(t − t0) =
(2 − 1

logd
)t edges, contradicting Lemma 2.3. �
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3. The asymptotic threshold for m(G,2) = 2.

LEMMA 3.1. Let p < c√
n logn

for some sufficiently small c > 0. Then with

high probability, m(G,2) > 2.

PROOF. Otherwise, for every 1 ≤ t ≤ n−2, there are two vertices a,b and a set
of t vertices disjoint from {a, b}, such that the subgraph spanned on G[{a, b} ∪ T ]
spans at least 2t edges. The probability such a subgraph exists is upper bounded
by (

n

2

)(
n

t

)(
(t + 2)2/2

2t

)
p2t ,

which (for large t) is at most

n2(en/t)t
(
e(t + 2)p

)2t ≤ n2(25c)t = o(1),

when t ≥ logn and c is sufficiently small. �

We will now prove that if p = C√
n logn

and C is large enough, then w.h.p. G ∼
G(n,p) satisfies m(G,2) = 2.

LEMMA 3.2. Let X ∼ Bin(n,p) with np ≤ 1. Then Pr[X > 0] >
np
2 .

PROOF. By Bonferroni’s inequality,

Pr[X > 0] ≥ np −
(
n

2

)
p2 = np

(
1 − (n − 1)p

2

)
>

np

2
. �

We expose G(n,p) in two stages: G = G1 ∪ G2, where Gi ∼ G(n,pi), p1 =
1√

n logn
, p2 = C1√

n logn
with C1 being a large enough constant, to be set later. We

will argue that w.h.p. G1 contains two vertices u1, u2 infecting a set U of size
k = �(logn). Then we will use G2 and Theorem 1.3 to argue that if C1 is large
enough then with high probability the set U activates all of V in G2, and thus in G.

LEMMA 3.3. Let k = c1 logn, where 0 < c1 < 1 is a small enough constant.
Let G1 be distributed as G(n, 1√

n logn
). Then with high probability there are two

vertices in G1 that activate a set of size k.

PROOF. Initialize V0 = V = [n]. We describe an algorithm that has at most
n
2k

iterations, indexed by i = 1, . . . , n
2k

. Every iteration has at most k − 2 steps,
indexed by j = 3, . . . , k. We now describe iteration i.

Let u1, u2 be arbitrary vertices of V0. For simplicity of the proof (and at
the expense of requiring a smaller constant c1 in the statement of the lemma),
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partition V0 − {u1, u2} into k − 2 sets Ui,1, . . . ,Ui,k−2, each of size at least
� |V0|−2

k−2 �. For j = 3, . . . , k, if there is a vertex vj ∈ Ui,j−2 with at least two neigh-
bors in {u1, u2, . . . , uj−1}, then set uj := vj . Otherwise, abort iteration i, dump
{u1, . . . , uj−1}, update V0 := V0 − {u1, . . . , uj−1}, and move to iteration i + 1.

Observe crucially that during iteration i we have only exposed edges of G1
touching {u1, . . . , uj−1}, so the rest (i.e., edges whose both endpoints belong to
V0) are not exposed and fully retain their randomness. Also, at each iteration we
dump less than k vertices; since we perform at most n

2k
iterations, the size of V0 is

always at least n/2.
Let us now estimate the probability that the ith iteration succeeds. When looking

for uj inside this iteration, the probability that such a vertex is found is at least the
probability that there is a vertex in a set of size n/2k having at least 2 neighbors
in a set of size j − 1, where the edge probability is p1. The probability for a
given vertex of Ui,j to have at least two neighbors in the set of size j − 1 can

be estimated from below by
(j−1

2

)p2
1

2 >
(j−2)2p2

1
4 . Thus, the probability that there

is a required vertex in Ui,j is at least Pr[Bin( n
2(k−2)

,
(j−2)2p2

1
4 ) > 0], and the latter

is at least
n(j−2)2p2

1
16k

by Lemma 3.2, as n
2(k−2)

· (j−2)2p2
1

4 < 1 (recall we assume
k = c1 logn where c1 is sufficiently small); this estimate is valid independently of
what happened in the current iteration. Thus, the probability that the ith iteration
succeeds is at least (using Stirling’s approximation)

k∏
j=3

n(j − 2)2p2
1

16k
=

(
np2

1

16k

)k−2
· (

(k − 2)!)2 ≥
(

np2
1(k − 2)2

16e2k

)k−2
≥

(
np2

1k

200

)k

.

