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We consider the minimax quickest detection problem of an unobservable
time of proportional change in the intensity of a doubly-stochastic Poisson
process. We seek a stopping rule that minimizes the robust Lorden crite-
rion, formulated in terms of the number of events until detection, both for
the worst-case delay and the false alarm constraint. This problem, introduced
by Page [Biometrika 41 (1954) 100–115], has received more attention in the
continuous path framework (for Wiener processes) than for point processes,
where optimality results only concern the Bayesian framework [In Advances
in Finance and Stochastics (2002) 295–312, Springer, Berlin]. We prove the
CUSUM optimality conjectured but not solved for the Poisson case of the
CUSUM strategy in the general setting of the stochastic intensity framework.
We use finite variation calculus and elementary martingale properties to char-
acterize the performance functions of the CUSUM stopping rule in terms of
scale functions. These are solutions of some delayed differential equations
that can be solved simply. The case of detecting a decline in intensity is easier
to study, because the performance functions are continuous. In the case of a
rise where the performance functions are not continuous, differential calculus
requires using a discontinuous local time at the discontinuity level, difficult
to estimate. The conjecture was considered proven by the community, but
the proof was still lacking for this reason. Some numerical considerations are
provided at the end of the article.

1. Introduction. In the quickest detection problem for point processes, one
observes the jumps of an inhomogeneous counting process whose intensity sud-
denly changes at some unobservable disorder time, but remains “stable” before-
hand and after, in some sense. The process being sequentially observed, the prob-
lem is then to detect the change-point as quickly as possible after it happens.
As pointed out in the introduction of Basseville and Nikiforov (1993) [4], “It
should be clear that abrupt changes by no means imply changes with large magni-
tude. Many change detection problems are concerned with the detection of small
changes”.

The classical fields of applications of such detection problems include, among
others, queueing theory, survival analysis, reliability and denial-of-service attacks
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on internet services [4]. Our main practical motivation is the fast detection of the
onset of mortality shifts, where a proportional relationship between two mortality
intensities, for example, the insured mortality intensity and a reference, is assumed.
A sudden change in the proportional relationship can induce serious financial con-
sequences, and it is necessary to react as soon as data would suggest it; see Barrieu
et al. (2012) [3].

A similar problem also arises in prompt detection of shifts in insurance claims
arrival. Note that in these examples, in general, no information is known about
the distribution of the date of change. Therefore, in this paper, we consider a non-
Bayesian setting in which the change-point is unknown but deterministic, in the
spirit of the early papers of Page (1954) [19] and Lorden (1971) [13]. This frame-
work, based on the so-called Lorden procedure formulated as a minimax problem,
belongs to the family of robust optimization, popular in statistical learning (Hastie
et al. (2009) [10]).

The minimax robust detection problem in continuous time has gained renewed
interest since the 1990s. For example, the problem of detecting an abrupt change
in the drift of a Wiener process is well understood. In particular, the so-called
cumulative sums strategy [19] (CUSUM for short) has been shown to be optimal
with regards to the Lorden procedure; see Shiryaev (1996) [26], Beibel (1996) [5]
and Moustakides (2004) [17]. Shiryaev (2009) [27] sheds an interesting light on
the history of this problem, and different developments depending on the field of
application.

In the classical sequential test analysis for continuous time processes, the statis-
tic is the usual Log Sequential Probability Ratio process (LSPR-process) between
the reference probability P (null assumption) and the alternative assumption P̃ (H1
assumption); see Dvoretzky, Kiefer and Wolfowitz (1953) [8] for the Poisson pro-
cess. In the minimax detection problem, the test is based on the CUSUM strategy,
consisting in sounding an alarm as soon as the LSPR-process related to P (no
change) and P̃ (immediate change), reflected at its maximum or at its minimum,
hits a barrier m > 0. The optimality relies on the characterization of the optimal
detection time through its performance, that is, the time until detection and the
false alarm frequency, which are of critical importance. In the Wiener case, the
performance functions have a very simple and universal form, which is a key ele-
ment in the derivation of the optimality [17]. In this paper, we are interested in the
extension of this optimality result to the CUSUM strategies in the doubly stochastic
Poisson process, by overcoming difficulties due to jumps and to the complex form
of the performance functions, strongly related to the scale functions introduced in
Lévy processes theory, for example, Bertoin (1998) [6], Pistorius (2004) [22], and
reference therein.

Note that, in discrete time, only asymptotic optimality results were shown by
Mei et al. (2011) [14].

The conjecture that the CUSUM strategy is optimal in the Poisson case for the
minimax problem was considered by the community to be solved. However, due
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to the discontinuity of some performance functions at the detection level, this is not
the case for a rise in intensity (ρ > 1); see Section 5. The sketches of the proofs
in Moustakides (2007) [18] and in Poor and Hadjiliadis (2009) [24], Section 6.4.4,
pages 154–157, can be adapted in the case of a decline in intensity (ρ < 1) to
show optimality, but do not work in the increasing case. In this paper, we directly
prove the CUSUM optimality conjectured in the Poisson case in the stochastic inten-
sity setting. To this end, we consider a modified version of Lorden’s criterion that
indeed corresponds to its natural extension to the stochastic intensity framework
(and is equivalent to the classical Lorden criterion in the Poisson case).

The article is organized as follows. In Section 2, we introduce the robust op-
timization problem, with a discussion about the criterion to be associated with
this minimax problem. This discussion is followed by a rigorous presentation of
the basic tools in the counting process framework used throughout the paper. In
Section 3, we are concerned with CUSUM processes, which are the log-sequential
probability ratio processes reflected at their running maximum or minimum, and
write them as solutions of some differential equations driven by the counting pro-
cess. We also define the performance functions associated with the hitting time by
the CUSUM processes of a barrier m, making the distinction between a rise and de-
cline in the intensity. Stochastic differential calculus is used to extend Itô’s formula
to a.e. differentiable monotonic functions with one jump, thanks to a discontinuous
local time. We also prepare for the proof of optimality, by the introduction of new
and suitable martingales. In Section 4, we solve very elementary classical and less
classical delayed equations with the help of the scale functions and their primitives
from Lévy processes theory. Then we obtain closed formulas for the performance
functions associated with a positive CUSUM barrier. Section 5 is dedicated to the
proof of optimality of the CUSUM procedure with a given false alarm constraint.
The proof relies on a modified criterion following ideas from Shiryaev (1996) [26]
and Moustakides (1986, 2002) [15, 16]. To the best of our knowledge, it is the first
optimality result in the rising Poisson case, for the minimax problem. Lastly, in
Section 6 we discuss some numerical methods suited to solve the delayed equa-
tion associated with the scale and performance functions, and overcome numerical
instability problems.

2. Problem formulation.

2.1. Counting processes.

Counting processes and intensity. We consider a counting process N defined
on a probability space (�,F∞,P), counting the number of arrival times (Ti)i≥1
of some event family. The (Ti)i≥1 form a strictly increasing sequence of times de-
scribing the process as Nt = ∑∞

n=1 1{Tn≤t}. (a) A typical example is the standard
Poisson process with intensity λ whose arrival times are generated by a family of
independent exponential variables τi with expectation 1/λ, such that Tn = ∑n

i=1 τi .
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Then Nt has a Poisson distribution with parameter �t = λt whose moment gener-
ating function is E[exp(αNt)] = exp(λt (eα − 1)), for α > 0. (b) Here, we are con-
cerned with a doubly stochastic point process [9], where the uncertainty concerns
both the arrival times and intensity. Therefore, the probability space (�,F∞,P) is
equipped with some filtration F = (Ft ) satisfying the usual conditions. The (P,F)-
adapted counting process N is characterized by its positive (nonnegative) (Ft )-
adapted (predictable) intensity λt .

