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THE L2-CUTOFFS FOR REVERSIBLE MARKOV CHAINS

BY GUAN-YU CHEN1, JUI-MING HSU AND YUAN-CHUNG SHEU2

National Chiao Tung University

In this article, we considers reversible Markov chains of which L2-
distances can be expressed in terms of Laplace transforms. The cutoff of
Laplace transforms was first discussed by Chen and Saloff-Coste in [J. Funct.
Anal. 258 (2010) 2246–2315], while we provide here a completely different
pathway to analyze the L2-distance. Consequently, we obtain several con-
siderably simplified criteria and this allows us to proceed advanced theoret-
ical studies, including the comparison of cutoffs between discrete time lazy
chains and continuous time chains. For an illustration, we consider product
chains, a rather complicated model which could be involved to analyze us-
ing the method in [J. Funct. Anal. 258 (2010) 2246–2315], and derive the
equivalence of their L2-cutoffs.

1. Introduction. Let S be a finite set, K be a stochastic matrix indexed by
S and π be a probability on S . We write the triple (S,K,π) for an irreducible
discrete time Markov chain on S with transition matrix K and stationary distribu-
tion π . Concerning the continuous time case, we write (S,L,π) for an irreducible
continuous time Markov chain on S with infinitesimal generator L and stationary
distribution π . By setting Ht = etL, it is well known that Ht(x, ·) converges to π

for all x ∈ S . If K is aperiodic, then Kn(x, ·) converges to π for all x ∈ S .
To study the convergence of Markov chains, we introduce the L2-distance as

follows. For irreducible Markov chains (S,K,π) and (S,L,π) with initial distri-
bution μ, we briefly write them as (μ,S,K,π) and (μ,S,L,π) and define their
L2-distances respectively by

d2(μ,m) = ∥∥μKm/π − 1
∥∥
L2(π) =

(∑
y∈S

∣∣∣∣μKm(y)

π(y)
− 1

∣∣∣∣2π(y)

)1/2

and

d2(μ, t) = ‖μHt/π − 1‖L2(π) =
(∑

y∈S

∣∣∣∣μHt(y)

π(y)
− 1

∣∣∣∣2π(y)

)1/2
.

Received June 2016; revised November 2016.
1Partially supported by MOST grant MOST 104-2115-M-009-013-MY3 and by NCTS, Taiwan.
2Supported by MOST grant MOST 104-2115-M-009-007 and NCTS, Taiwan.
MSC2010 subject classifications. 60J10, 60J27.
Key words and phrases. Product chains, cutoff phenomenon.

2305

http://www.imstat.org/aap/
http://dx.doi.org/10.1214/16-AAP1260
http://www.imstat.org
http://www.ams.org/mathscinet/msc/msc2010.html


2306 G.-Y. CHEN, J.-M. HSU AND Y.-C. SHEU

Accordingly, the L2-mixing time is defined by

T2(μ, ε) = min
{
t ≥ 0|d2(μ, t) ≤ ε

}
,

where t refers to nonnegative integers for discrete time chains and to nonnegative
reals for continuous time chains.

For a reversible transition matrix K with eigenvalues β0 = 1, β1, . . . , β|S|−1 and
L2(π)-orthonormal right eigenvectors φ0 = 1, . . . , φ|S|−1, the L2-distance can be
expressed as

(1.1) d2(μ,m)2 =∑
i>0

∣∣μ(φi)
∣∣2β2m

i ,

where 1 denotes the constant function with value 1 and μ(φi) :=∑
x μ(x)φi(x).

Similarly, in the continuous time case, if L is reversible with eigenvalues
−λ0 = 0,−λ1, . . . ,−λ|S|−1 and L2(π)-orthonormal right eigenvectors φ0 =
1, . . . , φ|S|−1, then the L2-distances can be expressed as

(1.2) d2(μ, t)2 =∑
i>0

∣∣μ(φi)
∣∣2e−2tλi .