Substituting the expressions for k and p1, we obtain that the above expression is
at least (c1/200)c1 logn, and this is more than 2k logn

n
for c1 > 0 small enough.

Since we are ready to perform n
2k

iterations, with each being successful indepen-

dently with probability at least 2k logn
n

, w.h.p. one of them will indeed succeed—
resulting in a set of size k which can be activated by two vertices in it. �

The equality m(G,2) = 2 now follows from Theorem 1.3. Namely, in G2 there
is an active set S of cardinality c1 logn (generated by choosing two “correct” ver-
tices to start the process in G1). Hence, when p2 = C1√

n logn
for C1 > 1√

c1
, we get

that with high probability S is a contagious set in G2.
We now deal with the number of generations. We first consider the upper bound.

To this end, we upper bound the number of generations until activation of the con-
tagious set constructed in Lemma 3.3. We analyze first the number of generations
it takes to activate k vertices in the infection process occurring in G1. For this,
consider the following random directed graph which we denote by H2,k . There are
k vertices numbered from 1 to k. Each vertex i ≥ 3 has two outgoing arcs to two
random vertices of index less than i. It is implicit in the proof of Lemma 3.3, that
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the length of the longest directed path of H2,t is an upper bound on the number
of generations, which we denote by l(H2,k). The parameter l(H2,k) was studied in
several previous works (e.g., [4, 26]) and shown to be of order �(log k). Here, we
present a simple self contained proof that l(H2,k) = O(log k) (the leading constant
in the O-term in our proof is not optimal).

LEMMA 3.4. With high probability, l(H2,k) is at most 40 log k.

PROOF. Let 0 < ρ < 1 be a constant to be optimized later. Call an arc (i, j)

in H2,k good if j ≤ ρi and bad if j > ρi (note that necessarily j < i). A path can
have at most g good arcs, where g is largest number satisfying kρg ≥ 1. Given a
vertex i, the probability that a random outgoing arc is bad is at most (1 − ρ). For
arbitrary t ≥ 2g, let us upper bound the probability that there is a path of length t .
There are (less than) k possible starting points. From each vertex, there are two
outgoing arcs to choose. So the number of candidate paths is at most k2t . For each
candidate path, there are

∑g
i=1

(t
i

) ≤ 2t possible locations for the good arcs. For
the rest of the arcs to be bad, the probability is at most (1 − ρ)t−g ≤ (1 − ρ)t/2.
Hence, the probability that some candidate path actually reaches length t is at most
k22t (1 − ρ)t/2.

Choose ρ = 19
20 . Then g � 20 ln k, and we can choose t = 40 ln k. For these

parameters, k22t (1 − ρ)t/2 = k 240 lnk

2010 lnk = k(4
5)10 ln k = o(1). Hence, w.h.p. l(H2,k)

does not exceed 40 ln k. �

Lemma 3.4 implies that with high probability the number of generations until
B0 infects a set of size c1 logn in G1 is at most O(log k) = O(log logn). There-
after, Theorem 1.3 implies that with high probability all the vertices in G2 are
activated within O(log logn) generations.

Now we establish a lower bound on the number of generations. We first claim
that with high probability no set of size k ≥ logn can infect too many vertices in a
single round.

LEMMA 3.5. Suppose that p ≤ 1√
2en

. Then, with high probability every set of

size k ≥ logn in G(n,p) infects (in one round) a set of size smaller than k2.

PROOF. Given that a set S of size k is active, the probability that a vertex
outside S is infected by S in one round is Pr(Bin(k,p) ≥ 2) ≤ (pk)2. Therefore,
the probability for a fixed k there is a set of size k infecting k2 additional vertices
in one round is at most (

n

k

)
·
(

n

k2

)(
p2k2)k2

,
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which can be upper bounded (when k ≥ logn) by(
en

k

)k(1

2

)k2

= o(1/n).

Taking a union bound over all k ≥ logn completes the proof. �

Lemma 3.5 implies that with high probability, for every contagious set of size
logn, the number of generations required to activate G(n,p) for p ≤ 1√

2en
is at

least log logn − log log logn. The same must hold for contagious sets of size 2
(because every contagious set of size 2 is contained in a contagious set of size
logn). This concludes the analysis of the number of generations and the proof of
Theorem 1.2 (for the case r = 2).

4. Generalizing the results for r > 2. In this section, we study the case
where the threshold of every vertex is r , where r > 2 is a fixed constant. As the
proofs are similar to the r = 2 case, we sketch the main ideas without going into
every detail.