The increasing (nondecreasing) process �t = ∫ t
0 λs ds is said to be the cumu-

lative intensity of N if and only if the compensated process Mt = Nt − �t is a
P-martingale (if �t is P-integrable for any t ≥ 0) and a local martingale (if �t is
only finite a.s.). In the following, we assume �t → ∞ when t goes to ∞. When
�t is deterministic, the process N is an inhomogeneous Poisson process whose
increments (Nt+h − Nt){h>0} are independent of Ft .

Log-likelihood ratio. The notion of exponential martingale, Lα
t = exp(αNt −

�t(e
α − 1)) plays the same role as that of the Laplace transform for the Pois-

son process. (Lα
t )t is sometimes called a Wald martingale [2], pages 21–23.

A more convenient form for our purpose is based on a representation in terms
of η = exp(α), such that the exponential martingale Lα

t becomes the process

Eη
t = ηU

η
t , where

lnη

(
Eη

t

) = U
η
t = Nt − β(η)�t ,(1)

with β(η) = (η − 1)/ log(η) =
∫ 1

0
ηx dx, η �= 1 and β(1) = 1.(2)

The function β(η) is the Laplace transform of the uniform distribution on [0,1]. In
particular, for η > 1, β is increasing and β(η) > 1, and for η < 1, β is decreasing
and β(η) < 1.

A natural candidate for the likelihood process associated with an intensity pro-
cess ρ�t , with ρ �= 1, is the exponential process (Eρ

t = ρU
ρ
t ), assumed to be a

uniformly integrable martingale such that E(Eρ
T ) = Eρ

0 = 1. We denote by P̃ the

probability measure equivalent to P with density process (ρU
ρ
t ). The P̃-likelihood

of P with respect to P̃ is the P̃-exponential martingale ρ−U
ρ
t = (1/ρ)U

ρ
t =

(1/ρ)Nt−β(1/ρ)ρ�t , since ρβ(1/ρ) = β(ρ). This P̃-martingale property of (1/ρ)U
ρ
t

is true only if M̃t = Nt − ρ�t is a P̃-martingale.

2.2. Detection problem.

Detection problem. We are interested in detecting any disorder that has af-
fected the intensity of a counting process, where changes may occur at unobserv-
able, nonrandom times θ ∈ [0,∞). Formally, we consider an intensity process such
that

(3) λ̌θ
t = λt1{t<θ} + ρλt1{t≥θ}, ρ �= 1.
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The best-suited and most frequently used framework for the detection problem is to
keep the observed process N under the initial probability measure P, and to change
the occurrence likelihood using an exponential martingale density Lθ

t , equal to 1
between 0 and θ , and coinciding with (Eρ

t /Eρ
θ ) on (θ,∞). The likelihood process

Lθ
t defines a new probability measure P

θ .
When a change does not appear, that is, θ = ∞ and λ̌∞

t = λt , we keep the
notation (λt ,P) instead of (λ∞

t ,P∞). When a change appears instantaneously,
λ̌0

t = ρλt is sometimes denoted λ̃t , and associated with a probability measure P̃

over the frequently-used notation P0 [12]. This notation from Kyprianou (2014)
[12] is used to limit the proliferation of indexes.

The sequential conditional probability ratio (SCPR in short) between t and T

is given by Eρ
t,T = Eρ

T /Eρ
t , and plays a key role both in sequential testing theory

and quickest detection problems. Here, we are more concerned with quickest de-
tection procedures [4]. Moreover, as our initial motivation is related to detection of
changes in longevity patterns associated with nondeterministic intensities, we are
more interested in robust methods than Bayesian ones.

Robust detection problem. Our main goal is to find a stopping rule T based on
the filtration F to optimally raise the alarm for the breakpoint, with no a priori in-
formation on θ . The first step is to define a measure that quantifies the performance
of the detection procedure.

(a) For robust estimation, the Lorden [13] procedure advocates penalizing the
detection delay via its worst-case value

(4) C̃Lor(T ) = sup
θ∈[0,∞]

ess sup
ω

E
θ [

(T − θ)+|Fθ

]
,

where the “ess sup” takes the “worst possible observed date before the change” in
the sense of providing no information on the true change, as explained in [14].1

In equation (4), the expectation is taken with respect to the probability measure
P

θ , under which the counting process N has the P
θ -intensity given in (3). In fact,

P
θ can be replaced by the probability measure P̃ (θ = 0), since the criterion only

depends on what happens after the change. In addition, false alarms are monitored
using the average run length to false alarm given by E[T ], since the nominal prob-
ability P is associated with no change. With these metrics, the robust detection
procedure reduces to solving the following minimax optimization problem for a
given threshold π :

(5) inf
T

C̃Lor(T ), with constraint E(T ) ≥ π.

1Mathematically, the ess sup it is the smallest constant number yθ such that yθ ≥
E

θ [(T − θ)+|Fθ ], Pθ -a.s.
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This framework serves to design the optimal stopping rule T ∗ with the desired
characteristics based on a linear delay criterion, well adapted to constant intensi-
ties. Nevertheless, another interpretation may be given, better suited to our prob-
lem, where only the multiplicative ratio ρ is known, and not the stochastic intensity
itself.

(b) Given that a doubly stochastic point process may be reduced to a Pois-
son process by time rescaling [9], we are looking for a criterion which is ro-
bust with respect to this procedure, that is, both in the delay criterion and the
false alarm constraint. Observe that for Poisson processes, Eθ [(NT − Nθ)

+|Fθ ] =
Ẽ[NT −NT ∧θ |Fθ ] = λρẼ[T −T ∧θ |Fθ ], and E(NT ) = λE(T ). Thus, the number
of events until detection is a good candidate to take into account in the optimization
criterion. Formally, we let

(6) ̃T
θ = E

θ [
(NT − Nθ)

+|Fθ

] = ρẼ

[∫ T

θ∧T
λs ds

∣∣∣Fθ

]
, E(NT ) = E(�T ).

The minimax optimization problem is now to minimize with respect to the stop-
ping times T , with the constraint E(NT ) ≥ π , the generalized Lorden criterion:

(7) C̃(T ) = sup
θ∈[0,∞]

ess sup
ω

Ẽ
[
(NT − Nθ)

+|Fθ

]
.

In the same vein, Moustakides (2004) [17] has initiated a modification of
the Lorden criterion that replaces expected delay with Kullback–Leibler diver-
gence.

2.3. CUSUM processes. In this section, we set the value of the parameter ρ �= 1,
and frequently drop out the indexation on ρ from notation when it is not ambigu-
ous. We also use indifferently the parameter β = β(ρ), given the one-to-one cor-
respondence between β and ρ.

Moreover, for ease of use, for any càdlàg (right-continuous with left limit)
process Z, the running supremum is the nondecreasing càdlàg process Z̄t =
sups≤t Zs .

CUSUM processes. In estimation theory, the process of interest is usually the
maximum likelihood process. In detection problems, since the parameter is a time,
the maximum likelihood must be taken over the dates θ before t , so that the process
of interest is supθ≤t ρ

Ut−Uθ .
(a) Consider the case ρ > 1. The maximum likelihood process is given by ρVt ,

where Vt = sups≤t (Ut − Us) = Ut + sups≤t (−Us). Here, Vt is the process Ut re-
flected at 0. By introducing the reversed process X = −U (also called dual process
in insurance theory [2]) which has negative jumps and nondecreasing continuous
part ρ�t , we see that sups≤t (−Us) = X̄t is a continuous process with support
{Xt = 0}. The processes V and U have jumps of size 1 at the same times. The
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FIG. 1. Simulated CUSUM processes V,U and Y,X with constant intensity 3. The post-change
parameter ρ is set to 1.5 (left) and 0.5 (right), respectively.