A proof of (1.1) and (1.2) is available in [13, 14]. Note that, for continuous time
chains, the L2-distance in (1.2) can be identified with a Lebesgue–Stieltjes integral
in the way that

(1.3) d2(μ, t)2 =
∫
(0,∞)

e−tλ dV (λ), ∀t ≥ 0,

where V is a nondecreasing function defined by

(1.4) V (λ) =
j−1∑
i=1

∣∣μ(φi)
∣∣2, if 2λj−1 ≤ λ < 2λj ,1 ≤ j ≤ |S|,

with the convention
∑0

i=1 := 0 and λ|S| := ∞ and λi’s are arranged in a nonde-
creasing order. In the same spirit, the L2-distance of discrete time chains in (1.1)
can be also written in the form of (1.3) with nonnegative integer t when βi ’s are
rearranged in the order of |βi | ≥ |βi+1| and, in (1.4), λi is replaced by − log |βi |
along with the convention − log 0 := ∞ and − log |β|S|| := ∞. In fact, for the
discrete time case, the definition of V in (1.4) is only valid for 0 ≤ j ≤ j0 + 1,
where j0 is the largest j such that |βj | > 0. It is worthwhile to remark that, for
reversible Markov processes with initial distribution μ and stationary distribution
π , the L2-distance is still of the form in (1.3) when the density dμ/dπ has a finite
L2(π)-norm. See Section 4 of [8] for more details in this aspect. Throughout this
article, we focus on reversible Markov chains with finite states, while most results
are valid in a more general setting.

The cutoff phenomenon was introduced by Aldous and Diaconis in 1980s (see,
e.g., [1–3, 11, 12]) for the purpose of capturing a phase transit arouse in the evo-
lution of Markov chains. To see a definition of cutoffs in the L2-distance, consider
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a family of irreducible discrete time Markov chains F = (μn,Sn,Kn,πn)
∞
n=1. For

n ≥ 1, let dn,2 be the L2-distance of the nth chains in F and Tn,2 be the corre-
sponding L2-mixing time. The family F is said to present a L2-cutoff if there is a
sequence (tn)

∞
n=1 such that

(1.5) lim
n→∞dn,2

(
μn,

⌈
(1 + a)tn

⌉)= 0, lim
n→∞dn,2

(
μn,

⌊
(1 − a)tn

⌋)= ∞,

for all a ∈ (0,1), where 	u
 := min{z ∈ Z|z ≥ u} and �u� := max{z ∈ Z|z ≤ u}.
In the continuous time case, the L2-cutoff is defined in the same way except the
removal of 	·
, �·� and, in either case, the sequence (tn)

∞
n=1, or briefly tn, is called a

L2-cutoff time. It has been developed in [7] that the cutoff is closely related to the
mixing time and the result says that, in the discrete time case, if Tn,2(μn, ε0) → ∞
for some ε0 > 0, then F has a L2-cutoff if and only if

(1.6) lim
n→∞

Tn,2(μn, ε)

Tn,2(μn, δ)
= 1, ∀ε, δ ∈ (0,∞).

For the exception that a L2-cutoff appears with bounded L2-mixing time, the L2-
distance would drop from infinity to zero within one or two steps. As the time
is integer-valued, the limit in (1.6) could fail in this instance. For the continu-
ous time case, the L2-cutoff is also equivalent to (1.6) without the assumption of
Tn,2(μn, ε0) → ∞. As dn,2(μn, ·) is nonincreasing, one can see from (1.5) that
Tn,2(μn, ε) is an eligible L2-cutoff time.