4.1. The asymptotic value of m(G, r) in G(n,p). Here, we explain that a sim-
ilar reasoning to the case r = 2 implies that in G(n,p), w.h.p. m(G, r) ∼ n

d
r

r−1 logd
.

We begin by discussing the upper bound. First, we have the following lemma.

LEMMA 4.1. Let r > 2 be a fixed integer (independent of n). For d ≥ 100r ,
a random graph G ∼ G(n,p) is w.h.p. such that activating any set of size at least
n/2 activates all but at most n/d3 vertices.

PROOF. This follows from the fact that if a set U is disjoint from a set 〈A0〉,
then U can have at most r|U | neighbors in 〈A0〉. Using the assumption that
n
d3 ≤ |U | ≤ n/2 and choosing d0 > 100r , implies the lemma along similar lines
to Lemma 2.2—details omitted. �

Our goal is to have the initial set of seeds infect a set of size C1n

d
r

r−1
, where C1 is

large enough. Then by applying Theorem 1.3, we conclude that with high proba-
bility at least n/2 vertices are activated. Finally, using Lemma 4.1 we will be able
to deduce that with high probability all of G becomes activated. To achieve this
goal, it suffices to make some modest changes to the algorithm presented in The-
orem 2.1. The main difference is that now we look in the ith iteration for large
connected components in the set of all vertices having r − 1 neighbors in Ci−1. As
in the proof of Theorem 2.1, we initially set � = log logd and B0 = C0 = D0 to be
a fixed subset of [n] of size C1n

d
r

r−1 logd
. The algorithm is ran for � iterations, where

� drops by 1 in every iteration—terminating once � = 0. Specifically, we have the
following.
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Iterating: We aim to get a set Ci of size

|Ci | = C1n

d
r

r−1 2�−i
.

Given a set Ci−1, we find a subset Bi of vertices in V \⋃i−1
j=0 Bj , all having at least

r − 1 neighbors in Ci−1, and

bi := |Bi | = Cr−1
1

2(�−i+1)(r−1) · d · (r − 1)r−1

n

2
=: n0.

Since the probability a vertex (disjoint from Ci−1) has at least r − 1 neighbors
in Ci−1 is asymptotically equal to

(|Ci−1|
r−1

)
pr−1 ≥ (

|Ci−1|
r−1 p)r−1, we get using the

Chernoff bound that the size of Bi is indeed lower bounded by (
|Ci−1|
r−1 p)r−12(n −

o(1))/3 > bi with probability at least 1 − exp(−O( n
d(logd)r−1 )), where terms de-

pending only on r are treated as constants (as we assume r is a constant not de-
pending on n). It is therefore straightforward to verify that with high probability
for all i ∈ [�] it holds that |Bi | ≥ bi .

Analogously to the r = 2 case, if a set S is connected, and every vertex in S has
at least r − 1 active neighbors, it suffices to activate a single vertex in S in order
to activate the whole of S. Hence, we estimate the number of “large” connected
components in Bi .

Set

si = logd

(� − i + 1)r2 .

Apply Lemma 2.1 to G[Bi] with parameters

n0, q = d

n
= Cr−1

1

2(�−i+1)(r−1)+1(r − 1)r−1n0
, k = si .

We need to verify

(
Cr−1

1

3 · 2(�−i+1)(r−1)+1(r − 1)r−1

)si n0

4
≥ C1n

d
r

r−1 2�−i
,

which amounts to

(
3 · 2(�−i+1)(r−1)+1(r − 1)r−1

Cr−1
1

)si ≤ n0d
r

r−1 2�−i

4C1n
= Cr−2

1 d
1

r−1 2�−i−2

2(�−i+1)(r−1)+1(r − 1)r−1 .

This follows from ( 6
Cr−1

1
)si ≤ Cr−2

1
16(r−1)r−1 and 2(�−i+1)(r−1)si ≤ d

1
r−1

2(�−i+1)(r−2)+4 . The

former inequality is valid when C1 > 6 · 17(r − 1)r−1 and large enough d (e.g., d
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such that si > 1). For the latter inequality, we need to satisfy

si ≤
1

r−1 logd − (� − i + 1)(r − 2) − 4

(� − i + 1)(r − 1)

= logd

(� − i + 1)(r − 1)2 − r − 2

r − 1
− 4

(� − i + 1)(r − 1)

—which is indeed valid for our choice of si .
From the calculations outlined in the paragraph above and Lemma 2.1, the prob-

ability that |Ci | < C1n

d
r

r−1 2�−i
is upper bounded by

ei := exp
(
− C1n

sid
r

r−1 2�−i

)
= exp

(
−C1n(� − i + 1)r2 logd

d
r

r−1 2�−i

)
.