CUSUM process V may also be viewed as the process X reflected at its continuous
maximum, using the terminology of Lévy processes. A typical path of the process
V is given in Figures 1–2.

(b) When ρ < 1, the function ρz is decreasing and the maximum likelihood
process is (1/ρ)Yt , where Yt = supθ≤t Uθ − Ut = Ūt − Ut = Xt + Ūt . The process
Y is the process U reflected at its maximum, or the process X reflected at 0. The
process Ū is a nondecreasing step process, and the epochs when a new supremum
of Ū is reached, that is, Ūt = Ut , are arrival times of N , for which Yt = 0. The
jumps of Y are negative and of absolute value less than 1. Typical paths of the
processes V and Y are given in Figures 1–2.

(c) The CUSUM stopping rule is defined as the first time where the CUSUM process
V or Y exceeds a given level m > 0, that is, for ρ > 1, τV

m = inf{t, Vt ≥ m} and
for ρ < 1, τY

m = inf{t, Yt ≥ m}. The next section is dedicated to developing tools
and self-contained arguments to calculate the CUSUM rule’s performance given our
particular framework.

FIG. 2. Simulated CUSUM processes V and Y with a change-point at time θ = 3 and constant
intensity 3. The post-change parameter ρ is set to 1.5 (left) and 0.5 (right), respectively. In each
plot, the y-axis scale on the left is associated with the CUSUM process, and on the right with the
nondecreasing process N . Vertical dotted lines indicate jump times Ti .
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3. Reflected processes and finite variation stochastic calculus. We use the
name reflected process in place of CUSUM process when no restriction is made on
the value of the parameter ρ, that is V is also defined for ρ < 1 and Y is also
defined for ρ > 1. When the intensity is constant, the vocabulary is that of Lévy
process theory as in Bertoin (1998) [6] and Kyprianou (2014) [12] for instance.

To use Markov type conditional properties, we need to define the processes in-
volved for an initial condition different from 0. For the processes U and X, we add
an initial linear condition Z0, so that Ut(Z0) = Z0 + Nt − β(ρ)�t , and Xt(Z0) =
Z0 − Nt + β(ρ)�t . For the reflected processes, we first define the running maxi-
mum processes starting from 0, X̄ad

t (Z0) = (X̄t − Z0)
+, and Ūad

t = (Ūt − Z0)
+.

Then the reflected processes starting from Z0 are defined as the sum of the two
processes, Vt(Z0) = Ut(Z0) + X̄ad

t (Z0) and Yt (Z0) = Xt(Z0) + Ūad
t (Z0); the de-

pendence in the initial condition is now increasing and convex. Hereafter, as a mat-
ter of notation, we frequently use Px when referring to the conditional probability
measure Px = P(·|Z0 = x).

3.1. Reflected processes as solutions of stochastic differential equations.
Since all processes are of finite variation with a finite number of jumps, and
almost everywhere (a.e.) differentiable, it is easy to develop a pathwise differ-
ential calculus. However, for ease of reading, we recall the main differential for-
mula. For this, let φ be a right continuous finite variation function defined on
a real interval [zmin,∞), (zmin possibly infinite) with a finite number of jumps
φ(α) − φ(α−) = δφ(α), and almost surely differentiable with derivative φ′. Such
functions are hereafter called “regular finite variation functions”. Then we have
the integral representation:

(8) φ(z) = φ(zmin) +
∫ z

zmin

φ′(u) du + ∑
zmin<α≤z

φ(α) − φ(α−).

In the sense of Schwartz distributions, the function φ is differentiable, with deriva-
tive φ(du) = φ′(u) du + ∑

{α,δφ(α)�=0} δφ(α)δα(du), where δα(du) is the Dirac
measure.

3.1.1. Reflected processes as solutions of stochastic differential equations.
The study of the differential properties of the reflected processes Vt(Z0) and
Yt (Z0) is based on the properties of the supremum processes X̄ad

t (Z0) and
Ūad

t (Z0). Recall that X̄ad is continuous and only increases when {V = 0}, whereas
the process Ū ad(Z0) is a pure jump process such that Ūad

t − Ūad
t− = 1 −Yt−, since

Yt = 0. These observations suggest the following differential properties of the re-
flected processes.

PROPOSITION 1.

(a) The CUSUM process Vt is the unique nonnegative solution of the pathwise dif-
ferential equation:

(9) dVt = dNt − β1(0,∞)(Vs) d�s, implying that dX̄ad
t = β1{Vt=0} d�t .
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(b) The reflected process Yt is the unique nonnegative solution of the differential
equation, with jump function −j (y) with j (y) = y ∧ 1:

dYt = −j (Yt−) dNt + β d�t,
(10)

implying that dŪad
t = 1{Yt=0}(1 − Yt−) dNt .

(c) In the Poisson case, both reflected processes V and Y are Markov processes.

PROOF. See the Appendix. �

3.1.2. Some remarkable functions related to martingales. As a corollary, we
obtain the differential decomposition of the processes gm(Yt ) and hm(Vt ), when
the functions gm and hm are regular finite variations solutions of delayed differen-
tial equations (DDE), denoted DDE(β), restricted to the interval [0,m]:

βg′
m(x) = gm(x) − gm

(
(x − 1)+

) − 1,
(11)

with gm(0) = 0 (Cauchy problem),

βh′
m(x) = hm(x + 1) − hm(x) + 1, hm(0) = 0,

(12)
with h′

m(0) = 0 (Neumann problem).

Both functions are extended by the value 0 for x ≥ m. The solutions of these DDEs
are studied in the next section, where it is proved that the function gm is continuous,
whereas hm is continuous on (0,m) with positive jump at m. The same properties
hold true for the functions g̃m and h̃m, solutions of the same system where β is
replaced by β̃ , with ρ̃ = 1/ρ, and β̃ = β(ρ̃) = β(1/ρ) = β(ρ)/ρ. We start with
the simplest case of continuous solutions.

Continuous regular functions and Y processes. We start with the function gm

applied to the reflected process Y , solution of (10). The martingale formulation
allows us to make no distinction between doubly stochastic point process and a
Poisson process.

PROPOSITION 2. Let gm be the continuous solution of the DDE(β) (11):

(i) (a) The process Gm
t = gm(Yt ) − gm(Y0) + N

m,Y
t is a finite variation Py -

martingale with decomposition:

(13) dGm
t = dgm(Yt ) + dN

m,Y
t = −βg′

m(Yt−) dMt,

where Mt is the Py -martingale dMt = dNt − d�t and dN
m,Y
t =

1[0,m](Yt−) dNt .
(b) Let τY

m be the CUSUM stopping time defined in Section 2 as τY
m =

inf{t ≥ 0, Yt ≥ m}. Then

(14) gm(y) = Ey(NτY
m
).
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(ii) Let g̃m be a continuous regular solution of the DDE(β̃).
(a) G̃m

t = g̃m(Yt ) − g̃m(Y0) + N
m,Y
t is a P̃y -martingale and dG̃m

t =
−β̃g̃′

m(Yt−) dM̃t .

