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We ask the question “when will natural selection on a gene in a spatially
structured population cause a detectable trace in the patterns of genetic varia-
tion observed in the contemporary population?” We focus on the situation in
which “neighbourhood size”, that is the effective local population density, is
small. The genealogy relating individuals in a sample from the population is
embedded in a spatial version of the ancestral selection graph and through ap-
plying a diffusive scaling to this object we show that whereas in dimensions
at least three, selection is barely impeded by the spatial structure, in the most
relevant dimension, d = 2, selection must be stronger (by a factor of log(1/μ)

where μ is the neutral mutation rate) if we are to have a chance of detecting
it. The case d = 1 was handled in Etheridge, Freeman and Straulino (The
Brownian net and selection in the spatial Lambda-Fleming–Viot. Preprint).

The mathematical interest is that although the system of branching and
coalescing lineages that forms the ancestral selection graph converges to a
branching Brownian motion, this reflects a delicate balance of a branching
rate that grows to infinity and the instant annullation of almost all branches
through coalescence caused by the strong local competition in the population.

1. Introduction. Our aims in this work are twofold. On the one hand, we ad-
dress a question of interest in population genetics: when will the action of natural
selection on a gene in a spatially structured population cause a detectable trace
in the patterns of genetic variation observed in the contemporary population? On
the other hand, we investigate some of the rich structure underlying mathematical
models for spatially evolving populations and, in particular, the systems of inter-
acting random walks that, as dual processes (corresponding to ancestral lineages of
the model), describe the genetic relationships between individuals sampled from
those populations.

Since the seminal work of Fisher (1937), a large literature has developed that
investigates the interaction of natural selection with the spatial structure of a pop-
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ulation. Traditionally, the deterministic action of migration and selection is ap-
proximated by what we now call the Fisher–KPP equation and predictions from
that equation are compared to data. However, many important questions depend
on how selection and migration interact with a third force, the stochastic fluctua-
tions known as random genetic drift and this poses significant new mathematical
challenges.

For the most part, random drift is modelled through Wright–Fisher noise result-
ing in a stochastic PDE as a model for the evolution of gene frequencies w:

∂w

∂t
= m�w − sw(1 − w) +

√
γw(1 − w)Ẇ

(for suitable constants m, s and γ ), where W is space-time white noise. This
stochastic Fisher-KPP equation has been extensively studied; see, for example,
Mueller, Mytnik and Quastel (2008) and references therein. However, from a mod-
elling perspective, it has two immediate shortcomings. First, it only makes sense
in one spatial dimension. This is generally overcome by artificially subdividing
the population, and thus replacing the stochastic PDE by a system of stochastic
ordinary differential equations, coupled through migration. The second problem is
that, in deriving the equation, one allows the “neighbourhood size” to tend to infin-
ity. We shall give a precise definition of neighbourhood size in Section 2. Loosely,
it is inversely proportional to the probability that two individuals sampled from
sufficiently close to one another had a common parent in the previous generation
and small neighbourhood size corresponds to strong genetic drift. It is understand-
ing the implications of dropping this (usually implicit) assumption of unbounded
neighbourhood size that motivated the work presented here.

Our starting point will be the Spatial �-Fleming–Viot process with selec-
tion (S�FVS), which (along with its dual) was introduced and constructed in
Etheridge, Véber and Yu (2014). The dynamics of both the S�FVS and its dual
are driven by a Poisson Point Process of “events” (which model reproduction or
extinction and recolonisation in the population) and will be described in detail in
Section 2. The advantage of this model is that it circumvents the need to subdivide
the population in higher dimensions. However, since our proof is based on an anal-
ysis of the branching and coalescing system of random walkers that describes the
ancestry of a sample from the population, it would be straightforward to modify
it to apply to, for example, an individual based model in which a fixed number of
individuals reside at each point of a d-dimensional lattice.

In classical models of population genetics, in which there is no spatial structure,
we generally think of population size as setting the timescale of evolution of fre-
quencies of different genetic types. Evidently, that makes no sense in our setting.
However (even in the classical setting), as we explain in more detail in Section 3,
if natural selection is to leave a distinguishable trace in contemporary patterns of
genetic variation, then a sufficiency of neutral mutations must fall on the genealog-
ical trees relating individuals in a sample. Thus, in fact, it is the neutral mutation
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rate which sets the timescale and, since mutation rates are very low, this leads us
to consider scaling limits.

In Etheridge, Véber and Yu (2014), scaling limits of the (forwards in time)
S�FVS were considered in which the neighbourhood size tends to infinity. In that
case, the classical Fisher-KPP equation and, in one spatial dimension, its stochas-
tic analogue are recovered. The dual process of branching and coalescing lineages
converges to branching Brownian motion, with coalescence of lineages (in one di-
mension) at a rate determined by the local time that they spend together. In this
article, we consider scaling limits in the (very different) regime in which neigh-
bourhood size remains finite. In this context, the interaction between genetic drift
and spatial structure becomes much more important and, in contrast to Etheridge,
Véber and Yu (2014), it is the dual process which proves to be the more analyti-
cally tractable object.

We shall focus on the most biologically relevant case of two spatial dimensions.
The case of one dimension was discussed in Etheridge, Freeman and Straulino
(2015). The main interest there is mathematical: the dual process of branching
and coalescing ancestral lineages, suitably scaled, converges to the Brownian net.
However, the scaling required to obtain a nontrivial limit reveals a strong effect
of the spatial structure. Here, we shall identify the corresponding scalings in di-
mensions d ≥ 2. Whereas in Etheridge, Véber and Yu (2014), the scaling of the
selection coefficient is independent of spatial dimension and, indeed, mirrors that
for unstructured populations; for bounded neighbourhood size, this is no longer
the case. In d = 1 and d = 2, the scaling of the selection coefficient required to
obtain a nontrivial limit reflects strong local competition.

Our main result, Theorem 2.7, is that under these (dimension-dependent) scal-
ings, the scaled dual process converges to a branching Brownian motion. For
d ≥ 3, this is rather straightforward, but in two dimensions things are much more
delicate. The mathematical interest of our result is that in d = 2, under our scaling,
the rate of branching of ancestral lineages explodes to infinity but, crucially, all
except finitely many branches are instantaneously annulled through coalescence.
That this finely balanced picture produces a nondegenerate limit results from a
combination of the failure of two-dimensional Brownian motion to hit points and
the strong (local) interactions of the approximating random walks, which cause
coalescence.

From a biological perspective, the main interest is that, in contrast to the infinite
neighbourhood size limit, here we see a strong effect of spatial dimension in our
results. When neighbourhood size is very big, the probability of fixation for an
advantageous genetic type, that is, the probability that the genetic type establishes
and sweeps through the entire population, is not affected by spatial structure. When
neighbourhood size is small, in (one and) two spatial dimensions, selection has to
be much stronger to leave a detectable trace than in a population with no spatial
structure. Indeed, local establishment is no longer a guarantee of eventual fixation.
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The rest of the paper is laid out as follows. In Section 2, we describe the S�FVS
and the dual process of branching and coalescing random walks, state our main re-
sult and provide a heuristic argument that explains our choice of scalings. In Sec-
tion 3, we place our findings in the context of previous work on selective sweeps
in spatially structured populations, and in Section 4 we prove our result.

2. The model and main result.

2.1. The model. To motivate the definition of the S�FVS, it is convenient to
recall (a very special case of) the model without selection, introduced in Barton,
Etheridge and Véber (2010), Drift (2008). We shall call it the S�FV to emphasize
that selection is not acting. We proceed informally, only carefully specifying the
state space and conditions that are sufficient to guarantee existence of the process
when we define the S�FVS itself in Definition 2.3. The interested reader can find
much more general conditions under which the S�FV exists in Etheridge and
Kurtz (2014).

We restrict ourselves to the case of just two genetic types, which we denote a

and A, and we suppose that the population is evolving in Rd . It is convenient to
index time by the whole real line. At each time t , the random function {wt(x), x ∈
Rd} is defined, up to a Lebesgue null set of Rd , by

(2.1) wt(x) := proportion of type a at spatial position x at time t.

The dynamics are driven by a Poisson point process � on R×Rd ×R+ × (0,1].
Each point (t, x, r, u) ∈ � specifies a reproduction event which will affect that
part of the population at time t which lies within the closed ball Br (x) of radius
r centred on the point x. First, the location z of the parent of the event is chosen
uniformly at random from Br (x). All offspring inherit the type α of the parent
which is determined by wt−(z); that is, with probability wt−(z) all offspring will
be type a, otherwise they will be A. A portion u of the population within the ball
is then replaced by offspring so that

wt(y) = (1 − u)wt−(y) + u1{α=a}, ∀y ∈ Br (x).

The population outside the ball is unaffected by the event. We sometimes call u

the impact of the event.
Under this model, the time reversal of the same Poisson point process of events

governs the ancestry of a sample from the population. Each ancestral lineage that
lies in the region affected by an event has a probability u of being among the
offspring of the event, in which case, as we trace backwards in time, it jumps to the
location of the parent, which is sampled uniformly from the region. In this way,
ancestral lineages evolve according to (dependent) compound Poisson processes
and lineages can coalesce when affected by the same event. All lineages affected
by an event inherit the type of the parent of that event.
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REMARK 2.1. In Etheridge and Kurtz (2014), the S�FV and its dual are con-
structed simultaneously on the same probability space, through a lookdown con-
struction, as the limit of an individual based model, and so the dual process just
described really can be interpreted as tracing the ancestry of individuals in a sam-
ple from the population.

We are now in a position to define the neighbourhood size.

DEFINITION 2.2. Write σ 2 for the variance of the first coordinate of the loca-
tion of a single ancestral lineage after one unit of time and η(x) for the instanta-
neous rate of coalescence of two lineages that are currently at a separation x ∈ Rd .
Then the neighbourhood size, N , is given by

N = 2dCdσ 2∫
Rd η(x) dx

,

where Cd is the volume of the unit ball in Rd .

Neighbourhood size is used in biology to quantify the local number of breeding
individuals in a continuous population; see Barton et al. (2013b) for a derivation of
this formula. If we assume that the impact is the same for all events, then the impact
is inversely proportional to the neighbourhood size; see Barton et al. (2013b).

There are very many different ways in which to introduce selection into the
S�FV. Our approach here is a simple adaptation of that adopted in classical mod-
els of population genetics. The parental type in the S�FV is a uniform pick from
the types in the region affected by the event. We can introduce a small advan-
tage to individuals of type A by choosing the parent in a weighted way. Thus if,
immediately before reproduction, the proportion of type a individuals in the re-
gion affected by the event is w, then the offspring will be type a with probability
w/(1 + s(1 − w)). We say that the relative fitnesses of types a and A are 1 and
1+ s, respectively, and refer to s as the selection coefficient. We are interested only
in small values of s and so we expand

w

1 + s(1 − w)
= w
{
1 − s(1 − w)

}+O
(
s2)= (1 − s)w + sw2 +O

(
s2).

We shall regard s2 as being negligible. We can then think of each event, indepen-
dently, as being a “neutral” event with probability (1 − s) and a “selective” event
with probability s. Reproduction during neutral events is exactly as before, but
during selective events, we sample two potential parents; only if both are type a

will the offspring be of type a.
Let us now give a more precise definition of the S�FVS. We retain the notation

of (2.1). A construction of an appropriate state space for x �→ wt(x) can be found
in Véber and Wakolbinger (2015). Using the identification∫

Rd×{a,A}
f (x, κ)M(dx, dκ) =

∫
Rd

{
w(x)f (x, a) + (1 − w(x)

)
f (x,A)

}
dx,
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this state space is in one-to-one correspondence with the space Mλ of measures
on Rd × {a,A} with “spatial marginal” Lebesgue measure, which we endow with
the topology of vague convergence. By a slight abuse of notation, we also denote
the state space of the process (wt )t∈R by Mλ.

DEFINITION 2.3 (S�FV with selection (S�FVS)). Fix R ∈ (0,∞). Let μ be
a finite measure on (0,R] and, for each r ∈ (0,R], let νr be a probability measure
on (0,1]. Further, let � be a Poisson point process on R × Rd × (0,R] × (0,1]
with intensity measure

(2.2) dt ⊗ dx ⊗ μ(dr)νr(du).

The spatial �-Fleming–Viot process with selection (S�FVS) driven by (2.2) is the
Mλ-valued process (wt )t∈R with dynamics given as follows.

If (t, x, r, u) ∈ �, a reproduction event occurs at time t within the closed ball
Br (x) of radius r centred on x. With probability 1− s the event is neutral, in which
case:

1. Choose a parental location z uniformly at random within Br (x), and a
parental type, α, according to wt−(z), that is α = a with probability wt−(z) and
α = A with probability 1 − wt−(z).