Hence, the probability that a failure will occur in one of the rounds is upper
bounded by

∑�
i=1 ei . Analogous reasoning to the r = 2 case implies that

�∑
i=1

ei = exp
(
−�

(
n log logd

d
r−1
r log2 d

))
.

Substituting d = o((
n log logn

log2 n
)

r−1
r ), we have that the probability there exists i ∈ [�]

such that |Ci | < C1n

d
r

r−1 2�−i
is o(1).

The total size of the seed of Stage I is then

C1n

d
r

r−1 logd
+

�∑
i=1

C1n

d
r

r−1 2�−isi
= C1n

d
r

r−1 logd
+ C1n

d
r

r−1 logd

�∑
i=1

� − i + 1

2�−i

= O

(
n

d
r

r−1 logd

)
.

This completes the proof that for d satisfying the condition in Theorem 1.1,
with high probability m(G, r) ≤ O( n

d
r−1
r logd

).

Now we turn to the lower bound. We shall use the following auxiliary lemma.

LEMMA 4.2. Let β = r − r−1
logd

. Set t = n

3d
r

r−1
and assume d = np = o(n) is

larger than an appropriate constant d0 (that may depend on r). Then with high
probability no set of vertices of size t spans βt edges.

PROOF. Using the equality p = 1

3d
1

r−1 t

we conclude that the probability that

G(n,p) contains a set of size t that spans at least βt edges is upper bounded by(
n

t

)((t
2

)
βt

)
pβt ≤ (

eαd
r

r−1
)t( et

2β

)βt( 1

3d
1

r−1 t

)βt

=
(

eβ+1d1/ logd

3β−12βββ

)t

.

It can be verified that the latter expression is o(1). �
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COROLLARY 4.1. Let G be distributed as G(n,p), where d0 < d = np �
n1−1/r and d0 is a large enough constant that may depend on r but not on n. Then
with high probability m(G, r) > (r−1)n

3rd
r

r−1 logd
.

PROOF. Suppose there exists a contagious set A0 of size t0 = (r−1)n

3rd
r

r−1 logd
. Set-

ting t = n

3d
r

r−1
, we get that A0 together with the first t − t0 infected vertices, would

produce a set A of size n

3d
r

r−1
spanning at least r(t − t0) = (r − r−1

logd
)t edges. As

we have just shown, w.h.p. such a set A does not exist. This completes the proof.
�

4.2. The threshold for m(G, r) = r . We will show that the threshold for the
emergence of a contagious set of size r in G(n,p) is p ∼ (n logr−1 n)−1/r . We
begin by proving that contagious sets of size r are unlikely to exist when p =
c(n logr−1 n)−1/r , for some appropriate constant c > 0.

LEMMA 4.3. Suppose that p ≤ c(n logr−1 n)−1/r for some c > 0 that is suf-
ficiently small. Then with high probability m(G, r) > r , when G is distributed as
G(n,p).

PROOF. By a similar reasoning to the case r = 2, if G(n,p) has a contagious
set of size r then for every 1 < t ≤ n − r it has a set of t + r vertices spanning at
least rt edges. The probability that such a set exists is upper bounded by(

n

r

)(
n

t

)(
(t + r)2/2

rt

)
prt .

For large enough t , the expression above can be upper bounded by

nr

(
en

t

)t(e(t + r)2p

2rt

)rt

< nr

(
n
(etp/r)r

t

)t

,

where we used the fact that (t + r)2 < 2t2 for large enough t . Setting t = logn and
substituting the value of p, we can upper bound the expression above by nr(c′)t
for some c′ > 0 that tends to 0 as c → 0. Hence, taking c to be sufficiently small
we can ensure that (c′)logn < n−r+1, implying that the probability there exists a
contagious set of size r is at most 1/n. This concludes the proof of the lemma. �

We now proceed and prove that if p > C(n logr−1 n)−1/r for a suitable constant
C, then with high probability there is a contagious set of size r in G(n,p).

THEOREM 4.1. Suppose that p > C(n logr−1 n)−1/r , where C is a sufficiently
large constant that may depend on r . Let G be distributed as G(n,p). Then with
high probability m(G, r) = r .
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PROOF. It suffices to prove that for p1 = (n logr−1 n)−1/r , a random graph
G1 ∼ G(n,p1) is typically such that activating appropriately chosen r vertices will
infect c1 logn vertices. Thereafter, exposing the remaining edges of G = G(n,p)

with probability p2 = C2(n logr−1 n)−1/r , where C2 is a large enough constant,
and using Theorem 1.3 implies that that the whole of G gets activated with high
probability.