In an ARCC workshop in 2004, Peres proposed a heuristic idea to examine the
existence of cutoffs, which said

(1.7) Cutoff exists ⇔ Mixing time × Spectral gap → ∞,

where the spectral gap refers to the smallest nonzero eigenvalue of −L in the
continuous time case and to the logarithm of the reciprocal of the second largest
singular value of K in the discrete time case. Such a criterion has been proved to
work on a large class of Markov chains but, unfortunately, it could fail in general.
In [10], Disconis and Saloff-Coste proved this conjecture for birth and death chains
in separation. In [7], Chen and Saloff-Coste declared the accuracy of (1.7) for
reversible chains in the maximal Lp-distance. In [6], Basu et al. clarified (1.7) for
lazy random walks on trees in the maximal total variation. In [8], Chen and Saloff-
Coste considered reversible chains with specified initial distributions and produced
a criterion similar to (1.7) to identify the L2-cutoff. However, counterexamples to
(1.7) were respectively observed by Aldous and Pak, and we refer the readers to
[7], Section 6, and [13], Chapter 18, for illustrations of their ideas.

The object of this article is to provide a viewpoint somewhat different from what
was introduced in [8] so that further developments, say comparisons of cutoffs, can
work and rather complicated models, say product chains, can be analyzed. In the
following, we illustrate one of the main results in this article.
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THEOREM 1.1. Let F = (μn,Sn,Ln,πn)
∞
n=1 be a family of irreducible and

reversible continuous time finite Markov chains. For n ≥ 1, let λn,0 = 0 < λn,1 ≤
· · · ≤ λn,|Sn|−1 be eigenvalues of −Ln with L2(πn)-orthonormal right eigenvectors
φn,0 = 1, . . . , φn,|Sn|−1. For c > 0, set

(1.8) jn(c) := min

{
j ≥ 1

∣∣∣ j∑
i=1

∣∣μn(φn,i)
∣∣2 > c

}
and

(1.9) τn(c) := max
j≥jn(c)

{
log(1 +∑j

i=1 |μn(φn,i)|2)
2λn,j

}
.

Suppose that πn(|μn/πn|2) → ∞. Then the following are equivalent:

(1) F has a L2-cutoff.
(2) There is δ > 0 such that

lim
n→∞Tn,2(μn, δ)λn,jn(c) = ∞, ∀c > 0.

(3) For all c > 0,

lim
n→∞ τn(c)λn,jn(c) = ∞.

Moreover, if (2) holds, then∣∣Tn,2(μn, δ) − Tn,2(μn, ε)
∣∣= O(1/λn,jn(c)), ∀ε, δ, c ∈ (0,∞),

where two sequences of positive reals, an and bn, satisfy an = O(bn) if an/bn is
bounded. If (3) holds, then∣∣Tn,2(μn, ε) − τn(c)

∣∣= O
(√

τn(c)/λn,jn(c)

)
, ∀ε, c ∈ (0,∞).

Concerning Theorem 1.1(2), as λn,jn(c) is nondecreasing in c, it suffices to focus
on the limit with small enough positive c. Such an observation is also applicable to
Theorem 1.1(3) but the reasoning is not obvious to see since τn(c) is nonincreas-
ing in c. The reader is referred to Lemma 2.5 for details of the above discussions.
On the other hand, it is worthwhile to note that λn,jn(c) is not necessarily the spec-
tral gap in (1.7). Following this fact, one may create a counterexample to (1.7) in
the way that a L2-cutoff exists but the product in (1.7) is bounded. For advanced
profiles of cutoffs, the last two bounds in Theorem 1.1 say that if a L2-mixing
time is selected as the L2-cutoff time, then the cutoff window is at most 1/λn,jn(c);
if τn(c) is designated as the L2-cutoff time, then the cutoff window is at most√

τn(c)/λn,jn(c), which is of order bigger than 1/λn,jn(c). We refer the reader to [7,
8] for more discussions on cutoff windows.