2. For every y ∈ Br (x), set wt(y) = (1 − u)wt−(y) + u1{α=a}.

With the complementary probability s the event is selective, in which case:

1. Choose two “potential” parental locations z, z′ independently and uniformly
at random within Br (x), and at each of these sites “potential” parental types α, α′,
according to wt−(z),wt−(z′), respectively.

2. For every y ∈ Br (x), set wt(y) = (1 − u)wt−(y) + u1{α=α′=a}. Declare the
parental location to be z if α = α′ = a or α = α′ = A and to be z (resp., z′) if
α = A,α′ = a (resp., α = a,α′ = A).

This is a very special case of the S�FVS introduced in Etheridge, Véber and
Yu (2014).

We are especially concerned with the dual process of the S�FVS. Whereas
in the neutral case we can always identify the distribution of the location of the
parent of each event, without any additional information on the distribution of
types in the region, now, at a selective event, we are unable to identify which of
the “potential parents” is the true parent of the event without knowing their types.
These can only be established by tracing further into the past. The resolution is to
follow all potential ancestral lineages backwards in time. This results in a system
of branching and coalescing walks.

As in the neutral case, the dynamics of the dual are driven by the same Poisson
point process of events, �, that drove the forwards in time process. The distribution
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of this Poisson point process is invariant under time reversal and so we shall abuse
notation by reversing the direction of time when discussing the dual.

We suppose that at time 0 (which we think of as “the present”), we sample k

individuals from locations x1, . . . , xk and we write ξ1
s , . . . , ξ

Ns
s for the locations of

the Ns potential ancestors that make up our dual at time s before the present.

DEFINITION 2.4 (Branching and coalescing dual). The branching and coa-
lescing dual process (�t)t≥0 driven by � is the

⋃
m≥1(R

d)m-valued Markov pro-
cess with dynamics defined as follows: at each event (t, x, r, u) ∈ �, with proba-
bility 1 − s, the event is neutral:

1. For each ξ i
t− ∈ Br (x), independently mark the corresponding lineage with

probability u.
2. If at least one lineage is marked, all marked lineages disappear and are re-

placed by a single lineage, whose location at time t is drawn uniformly at random
from within Br (x).

With the complementary probability s, the event is selective:

1. For each ξ i
t− ∈ Br (x), independently mark the corresponding lineage with

probability u.
2. If at least one lineage is marked, all marked lineages disappear and are re-

placed by two lineages, whose locations at time t are drawn independently and
uniformly from within Br (x).

In both cases, if no lineages are marked, then nothing happens.

Since we only consider finitely many initial individuals in the sample, and the
jump rate of the dual is bounded by a linear function of the number of potential
ancestors, this description gives rise to a well-defined process.

This dual process is the analogue for the S�FVS of the Ancestral Selection
Graph (ASG), introduced in the companion papers Krone and Neuhauser (1997),
Neuhauser and Krone (1997), which describes all the potential ancestors of a sam-
ple from a population evolving according to the Wright–Fisher diffusion with se-
lection. Perhaps the simplest way of expressing the duality between the S�FVS
and the branching and coalescing dual process is to observe that all the individuals
in our sample are of type a if and only if all potential ancestral lineages are of
type a at any time t in the past. This is analogous to the moment duality between
the ASG and the Wright–Fisher diffusion with selection. However, to state this
formally for the S�FVS, we would need to be able to identify E[∏n

i=1 wt(xi)] for
any choice of points x1, . . . , xn ∈ Rd . The difficulty is that, just as in the neutral
case, the S�FVS wt(x) is only defined at Lebesgue almost every point x and so
we have to be satisfied with a “weak” moment duality.
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PROPOSITION 2.5. [Etheridge, Véber and Yu (2014)] The spatial �-Fleming–
Viot process with selection is dual to the process (�t)t≥0 in the sense that for every
k ∈ N and ψ ∈ Cc((Rd)k), we have

Ew0

[∫
(Rd )k

ψ(x1, . . . , xk)

{
k∏

j=1

wt(xj )

}
dx1 · · ·dxk

]

(2.3)

=
∫
(Rd )k

ψ(x1, . . . , xk)E{x1,...,xk}
[

Nt∏
j=1

w0
(
ξ

j
t

)]
dx1 · · ·dxk.

2.2. The main result. Our main result concerns a diffusive rescaling of the
dual process of Definition 2.4 and so from now on it will be convenient if

forwards in time refers to forwards for the dual process.

We shall take the impact parameter, u, to be a fixed number in (0,1] (i.e., νr = δu

for all r). In fact, the same arguments work when u is allowed to be random, as
long as

∫R
R′
∫ 1

0 uνr(du)μ(dr) > 0 for some 0 < R′ < R, but this would make our
proofs notationally cumbersome.

Let us describe the scaling more precisely. Suppose that μ is a finite measure
on (0,R]. We shall assume for convenience that R is defined in such a way that
for any δ > 0, μ((R − δ,R]) > 0. For each n ∈ N, define the measure μn by
μn(B) = μ(n1/2B), for all Borel subsets B of R+. It will be convenient to write
Rn = R/

√
n. At the nth stage of the rescaling, our rescaled dual is driven by the

Poisson point process �n on R×Rd × (0,Rn] with intensity

(2.4) ndt ⊗ nd/2 dx ⊗ μn(dr).

This corresponds to rescaling space and time from (t, x) to (n−1t, n−1/2x). Impor-
tantly, we do not scale the impact u. Each event of �n, independently, is neutral
with probability 1 − sn and selective with probability sn, where

(2.5) sn =

⎧⎪⎪⎨
⎪⎪⎩

logn

n
d = 2,

1

n
d ≥ 3.

In Etheridge, Freeman and Straulino (2015), it was shown that in d = 1, one should
take sn = 1/

√
n.

Although not obvious for the S�FVS itself, when considering the dual pro-
cess it is not hard to understand why the scalings (2.4) and (2.5) should lead to a
nontrivial limit.

If we ignore the selective events, then a single ancestral lineage evolves as a
pure jump process which is homogeneous in both space and time. Write Vr for
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the volume of Br (0). The rate at which the lineage jumps from y to y + z can be
written

(2.6) mn(dz) = nu

∫ Rn

0
nd/2 Vr(0, z)

Vr

μn(dr) dz,

where Vr(0, z) is the volume of Br (0)∩Br (z). To see this, by spatial homogeneity,
we may take the lineage to be at the origin in Rd before the jump, and then, in order
for it to jump to z, it must be affected by an event that covers both 0 and z. If the
event has radius r , then the volume of possible centres, x, of such events is Vr(0, z)

and so the intensity with which such a centre is selected is nnd/2Vr(0, z)μn(dr).
The parental location is chosen uniformly from the ball Br (x), so the probabil-
ity that z is chosen as the parental location is dz/Vr and the probability that our
lineage is actually affected by the event is u. Combining these yields (2.6).

The total rate of jumps is
∫
Rd

mn(dz) =
∫ Rn

0
nund/2 1

Vr

∫
Rd

∫
Rd

1|x|<r1|x−z|<r dx dzμn(dr)

=
∫ Rn

0
nund/2Vrμ

n(dr)(2.7)

= nuV1

∫ R

0
rdμ(dr) = �(n),

and the size of each jump is �(n−1/2) and so in the limit a single lineage will
evolve according to a (time-changed) Brownian motion.

Now, consider what happens at a selective event. The two new lineages are
created at a separation of order 1/

√
n. If we are to see both lineages in the limit,

then they must move apart to a separation of order 1 (before, possibly, coalescing
back together). Ignoring possible interactions with other lineages, the probability
that a pair of lineages makes such an excursion is of order 1 in d ≥ 3, order 1/ logn

in d = 2 and order 1/
√

n in d = 1. Therefore, in order to have a positive probability
of seeing branching in the scaling limit, in d ≥ 3 we only need that there are
a positive number of selective events in unit (rescaled) time, and, for this, it is
enough that sn is order 1/n. However, for d = 2, we need order logn branches
before we expect to find one that is visible to us, hence the choice sn = logn/n.

REMARK 2.6. Our scaling mirrors that described in Durrett and Zähle (2007)
for a model of a hybrid zone (by which we mean a region in which we see both
genetic types) which develops around a boundary between two regions, in one of
which type a individuals are selectively favoured and in the other of which type
A individuals are selectively favoured. In contrast to our continuum setting, their
model is a spin system in which exactly one individual lives at each point of Zd .
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Before formally stating our main result, we need some notation. We shall denote
by BBM(p,V ) binary branching Brownian motion started from the point p ∈ Rd ,
with branching rate V and diffusion constant given by

(2.8) σ 2 = 1

d

∫
Rd

|z|2mn(dz) = 1

d

∫
Rd

∫ ∞
0

|z|2uVr(0, z)

Vr

μ(dr) dz,

where mn(dz) is defined in (2.6). In other words, during their lifetime, which
is exponentially distributed with parameter V , individuals follow d-dimensional
Brownian motion with diffusion constant σ 2, at the end of which they die, leaving
behind at the location where they died exactly two offspring. We view BBM(p,V )

as a set of (continuous) paths, each starting at p, with precisely one path following
each possible distinct sequence of branches.

Similarly, we write P(n)(p) for the dual process of Definition 2.4, rescaled as in
(2.4) and (2.5), started from a single individual at the point p ∈ Rd and viewed as
a collection of paths. Each path traces out a “potential ancestral lineage”, defined
exactly as the ancestral lineages in the neutral case except that at each selective
event, if a lineage is affected then it jumps to the location of (either) one of the
“potential parents”. Precisely one potential ancestral lineage follows each possible
route through the branching and coalescing dual process.

We define the events:

Dn(ε, T ) =
{
∀l ∈ P(n)(p),∃l′ ∈ BBM(p,V ) : sup

t∈[0,T ]
∣∣l(t) − l′(t)

∣∣≤ ε
}
,

(2.9)
D′

n(ε, T ) =
{
∀l ∈ BBM(p,V ),∃l′ ∈ P(n)(p) : sup

t∈[0,T ]
∣∣l(t) − l′(t)

∣∣≤ ε
}
.

THEOREM 2.7. Let d ≥ 2. There exists V ∈ (0,∞) such that the following
holds. Let T < ∞, p ∈ R2; then given ε > 0, there exists N ∈ N such that, for all
n ≥ N there is a coupling between BBM(p,V ) and P(n)(p) with P[Dn(ε, T ) ∩
D′

n(ε, T )] ≥ 1 − ε.

We will give a proof of Theorem 2.7 only for d = 2. The case d ≥ 3 follows
from a simplified version of the 2-dimensional proof presented here.

2.3. Sketch of proof. Consider a pair of potential ancestral lineages, ξn,1 and
ξn,2, created in some selective event which, without loss of generality, we suppose
happens at time zero. Suppose that we forget about further branches and when
ξn,i is affected by a neutral event it jumps to the location of the parent; when it is
affected by a selective event it jumps to the location of one of the potential parents
(picked at random). Thus, ξn,1 and ξn,2 are compound Poisson processes which
interact when (and only when) |ξn,1 − ξn,2| ≤ 2Rn.

We choose a large constant c > 0. We begin by showing that ξn,1 and ξn,2 have
probability �(1/ logn) of reaching a distance 1/(logn)c from each other without
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coalescing (we then say they have diverged). We also show that the probability that
ξn,1 and ξn,2 have not diverged or coalesced by time 1/(logn)c is o(1/(logn)), so
coalescence will be instantaneous in the limit. Moreover, once they are 1/(logn)c

apart, they won’t get within distance 2Rn of each other again on a timescale of
O(1). Hence, from the point of view of our scaling they stay apart and evolve
essentially independently of each other.

We exploit this observation by coupling the whole rescaled dual process with
a process in which diverged lineages move independently. We use an object that
we call a caterpillar which is defined in the same way as the rescaled dual process,
except that selective events only result in branching if at least time 1/(logn)c has
elapsed since the previous branching. We stop the caterpillar at the first time a
pair of lineages has either diverged or failed to coalesce in time 1/(logn)c after
branching. We then start two new independent caterpillars at the positions of the
pair of lineages, and continue in the same way, giving a “branching caterpillar”.

The branching caterpillar can be coupled with the rescaled dual process by piec-
ing together the independent Poisson point processes of events which drive each
caterpillar into a single driving Poisson point process. We show that under the cou-
pling, the branching caterpillar and the rescaled dual process coincide with high
probability, using the result that lineages at a separation of at least 1/(logn)c are
unlikely to interact again. Each individual caterpillar converges in an appropriate
sense to a segment of a Brownian path run for an exponentially distributed lifetime,
so we can couple the branching caterpillar with the limiting branching Brownian
motion.