(b) Set φ(y) = ρy(g̃m(0) − g̃m(y)). The process Ḡ
m,ρ̃
t = ρYt (g̃m(0) −

g̃m(Yt )) + ρ
∫ t

0 ρYs− dNm
s is the Py-martingale Ḡ

m,ρ̃
t = −β ×∫ t

0 φ′(Ys−) dMs .

PROOF. (i)(a) The proof of (13) is immediate from the differential equation
(10) of Y , and from the differential formula (8) since gm is a continuous finite
variation function. We have also used the fact that g′

m(z) = 0 for z > m.
(b) The interpretation of gm as the expectation of the number of events before

crossing the level m is a simple consequence of the stopping theorem for martin-
gales, since g is bounded on the compact interval [0,m].

(ii)(a) The proof is the same as earlier, because the processes (Xρ,�) and
(Xρ̃, ρ�) defined in Section 2 are the same.

(b) The second property needs some explanation. Set f̃m(y) = g̃m(0) − g̃m(y),
so that φ(y) = ρ̃y(g̃m(0) − g̃m(y)) = ρ̃y f̃m(y). Then βφ′(y) = − logρβφ(y) +
ρ̃yβf̃ ′

m(y). The fact that f̃m(0) = 0 allows us to put aside the influence of a purely
discontinuous local time at zero, by using the fact that the derivative of f̃m is equal
to β̃f̃ ′

m(y) = f̃m(y) − f̃m((y − 1)+) + 1 = f̃m(y) − 1{y>1}f̃m(y − 1) + 1. Thus,
from the identities log(ρ)β = ρ − 1 and β = ρβ̃ , we can write

βφ′(y) = −(ρ − 1)φ(y) + ρφ(y) − φ(y − 1)1{y>1} + ρρ̃y

= φ(y) − φ
(
(y − 1)+

) + ρρ̃y,

and consequently,

dφ(Yt ) = [
φ

(
(Yt − 1)+

) − φ(Yt−)
]
dNt + [

φ(Yt−) − φ
(
(Yt− − 1)+

)]
d�t

+ ρρ̃Yt− d�t

= [
φ

(
(Yt − 1)+

) − φ(Yt−) − ρρ̃Yt−]
dMt + ρρ̃Yt− dNt

= − βφ′(Yt−) dMt − ρρ̃Yt− dNt .

The proof is complete. �

Monotonic function with one jump at m and the V process. For the reflected pro-
cess V , we are concerned with the decreasing right-continuous function hm, null
on [m,∞), with one negative jump δhm(m) = −hm(m−) at m, solution of the
delayed Neumann equation (12). Then the process hm(Vt ) has additional disconti-
nuities when Vt = Vt− = m.

(i) Discontinuous local time. Since the process V up-crosses the level m only
by jumps, the number of continuous crossings of the level m by V is discrete, and
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it is only given by down-crossings. Then the number Jm,V of continuous crossings
of the level m by V , sometimes called discontinuous local time at m, is defined by

(15) J
m,V
t = lim

ε �→0

∑
ε≤s≤t

1{Vs−ε>m>Vs+ε,Vs=Vs−=m}.

Thus, we have to add the term hm(m−)J
m,V
t to the classical differential formula.

PROPOSITION 3. Let hm be the right continuous solution of (12):

(i) (a) The process Hm
t = hm(Vt ) − hm(V0) + N

m,V
t + hm(m−)J

m,V
t is a finite

variation Px-martingale with decomposition

(16) dHm
t = βh′

m(Vt−)1{Vt−>0} dMt,

where Mt is the Px-martingale dMt = dNt − d�t and dN
m,V
t =

1[0,m](Vt−) dNt .
(b) Let τV

m be the CUSUM stopping time defined in Section 2 as τV
m =

inf{t ≥ 0,Vt ≥ m}. Then

(17) hm(y) = Ex(NτV
m
).

(ii) Let h̃m be a continuous regular solution of the DDE(β̃).

(a) h̃m
t = h̃m(Yt ) + N

m,V
t + δh̃m(m)J

m,V
t is a P̃x-martingale and dH̃m

t =
−β̃h̃′

m(Vt−) dM̃t .

(b) Put ψ(x) = ρx(h̃m(0) − h̃m(y)). The Px-martingale, H̄
m,ρ̃
t = −β ×∫ t

0 φ′(Ys−) dMs is equal to the process H̄
m,ρ̃
t = ρVt (h̃m(0) − h̃m(Vt )) −

ρ
∫ t

0 ρVs− dNm,V
s − δh̃m(m)ρmJ

m,V
t .

PROOF. (i)(a) The proof of (16) is an easy consequence of the differential
formula (8) applied to hm(Vt ) whose jumps are (hm(Vt− + 1) − hm(Vt−) dNt +
δhm(m)dJ

m,V
t ).

(b) The Neumann DDE (12) expresses that the derivative of hm at 0 must be
equal to 0 to compensate for the fact that the continuous drift of V does not
charge 0. Solving the Neumann DDEs is postponed to the next section.

(ii)(a) The same relationship is true for h̃m with respect to the probability mea-
sure P̃x , with the coefficients [ρ̃ = 1/ρ, β̃ = β(1/ρ) = β(ρ)/ρ], the martingale
M̃t = Nt − ρ�t , and the Neumann DDE(β̃) defined on [0,m) by β̃h̃′

m(x) =
h̃m(x + 1) − h̃m(x) + 1, h̃′

m(0) = 0.
(b) However, we are also interested in the process ψ(Vt), where ψ(x) =

ρx(h̃m(0)− h̃m(x)), as a way of studying the properties of h̃m(Vt ) under P in terms
of properties under P̃. Set k̃m(x) = h̃m(0) − h̃m(x) and ψ(x) = ρxk̃m(x). Then,
using similar arguments as in the proof of Proposition 3, we first write βψ ′(x) =
(ρ − 1)ψ(x) + ρρxβ̃k̃′

m(x) = (ρ − 1)ψ(x) + ρρx(k̃m(x + 1) − k̃m(x) − 1), which
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can be expressed by using only ψ as βψ ′(x) = ψ(x + 1) − ψ(x) − ρρx . More-
over, the jump of ψ(x) at m is δψ(m) = ρmh̃m(m−). Therefore, the differential
of ψ(Vt) is

dψ(Vt) = (
ψ(Vt + 1) − ψ(Vt−)

)
dNt − βψ ′(Vt ) d�t + ρmh̃m(m−) dJ

d,m
t

= (
ψ(Vt + 1) − ψ(Vt−) − βψ ′(Vt−)

)
dNt + βψ ′(Vt−) dMt

+ ρmh̃m(m−) dJ
d,m
t .

By the previous calculation on βψ ′(x), the coefficient of dNt may be simplified
as ρρVt− = ρVt and dψ(Vt) = ρρVt− dNt + ρmh̃m(m−) dJ

m,d
t + βψ ′(Vt−) dMt ,

which completes the proof. �

(ii) Comparison of performance criteria. All of these properties allow us to be
able to compare the criteria studied under the different probability measures.

COROLLARY 4.

(a) On (0,m), if ρ < 1, h̃m(x) ≥ hm(x), and if ρ > 1, h̃m(x) ≤ hm(x).
(b) On (0,m), if ρ < 1, g̃m(y) ≤ gm(y), and if ρ > 1, g̃m(y) ≥ gm(y).