Compared with Theorems 5.1 and 5.3 in [8], Theorem 1.1 looks more familiar
to (1.7), though the spectral gap is updated to a modified version. In addition to
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the right-hand side of (1.7), there is in fact an auxiliary condition for the L2-cutoff
in [8] and this makes it difficult to do any further theoretical development. The
tradeoff of removing the side condition in [8] is to strengthen the requirement in
(1.7) up to the extent of Theorem 1.1, but the benefit from the simplification of cut-
off criteria leads to comparisons between discrete time lazy chains and continuous
time chains as shown in Theorem 3.5 and Corollary 3.6. Naively, one may expect
to refine Theorem 1.1 so that, for some c > 0, the limits in conditions (2) and (3)
are sufficient for an L2-cutoff. However, there are indeed counterexamples against
this conjecture and we demonstrate one in Example 4.1.

For another application of the general results, we consider products of Markov
chains (briefly, product chains) in Section 4. Concerning product chains, the hitting
time and spectral information are discussed in [4, 13, 14] and a detailed analysis
on the mixing time is made in [5]. In this article, we introduce Proposition 4.1
to reduce the complexity of spectral information and provide in Theorem 4.2 a
much simplified criterion on the judgement of L2-cutoff. Particularly, we study
products of two-state chains in a rather concrete setting and gather the results in
Theorems 4.3–4.4.

To see a practical issue related to product chains, let us consider a machinery
with a large number of components. Each component has two states and evolves
independently in the way that, given the state is renewed, an exponential clock
is activated and the component changes to the other state when the clock rings.
Concerning the effect of some external force, we assume that each component
could speed up or slow down its evolution but still operates independently. The
question here is how (the existence of cutoffs) and when (the mixing time) this
machinery gets close to its stability. For convenience, we quantize this problem as
follows. For n ≥ 1, let

(1.10) Xn = {0,1}, Mn =
(−An An

Bn −Bn

)
, pn > 0,

which denote respectively the state space, the infinitesimal generator and the accel-
erating constant of the nth component. Concerning the irreducibility of chains, we
assume An,Bn ∈ (0,1) and, obviously, νn = (Bn,An)/(An + Bn) is the stationary
distribution of Mn. Let xn, 
n be positive integers and set

(1.11) Ln = q−1
n

xn+
n−1∑
i=xn

piIxn ⊗ · · · ⊗ Ii−1 ⊗ Mi ⊗ Ii+1 ⊗ · · · ⊗ Ixn+
n−1,

where qn = pxn +· · ·+pxn+
n−1, Ij ’s are 2-by-2 identity matrices and M ⊗M ′ de-
notes the tensor product of matrices M and M ′. Clearly, πn = νxn ×· · ·× νxn+
n−1

is the stationary distribution of Ln.
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THEOREM 1.2. Referring to (1.10)–(1.11), let G = (δ0,Sn,Ln,πn)
∞
n=1, where

Sn = {0,1}
n and δ0 is the Dirac delta function on the zero vector. Suppose that

An + Bn = A1 + B1, ∀n ≥ 1, 0 < inf
n≥1

An

Bn

≤ sup
n≥1

An

Bn

< ∞.

(1) If pi = eai with a > 0, then G has no L2-cutoff.
(2) If pi = exp{a[log(1 + i)]b} with a > 0 and b > 0, then

G has a L2-cutoff ⇔ min{xn, 
n} → ∞.

Further, if G has a L2-cutoff, then

(1.12) Tn,2(δ0, ε) = κn

2(A1 + B1)pxn

+ O

( √
κn

(A1 + B1)pxn

)
, ∀ε > 0,

where κn = min{(logxn − b log logxn), log
n}.
(3) If pi = [log(1 + i)]a with a > 0, then

G has a L2-cutoff ⇔
{

min{xn, 
n} → ∞ for a ≥ 1,


n → ∞ for 0 < a < 1.

Further, if a ≥ 1 and min{xn, 
n} → ∞, then (1.12) holds with κn = min{(logxn),

(log
n)}. If 0 < a < 1 and 
n → ∞, then (1.12) holds with κn = [log(1 +
min{xn, 
n})]a(log
n)

1−a .