This programme is carried out in Section 4.

3. Biological background. In this section, we shall set our work in the con-
text of the substantial biological literature. The reader concerned only with the
mathematics can safely skip to Section 4.

The interplay between natural selection and the spatial structure of a population
is a question of longstanding interest in population genetics. Fisher (1937) studied
the advance of selectively advantageous genetic types through a one-dimensional
population using the deterministic differential equation now known as the Fisher-
KPP equation. This equation also makes sense in higher dimensions, but ignores
genetic drift (the randomness due to reproduction in a finite population). Work in-
corporating genetic drift has been restricted to either one spatial dimension [see
Barton et al. (2013a) and references therein] or, more commonly, to subdivided
populations. Maruyama (1970) studied the probability of fixation of an advanta-
geous genetic type (the probability that eventually the whole population carries
this genetic type) in a subdivided population. The assumptions made in that article
are rather strong: if we think of the population as living on islands (or in colonies),
then each island has constant total population size and its contribution to the next
generation is in proportion to that size. Under these assumptions, the probability
of fixation is not affected by the population structure: it is the same as for a gene
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of the same selective advantage in an unstructured population of the same total
size. Much subsequent work retained Maruyama’s assumptions, and so it is often
assumed that spatial structure has no influence on the accumulation of favourable
genes. However, Barton (1993) showed that the extra stochasticity produced by the
Introduction of local extinctions and colonisations could significantly change the
fixation probability. This work was extended in, for example, Cherry (2003) and
Whitlock (2003).

A fundamental problem in genetics is to identify which parts of the genome
have been the target of natural selection. The random nature of reproduction in
finite populations means that some genetic types (alleles) will be carried by every-
one in the population, even though they convey no particular selective advantage.
However, if a favourable mutation arises in a population and “sweeps” to fixation
(i.e., increases in frequency until everybody carries it), we expect the genealogi-
cal trees (i.e., the trees of ancestral lineages) relating individuals in a sample from
the population to differ from those that we observe in the absence of selection.
In particular, they will be more “star-shaped”. Of course, we cannot observe the
genealogical trees directly, and so, instead, geneticists exploit the fact that genes
are arranged on chromosomes: the ancestry at another position on the same chro-
mosome will be correlated with that at the part of the genome that is the target
of selection. In order to detect selection, one therefore examines the patterns of
variation at other points on the same chromosome, so-called linked loci.

In order for this approach to work, we require sufficient variability at the linked
loci that we see a signal of the distortion in the genealogical tree. This means that
we must consider the genealogy of a sample from the population on the timescale
set by the neutral mutation rate. If selection is too strong, the genealogy will be
very short and we see no mutations and so we can recover no information about
the genealogical trees; if selection is too weak, we will not be able to distinguish
the patterns from those seen under neutral evolution.

Since neutral mutation rates are rather small, this means that we are interested
in long timescales. Without selection, ancestral lineages in our model follow sym-
metric random walks with bounded variance jumps and so we expect a diffusive
scaling to capture patterns of neutral variation. Since we are looking for devia-
tions from those patterns due to the action of selection, it makes sense to consider
a diffusive rescaling in the selective case also. Thus, if the neutral mutation rate
is μ, then we look at the rescaled dual process with n = 1/μ. If the branches
produced by selection persist long enough to be visible at this scale, then there
is positive probability that the pattern of (neutral) variation we see in a sample
from the population will look different from the pattern we would expect without
selection.

Our results in this paper are relevant to populations evolving in spatial continua.
The question they address is “When can we hope to detect a signal of natural
selection in data?” Whereas in the classical models of subdivided populations, it
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is typically assumed that the population in each “island” is large, so that neigh-
bourhood size is big, by fixing the “impact” parameter u in our model, we are
assuming that neighbourhood size is small. As a result, reproduction events are
somewhat akin to local extinction and recolonisation events, in which a significant
proportion of the local population is replaced in a single event. Our main result
shows that our ability to detect selection is then critically dependent on spatial di-
mension. For populations living in at least three spatial dimensions (of which there
are very few), spatial structure has a rather weak effect. However, in two spatial di-
mensions, selection must be stronger and in one spatial dimension (as appropriate,
e.g., for populations living in intertidal zones) much stronger, before we can expect
to be able to detect it. The explanation is that in low dimensions, it is harder for
individuals carrying the favoured gene to escape the competition posed by close
relatives who carry the same gene. In our mathematical work, this is reflected in
the vast majority of branches in our dual process being cancelled by a coalescence
event on a timescale which is negligible compared to the timescale set by the neu-
tral mutation rate so that no evidence of these branches having occurred will be
seen in the pattern of neutral mutation.

4. Proof of Theorem 2.7. Our proof is broken into two steps. First, in Sec-
tion 4.1 we consider how the pair of potential ancestral lineages created during
a selective event interact with each other. In particular, we find asymptotics for
the probability that they diverge in a short time. This will allow us to identify the
branching rate in the limiting Brownian motion. Then in Section 4.2, we define the
caterpillar and show how to couple the dual of the S�FVS to a system of branching
caterpillars. With this construction in hand, Theorem 2.7 follows easily.

4.1. Pairs of paths. In this subsection, we are interested in the behaviour of
a pair of potential ancestral lineages in the rescaled dual. In order that they be
uniquely defined, if either is hit by a selective event then we (arbitrarily) declare
that it jumps to the location of the first potential parent sampled in that event. In
particular, if they are both affected by the same event, then they will necessarily
coalesce. We write ξn,1 and ξn,2 for the resulting potential ancestral lineages and

ηn = ξn,1 − ξn,2

for their separation.
Throughout this subsection, we use the notation P[r,r ′] to mean that |ηn

0 | ∈ [r, r ′]
and we adopt the convention that estimates of P[r,r ′][B] hold uniformly for all
initial laws with mass concentrated on [r, r ′]. We extend this notation to open
intervals in the obvious manner. We will also write Pr = P[r,r].

We are concerned with the behaviour of two potential ancestral lineages created
during a selective event which, without loss of generality, we suppose to happen at
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time 0. We shall then refer to ηn as an excursion. In this case |ηn
0 | ≤ 2Rn and we

wish to establish whether or not |ηn
t | ever exceeds

(4.1) γn = 1

(logn)c
,

where, in this section, we suppose that c ≥ 3.

REMARK 4.1. We will, eventually, set c = 4, although any larger constant c

would give the same result; for now we keep the dependence on c visible in our
estimates.

For reasons that will soon become apparent, it is convenient to assume that n is
large enough that 7Rn < γn.

The picture of an excursion ηn that we would like to build up is, loosely speak-
ing, as follows:

1. With probability κn = �( 1
logn

), |ηn| reaches displacement γn within time

1/(logn)c and then ξn,1 and ξn,2 will not interact again before a fixed time T > 0.
Consequently, the displacement between them becomes macroscopic and we see
two distinct paths in the limit. Moreover, κn logn → κ ∈ (0,∞) as n → ∞.

2. With probability 1 − �( 1
logn

), |ηn| does not reach displacement γn, and ξn,1

and ξn,2 coalesce within time 1/(logn)c. In this case, the difference between them
is microscopic and we see only one path in the limit.

3. All other outcomes have probability O( 1
(logn)c−3/2 ), which means that we will

not see them in the limit.

Much of the work in making this rigorous results from the fact that ξn,1, ξn,2 only
evolve independently when their separation is greater than 2Rn. Our strategy is
similar to that in the proof of Lemma 4.2 in Etheridge and Véber (2012), but here
we require a stronger result: rather than an estimate of the form κn ≥ C/ logn we
need convergence of κn logn.

4.1.1. Inner and outer excursions. We shall characterise the behaviour of ηn

using several stopping times. Set τ out
0 = 0 and define inductively, for i ≥ 0,

τ in
i = inf

{
s > τ out

i : ∣∣ηn
s

∣∣≥ 5Rn

}
,

(4.2)
τ out
i+1 = inf

{
s > τ in

i : ∣∣ηn
s

∣∣≤ 4Rn

}
.

We refer to the interval [τ out
i , τ in

i ) (and also to the path of ηn during it) as the ith
inner excursion and similar to [τ in

i−1, τ
out
i ) (and corresponding path) as the ith outer

excursion.
Since a jump of ηn has displacement at most 2Rn, although the initial (0th) inner

excursion starts in (0,2Rn], for i ≥ 1 we have |ηn

τ in
i

| ∈ [5Rn,7Rn] and |ηn
τ out
i

| ∈
[2Rn,4Rn].
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DEFINITION 4.2. We define the stopping times

τ coal = inf
{
s > 0 : ∣∣ηn

s

∣∣= 0
}
,

τ div = inf
{
s > 0 : ∣∣ηn

s

∣∣≥ γn

}
,

τ over = 1

(logn)c
.

We shall say that the ith inner excursion coalesces if τ coal ∈ [τ out
i , τ in

i ). Similarly,
the ith outer excursion diverges if τ div ∈ [τ in

i−1, τ
out
i ).

We define τ type = min(τ coal, τ div, τ over) and say that ηn:

1. coalesces if τ type = τ coal,
2. diverges if τ type = τ div,
3. overshoots if τ type = τ over.

Since almost surely ηn only jumps a finite number of times before time (logn)−c,
almost surely τ type occurs during either an inner or an outer excursion, whose
index we denote by i∗.

We use ζ n to denote the distribution of the distance between the two potential
parents sampled during a selective event.

LEMMA 4.3. There exists α ∈ (0,1) such that, uniformly in n, Pζ n[i∗ > m] ≤
αm.

LEMMA 4.4. As n → ∞, Pζ n[ηn overshoots] = O( 1
(logn)c−3/2 ).

LEMMA 4.5. As n → ∞, Pζ n[ηn diverges] = �( 1
logn

).

LEMMA 4.6. As n → ∞, Pζ n[ηn coalesces] = 1 − �( 1
logn

).

Thus, overshoots are relatively unlikely, and typically ηn consists of a finite
number of inner/outer excursions until either (1) it coalesces, with probability 1 −
�( 1

logn
), or (2) the two lineages separate to distance γn, with probability �( 1

logn
).

The remainder of this Section 4.1.1 is devoted to the proof of Lemmas 4.3–4.5.
Lemma 4.6 then follows immediately, since c ≥ 3.

We will need two more stopping times:

τr = inf
{
s > 0 : ∣∣ηn

s

∣∣≤ r
}
,

(4.3)
τ r = inf

{
s > 0 : ∣∣ηn

s

∣∣≥ r
}
.

Note that τ0 = τ coal.
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Note that the random variables τ type, τ r and so on depend implicitly on n;
throughout this section these random variables refer to the stopping times for the
process ηn.

PROOF OF LEMMA 4.3. First, consider a single inner excursion of ηn. It is
easily seen that there exists some α′ > 0 such that, for all n:

(†) For any x ∈ (0,5Rn), if |ηn
t | = x then the probability that ηn will hit 0 but not

exit B5Rn(0) within its next three jumps is at least α′.
In particular, the probability that the first three jumps of an inner excursion result
in a coalescence is bounded away from 0 uniformly for any |ηn

τ out
i

| ∈ [2Rn,4Rn].
If i∗ > m, then at least m inner excursions must occur without a coalescence. The
strong Markov property applied at the time τ out

i means that, conditionally given
ηn

τ out
i

, the ith inner excursion is independent of (ηn
t )t<τ out

i
. Repeated application of

this fact, coupled with (†), shows that the probability of seeing at least m inner
excursions without a single coalescence is at most (1 − α′)m. This completes the
proof. �

We will shortly require a tail estimate on the supremum of the modulus of two-
dimensional Brownian motion W , which we record first for clarity. We write Wt =
(W 1

t ,W 2
t ) and note

P
[

sup
s∈[0,t]

|Ws − W0| ≥ x
]
≤ 2P

[
sup

s∈[0,t]
∣∣W 1

s − W 1
0
∣∣≥ x/2

]

≤ 4P
[

sup
s∈[0,t]

(
W 1

s − W 1
0
)≥ x/2

]
(4.4)

≤ 4e−x2/8t .

In the first line of the above, we use the triangle inequality and the fact that W 1

and W 2 have the same distribution. To deduce the second line, we note that W 1

and −W 1 have the same distribution. For the final line, we use the (standard) tail
estimate P[sups∈[0,t](Bs − B0) ≥ x] ≤ e−x2/2t for a one-dimensional Brownian
motion B , which can be deduced via Doob’s martingale inequality applied to the
submartingale (exp(xBs/t))s≥0.

During an outer excursion, ηn is the difference between two independent walk-
ers and so we can use Skorohod embedding to approximate its behaviour using
elementary calculations for two-dimensional Brownian motion. The next lemma
exploits this to bound the duration of the outer excursion and the probability that
it diverges.