PROOF. (i) 0n [0, τV
m ], the process Jm,V is the null process since V is be-

low m until τV
m . Then H̃m

t = h̃m(Vt ) − h̃m(x) + N
m,V
t = ∫ t

0 β̃h̃′
m(Vs−) dM̃s =∫ t

0 β̃h̃′
m(Vs−) dMs − (ρ − 1) d�s), is a P̃x-martingale; since h̃m is decreasing and

since the sign of β̃(ρ − 1) = ρ lnρ is the same as the sign of ρ − 1, H̃m
t is a

Px-submartingale if ρ > 1, and a Px-supermartingale if ρ < 1.
(ii) Then we have that Ẽx[NτV

m
] − h̃m(x) = 0. Moreover, Ex[NτV

m
] − h̃m(x) is

positive or negative depending on the sign of ρ − 1. For the optimality application,
the more important inequality is h̃m(x) ≤ hm(x) when ρ > 1.

(iii) The proof is the same for the inequalities concerning the functions g̃m(y)

and gm(y). �

4. Solving and interpreting the DDEs. In this section, we show that the
solutions of the above-mentioned DDEs can be obtained in closed form from
the well-known solution u of the fundamental DDEF(β) without drift, βu′(x) =
u(x) − u(x − 1), defined on R

+, and extended by the value zero for x < 0.

4.1. The fundamental delay equation and the Pollaczek–Khintchine formula.
Let us consider the fundamental delayed equation DDEF(β) on [0,∞):

(18) βu′(x) = u(x) − u(x − 1), β > 0,

where only the continuous regular finite variation functions solutions u on (0,∞)

are considered; u(0) is defined as u(0) = limε �→0 u(ε). The standard extension to



MINIMAX OPTIMALITY IN ROBUST DETECTION OF A DISORDER TIME 2527

the whore real line is given by putting u(x) = 0,∀x < 0. Then a jump at 0 equal to
δu(0) = u(0) − u(0−) = u(0) is introduced when working on the real line.

The solution with initial condition βu(0) = 1 is called the scale function in Lévy
processes theory and denoted W in [12]. We shall come back to this interpretation
at the end of the section.

(i) The right-continuous function u′ has two jumps. The first is at x = 1 with
size −u(0)/β , since βu′(1) = u(1) − u(0) and βu′(1−) = u(1). The second is at
x = 0 with size u(0)/β , since βu′(0) = u(0) and βu′(0−) = 0. On the interval
[0,1), u(x) is an exponential function, that is, u(0)ex/β .

(ii) In the case β > 1, the solution corresponds to the well-known Pollaczek–
Khintchine formula [1], page 281. One can interpret u as the c.d.f. of the sum Sν

of i.i.d. r.v. uniformly distributed on [0,1] stopped at an independent geometric
r.v. ν. Note that P(Sν = 0) = P(ν = 0) = 1 − 1/β . When β < 1, there is no such
easy interpretation.

(iii) However, our aim is to examine a universal representation under the prob-
ability measures P and P̃, which does not distinguish between cases β > 1 and
β < 1. Natural tools are the so-called scale functions W (mentioned above) and W̃ .
They are (resp.) the solutions of DDEF(β) and DDEF(β̃), whose values at 0 are
respectively W(0) = 1

β(ρ)
and W̃ (0) = 1

β̃(ρ)
= ρ

β(ρ)
= ρW(0). The advantage of

choosing these functions comes from their alternate definition as functions whose
(P, resp., P̃)-Laplace transform is the inverse of the (P, resp., P̃)-Laplace exponent
of the Lévy process Uρ in the Poisson case [6, 12].

4.2. Computation of performance functions from scale functions.

Conventional notation for primitive functions. The notation F refers to the
primitive of a function F, null at 0, F(z) = ∫ z

0 F(z) dz.
The fundamental DDEF(β) given in (18) and studied in the previous section,

yields a large family of useful new DDEs by simple transformation. We adopt the
same kind of notation DDE(β, k), for a DDE(β) with an additional constant term
k in the right-hand side of the equation, so that DDEF(β) = DDE(β,0).

THEOREM 5. The DDEF(β) defined by βu′(x) = u(x) − u(x − 1), is stable
under certain simple transformations.

(i) (a) If u is solution of the DDEF(β), with β = β(ρ), then ρxu(x) is solution
of DDEF(β̃) with β̃(ρ) = β(ρ̃) := β(1/ρ) = β(ρ)/ρ.

(b) The function W̃ (x) = ρρxW(x) is the scale function under P̃ (W̃ (0) =
1/β̃), solution of the DDEF(β̃).

(ii) If u is solution of DDEF(β), then the primitive u(x) = ∫ x
0 u(z) dz, equal to 0

for x ≤ 0, is solution of the DDE(β, k) βu,′(x) = u(x)−u(x−1)+k, with
k = βu(0), satisfying the derivative constraint at 0, βu,′(0) = βu(0) = k.
Any other derivative constraint at 0 may be satisfied by the addition of a well-
chosen function θu(x).
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(iii) Same results hold for the equation DDEF(β̃) and its elementary transforma-
tion as in part (ii), by using the scale function W̃ (x) = ρρxW(x).

PROOF. (i) The derivative of ρxu(x) = ũ(x) is ũ′(x) = log(ρ)ρxu(x) +
ρxu′(x). The relationship log(ρ) = β(ρ)(ρ − 1), and some algebra gives the re-
quired result: (

β(ρ)/ρ
)
ũ′(x) = β(ρ̃)ũ′(x) = ũ(x) − ũ(x − 1).

(ii) The integral equation is based on formula (8) since
∫ x

0 u′(z) dz = u(x) −
u(0). Then the DDE of the primitive function u differs from the previous one by
the addition of the constant u(0)β .

(iii) Any linear combination of the scale function and its primitive is a solution
of DDE(β, k) whose parameters have an easy interpretation, the drift term k = θ̂

and an additional constraint on the value at 0, or on the derivative at 0 or at another
level, determines the value of θ . �

As a consequence, we can derive closed-form formulas for the performance
functions gm(y) and hm(x), solutions of the DDE(β,−1) with different con-
straints. Indeed, gm(y) is solution of the DDE(β,−1) with terminal condition
gm(m) = 0. So gm(y) is a primitive null at m of −W(x). On the other hand,
the transformed performance km(z) = hm(m − z) is a Neumann’s solution of the
DDE(β,−1), with the Neumann constraint k′

m(m−) = 0. Thus, thanks to The-
orem 5, these functions are linear combinations of the scale functions and their
primitive (without restriction on the value of the parameter β):

gm(y) =
∫ m

y
W(z) dz, with gm(0) =

∫ m

0
W(z)dz,(19)

hm(x) = W(m − x)
W(m)

W ′(m)
−

∫ m−x

0
W(y)dy, hm(m−) = W(m)

βW ′(m)
,(20)

g̃m(y) = ρ

∫ m

y
ρzW(z) dz,(21)

h̃m(x) = W̃ (m − x)
W̃ (m)

W̃ ′(m)
−

∫ m−x

0
W̃ (z) dz, h̃m(m−) = W̃ (m)

β̃W̃ ′(m)
.(22)

The results can be deduced indirectly from similar formulas from Pistorius (2004)
[22] or Kyprianou (2014) [12]. Nevertheless, in the Poisson case, our proofs are
very elementary and do not require excursion theory as in [12, 22], only elementary
differential calculus.