Moreover, for Case (1), for Case (2) with min{xn, 
n} = O(1) and for Case (3)
with min{xn, 
n} = O(1), when a ≥ 1, and 
n = O(1), when 0 < a < 1, one has

Tn,2(δ0, ε) � p−1
xn

, ∀ε ∈ (0,B/
√

2),

where B = min{infn An, infn Bn}/(A1 + B1) and two sequences of positive reals,
an and bn, satisfy an � bn if an = O(bn) and bn = O(an).

Now, let us consider the specific case of pi = i + 1, xn = �nα� with α ∈ [0,1)

and 
n = n−xn+1 and, for simplicity, assume that A1 +B1 = 1 and 0 < infn An ≤
supn An < 1. Clearly, this is the case of Theorem 1.2(2) with a = b = 1. When α =
0, we are concerning the stability of components indexed from 1 to n and the result
says that no L2-cutoff exists and the L2-mixing time is bounded above and below
by universal positive constants. When α ∈ (0,1), we are concerning the stability
of components indexed from �nα� to n (a large proportion of the case α = 0)
and the result says that there is a L2-cutoff with cutoff time (α logn)/(2nα) that
converges to 0. It is interesting to see from the above discussion that the existence
of L2-cutoffs is sensitive at α = 0.

This paper is organized as follows. In Section 2, we develop the framework of
cutoffs for Laplace transforms in a different viewpoint from that in [8]. Compared
with the heuristics introduced in [8], the creation of Section 2 is more subtle and
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reveals more intrinsic profiles of cutoff phenomena. In Section 3, the theoretical
results in Section 2 are illustrated with reversible Markov chains and a comparison
of cutoffs is made between the discrete time lazy versions and the continuous time
chains. To see a practical application, we consider product chains in Section 4
and derive a series of criteria on cutoffs and formulas on cutoff times, while some
tricky techniques are addressed in Appendix B.

2. Cutoffs of Laplace transforms. As the L2-distances of reversible Markov
chains can be expressed as generalized Laplace transforms in (1.3), we provide, in
this section, a view point different from the framework in [8], which leads to an
improvement of the cutoff criterion in some aspect. For convenience, we limit the
usage of notation V to the class of all nondecreasing and right-continuous functions
V on (0,∞) satisfying

lim
λ→0+ V (λ) = 0, lim

λ→∞V (λ) < ∞.

Thereafter, for any two sequences of positive reals an and bn, we write an =
O(bn) if supn{an/bn} < ∞ and write an = o(bn) if an/bn → 0. In the case that
an = O(bn) and bn = O(an), we simply say an � bn. When an/bn → 1, we write
an ∼ bn. Concerning the maximum and minimum of two reals a and b, we write
a ∨ b = max{a, b} and a ∧ b = min{a, b}.

DEFINITION 2.1. Let V ∈ V :

(1) The Laplace transform of V is denoted by LV and defined to be the follow-
ing Lebesgue–Stieltjes integral

LV (t) :=
∫
(0,∞)

e−tλ dV (λ), ∀t ≥ 0.

(2) The mixing time of LV is denoted and defined by

TV (ε) := min
{
t ≥ 0|LV (t) ≤ ε

}
, ∀ε > 0.

Note that there is a one-to-one correspondence between V and the class of all
finite Borel measures on (0,∞). For convenience, when V ∈ V and E is a Borel
set in (0,∞), we write V (E) for the measurement of E under the measure induced
by V , which is the unique measure on (0,∞) satisfying V ((a, b]) = V (b) − V (a)

for all 0 < a < b < ∞. In particular, V ((0, b]) = V (b) for b > 0. Besides, it is
easy to see from the definition of LV that LV (0) = V ((0,∞)). As a result of the
Lebesgue dominated convergence theorem, LV is nonincreasing and continuous
on [0,∞) and vanishes at infinity.