LEMMA 4.7. As n → ∞,

(4.5) P[5Rn,7Rn]
[
τγn ∧ τ4Rn > (logn)−c−1]= O

(
1

(logn)c−1

)
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and

(4.6) P[5Rn,7Rn]
[
τγn < τ4Rn

]= �

(
1

logn

)
.

PROOF. For i = 1,2, let ξ̂ n,i be a pair of independent processes such that ξ̂ n,1

has the same distribution as ξn,1 and ξ̂ n,2 has the same distribution as ξn,2. The
process ξ̂ n,1 − ξ̂ n,2 is a compound Poisson process with a rotationally symmetric
jump distribution and a maximum displacement of 2Rn on each jump. Moreover
[essentially by Skorohod’s embedding theorem see, e.g., Billingsley (1995)], we
can construct a process η̂n with the same distribution as ξ̂ n,1 − ξ̂ n,2 as follows.

Let (rm, Jm)m≥1 denote a sequence distributed as the jump magnitudes and
jump times of ξ̂ n,1 − ξ̂ n,2. Let W be a two-dimensional Brownian motion with
W0 = ξ̂

n,1
0 − ξ̂

n,2
0 , independent of (rm, Jm)m≥1. Now set

η̂n
t = WT (S(t)) where T (0) = 0, J0 = 0,

T (m+1) = inf
{
s > T (m) : |Ws − WT (m) | ≥ rm

}
,(4.7)

S(t) = sup{i ≥ 0 : Ji ≤ t}.
We may then couple

η̂n = ξ̂ n,1 − ξ̂ n,2.

We define τ̂ r and τ̂r analogously to τ r and τr , as stopping times of the process η̂n.
Note that since (ξ

n,1
t , ξ

n,2
t )t≤τ4Rn

has the same distribution as (ξ̂ n,1, ξ̂ n,2)t≤τ4Rn
,

we may couple them so that they are almost surely equal during this time. Thus,{
τ̂ γn < τ̂4Rn

}= {τγn < τ4Rn

}
.

Let T r and Tr be the analogues of τ r and τr for W [not to be confused with
T (m) in (4.7)]. By the definition of the Skorohod embedding in (4.7), we have

P[5Rn,7Rn]
[
τ̂ γn < τ̂4Rn

]≥ P[5Rn,7Rn]
[
T γn+2Rn < T4Rn

]
(4.8)

≥ P5Rn

[
T γn+2Rn < T4Rn

]
.

The right-hand side concerns only the modulus of two-dimensional Brownian mo-
tion and so can be expressed in terms of the scale function for a two-dimensional
Bessel process:

P5Rn

[
T γn+2Rn < T4Rn

]= log(5Rn) − log(4Rn)

log(γn + 2Rn) − log(4Rn)
(4.9)

= �

(
1

logn

)
,
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which proves the lower bound in (4.6). Similar to the upper bound, we note that

P[5Rn,7Rn]
[
τ̂ γn < τ̂4Rn

]≤ P[5Rn,7Rn]
[
T γn < T2Rn

]
≤ P7Rn

[
T γn < T2Rn

]
= log(7Rn) − log(2Rn)

log(γn) − log(2Rn)

= �

(
1

logn

)
.

It remains to prove (4.5). We have

τγn ∧ τ4Rn = τ̂ γn ∧ τ̂4Rn ≤ τ̂ γn .

REMARK 4.8. The above inequality is a very crude estimate, but will be
enough to prove (4.5), which in turn will be enough to give useful bounds on
the duration of excursions due to the freedom in the choice of c.

Hence,

(4.10) P[5Rn,7Rn]
[
τγn ∧ τ4Rn > (logn)−c−1]≤ P[5Rn,7Rn]

[∣∣η̂n
(logn)−c−1

∣∣≤ γn

]
.

The remainder of the proof focuses on bounding the right-hand side of (4.10).
To do so, we must relate our compound Poisson process to another Brownian mo-
tion.

For j ≥ 1, let Xj = η̂n
j/n − η̂n

(j−1)/n. Then (Xj )j≥1 are i.i.d. and since ξ̂ n,1 and

ξ̂ n,2 are independent, E[|X1|2] = 2E[|ξ̂ n,1
1/n − ξ̂

n,1
0 |2].

Recall from (2.6) that the rate at which ξ̂ n,1 jumps from y to y +z is determined
by the intensity measure mn(dz) so that

(4.11) E
[|X1|2]= 2

n

∫
R2

|z|2mn(dz) = 4σ 2

n
,

where σ 2 was defined in (2.8). Now recall the definition of S(t) in (4.7); the rate
at which ξ̂ n,1 jumps is

∫
R2 mn(z) dz = �(n) by (2.7), so S(n−1) is bounded by

the sum of two Poisson(�(1)) random variables. Hence, since each jump of η̂n is
bounded by 2Rn,

E
[|X1|4]≤ (2Rn)

4E
[
S
(
n−1)4]=O

(
n−2).(4.12)

Once again (since the distribution of X1 is rotationally symmetric), we may use
Skorohod’s embedding theorem to couple (Xi)i≥1 to a two-dimensional Brownian
motion B started at ηn

0 and a sequence υ1, υ2, . . . of stopping times for B such that
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setting υ0 = 0, (υi − υi−1)i≥1 are i.i.d. and

Bυi
− Bυi−1 = Xi,

E[υi − υi−1] = 1

2
E
[|X1|2]= 2σ 2

n
(4.13)

and E
[
(υi − υi−1)

2]= O
(
n−2).

It follows that E[υ�tn�] = 2σ 2�tn�
n

and Var(υ�tn�) = O(tn−1). Hence, by Cheby-
chev’s inequality,

P
[∣∣υ�tn� − 2σ 2t

∣∣≥ n−1/3]≤ O
(
tn−1/3).

Applying this result with t = tn := (logn)−c−1, since η̂n�tnn�/n = Bυ�tnn� we have

P[5Rn,7Rn]
[∣∣η̂n

tn

∣∣≤ γn

]
(4.14)

≤ P
[
inf
{|Bt − B0| : t ∈ [2σ 2tn − n−1/3,2σ 2tn + n−1/3]}

≤ γn + n−1/8 + 7Rn

]+ P
[∣∣η̂n

tn
− η̂n�tnn�/n

∣∣≥ n−1/8]+O
(
tnn

−1/3).(4.15)

For the first term on the right-hand side, we have for n sufficiently large

P
[
inf
{|Bt − B0| : t ∈ [2σ 2tn − n−1/3,2σ 2tn + n−1/3]}≤ γn + n−1/8 + 7Rn

]
≤ P
[|B2σ 2tn

− B0| ≤ γn + 3n−1/8]+ P
[

sup
t∈[0,2n−1/3]

|Bt − B0| ≥ 1

2
n−1/8

]
(4.16)

=O
(
γ 2
n t−1

n

)+O
(
e− 1

64 n1/12)
=O
(
(logn)1−c).

For the second inequality, we use that the density of Bt is bounded by (2πt)−1 for
the first term and we apply (4.4) for the second term.

Moving on to the second term on the right-hand side of (4.14), since from (4.11)
we have E[|η̂n

tn
− η̂n�tnn�/n|2] =O(n−1), by Markov’s inequality

(4.17) P
[∣∣η̂n

tn
− η̂n�tnn�/n

∣∣≥ n−1/8]= O
(
n−3/4).

Putting (4.16) and (4.17) into (4.14), we have

P[5Rn,7Rn]
[∣∣η̂n

tn

∣∣≤ γn

]= O
(
(logn)1−c).

In view of (4.10), this completes the proof. �

PROOF OF LEMMA 4.4. First, consider a single inner excursion. Evidently,
there exists β > 0 such that, for all n:

(‡) For any x ∈ (0,5Rn), if |ηn
t | = x then the probability that ηn will either exit

B5Rn(0) or hit 0 within its next three jumps is at least β .
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Let (Jl)l≥0 be the (a.s. finite) sequence of jump times of our inner excursion,
and let Bk be the event that the excursion either coalesces or exits B5Rn(0) at one
of {J3k+1, J3k+2, J3k+3}. By the strong Markov property (applied at J3k) and (‡),
inf{k ≥ 0 : 1Bk

= 1} is stochastically bounded above by a geometric random vari-
able G with success probability β .

Moreover, for as long as ηn is not at 0, the rate at which it jumps is bounded
below by the rate at which ξn,1 jumps, which is

∫
R2 mn(dz) = �(n) where mn is

given by (2.6). Hence, for each l ≥ 0, Jl+1 −Jl is stochastically bounded above by
El where the (Ei)i≥0 are i.i.d. exponential random variables of this rate.

Combining these observations,

P(0,5Rn)

[
τ 5Rn ∧ τ0 > n−1/2]≤ P

[
J�3n1/3+3� ≥ n−1/2]+ P

[
G > n1/3]

(4.18)
=O
(
n−1/6)+ (1 − β)n

1/3 = O
(
n−1/6),

where the last line follows by Markov’s inequality.
We are now in a position to complete the proof. Recall that ηn overshoots if it

has neither coalesced nor diverged by time (logn)−c. Let n be sufficiently large
that

(logn)1/2(n−1/2 + (logn)−c−1)≤ (logn)−c.

Thus, if ηn overshoots and i∗ < (logn)1/2, then at least one inner excursion must
have lasted longer than n−1/2 or at least one outer excursion must have lasted
longer than (logn)−c. Hence,

Pζ n

[
ηn overshoots

]≤ (logn)1/2(P(0,5Rn)

[
τ 5Rn ∧ τ0 > n−1/2]

+ P[5Rn,7Rn]
[
τγn ∧ τ4Rn > (logn)−c−1])

+ Pζ n

[
i∗ > (logn)1/2].

Using (4.18), (4.5) and Lemma 4.3 to bound the right-hand side of the above equa-
tion, we obtain

Pζ n

[
ηn overshoots

]≤ (logn)1/2(O(n−1/6)+O
(
(logn)1−c))+ α(logn)1/2

=O
(
(logn)3/2−c),

which completes the proof. �

PROOF OF LEMMA 4.5. We note that the probability that ηn diverges is
bounded above by the probability that a divergent outer excursion occurs before
a coalescing inner excursion occurs. Let us write ηn,i,in for the ith inner ex-
cursion and ηn,i,out for the ith outer excursion and let us write τ r,i,in, τr,i,in and
τ r,i,out, τr,i,out for the associated equivalents of τ r and τr . Thus,

Pζ n

[
ηn diverges

]
≤ Pζ n

[
inf
{
i ≥ 1 : τγn,i,out < τ4Rn,i,out

}≤ inf
{
i ≥ 0 : τ0,i,in < τ 5Rn,i,in}].
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By the strong Markov property (applied successively at times τ out
i and τ in

i ), along
with (4.6) and (†), the right-hand side of the above equation is bounded above by
the probability that a geometric random variable with success probability �( 1

logn
)

is smaller than an (independent) geometric random variable with success probabil-
ity α′ > 0. With this in hand, an elementary calculation shows that

Pζ n

[
ηn diverges

]= O
(

1

logn

)
.

It remains to prove a lower bound of the same order.
In similar style to (†) and (‡), it is easily seen that there exists δ > 0 such that

for all n:

(�) For any x ∈ [Rn,4Rn], if |ηn
0 | = x, the probability that ηn will exit B5Rn(0)

without coalescing is at least δ.

We note also that ζ n is equal to n−1/2ζ 1 in distribution, so since we assumed that
μ((3

4R,R]) > 0, there exists ε > 0 such that P[ζ n ≥ Rn] ≥ ε for all n. Thus,
applying the strong Markov property at time τ in

0 and using (�), we obtain

Pζ n

[
ηn diverges

]≥ εδP[5Rn,7Rn]
[
τγn < τ4Rn

]− Pζ n

[
ηn overshoots

]
= �

(
1

logn

)

as required, where the final statement follows from Lemma 4.7 and Lemma 4.4
(since c ≥ 3). �

4.1.2. Production of branches. The next step of the proof of Theorem 2.7 in-
volves further analysis of pairs of potential ancestral lineages: first, we need to
check that once a pair has separated to a distance γn they will not come back to-
gether again before a fixed time K ; second, we need to see that logn times the
divergence probability actually converges (cf. Lemma 4.5) as n → ∞, since this
will determine the branching rate in our branching Brownian motion limit. These
two statements are the object of the next two lemmas.

LEMMA 4.9. Fix K ∈ (0,∞). Then

P[(logn)−c,∞)[τ4Rn ≤ K] = O
(

log logn

logn

)
.

LEMMA 4.10. There exists κ ∈ (0,∞) such that (logn)Pζ n[ηn diverges] → κ

as n → ∞.