We use ideas similar to those appearing in Lemma 3.3. Let k = c1 logn where
0 < c1 < 1 is constant that will be determined later. Run the same iterative pro-
cedure as in Lemma 3.3, but choose initially a set I of r vertices from V0. Now
partition V0 \ I to k − r sets each of size at least � |V0|−r

k−r
�. We now run an iterative

procedure identical to the one in Lemma 3.3, but search for a vertex in vj ∈ Ui,j−r

having at least r neighbors in {u1, u2, . . . , uj−1} (in the procedure in Lemma 3.3,
r = 2). If found, set uj := vj . If such a uj is not found, we stop iteration j , delete
{u1, . . . , uj−1} and update V0 := V0 − {u1, . . . , uj−1}. The probability that the j th

iteration succeeds can be lower bounded by
(j−1

r

)pr
1

2 ≥ (
(j−r)p1

r
)r/2 [recall that

r is a fixed constant and p = o(1)]. Assuming c to be a sufficiently small con-
stant that may depend on r , we reason that Pr[Bin( n

2(k−r)
, (

(j−r)p1
r

)r/2) > 0] ≥
n

2(k−r)
· ( (j−r)p1

r
)r/2. Therefore, the probability the ith iteration succeeds is at least

k∏
j=r+1

npr
1

2rrk
· (j − r)r =

(
npr

1

2rrk

)k−r

· (
(k − r)!)r ≥

(
npr

1(k − r)r

2errk

)k−r

.

Choosing c1 to be small enough and plugging in k and p, the aforementioned prob-
ability can be lower bounded by (c1/10)c1 logn > n−1/3. The rest of the argument
is essentially identical to that of Lemma 3.3. �

Similar arguments to those presented in Section 3 imply that the number of
generations for a contagious set as above to activate G is �(r log logn). We omit
the details.

5. Conclusions. The discussion below concerns the case r = 2.
Theorems 1.1 and 1.2 both show that the smallest contagious set has size

�( n
d2 logd

) w.h.p., but address two different ranges of degrees. The negative results
(nonexistence of small contagious sets) in both theorems are based essentially on
the same argument [lower bounds on the size of the smallest subgraph of average
degree 4−O( 1

logd
)]. However, our proofs of the upper bounds in the two theorems

are based on different principles. Our proof for Theorem 1.1 is based on an algo-
rithm that performs log logd iterations, where in every iteration additional vertices
are designated as seeds. Such a proof produces a contagious set of size at least
�(log logd) (in fact, our proof of Proposition 2.3 requires values of d for which
the contagious set is even larger), and hence is inappropriate for Theorem 1.2, in
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which the total number of seeds allowed is only 2. In contrast, the proof of The-
orem 1.2 is based on examining disjoint pairs of vertices until some pair is found
to be contagious. Disjointness implies that the proof examines much fewer than n

candidate sets for being contagious. Such a proof is inappropriate for Theorem 1.1,
because for the range of degrees considered in Theorem 1.1 a random set of size
�( n

d2 logd
) has probability much less than 1/n of being contagious.

In this work, we did not handle two ranges of degrees. One is when d is a
large constant. It is not difficult to extend Theorem 1.1 also to the case of large
constant degrees. This range of degrees is omitted from the current work mainly
for the reasons of simplicity, as we are using Theorem 1.3 as a blackbox, and that
theorem requires d = d(n) to tend to infinity with n. The more challenging range
of parameters omitted from our paper is when d = o(

√
n

logn
) but still too large for

Theorem 1.1 to apply. It would be interesting to prove that the smallest contagious
set has typically size �( n

d2 logd
) also in this regime.

The positive results in Theorem 1.2 implicitly establish one specific average
degree d = �(

√
n

logn
) that suffices with high probability for two related problems:

one is the existence of a contagious set of size 2, and the other is the existence
of such a set for which the number of generations is O(log logn) (which is best
possible up to constant multiplicative factors). For both problems, this value of
d is best possible up to constant factors. Nevertheless, it would be interesting to
determine whether there is some d ′ < d for which with high probability there is
a contagious set of size 2, but every contagious set of size 2 requires more than
O(log logn) generations.

Theorem 1.1 does not explicitly address the number of generations. An up-
per bound on the number of generations implicit in our proof of Theorem 1.1 is
O(logd log logd), but we doubt that it is tight.
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