LEMMA 2.1. For V ∈ V , LV is strictly decreasing on [0,∞) and

LV (t) = t

∫
(0,∞)

V (λ)e−tλ dλ, ∀t > 0.
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PROOF. The first part is obvious from the definition of LV . For the second
part, let t > 0. Since λ �→ e−tλ is continuous, the integration by parts implies that,
for 0 < a < b < ∞,∫

(a,b]
e−tλ dV (λ) = e−btV (b) − e−atV (a) + t

∫
(a,b]

V (λ)e−tλ dλ.

As V is a bounded function vanishing at 0, letting a → 0 and b → ∞ gives the
desired identity. �

In the following, we introduce the concept of cutoffs for Laplace transforms,
which should be regarded as a generalization of L2-cutoffs for reversible Markov
chains.

DEFINITION 2.2. Let (Vn)
∞
n=1 be a sequence in V and assume that

M := lim sup
n→∞

LVn(0) > 0.

The sequence (LVn)
∞
n=1 is said to present:

(1) a pre-cutoff if there exist a sequence tn > 0 and positive constants A < B

such that

lim
n→∞LVn(Btn) = 0, lim inf

n→∞ LVn(Atn) > 0.

(2) a cutoff if there is a sequence tn > 0 such that

lim
n→∞LVn(atn) =

{
0 ∀a > 1,

M ∀0 < a < 1.

In (2), tn is called a cutoff time.

REMARK 2.1. Note that a pre-cutoff is weaker than a cutoff but easy to be
examined.

REMARK 2.2. One may check from the definition of cutoffs that, when
(LVn)

∞
n=1 has a cutoff, a sequence of positive reals tn is a cutoff time if and only if

tn ∼ TVn(ε) for some ε > 0 and, further, either of them is equivalent to tn ∼ TVn(ε)

for all ε > 0. Consequently, if (LVn)
∞
n=1 has a cutoff, then TVn(ε) can be selected

as a cutoff time for any ε > 0.

The following theorem states the equivalence of pre-cutoffs and cutoffs, which
is not correct in general.

THEOREM 2.2. Let Vn ∈ V and assume that lim supnLVn(0) > 0. Then
(LVn)

∞
n=1 has a pre-cutoff if and only if (LVn)

∞
n=1 has a cutoff.
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To prove the above theorem, the following lemma is required.

LEMMA 2.3 ([8], Corollary 3.3). Let Vn ∈ V and assume that supnLVn(0) <

∞. For any sequence tn > 0, the following functions:

F(a) := lim sup
n→∞

LVn(atn), F (a) := lim inf
n→∞ LVn(atn)

are continuous on (0,∞). Further, if F(a) = 0 [resp., F(a) = 0] for some a > 0,
then F(a) = 0 [resp., F(a) = 0] for all a > 0.

REMARK 2.3. It is worthwhile to remark from Lemma 2.3 that, in Defini-
tion 2.2, LVn(0) → ∞ is necessary for the existence of cutoffs.

PROOF OF THEOREM 2.2. The direction from cutoffs to pre-cutoffs is easy
to see from the definition and we deal with the inverse direction in this proof. Let
M := lim supnLVn(0). Assume that (LVn)

∞
n=1 has a pre-cutoff and let tn, A, B be

as in Definition 2.2(1). Set α := min{1, lim infnLVn(Atn)} and sn := TVn(α/2). In
what follows, we show that (LVn)

∞
n=1 has a cutoff with cutoff time sn. From the

definition of sn and the fact limnLVn(Btn) = 0, one may choose N > 0 such that
Atn ≤ sn ≤ Btn for n ≥ N . For n ≥ 1, define

Wn(λ) =
∫
(0,λ]

e−snη dVn(η), ∀λ ∈ (0,∞).