The remainder of this subsection is occupied with proving Lemmas 4.9
and 4.10.
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PROOF OF LEMMA 4.9. We use the Skorohod embedding of η̂ into the Brow-
nian motion W , as defined in (4.7), to reduce the claim to an equivalent statement
about a two-dimensional Bessel process.

Recall that ηn
0 = η̂n

0 = W0 and recall τr from (4.3), and that τ̂r and Tr are the
analogues of τr for η̂ and W respectively. We have that ηn

s = η̂n
s for all s ≤ τ4Rn so

P[(logn)−c,∞)[τ4Rn ≤ K] = P[(logn)−c,∞)[τ̂4Rn ≤ K]
(4.19)

≤ P[(logn)−c,∞)

[
T4Rn ≤ T (S(K))],

where we used the Skorohod embedding given in (4.7) in the last line. For all
K̃,C > 0, since T (k) is increasing in k we have

(4.20) P
[
T (S(K)) ≥ K̃

]≤ P
[
S(K) ≥ Cn

]+ P
[
T (Cn) ≥ K̃

]
.

By its definition in (4.7), S(K) is bounded by the sum of two Poisson random vari-
ables with parameter χ = K

∫
R2 mn(dz), where mn is given by (2.6). In particular,

χ = �(n). Recall that if Z′ is Poisson with parameter χ , then (using a Chernoff
bound argument) for k > χ ,

(4.21) P
[
Z′ > k

]≤ e−χ (eχ)k

kk
.

Hence, for C sufficiently large, there exists δ1 > 0 such that

(4.22) P
[
S(K) ≥ Cn

]≤ O
(
e−δ1n

)
.

Now by the definition of (T (m))m≥1 in (4.7), and since rm ≤ 2Rn for each m,

P
[
T (Cn) ≥ K̃

]≤ P

[
Cn∑
i=1

Ri ≥ K̃n

]
,

where (Ri)i≥1 is an i.i.d. sequence with R1
d= inf{t ≥ 0 : |Wt | ≥ 2R}. Since

P[R1 ≥ k] ≤ P[R1 ≥ k − 1]P[|Wk − Wk−1| ≤ 4R
]≤ P

[|W1 − W0| ≤ 4R
]k

,

there exists λ > 0 such that E[eλR1] < ∞. Hence by Cramér’s theorem, for K̃ a
sufficiently large constant, there exists δ2 > 0 such that

(4.23) P
[
T (Cn) ≥ K̃

]= O
(
e−δ2n

)
.

By (4.19) and (4.20) together with (4.22) and (4.23), we now have for K̃ suffi-
ciently large

P[(logn)−c,∞)[τ4Rn ≤ K]
(4.24)

≤ P[(logn)−c,∞)[T4Rn ≤ K̃] +O
(
e−δ1n

)+O
(
e−δ2n

)
.
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To finish, we note that

P[(logn)−c,∞)[T4Rn ≤ K̃]
≤ sup

x≥(logn)−c

(
Px

[
T4Rn ≤ T x+logn]+ Px

[
T x+logn ≤ K̃

])

≤ sup
x≥(logn)−c

(
log(x + logn) − logx

log(x + logn) − log(4Rn)

)
+ P
[
sup
t≤K̃

|Wt − W0| ≥ logn
]

=O
(

log logn

logn

)
+O
(
e−(8K̃)−1(logn)2)

,

where the second line uses the scale function for a two-dimensional Bessel process,
and the third line uses (4.4). Substituting this into (4.24), we have the required
result. �

PROOF OF LEMMA 4.10. Let pn := Pζ n[τγn < τ0]. Note that by Lemma 4.4,

(4.25)
∣∣pn − Pζ n

[
ηn diverges

]∣∣=O
(

1

(logn)c−3/2

)
.

Hence, by Lemma 4.5, there exist 0 < d ≤ D < ∞ such that, for all n ≥ 2,

d ≤ (logn)pn ≤ D.

It follows that (pn)n≥1 has a subsequence (pnk
)k≥1 such that (lognk)pnk

→ κ ∈
(0,∞). Let ε > 0 and let N ∈ N be such that N ≥ 1/ε and |(logN)pN − κ| ≤ ε.

By rescaling, noting that ζ n d= ζN(N
n
)1/2, and similarly for ηn, we have

(4.26) pN = Pζ n

[
τγN(Nn−1)1/2

< τ0
]
.

Recall, for clarity, that here (as throughout this section) τ r and τ0 refer to the
stopping times for the process ηn.

Define Xn,N := |ηn

τγN (Nn−1)1/2 |. Increasing N , we may assume that 7Rn <

γN(Nn−1)1/2 ≤ γn for n ≥ N . Thus,

pn = Pζ n

[
τγN(Nn−1)1/2 ≤ τγn < τ0

]
(4.27)

= Eζ n

[
1

τγN (Nn−1)1/2
<τ0

PXn,N

[
τγn < τ0

]]
.

Here, the first line holds since ζn < γN(Nn−1)1/2 ≤ γn, and the second line follows
from the first by applying the strong Markov property at time τγN(Nn−1)1/2

.
To estimate (4.27), note that

Xn,N ∈ [ln,N , rn,N ] := [γN

(
Nn−1)1/2

, γN

(
Nn−1)1/2 + 2Rn

]
.
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Using the Skorohod embedding defined in (4.7),

P[ln,N ,rn,N ]
[
τγn < τ0

]≥ inf
x≥γN(Nn−1)1/2

Px

[
τγn < τ7Rn

]
≥ inf

x≥γN(Nn−1)1/2
Px

[
T γn+2Rn < T7Rn

]
(4.28)

= log(γN(Nn−1)1/2) − log(7Rn)

log(γn + 2Rn) − log(7Rn)

=
1
2 logN +O(log logN)

1
2 logn +O(log logn)

.

Note that, in the above, we (again) use the scale function for a two-dimensional
Bessel process to deduce the third line.

We require slightly more work to establish an upper bound. We have

P[ln,N ,rn,N ]
[
τγn < τ0

]
(4.29)

≤ P[ln,N ,rn,N ]
[
τγn < τ7Rn

]+ P[ln,N ,rn,N ]
[
τ7Rn < τγn < τ0

]
.

We begin by controlling the second term on the right-hand side of (4.29). By the
strong Markov property at time τ7Rn ,

P[ln,N ,rn,N ]
[
τ7Rn < τγn < τ0

]= E[ln,N ,rn,N ]
[
1τ7Rn<τγnP|ηn

τ7Rn
|
[
τγn < τ0

]]
≤ E[ln,N ,rn,N ]

[
P|ηn

τ7Rn
|
[
τγn < τ0

]]
.

Since |ηn
τ7Rn

| ∈ [5Rn,7Rn], using (4.6) in the same way as in the proof of
Lemma 4.5,

(4.30) P[ln,N ,rn,N ]
[
τ7Rn < τγn < τ0

]= O
(

1

logn

)
.

Next, we control the first term on the right-hand side of (4.29), again using the
Skorohod embedding (4.7):

P[ln,N ,rn,N ]
[
τγn < τ7Rn

]≤ P[ln,N ,rn,N ]
[
T γn < T5Rn

]
≤ log(γN(Nn−1)1/2 + 2Rn) − log(5Rn)

log(γn) − log(5Rn)
(4.31)

=
1
2 logN +O(log logN)

1
2 logn +O(log logn)

.

Combining (4.28), (4.29), (4.30) and (4.31),

P[ln,N ,rn,N ]
[
τγn < τ0

]= logN +O(log logN)

logn +O(log logn)
+O
(

1

logn

)
.
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Hence, by (4.27),

pn = Pζ n

[
τγN(Nn−1)1/2

< τ0
]( logN +O(log logN)

logn +O(log logn)
+O
(

1

logn

))

= (logN)pN

logn

(1 +O(
log logN

logN
)

1 +O(
log logn

logn
)

+O
(

1

logN

))
,

where we used (4.26) in the last line. Since |(logN)pN − κ| ≤ ε, we obtain for
n ≥ N

(logn)pn ≥ (κ − ε)

(1 +O(
log logN

logN
)

1 +O(
log logn

logn
)

+O
(

1

logN

))

and

(logn)pn ≤ (κ + ε)

(1 +O(
log logN

logN
)

1 +O(
log logn

logn
)

+O
(

1

logN

))
.

Letting ε → 0, and hence N → ∞, limn→∞(logn)pn = κ . The result follows by
(4.25). �

4.2. Convergence to branching Brownian motion. In this subsection, we iden-
tify particular subsets of the dual process that we couple with objects that we call
“caterpillars”. The caterpillars play the role of individual branches in the limit-
ing branching Brownian motion. Our (eventual) goal is to write down a system
of “branching caterpillars” and couple it to the S�FVS dual. Establishing these
couplings is greatly simplified by viewing the branching and coalescing dual as a
deterministic function of an augmented driving Poisson point process and so our
first task is to recast the S�FVS dual in this way.

Recall that we have a fixed impact parameter u ∈ (0,1]. We define, recursively,
a sequence of subsets of [0,1] as follows:

A1
u = [0, u], and for k ≥ 1,Ak+1

u = uAk
u ∪ (u + (1 − u)Ak

u

)
.

Then if U ∼ Unif[0,1], (1Ak
u
(U))k≥1 is an i.i.d. sequence of Bernoulli(u) random

variables [see Lemma 3.20 in Kallenberg (2006) for a proof in the case u = 1
2 ,

where (1Ak
u
(U))k≥1 is the binary expansion of U ; the general case is an easy ex-

tension of this].
Let

X = R×R2 ×R+ ×B1(0)2 × [0,1]2.

DEFINITION 4.11 (The dual as a deterministic function of a driving point pro-
cess). Given a simple point process � on X , and some p ∈ R2, we define
(Pt (p,�))t≥0 as a process on

⋃∞
k=1(R

2)k as follows.
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For each t ≥ 0, Pt (p,�) = (ξ1
t , . . . , ξ

Nt
t ) for some Nt ≥ 1. We refer to i as the

index of the ancestor ξ i
t . We begin at time t = 0 from a single ancestor P0(p,�) =

ξ1
0 = p and proceed as follows.

At each (t, x, r, z1, z2, q, v) ∈ � with v ≥ sn, a neutral event occurs:

1. Let ξ
n1
t−, . . . , ξ

nm
t− denote the ancestors in Br (x) which have not yet coalesced

with an ancestor of lower index, with n1 < · · · < nm. For 1 ≤ i ≤ m, mark the
ancestor ξ

ni
t− iff q ∈ Ai

u. Let ξ
r1
t−, . . . , ξ

rl
t− denote the marked ancestors.

2. If at least one ancestor is marked, we set ξ
ri
t = x + rz1 for each i and call

this the parental location for the event. We say that the ancestor ξ
ri
t has coalesced

with the ancestor ξ
r1
t , for each i ≥ 2.

At each (t, x, r, z1, z2, q, v) ∈ � with v < sn, a selective event occurs:

1. Let ξ
n1
t−, . . . , ξ

nm
t− denote the ancestors in Br (x) which have not yet coalesced

with an ancestor of lower index, with n1 < · · · < nm. For 1 ≤ i ≤ m, mark the
ancestor ξ

ni
t− iff q ∈ Ai

u. Let ξ
r1
t−, . . . , ξ

rl
t− denote the marked ancestors.

2. If at least one ancestor is marked, we set ξ
ri
t = x + rz1 for each i and add

an ancestor ξ
Nt−+1
t = x + rz2. We call x + rz1 and x + rz2 the parental locations

of the event. We say that the ancestor ξ
ri
t has coalesced with the ancestor ξ

r1
t , for

each i ≥ 2.

For each l ∈ N, if ξ l
τ has coalesced with an ancestor ξk

τ of lower index at time τ ,
we set ξ l

t = ξk
t for all t ≥ τ .

In the same way as for the definition of P(n)(p) before the statement of Theo-
rem 2.7, we shall view (Pt (p,�))t≥0 as a collection of potential ancestral lineages.
Given a realization of �, we say that a path that begins at p is a potential ancestral
lineage if (1) at each neutral event that it encounters, it moves to the (single) parent
and (2) at each selective event it encounters, it moves to one of the parents of that
event.

Note that if � is a Poisson point process on X with intensity measure

(4.32) ndt ⊗ ndx ⊗ μn(dr) ⊗ π−1 dz1 ⊗ π−1 dz2 ⊗ dq ⊗ dv

then as a collection of potential ancestral lineages, (Pt (p,�))t≥0 has the same
distribution as P(n)(p).