5. Optimality of the CUSUM stopping rule. Since the CUSUM process de-
pends on the value of ρ, we reintroduce the distinction between ρ > 1 associated
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with the process V and the performance functions hm and h̃m, and ρ < 1 associ-
ated with the process Y and the performance functions gm and g̃m. To solve the
optimality problem with false alarm constraint E(NT ) ≥ π , we can limit ourselves
to stopping times that satisfy the false alarm constraint with equality. Therefore,
the aim is to prove the minimal optimality of the CUSUM stopping times τV

m and
τY
m with false alarm constraint E(NτV

m
) = hm(0) [resp., E(NτV

m
) = gm(0)], that is,

to show that for any stopping time T satisfying the false alarm constraint, the cri-
terion

(23) C̃(T ) = sup
θ∈[0,∞]

ess sup
ω

̃T
θ , with ̃T

θ = Ẽ
(
(NT − Nθ)

+|Fθ

)
is lower-bounded by h̃m(0) when ρ > 1 and by g̃m(0) when ρ < 1.

5.1. Verification of the false alarm constraint for the CUSUM strategies. The
first step is to verify that the previous inequalities are satisfied by the stopping
times τV

m or τY
m . This is easily done by the martingale properties established in

Propositions 2 and 3 and the fact that the functions h̃m and g̃m are decreasing. The
main consequence is that the conditional criteria are deterministic functions of the
reflected processes for t ≤ τV

m or t ≤ τY
m ,

̃
τV
m

t = Ẽ

(∫ τV
m

t
dNs

∣∣∣Ft

)
= h̃m(Vt ) ≤ h̃m(0), and

̃
τY
m

t = Ẽ

(∫ τY
m

t
dNs

∣∣∣Ft

)
= g̃m(Yt ) ≤ g̃m(0).

The ess sup in t of the two criteria is attained at t = 0 (worst case) and equal to
h̃m(0) [resp., g̃m(0)]. That is, starting from 0,

(24) ess sup
t

̃
τV
m

t = h̃m(0), and ess sup
t

̃
τY
m

t = g̃m(0).

Here, h̃m(0) or g̃m(0) are indeed the CUSUM bounds of these strategies with false
alarm constraints hm(0) or gm(0).

5.2. Modification of the CUSUM criterion. Showing the optimality of the
CUSUM strategies is a more difficult task. The first step is to define a new crite-
rion allowing us to work under the same probability measure P. This idea is in the
same vein as Shiryaev [26] and Moustakides [17]. But given that our criterion is
based on an integration with respect to the pure jump process dNt in place of the
Lebesgue measure as in the cited works, we have to justify the form of the new
criteria. A useful tool is a formula for integration by parts under the probability P̃.

PROPOSITION 6. Consider the conditional criterion ̃T
t := Ẽ(

∫ T
t dNs |Ft ) as-

sumed to be bounded by a constant C̃(T ) as in the Lorden criterion (5). The fol-
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lowing lower-bounds hold:

for ρ > 1, ρE

[∫ T

t
ρVs− dNs

∣∣∣Ft

]
≤ C̃(T )E

(
ρVT |Ft

)
,

for ρ < 1, ρE

[∫ T

t
ρ̃Ys− dNs

∣∣∣Ft

]
≤ C̃(T )E

(
ρ̃YT |Ft

)
.

PROOF. We start with calculations under the probability P̃ and take the prim-
itive of the conditional criterion ̃T

t = Ẽ(
∫ T
t dNu|Ft ) with respect to the nonde-

creasing process ρZ̄ , equal to ρX̄ if ρ > 1 or ρ−Ū = ρ̃Ū if ρ < 1. The first one
is continuous, the second one is the exponential of a pure jump process. In what
follows, we use the notation ρZ̄ to refer to the nondecreasing power to one of
these max processes. Then Ẽ[∫ T

t ̃T
α dρZ̄α |Ft ] = Ẽ[∫ T

t (
∫
(α,T ] dNu)dρZ̄α |Ft ], and

by integration by parts, Ẽ[∫ T
t ̃T

α dρZ̄α |Ft ] = Ẽ[∫ T
t dNu(ρ

Z̄u− − ρZ̄t )|Ft ].
Using the fact that C̃(T ) is an upper bound for ̃T

t , we obtain the series of
inequalities:

C̃(T )Ẽ
[
ρZ̄T |Ft

] ≥ Ẽ

[∫ T

t
dNuρ

Z̄u−
∣∣∣Ft

]
+

(
C̃(T ) − Ẽ

[∫ T

t
dNu

∣∣∣Ft

])
ρZ̄t

≥ Ẽ

[∫ T

t
dNuρ

Z̄u−
∣∣∣Ft

]
.

Then, since ρU
t is the martingale density of P̃ with respect to P, we can now

make the comparison under the probability measure P, C̃(T )E[ρUT +Z̄T |Ft ] ≥
E[∫ T

t dNuρ
Uu+Z̄u−|Ft ].

We can be more explicit about these inequalities since the process U + Z̄ is one
of the reflected processes V or −Y . First, using the process V and the continuity
of X̄, the inequality becomes

C̃(T )E
[
ρVT |Ft

] ≥ E

[∫ T

t
dNuρ

Vu

∣∣∣Ft

]
= ρE

[∫ T

t
dNuρ

Vu−
∣∣∣Ft

]
.

For the process Y = Ū −U , we have to be careful with respect to the noncontinuity
of Ū , so that Ut + Z̄t− = Ut − Ūt− = −Yt− + Ut − Ut−. Then

C̃(T )E
[
ρ−YT |Ft

] ≥ E

[∫ T

t
dNuρ

1−Yu−
∣∣∣Ft

]
= ρE

[∫ T

t
dNuρ̃

Yu−
∣∣∣Ft

]
.

This last formulation shows the symmetry found between the cases (ρ > 1) and
(ρ < 1). �

5.3. Optimality for a decline in intensity. Let us reconsider the optimality of
the CUSUM stopping time τm in the class of stopping times with finite CUSUM per-
formance, satisfying the false alarm constraint, that is, E(Nτm) ≤ E(NT ) < +∞.
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Given that the criterion is dependent on the jump process N , we have to consider
separately the cases ρ < 1 and ρ > 1. In the case of a decline in intensity, that is,
ρ < 1, it is sufficient to prove that, for a process Y starting from 0,

(25) ρE

(∫ T

0
ρ̃Ys− dNs

)
≥ g̃m(0)E

(
ρ̃YT

)
, given E(NT ) = E(NτY

m
) = gm(0).

Propositions 2 and 3 provide useful tools to reformulate these inequalities in
a more tractable form, based on the processes N

m,Y
t = ∫ t

0 1[0,m)(Ys−) dNs and

N
m,Y,ρ̃
t = ∫ t

0 ρ̃Ys− dNm
s . Using the continuity of functions gm and g̃m, and the mar-

tingale properties established in Propositions 2 and 3, we know that E(NT ) =
E(gm(YT ) + N

m,Y
T ) = gm(0) and E(ρN

m,Y,ρ̃
t + ρ̃Yt (g̃m(0) − g̃m(Yt ))) = 0. So, as

in Poor and Hadjiliadis (2009) [24], page 157, the inequality (25) is equivalent to

E

(∫ T

0
ρρ̃Ys−1[m,∞)(Ys−) dNs − ρ̃YT g̃m(YT )

)
≥ 0,

(26)

given E

(∫ T

0
1[m,∞)(Ys−) dNs − gm(YT )

)
= 0.

Thus, the optimality of the CUSUM rule is easy to prove.

THEOREM 7 (Optimality result for a decline in intensity). Assume ρ < 1, and
consider the CUSUM process Y . Let T be a stopping time with finite CUSUM perfor-
mance, and false alarm constraint E(NτY

m
) = E(NT ) < +∞:

(i) g̃m(0) is a lower bound for the criterion

(27) ρE

(∫ T

0
ρ̃Ys− dNs

)
≥ g̃m(0)E

(
ρ̃YT

)
, given E(NT ) = E(NτY

m
) = gm(0).