When � takes this form, the result is that the driving Poisson point process
in (2.4) has been augmented by components that determine the nature of each
event (neutral or selective), the parental locations of each event and which lineages
in the region of the event are affected by it. We have abused notation by retaining
the notation � for this augmented process.
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4.2.1. The caterpillar. We now introduce the notion of a caterpillar, which
involves following a pair of potential ancestral lineages in the dual. We stop the
caterpillar if the pair of lineages reaches displacement of (logn)−c, or if the pair
does not coalesce within time (logn)−c after last branching. While doing so, we
suppress the creation of the second potential parent at any selective events that
occur within time (logn)−c of the previous (unsuppressed) selective event.

Let � be a Poisson point process on X with intensity measure (4.32). We write
(Pt (p,�))t≥0 = (ξ1

t , . . . , ξ
Nt
t )t≥0 as defined in Definition 4.11.

DEFINITION 4.12 (Caterpillar). For p ∈ R2, we define a lifetime h(p,�) >

0, and a process (ct (p,�))0≤t≤h(p,�) on (R2)2, which we shall refer to as a cater-
pillar. For each t ≥ 0, we write

ct (p,�) = (c1
t (p,�), c2

t (p,�)
)
,

dropping the dependence on (p,�) from our notation, when convenient. As part
of the definition, we will also define k∗(p,�) ∈ N and a sequence (τ br

k )k≤k∗ of
stopping times.

Set τ br
0 = 0 and let τ br

1 be the time of the first selective event after (logn)−c to
affect ξ1. For t ≤ τ br

1 , let c1
t = c2

t = ξ1
t .

Then, for k ≥ 1, suppose we have defined (τ br
l )l≤k ; let m(k) = Nτ br

k
.

For t ∈ [τ br
k , τ br

k + (logn)−c], define c1
t (p,�) = ξ1

t and c2
t (p,�) = ξ

m(k)
t .

In analogy with Definition 4.2, define

τ div
k = inf

{
t ≥ τ br

k : ∣∣c1
t − c2

t

∣∣≥ (logn)−c},
τ coal
k = inf

{
t ≥ τ br

k : c1
t = c2

t

}
,(4.33)

τ over
k = τ br

k + (logn)−c,

and let τ
type
k = min(τ div

k , τ coal
k , τ over

k ). If τ
type
k �= τ coal

k then set k∗(p,�) = k and
h(p,�) = τ

type
k∗ . The definition is then complete. If not, we proceed as follows.

Let τ br
k+1 be the time of the first selective event occurring strictly after τ br

k +
(logn)−c to affect ξ1. For t ∈ [τ br

k + (logn)−c, τ br
k+1), let c1

t (p,�) = c2
t (p,�) =

ξ1
t .

We then continue iteratively for each k ≤ k∗(p,�).

We refer to (τ br
k )k≤k∗ , the times at which a selective event results in branch-

ing, as branching events. We shall abuse our previous terminology and say that
a branching event diverges, coalesces or overshoots when the same is true of the
excursion corresponding to the pair (c1, c2).

REMARK 4.13. Note that (ct )t≥0 is not a Markov process with respect to
its natural filtration, since c1 and c2 are not allowed to branch off from each
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other within (logn)−c of the previous branching event. However, for i = 1,2,
(ci

t (p,�))0≤t≤h(p,�) is a Markov process with the same jump rate and jump dis-
tribution as a single potential ancestral lineage in the rescaled S�FVS dual. More-
over, for each 1 ≤ k ≤ k∗, (c1

t , c
2
t )τ br

k ≤t≤τ
type
k

is an excursion as defined in Sec-

tion 4.1.

Recall the definition of mn(dz) from (2.6) and let

(4.34) κn = (logn)P
[
τ

type
1 �= τ coal

1
]

and λ = n−1
∫
R2

mn(dz) = �(1).

By combining Lemma 4.10 and Lemma 4.4,

(4.35) κn → κ

as n → ∞.
By the strong Markov property of �, and since τ

type
k ≤ τ br

k + (logn)−c ≤
τ br
k+1 for each k, the types of the selective events, ({τ type

k = τ div
k })k≥1, ({τ type

k =
τ coal
k })k≥1 and ({τ type

k = τ over
k })k≥1 are each i.i.d. sequences. Thus,

(4.36) k∗(p,�) ∼ Geom
(
κn(logn)−1).

By (4.35), there exist constants 0 < a ≤ A < ∞ such that κn ∈ [a,A] for all n

sufficiently large, so

(4.37) P
[
k∗ ≥ (logn)9/8]= (1 − κn

logn

)(logn)9/8

= O
(
e−δ(logn)1/8)

for some δ > 0.

LEMMA 4.14. We can couple h(p,�) with H ∼ Exp(κnλ) in such a way that
for some δ > 0, with probability at least 1 −O(e−δ(logn)1/8

)∣∣h(p,�) − H
∣∣≤ 3(logn)−1/4.

PROOF. Recall the definition of λ in (4.34). Since the total rate at which c1

jumps is given by λn, and each jump is from a selective event independently with
probability sn = logn

n
, by the strong Markov property of � we have that

(4.38) Ek := τ br
k − (τ br

k−1 + (logn)−c)∼ Exp(λ logn)

and (Ek,1{τ type
k �=τ coal

k })k≥1 is an i.i.d. sequence.

Since (e.g.) {τ type
k �= τ coal

k } is not independent of the radius of the event at τ br
k ,

we note that Ek and 1{τ type
k �=τ coal

k } are not independent; therefore, (Ek)k≥1 is not

independent of k∗. However, we can couple (Ek,1{τ type
k �=τ coal

k })k≥1 with a sequence

(E′
k)k≥1 which is independent of k∗ as follows.
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First, sample the sequence (1{τ type
k �=τ coal

k })k≥1, and then independently sample a

sequence (E′
k,Ak)k≥1 with the same distribution as (Ek,1{τ type

k �=τ coal
k })k≥1. Then,

for each k ≥ 1, if Ak = 1{τ type
k �=τ coal

k } set Ek = E′
k , and if not sample Ek according

to its conditional distribution given 1{τ type
k �=τ coal

k }.
We now have a coupling of (Ek,1{τ type

k �=τ coal
k })k≥1 and (E′

k)k≥1 such that (E′
k)k≥1

is an i.i.d. sequence, independent of k∗, with E′
1 ∼ Exp(λ logn). Also, since

P[τ type
k �= τ coal

k ] = �((logn)−1), we have that independently for each k, Ek = E′
k

with probability at least 1 − �((logn)−1).
We write

k∗∑
k=1

Ek =
k∗∑

k=1

E′
k +

k∗∑
k=1

Dk,

where Dk = Ek − E′
k and, by (4.36),

∑k∗
k=1 E′

k ∼ Exp(λκn).
Our next step is to bound

∑k∗
k=1 Dk . Firstly, applying a Chernoff bound to the

binomial distribution yields

P
[∣∣{k < (logn)9/8 : Dk �= 0

}∣∣≥ (logn)1/4]
= P
[
Bin
(
(logn)9/8,�

(
(logn)−1))≥ (logn)1/4](4.39)

= O
(
exp
(−δ′(logn)1/4))

for some δ′ > 0. Second,

P
[|D1| ≥ (logn)−1/2]≤ P

[
E1 ≥ 1

2
(logn)−1/2

]
+ P
[
E′

1 ≥ 1

2
(logn)−1/2

]
(4.40)

= 2 exp
(−λ(logn)1/2/2

)
.

Combining (4.37), (4.39) and (4.40), we have that

(4.41) P

[
k∗∑

k=1

Dk ≥ (logn)−1/4

]
=O
(
e−δ′′(logn)1/8)

,

for some δ′′ ∈ (0, δ).
Note that

k∗∑
k=1

Ek = τ br
k∗ − k∗(logn)−c = h − k∗(logn)−c − (τ type

k∗ − τ br
k∗
)
,

with 0 ≤ τ
type
k∗ − τ br

k∗ ≤ (logn)−c. Let H =∑k∗
k=1 E′

k . Then by (4.37) and (4.41),
we have

P
[∣∣h(p,�) − H

∣∣≥ (logn)9/8−c + (logn)−c + (logn)−1/4]=O
(
e−δ′′(logn)1/8)

.

The result follows since c ≥ 3. �
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Our next step is to show that a caterpillar is unlikely to end with an overshooting
event.

LEMMA 4.15. As n → ∞, P[τ type
k∗ = τ over

k∗ ] = O((logn)
21
8 −c).

PROOF. By Lemma 4.4, for k ≥ 1,

(4.42) P
[
τ

type
k = τ over

k

]= O
(
(logn)

3
2 −c).

Moreover,

{
τ

type
k∗ = τ over

k∗
}⊂ {k∗ ≥ (logn)9/8}∪ (logn)9/8⋃

k=1

{
τ

type
k = τ over

k

}
.

It follows, using (4.37), that

P
[
τ

type
k∗ = τ over

k∗
]=O

(
e−δ(logn)1/8)+O

(
(logn)

3
2 + 9

8 −c)= O
(
(logn)

21
8 −c).

This completes the proof. �

We now show that a single caterpillar can be coupled to a Brownian motion in
such a way that the caterpillar closely follows the Brownian motion, during time
[0, h(p,�)].

Recall that the rate at which ξ1 jumps from y to y + z is given by intensity
measure mn(dz), defined in (2.6). Thus, for (ct )t≥0 started at p, E[c1

t ] = p and the
covariance matrix of c1

t is σ 2t Id since by (2.8),

σ 2 = 1

2

∫
R2

|z|2mn(dz).

Armed with this, the following lemma is no surprise.

LEMMA 4.16. Let (Wt)t≥0 be a two-dimensional Brownian motion with
W0 = p. We can couple (ct (p,�))t≤h(p,�) with (Wt)t≥0, in such a way that
(Wt)t≥0 is independent of (τ br

k )k≥1 and k∗(p,�), and for any r > 0, with proba-
bility at least 1 −O((logn)−r ), for t ≤ h(p,�),∣∣c1

t (p,�) − Wσ 2t

∣∣≤ (logn)
9
8 − c

3 .

REMARK 4.17. By the definition of the caterpillar in Definition 4.12, for all
t ≤ h(p,�), |c2

t − c1
t | ≤ (logn)−c. Hence, under the coupling of Lemma 4.16,

with probability at least 1 −O((logn)−r ), |c2
t (p,�) − Wσ 2t | ≤ 2(logn)

9
8 − c

3 .

PROOF OF LEMMA 4.16. The proof is closely related to the second half of the
proof of Lemma 4.7. Note for k ≥ 0, on the time interval [τ br

k + (logn)−c, τ br
k+1), c

1
t
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is a pure jump process with rate of jumps from y to y +z given by (1− sn)mn(dz).
Let (c̃t )t≥0 be a pure jump process with c̃0 = 0 and rate of jumps from y to y + z

given by (1 − sn)mn(dz). For i ≥ 1, let

Xi = c̃i/n − c̃(i−1)/n.

Then (Xi)i≥1 are i.i.d., and as in (4.11) and (4.12), we have E[|X1|2] = 2σ 2(1−sn)
n

and E[|X1|4] = O(n−2).
By the same Skorohod embedding argument as for (4.13), there is a two-

dimensional Brownian motion W started at 0 and a sequence υ1, υ2, . . . of stopping
times for W such that for i ≥ 1, Wυi

= c̃i/n and

P
[∣∣υ�tn� − σ 2(1 − sn)t

∣∣≥ n−1/3]≤ O
(
tn−1/3).

Fix t > 0. Since sn = logn
n

, for n sufficiently large,

P
[∣∣υ�tn� − σ 2t

∣∣≥ 2n−1/3]≤ O
(
n−1/3).

Then by a union bound over j = 1, . . . , �n1/4t�,

P
[∃j ≤ ⌊n1/4t

⌋ : ∣∣υ�jn3/4� − σ 2jn−1/4∣∣≥ 2n−1/3]≤ (n1/4t
)
O
(
n−1/3)

(4.43)
= O
(
n−1/12).

Again by a union bound over j ,

P
[∃j ≤ ⌊n1/4t

⌋ : sup
{|Wσ 2jn−1/4 − Wu| :

u ∈ [σ 2jn−1/4 − 2n−1/3, σ 2(j + 1)n−1/4 + 2n−1/3]}≥ n−1/10]
(4.44)

≤ (n1/4t
)
2P
[
sup
{|Ws − W0| : s ∈ [0,4n−1/3]}≥ 1

2
n−1/10

]

≤ 4n1/4t exp
(−n2/15/128

)= o
(
n−1/12).

Here, the last line follows by (4.4).
Under the complement of the event of (4.43), for all j < �n1/4t�,∣∣υ�jn3/4� −σ 2jn−1/4∣∣≤ 2n−1/3 and

∣∣υ�(j+1)n3/4� −σ 2(j +1)n−1/4∣∣≤ 2n−1/3,

which implies that for i such that jn−1/4 ≤ in−1 ≤ (j + 1)n−1/4,

υi ∈ [σ 2jn−1/4 − 2n−1/3, σ 2(j + 1)n−1/4 + 2n−1/3].
Hence, combining (4.43) and (4.44),

P
[∃i ≤ �tn� : |c̃i/n − Wσ 2i/n| ≥ 2n−1/10]=O

(
n−1/12).

Our next step is to control |c̃s − c̃i/n| during the interval s ∈ [i/n, (i + 1)/n].
The distribution of the number of jumps made by c̃ on an interval [i/n, (i + 1)/n]
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is Poisson with parameter (1 − sn)λ, where λ is given by (4.34), and the maximum
jump size is 2Rn; using (4.21) with χ = (1 − sn)λ and k = logn gives that

P
[
∃i ≤ �tn� : sup

s∈[i/n,(i+1)/n]
|c̃s − c̃i/n| ≥ (logn)2Rn

]
= o
(
n−1).

Hence, for n large enough that (logn)2Rn ≤ n−1/10, using (4.44) again to bound
|Ws − Wσ 2i/n| during the interval [σ 2i/n, σ 2(i + 1)/n] we have

(4.45) P
[
sup
s≤t

|c̃s − Wσ 2s | ≥ 4n−1/10
]
= O
(
n−1/12).

We now apply this coupling to (c1
t )τ br

k +(logn)−c≤t≤τ br
k+1

for each k ≥ 0, and let

the caterpillar evolve independently of the Brownian motion on each interval
[τ br

k , τ br
k + (logn)−c].

More precisely, let (c̃k)k≥0 be an i.i.d. sequence of pure jump processes with
c̃k

0 = 0 and rate of jumps from y to y + z given by (1 − sn)mn(dz). Let (Wk)k≥0
be an i.i.d. sequence of 2-dimensional Brownian motions started at 0 and for each
k ≥ 0, couple Wk and c̃k in the same way as above, so that for fixed t > 0, for each
k ≥ 0,

(4.46) P
[
sup
s≤t

∣∣c̃k
s − Wk

σ 2s

∣∣≥ 4n−1/10
]
= O
(
n−1/12).

Then by the strong Markov property for the process c1, we can couple (c̃k,Wk)k≥0
and c1 in such a way that for k ≥ 0 and s ∈ [0, τ br

k+1 − (τ br
k + (logn)−c)),

c1
s+τ br

k +(logn)−c − c1
τ br
k +(logn)−c = c̃k

s ,

and (c̃k,Wk)k≥0 is independent of (τ br
k , (c1

t − c2
t )|[τ br

k ,τ br
k +(logn)−c))k≥0.

Let B be another independent 2-dimensional Brownian motion started at 0. We
now define a single Brownian motion W by piecing together increments of B

and (Wk)k≥0. For s < σ 2(logn)−c, let Ws = Bs + p. Then for k ≥ 0, define the
increments of W on the time interval [σ 2(τ br

k + (logn)−c), σ 2(τ br
k+1 + (logn)−c))

as follows. For s ∈ [0, σ 2(τ br
k+1 − τ br

k )), let

Ws+σ 2(τ br
k +(logn)−c) − Wσ 2(τ br

k +(logn)−c) = Wk
s .

Then W is a Brownian motion independent of (τ br
k , (c1

t − c2
t )|[τ br

k ,τ br
k +(logn)−c))k≥0,

which implies that W is independent of both k∗ and (τ br
k )k≥1.

We now check that Wt is close to c1
t for t < h. By (4.38),

P
[
τ br
k+1 − τ br

k ≥ 1 + (logn)−c]≤ n−λ.

Hence, applying (4.46) with t = 1 + (logn)−c for each k ≤ (logn)9/8 and using
(4.37), we have that with probability at least 1 − O(e−δ(logn)1/8

), for 0 ≤ k ≤ k∗
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and t ∈ [τ br
k + (logn)−c, τ br

k+1),

(4.47)
∣∣(c1

t − c1
τ br
k +(logn)−c

)− (Wσ 2t − Wσ 2(τ br
k +(logn)−c))

∣∣≤ 4n−1/10.

For each k, by (4.4),

P
[
sup
{|Wσ 2t − Wσ 2τ br

k
| : t ∈ [τ br

k , τ br
k + (logn)−c]}≥ 1

3
(logn)−c/3

]

≤ 4 exp
(−(logn)c/3/72σ 2)(4.48)

= o
(
(logn)−r− 9

8
)
,

for any r > 0. Hence, using (4.37) again,

P

[
k∗∑

k=1

sup
{|Wσ 2t − Wσ 2τ br

k
| : t ∈ [τ br

k , τ br
k + (logn)−c]}≥ 1

3
(logn)

9
8 − c

3

]

≤ P
[
k∗ ≥ (logn)9/8]+ (logn)9/8o

(
(logn)−r− 9

8
)

(4.49)

= o
(
(logn)−r).

For k ≥ 0, on the time interval [τ br
k , τ br

k + (logn)−c] the process c1
t is a pure

jump process with rate of jumps from y to y + z given by mn(dz). Hence,
using the same Skorohod embedding argument as for (4.45), we can couple
(c1

s+τ br
k

− c1
τ br
k

)s≤(logn)−c with a Brownian motion W ′ started at 0 in such a way

that

P
[

sup
s≤(logn)−c

∣∣(c1
s+τ br

k

− c1
τ br
k

)− Wσ 2s

∣∣≥ 4n−1/10
]
=O
(
n−1/12).

Applying (4.49) and (4.37), it follows that

P

[
k∗∑

k=1

sup
{∣∣c1

t − c1
τ br
k

∣∣ : t ∈ [τ br
k , τ br

k + (logn)−c]}

≥ 1

3
(logn)

9
8 − c

3 + 4n−1/10(logn)9/8

]

= O
(
(logn)−r).

The stated result follows by combining the above equation with (4.47), (4.37)
and (4.49). �

4.2.2. The branching caterpillar. We now construct a branching process of
caterpillars. We start from a single caterpillar and allow it to evolve until the time h.
We start two independent caterpillars from the locations of c1

h and c2
h. Now iterate.

The independent caterpillars defined in this way will be indexed by points of U =
{∅} ∪⋃∞

k=1{1,2}k . More formally, we have the following.
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DEFINITION 4.18 (Branching caterpillar). Let (�j )j∈U be a sequence of
independent Poisson point processes on X with intensity measure (4.32). For
p ∈ R2, we define (Ct (p, (�j )j∈U ))t≥0 as a process on

⋃∞
k=1(R

2)k as follows.
For s > 0, let

�s
j = {(t − s, x, r, z1, z2, q, v) : (t, x, r, z1, z2, q, v) ∈ �j

}
.(4.50)

Define (pj , tj , hj ) inductively for j ∈ U by p∅ = p, t∅ = 0 and

hj = tj + h
(
pj ,�

tj
j

)
,

t(j,1) = t(j,2) = hj ,

p(j,1) = c1
hj−tj

(
pj ,�

tj
j

)
,

p(j,2) = c2
hj−tj

(
pj ,�

tj
j

)
.

Finally, define U(t) = {j ∈ U : tj ≤ t ≤ hj } and

Ct

(
p, (�j)j∈U

)= (ct−tj

(
pj ,�

tj
j

))
j∈U(t).

In words, U(t) is the set of indices of the caterpillars that are active at time t ,
and Ct is the set of (positions of) those caterpillars. Note that we translate the time
coordinates in (4.50) to match our definition of a caterpillar, which began at time 0.
The jumps in Ct occur at the time coordinates of events in

⋃
j∈U �j .

We now show that for any constant a > 0, with high probability, the longest
“chain” of caterpillars has length at most a log logn+ 1. For k ∈ N, let Uk = {∅}∪⋃k

j=1{1,2}j .

LEMMA 4.19. Fix T > 0; then for any r > 0, a > 0, P[U(T ) � U�a log logn�] =
o((logn)−r ).

PROOF. Fix v ∈ {1,2}�a log logn�+1. Then by a union bound,

(4.51) P
[∃w ∈ {1,2}�a log logn�+1 s.t. tw ≤ T

]≤ 2�a log logn�+1P[tv ≤ T ].
Note that by Lemma 4.14, tv = ∑�a log logn�+1

i=1 Hi + R where (Hi)i≥1 are
i.i.d. with H1 ∼ Exp(λκn) and

P
[
R ≥ 3(a log logn + 1)(logn)−1/4]= O

(
(log logn)e−δ(logn)1/8)

.

Hence [if n is sufficiently large that 3(a log logn + 1)(logn)−1/4 ≤ T/2], if Z′ is
Poisson with parameter λκnT /2,

P[tv ≤ T ] ≤ P
[
Z′ ≥ a log logn + 1

]+O
(
(log logn)e−δ(logn)1/8)

.

We use (4.21) and combine with (4.51) to deduce that, for any r > 0,

P
[
U(T ) � U�a log logn�

]= P
[∃w ∈ {1,2}�a log logn�+1 s.t. tw ≤ T

]= o
(
(logn)−r).

This completes the proof. �
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The next task is to couple the branching caterpillar to the rescaled dual of the
S�FVS. Since we have expressed the dual as a deterministic function of the driv-
ing point process of events in Definition 4.11, it is enough to find an appropriate
coupling of the driving events for the branching caterpillar and those of a S�FVS
dual.

The idea, roughly, is as follows. Each “branch” of the branching caterpillar is
constructed from an independent driving process. For each of these, we should like
to retain those events that affected the caterpillar, but we can discard the rest. If two
or more caterpillars are close enough that the events affecting them could overlap,
to avoid having too many events in these regions we have to arbitrarily choose one
caterpillar and discard the events affecting the others. We then supplement these
with additional events, appropriately distributed to fill in the gaps and arrive at the
driving Poisson point process for a S�FVS dual, with intensity as in (4.32). We
will then check that the S�FVS dual corresponding to this point process coincides
with our branching caterpillar, with probability tending to one as n → ∞.

To put this strategy into practice, we require some notation. Let U0 = U ∪ {0}.
For V ⊂ U0 let max(V ) refer to the maximum element of V with respect to a
fixed ordering in which 0 is the minimum value (it does not matter precisely which
ordering we use, but we must fix one). Given a sequence (�j )j∈U0 of independent
Poisson point processes on X with intensity measure (4.32), define a simple point
process � as follows. Let

j (t, x) = max
({

k ∈ U(t) : ∃i ∈ {1,2}
(4.52)

with
∣∣ci

t−tk

(
pk,�

tk
k

)− x
∣∣≤Rn

}∪ {0}).
Note that j (t, x) = 0 corresponds to regions of space-time that are not near a cater-
pillar, so that for (t, x, r, z1, z2, q, v) ∈ �0, Br (x) does not contain a caterpillar.
Then we define

(4.53) � = ⋃
k∈U0

{
(t, x, r, z1, z2, q, v) ∈ �k : j (t, x) = k

}
.

LEMMA 4.20. � is a Poisson point process with intensity measure given
by (4.32).

REMARK 4.21. We defined the coupling (4.53) for each n ∈ N. As such, in
the proof of Lemma 4.20 we regard n as a constant and we will not include it inside
O(·), etc.

PROOF OF LEMMA 4.20. Let ν(dt, dx, dr, dz1, dz2, dq, dv) be the intensity
measure given in (4.32).

Let B0 be the set of bounded Borel subsets of R+ ×R2 ×R+ ×B1(0)2 ×[0,1]2;
for B ∈ B0, let N(B) = |� ∩ B| and for j ∈ U0, let Nj(B) = |�j ∩ B|. Suppose
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B =⋃k
i=1 Bi ∈ B0 where for each i, Bi = [ai, bi] × Di for some a = a1 < b1 ≤

a2 < · · · < bk = b. Let BR ⊂ B0 denote the collection of such sets B . Note that
� is a simple point process, and that therefore � is a Poisson point process with
intensity ν if and only if

(4.54) P
[
N(B) = 0

]= e−ν(B)

for all B ∈ BR . [See, e.g., Section 3.4 of Kingman (1993).]
For some δ > 0, assume that bi − ai ≤ δ, ∀i (by partitioning the Bi further if

necessary). Since B is bounded, ∃ d < ∞ s.t. |x| ≤ d for all (t, x, r, z1, z2, q, v) ∈
B . We can write

P
[
N(B) = 0

]= P

[
k⋂

i=1

{
N(Bi) = 0

}]

(4.55)

= E

[
k−1∏
i=1

1{N(Bi)=0}P
(
N(Bk) = 0|(�j(ak)

)
j∈U0

)]
,

where �j(t) := �j |[0,t]×R2×R+×B1(0)2×[0,1]2 .