(ii) τY
m is an optimal detection rule for the problem (7) under the false alarm

constraint E(NT ) = E(NτY
m
) = gm(0).

PROOF. (i) The CUSUM process is the process Y , with CUSUM stopping time
τY
m (τm in short). We have seen that the inequality (27) is equivalent to the inequal-

ity (26). Since E(
∫ T

0 1(m,∞)(Ys−) dNs − gm(YT )) = 0, the idea is to control the
term ρρ̃Ys−1[m,∞)(Ys−) by ρ̃m1[m,∞)(Ys−), since the difference is still nonnega-
tive (ρ̃ > 1).

Thus, the inequality (26) will be proved if we show that ρρ̃mgm(YT ) −
ρ̃YT g̃m(YT ) is nonnegative in expectation. Let us study the function ψ(y) =
ρ̃m−ygm(y) − ρ̃g̃m(y), equal to 0 when y ≥ m, using the description of the
functions gm and g̃m given in equations (19)–(22) in terms of scale functions.
Recall that gm(y) = ∫ m

y W(z) dz, g̃m(y) = ∫ m
y W̃ (z) dz and W̃ (z) = ρρxW(x).
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The derivative ψ ′(y) is negative since A(y) = − log(ρ̃)ρ̃(m−y)gm(y) is negative,
ρ̃m > 1, and

ψ ′(y) − A(y) = −ρ̃(m−y)W(y) + ρ̃W̃ (y) = −ρ̃(m−y)W(y) + ρ̃−yW(y)

= ρ̃−yW(y)
(
1 − ρ̃m)

.

Therefore, ψ ′(y) is negative and ψ(y) is decreasing, null at y = m and then non-
negative. Thus, the lower bound is proved.

(ii) We have seen in Proposition 6 that the lower bound is an equality for τY
m .

Thus, optimality is proved. �

5.4. Resolution of the conjecture on CUSUM rule optimality for a rising intensity.
In the case of rising intensity (ρ > 1), it is sufficient to prove that, for V starting
from 0,

(28) E

(∫ T

0
ρVs dNs

)
≥ h̃m(0)E

(
ρVT

)
, when E(NT ) = E(NτV

m
) = hm(0).

Unlike the case ρ < 1, the functions hm and h̃m are not continuous at x = m.
Therefore, from Propositions 2 and 3, one must take into account additional terms
as follows:⎧⎪⎨⎪⎩

E(NT ) = hm(0) = E
(
Nm

T + hm(VT ) − hm(m−)J
d,m
T

)
,

E

(∫ T

0
ρVs dNm,V

s − h̃m(0)ρVT

)
= E

(
h̃m(m−)ρmJ

d,m
T − ρVT h̃m(VT )

)
.

Thus, we have to show that, for ρ > 1,

(29)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E

(∫ T

0
ρVs 1[m,∞)(Vs−) dNs + h̃m(m−)ρmJ

d,m
T − ρVT h̃m(VT )

)
≥ 0,

when E

(∫ T

0
1(m,∞)(Vs−) dNs + hm(m−)J

d,m
T − hm(VT )

)
= 0.

These equations differ from equation (26) by the terms in J d,m on which we have
little information. The idea is to drop these additional terms by using an appropriate
linear combination of these two equations, and to reduce the problem to showing
that for ρ > 1:

E

(∫ T

0

(
ρVs − h̃m(m−)

hm(m−)
ρm

)
1[m,∞)(Vs−) dNs

+ h̃m(m−)

hm(m−)
ρmhm(VT ) − ρVT h̃m(VT )

)
≥ 0.

(30)

Condition (30) is the corrected version of equation (6.135) in Poor and Hadjiliadis
(2009) [23], page 157, in which the additional jump term has not been taken into
account. The fact that the correction factor ωm = h̃m(m−)/hm(m−) is smaller
than 1 (see Corollary 4) makes it more complicated to obtain the desired inequality.
As a by-product, we solve the conjecture concerning the Poisson case.
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THEOREM 8 (Optimality result for a proportional rise in stochastic intensity).
Assume ρ > 1, and consider the CUSUM process V . Let T be a stopping time with
finite CUSUM performance, and false alarm constraint E(NτV

m
) = E(NT ) = hm(0):

(i) h̃m(0) is a lower-bound for the criterion

(31) E

(∫ T

0
ρVs dNs

)
≥ h̃m(0)E

(
ρVT

)
, given E(NT ) = E(NτV

m
) = hm(0).

(ii) τV
m is an optimal detection time for the false alarm constraint E(NT ) = hm(0).

PROOF. For simplicity, we set ωm = h̃m(m−)/hm(m−). Then we have to
show that

(32) E

(∫ T

0

(
ρVs −ωmρm)

1[m,∞)(Vs−) dNs +ωmρmhm(VT )−ρVT h̃m(VT )

)
≥ 0.

(i) The first term of the inequality is nonnegative, since from Corollary 4,
ωm ≤ 1. Recall that km(x) = hm(m − x) and k̃m(x) = h̃m(m − x). The sign of
second term, null when VT ≥ m, and rewritten as ρVT (ωmρm−VT km(m − VT ) −
k̃m(m − VT )), depends on the properties of the continuous function φm de-
fined as φm(z) = ωmρzkm(z) − k̃m(z). The proof relies on the identity k̃

′
m(x) =

ωmρxk′
m(x), that we shall now prove.

(a) We start by showing that ωm = h̃m(m−)/hm(m−) = ρ − (ρ − 1)h̃m(m−).
This property is a simple consequence of the sequence of equalities

β̃ = β/ρ, β̃h̃m(m−) = W̃ (m)

W̃ ′(m)
, W̃ (m) = ρρmW(m).

Next, using the logarithmic derivative of W̃ (x), we obtain

1

β̃h̃m(m−)
= W̃ ′(m)

W̃ (m)
= lnρ + W ′(m)

W(m)
= lnρ + 1

βhm(m−)
= ρ − 1

β
+ 1

βhm(m−)
.

(b) There is no difficulty in studying the derivative of km(x) = βhm(m−) ×
W(x) − W(x) and to show that W(x) + k′

m(x) = βhm(m−)W ′(x). Similarly,
the same relationship holds true for the tilded functions and their derivatives
W̃ (x) + k̃

′
m(x) = β̃h̃m(m−)W̃ ′(x). The link with hm is deduced from the rela-

tionship W̃ (x) = ρρxW(x) as follows:

k̃
′
m(x) = βh̃m(m−)ρxW ′(x) + ρxW(x)

(
β log(ρ)h̃m(m−) − ρ

)
= ωmρxβhm(m−)W ′(x) + ρxW(x)

(
(ρ − 1)h̃m(m−) − ρ

)
= ωmρxk′

m(x) + ρxW(x)
(
ωm + (ρ − 1)h̃m(m−) − ρ

) = ωmρxk′
m(x).

(c) We are now able to study the sign of φm(x) = ωmρxkm(x)− k̃m(x), since its
derivative is

φ′
m(x) = ωm log(ρ)ρxkm(x) + ρxωmk′

m(x) − k̃
′
m(x) = ωm log(ρ)ρxkm(x).
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Consequently, the function φm(m − z) is positive, decreasing on [0,m] and still
convex. The lower bound is established.

(ii) We have seen in Proposition 6 that the lower bound is an equality for τV
m .