For j ∈ U0, let D
j
k = {(x, r, z1, z2, q, v) ∈ Dk : j (ak, x) = j} and B

j
k =

[ak, bk] × D
j
k . Also let

B̃k = [ak, bk] ×Bd+3Rn(0) ×R+ ×B1(0)2 × [0,1]2,

and let V(t) =⋃s≤t U(s).
For t ∈ [ak, bk], if none of the caterpillars in Bd+3Rn(0) move during the

time interval [ak, t] then j (ak, x) = j (t, x) ∀x ∈ Bd(0); thus, a point (t, x, r, z1,

z2, q, v) in � ∩ Bk must be a point in �j ∩ B
j
k for some j , and vice versa. We can

use this observation to relate {N(Bk) = 0} and
⋂

j∈U0
{Nj(B

j
k ) = 0}, as follows.

If N(Bk) = 0 and Nj(B
j
k ) �= 0 for some j ∈ U0, then D

j
k �=∅ so j ∈ V(ak)∪{0}

(either j = 0 or the caterpillar indexed by j is alive at time ak). Also after ak and
before the point in �j ∩B

j
k , one of the caterpillars in Bd+3Rn(0) must have moved,

so there must be a point in �l ∩ B̃k for some l ∈ V(bk). Conversely, if Nj(B
j
k ) = 0

∀j ∈ U0 and N(Bk) �= 0, then there must be a point in �l ∩ B̃k followed by either
a point in �0 ∩ Bk or a point in �l′ ∩ Bk for some l, l′ ∈ V(bk). Hence,

{
N(Bk) = 0

}�( ⋂
j∈U0

{
Nj

(
B

j
k

)= 0
})

(4.56)

⊂
{
N0(Bk) + ∑

l∈V(bk)

Nl(B̃k) ≥ 2
}
.

Note that by the definition of a caterpillar in Definition 4.12, for each j ∈ U ,
h(pj ,�

tj
j ) ≥ (logn)−c. It follows that V(bk) ⊆ ⋃�bk(logn)c�

m=0 {1,2}m. Also if J ⊂
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U0 with |J | = K , then
∑

j∈J Nj (B̃k) has a Poisson distribution with parameter

Kν(B̃k), and since bk − ak ≤ δ, ν(B̃k) ≤ n2π(d + 3Rn)
2μ((0,R])δ. Hence, for

Z′ a Poisson random variable with parameter (22+bk(logn)c + 1)ν(B̃k) = O(δ),

P
[
N0(Bk) + ∑

j∈V(bk)

Nj (B̃k) ≥ 2|(�j(ak)
)
j∈U0

]
≤ P
[
Z′ ≥ 2

]= O
(
δ2).

By (4.56), we now have that

P
[
N(Bk) = 0|(�j(ak)

)
j∈U0

]= P
[ ⋂
j∈U0

{
Nj

(
B

j
k

)= 0
}]+O

(
δ2)

= ∏
j∈U0

exp
(−ν
(
B

j
k

))+O
(
δ2)

= exp
(−ν(Bk)

)+O
(
δ2).

Substituting this into (4.55) and then repeating the same argument for k − 1, k −
2, . . . ,1,

P
[
N(B) = 0

]= k∏
i=1

exp
(−ν(Bk)

)+ k∑
i=1

O
(
δ2)

= exp
(−ν(B)

)+ kO
(
δ2).

By partitioning B further, we can let δt → 0 with k = �(1/δ). It follows that
P[N(B) = 0] = exp(−ν(B)). By (4.54), this completes the proof. �

It follows immediately from Lemma 4.20 that the collection of potential ances-
tral lineages in (Pt (p,�))t≥0 has the same distribution as P(n)(p), the rescaled
S�FVS dual. We now show that under this coupling the rescaled S�FVS dual and
branching caterpillar coincide with high probability.

We consider (Ct (p, (�j )j∈U ))0≤t≤T as a collection of paths as follows. The
set of paths through a single caterpillar (ct (p,�))t≤h(p,�) with k∗(p,�) = k∗ is
given by {li}i∈{1,2}k∗ , where li(t) = c1

t (p,�) for t ∈ [0, (logn)−c] and for each 1 ≤
k ≤ k∗, li(t) = c

ik
t (p,�) for t ∈ [τ br

k−1 + (logn)−c, (τ br
k + (logn)−c) ∧ h(p,�)].

Then the collection of paths through (Ct (p, (�j )j∈U ))0≤t≤T is given by concate-
nating paths through the individual caterpillars, that is, paths l : [0, T ] → R2 such
that for some sequence (um)m≥0 ⊂ U with um+1 = (um, im) for some im ∈ {1,2}
for each m, for t ∈ [tum, hum], l(t) follows a path through (ct−tum

(pum,�
tum
um ))t

with l(hum) = pum+1 .

LEMMA 4.22. Fix T > 0. Let (�j )j∈U0 be independent Poisson point pro-
cesses with intensity measure (4.32) and let � be defined from (�j )j∈U0 as in
(4.53). Then (Ct (p, (�j )j∈U ))0≤t≤T and (Pt (p,�))0≤t≤T , viewed as collections
of paths, are equal with probability at least 1 −O((logn)−1/4).
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PROOF. We shall use Lemma 4.19 with a = (16 log 2)−1. Writing, for j ∈ U ,
k∗(j) = k∗(pj ,�

tj
j ), the number of branching events in ct−tj (pj ,�

tj
j ) before hj ,

by a union bound over U�a log logn� and (4.37),

P
[∃j ∈ U�a log logn� : k∗(j) ≥ (logn)9/8]≤ 22+a log lognO

(
e−δ(logn)1/8)

(4.57)
= O
(
e−δ(logn)1/8/2).

Let (τ br
k (j))k≥1 denote the sequence of branching events in ct−tj (pj ,�

tj
j ), and

similarly define (τ
type
k (j))k≥1 and (τ over

k (j))k≥1 as in (4.33). Note that (Ct )t≤T

and (Pt )t≤T only differ as collections of paths if either a selective event affects a
caterpillar during a time interval in which it ignores branching, or if two different
caterpillars are simultaneously within Rn of some x ∈ R2 and so one of them is not
driven by the pieced together Poisson point process �. More formally, if (Ct )t≤T

and (Pt )t≤T differ as collections of paths then one or more of the following events
occurs:

1. U(T ) � U�a log logn� or k∗(j) ≥ (logn)9/8 for some j ∈ U�a log logn�.
2. For some j ∈ U�a log logn� and k ≤ (logn)9/8, the event E1(j, k) occurs: one

of the lineages c1
t−tj

(pj ,�
tj
j ) and c2

t−tj
(pj ,�

tj
j ) is affected by a selective event in

the time interval [τ br
k (j), τ br

k (j) + (logn)−c].
3. For some w �= v ∈ U�a log logn�, the event E2(v,w) occurs: there are i1, i2 ∈

{1,2} with |ci1
t−tw

(pw,�tw
w ) − c

i2
t−tv

(pv,�
tv
v )| ≤ 2Rn for some t ≤ T .

Recall from (4.34) and (2.6) that selective events affect a single lineage with rate
λ logn. Hence, for k ∈ N and j ∈ U , P[E1(j, k)] = O((logn)1−c).

We now consider the event E2(v,w). For w �= v ∈ U , let i = min{j ≥ 1 : wj �=
vj }. Then let

w ∧ v =
{
(w1, . . . ,wi−1) if i ≥ 2,

∅ if i = 1.

At time hw∧v , either τ
type
k∗(w∧v)(w ∧ v) = τ over

k∗(w∧v)(w ∧ v) or τ
type
k∗(w∧v)(w ∧ v) =

τ div
k∗(w∧v)(w ∧ v), in which case |p(w∧v,1) − p(w∧v,2)| ≥ (logn)−c. Conditional on

|p(w∧v,1) − p(w∧v,2)| ≥ (logn)−c, for i1, i2 ∈ {1,2},
(
c
i1
t−tw

(
pw,�tw

w

)
, c

i2
t−tv

(
pv,�

tv
v

))
t∈[tw,hw]∩[tv,hv]∩[0,T ]

is part of the pair of potential ancestral lineages of an excursion started at time
hw∧v with initial displacement at least (logn)−c. Hence, by Lemmas 4.9 and 4.15,

P
[
E2(w, v)

]=O
(

log logn

logn

)
+O
(
(logn)

21
8 −c)= O

(
(logn)−3/8)
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since c ≥ 3. By a union bound, and using Lemma 4.19 and (4.57) it follows that

P
[
(Ct )t≤T �= (Pt )t≤T

]
≤ o
(
(logn)−1)+ 4(logn)a log 2+9/8P

[
E1(j, k)

]
+ 16(logn)2a log 2P

[
E2(w, v)

]
= O
(
(logn)a log 2+ 9

8 +1−c)+O
(
(logn)2a log 2−3/8)

= O
(
(logn)−1/4),

by our choice of a = (16 log 2)−1 and since c ≥ 3. �

We are now ready to complete the proof of Theorem 2.7.

PROOF OF THEOREM 2.7. Set c = 4. By Lemmas 4.20 and 4.22, we have
a coupling of the rescaled S�FV dual and the branching caterpillar under which
the two processes are equal (as collections of paths) with probability at least 1 −
O((logn)−1/4).

We now couple (Ct (p, (�j )j∈U ))0≤t≤T to a branching Brownian motion with

branching rate λκn. Let ((W
j
t )t≥0,Hj )j∈U be an i.i.d. sequence, where (W

j
t )t≥0 is

a Brownian motion starting at 0 and Hj ∼ Exp(λκn) independent of (W
j
t )t≥0. For

each j ∈ U , we couple (ct−tj (pj ,�
tj
j ))t∈[tj ,hj ] to ((W

j
t )t≥0,Hj ) as in Lemmas

4.14 and 4.16.
For j ∈ U , let A1(j) be the event that both |(hj − tj ) − Hj | ≤ 3(logn)−1/4 and

for i = 1,2 and t ∈ [tj , hj ],∣∣(ci
t−tj

(
pj ,�

tj
j

)− pj

)− W
j

σ 2(t−tj )

∣∣≤ 2(logn)
9
8 − c

3 = 2(logn)−5/24.

By Lemmas 4.14 and 4.16, for any r > 0, for each j ∈ U , P[A1(j)] ≥ 1 −
O((logn)−r ). Hence, taking a union bound over j ∈ U�log logn�,

P
[ ⋂
j∈U�log logn�

A1(j)

]
≥ 1 −O

(
(logn)log 2−r).

Also, for j ∈ U , define the event

A2(j) =
{

sup
t∈[0,3(logn)−1/4]

∣∣Wj

σ 2t

∣∣
+ sup

t∈[Hj−3(logn)−1/4,Hj ]

∣∣Wj

σ 2t
− W

j

σ 2Hj

∣∣≤ (logn)−1/9
}
.

Then by another union bound over U�log logn�, since for a Brownian motion (Wt)t≥0

started at 0, P[supt∈[0,3(logn)−1/4] |Wt | ≥ 1
2(logn)−1/9] = o((logn)−r ), we have
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that

P
[ ⋂
j∈U�log logn�

A2(j)

]
≥ 1 −O

(
(logn)log 2−r).

By Lemma 4.19, P[U(T ) � U�log logn�] = o((logn)−r ).
Define a branching Brownian motion starting at p with diffusion constant σ 2

from ((W
j
t )t≥0,Hj )j∈U by letting the increments of the initial particle be given by

(W∅
σ 2t

)t≥0 until time H∅, when it is replaced by two particles which have lifetimes

H1 and H2 and increments given by (W 1
σ 2t

)t≥0, (W 2
σ 2t

)t≥0 and so on.
If U(T ) ⊆ U�log logn� and A1(j) ∩ A2(j) occurs for each j ∈ U�log logn�, each

path in the branching caterpillar stays within distance 2(log logn+1)(logn)−1/9 +
2(log logn + 1)(logn)−5/24 of some path through the branching Brownian motion
and vice versa.

Setting r = log 2 + 1/4 gives us a coupling between the branching caterpillar
and branching Brownian motion (with diffusion constant σ 2 and branching rate
κnλ) such that with probability at least 1 − O((logn)−1/4), up to time T each
path in the rescaled S�FVS dual stays within distance 2(log logn)(logn)−1/9 +
2(log logn)(logn)−5/24 of some path through the branching Brownian motion and
vice versa. Finally, we need to couple this branching Brownian motion up to time
T with a branching Brownian motion with branching rate κλ. By (4.35), κn → κ

as n → ∞, so this follows by straightforward bounds on the difference between
the branching times and the increments of a Brownian motion during such a time.

�
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