The optimality is proved. �

REMARK 9. These theorems give the infimum of the worst-case mean num-
ber of jumps until detection, that is, supθ∈[0,∞] ess supωẼ[(NT − Nθ)

+|Fθ ] for a
class of stopping times with preassigned false alarm rate E(NT ) ≥ π . The bounds
depend on whether an increase or decrease in intensity is being investigated. As
observed by Basseville and Nikiforov [4], this result is important not only for the
CUSUM algorithm, but in general, since in some sense, these lower bounds play
the same role in the change detection theory as the Cramer–Rao lower bound in
estimation theory.

6. Numerical illustrations. In this section, we provide an illustration of the
performance of the CUSUM procedure. Recall that this only depends on the per-
formance functions hm, h̃m, gm and g̃m, given in equations (19)–(22) in terms of
the scale functions, and their primitive. Therefore, we can give a closed formula
for the scale function and its primitive. For β > 1, recall from Section 4.1 that the
scale function is given as W(x) = P(Sν ≤ x)/(β − 1):

(i) The r.v. ν has a geometric distribution with parameter 1/β , that is,
P(ν = n) = (1 − (1/β))β−n, and Sn = ∑n

i=1 Ui is the sum of n r.v. Ui being
i.i.d. and uniformly distributed on (0,1). The density p∗n

u of Sn is known as the
Irwin–Hall density [11], equal to 0 when x ≥ j , and to

(33) p∗n
u (x) = 1

(n − 1)!
�x�∑
k=0

(−1)k

(
n

k

)
(x − k)n−1, when 0 < x < j.

Therefore, the r.v. Sν = ∑ν
i=0 Ui has a Dirac mass at 0 with probability 1 − (1/β),

and a density distribution p∗ν
u (x) = (1 − (1/β))

∑∞
j=1 β−jp

∗j
u (x).

(ii) Integrating p∗ν
u allows us to derive the cumulative distribution, and thus the

scale function W (for β > 1) as follows:

(34) W(x) = 1

β

�x�∑
k=0

(−1)k

k!
(
(x − k)/β

)k exp
(
(x − k)/β

)
.

Similarly, using elementary calculations and noting that (−1)k

k!
∫ x

0 ykey dy =
ex ∑k

j=0
(−x)j

j ! − 1, we can derive the closed form of the primitive W(x) =∫ x
0 W(y)dy as follows:

(35) W(x) =
�x�∑
k=0

(
e(x−k)/β

(
k∑

i=0

(−1)j

j !
(
(x − k)/β

)j)
− 1

)
.
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FIG. 3. Performance of the CUSUM as a function of the parameter ρ with m = 5.5.

In Figure 3, we depict the scale functions in terms of ρ for β > 1 and β < 1. We
set the parameters β respectively equal to 1.5 and 0.5. When β < 1, one should
permute the role of W and W̃ in order to use equations (34) and (35), as W is no
longer a cumulative distribution function. Thus, to compute the scale function W ,
we first compute W̃ using (35) to characterize P̃(Sν̃ ≤ x) with β̃ = β(ρ)/ρ, and
then write W(x) = ρ̃ρ̃xW̃ (x).

(iii) In Figure 3, for a fixed threshold level m = 5.5, we show the performance
of the CUSUM procedure for different values of ρ, both for a rise and decline of the
intensity. This plot was produced using the series representation of W and W̃ and
the performance functions’ closed forms in equations (19)–(22). Since intensities
are chosen to be constant (Poisson case), this represents the average delay until
detection as well as the false alarm constraint. We observe that the detection is
quicker as ρ moves off the critical value 1. Moreover, as noted in Section 5, we
can see that the functions hm and g̃m have similar behavior. This is also the case
for h̃m and gm. For ρ > 1, when either m or ρ becomes too large, some numerical
instability may arise in the numerical calculation of h̃m(0). This is mainly due to
the particular series representation of the scale function W , where we are summing
alternating individual terms that increase quickly in absolute value, in the case of
h̃m(0). This phenomenon has also been observed in sequential hypotheses tests by
DeLucia and Poor [7] and in ruin theory by Picard and Lefèvre [21] and Rullière
and Loisel [25], where the scale function W also plays a central role. This insta-
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bility does not occur for gm. This is one more difference between the cases ρ < 1
and ρ > 1.

7. Conclusion. Initially motivated by a problem of quickest detection of a
change in certain longevity patterns, we have considered and solved the exact op-
timality of the minimax robust detection of a disorder time in the rate of doubly
stochastic Poisson processes, with a self-contained presentation. In this Lorden-
type context, the CUSUM stopping rule is shown to be optimal, both for an increase
or decrease in intensity after the change. Given the abundant literature on sequen-
tial testing and quickest detection, it may be surprising that this classical problem
has not been solved earlier. We believe that this is due to the difference between
the increasing and decreasing cases, the former featuring noncontinuous perfor-
mance functions, and requiring the use of a discontinuous local time. As scale
functions appear in the proof, one may wonder if it is possible to extend this result
to a broader class of Lévy processes. This is left for further research, along with
a detailed analysis of the use of this detection strategy for insurance data sets, and
comparison with other detection strategies.

APPENDIX: PROOF OF PROPOSITION 1

(i) Properties of the process V .
(a) We have seen that the process X̄ad

t (Z0) is continuous in time, and only in-
creases when Vt = 0. To show (9), we apply Itô’s formula to the nonnegative pro-
cess Vt and the continuous function ε �→ x1+ε , so that dV 1+ε

t = ((Vt− + 1)1+ε −
V 1+ε

t− ) dNt −(1+ε)V ε
t (β d�t −dX̄ad

t ). The continuous part reduces to −(1+ε)×
V ε

t (βd�t), since dX̄ad
t only increases when V = 0. Let ε go to 0, and observe that

V ε
t goes to 1{Vt>0}. The equation then becomes dVt = dNt − 1{Vt>0}β d�t . Com-

paring this with the definition of V , we obtain that dX̄ad
t = β1{Vt=0} d�t .

(b) If V and V ′ are two nonnegative solutions starting from x, the differ-
ence is a differentiable process, and we have d(Vt − V ′

t )
+ = 1{Vt>V ′

t }(1{Vt>0} −
1{V ′

t >0})(−β)d�t = 1{Vt>0,V ′
t =0}(−β)d�t . The process (Vt − V ′

t )
+ starting from

0 is nonnegative and nonincreasing, so the null process is also. Inverting the roles
of V and V ′, we obtain that Vt ≡ V ′

t , and thus uniqueness.
(ii) Properties of the process Y .
(a) The previous study of the jumps of Ūad

t immediately provides the differen-
tial form dŪad

t = 1{Yt=0}(1 − Yt−) dNt in (10). Given the definition of Yt (Z0) =
Xt(Z0)+ Ūad

t (Z0), we only have to justify that the jumps of Y are function of Yt−
only, and not of Yt . Observe that at the time of a jump, δYt− = −1 except when in
addition Yt = Yt− − 1 = 0. Thus, in terms of the function j (y) = y ∧ 1, we have
that j (Yt−) = 1 if and only if Yt �= 0, which is the property required to complete
the proof of (10).

(b) If Y and Y ′ are two nonnegative solutions starting from x, the difference
Yt −Y ′

t is a pure jump process, starting from 0, such that d(Yt −Y ′
t ) = −(j (Yt−)−
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j (Y ′
t−)) dNt . Let T1 be the time of the first jump of N . On the interval [0, T1],

Yt− −Y ′
t− = 0, and j (Yt )− j (Y ′

t ) = 0. Then, at T1, the jump of the difference is 0,
that is, YT1 − Y ′

T1
= 0. Using the same argument between successive jump times

of N , we see that the difference process Yt − Y ′
t is still equal to 0.
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