Clearly, Wn ∈ V and dWn(λ) = e−snλ dVn(λ), where the latter implies LWn(asn) =
LVn((a + 1)sn) for a ≥ 0 and then

LWn(asn) ≤ LVn(Btn), ∀a ≥ B/A − 1, n ≥ N.

As a result, the above observation yields that

LWn(0) = LVn(sn) = α/2, ∀n ≥ N, lim sup
n→∞

LWn

(
(B/A − 1)sn

)= 0.

By Lemma 2.3, we achieve the result of limnLVn(bsn) = 0 for all b > 1.
To prove the desired cutoff, it remains to show that limnLVn(bsn) = ∞ for

b ∈ (0,1). Assume the inverse that there is b0 ∈ (0,1) and an increasing sequence
kn in N such that supnLVkn

(b0skn) < ∞. As before, we define

Un(λ) =
∫
(0,λ]

e−b0snη dVn(η), ∀λ ∈ (0,∞).

Observe that dUn(λ) = e−b0snλ dVn(λ). This implies LUn(asn) = LVn((a+b0)sn),
and thus,

sup
n≥1

LUkn
(0) < ∞, lim sup

n→∞
LUkn

(
(B/A − b0)skn

)≤ lim sup
n→∞

LVkn
(Btkn) = 0.

By Lemma 2.3, LUkn
(askn) → 0 for all a > 0, which contradicts the fact LUn((1 −

b0)sn) = α/2 > 0 for n ≥ N . This proves that (LVn)
∞
n=1 has a cutoff. �
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Next, we provide criteria to judge the existence of cutoffs and formulas to char-
acterize cutoff times. First of all, we need the following notation to state it. For
V ∈ V and c ∈ (0,LV (0)), set

λV (c) := inf
{
λ|V (λ) > c

}
, τV (c) := sup

λ≥λV (c)

{
log(1 + V (λ))

λ

}
.

The next theorem contains the key technique in this article that supports Theo-
rems 1.1, 3.2 and 3.3.

THEOREM 2.4. Consider a sequence (Vn)
∞
n=1 in V and assume that LVn(0) →

∞. The following statements are equivalent:

(1) (LVn)
∞
n=1 has a cutoff.

(2) For all ε > 0 and c > 0, TVn(ε)λVn(c) → ∞.
(3) There exists ε > 0 such that TVn(ε)λVn(c) → ∞ for all c > 0.
(4) For all c > 0, τVn(c)λVn(c) → ∞.
(5) For all c̃ > 0 and c > 0, τVn(c̃)λVn(c) → ∞.
(6) There is c̃ > 0 such that τVn(c̃)λVn(c) → ∞ for all c > 0.

In particular, if (LVn)
∞
n=1 has a cutoff, then τVn(c) is a cutoff time for any c > 0.

Furthermore, one has

(2.1)
∣∣TVn(ε) − TVn(δ)

∣∣= O
(
1/λVn(c)

)
, ∀ε, δ, c ∈ (0,∞),

and

(2.2)
∣∣TVn(ε) − τVn(c)

∣∣= O
(√

τVn(c)/λVn(c)
)
, ∀ε, c ∈ (0,∞).

REMARK 2.4. Based on the assumption of LVn(0) → ∞, there exists, for any
c > 0, a constant N such that λVn(c) is defined for n ≥ N .

REMARK 2.5. We would like to emphasize that, in Theorem 2.4, conditions
(3), (4) and (6) are useful in proving the existence of cutoffs, while conditions (2)
and (5) make the disproof of cutoffs easier.

Before proving Theorem 2.4, we would like to highlight the fact that, when
proving or disproving cutoffs with conditions (3) and (4), one should pay attention
to the corresponding limits with small c. This is given by the following lemma.

LEMMA 2.5. Let (Vn)
∞
n=1 be a sequence in V satisfying LVn(0) → ∞. For

c′ > c, one has

TVn(ε)λVn(c) → ∞ ⇒ TVn(ε)λVn

(
c′)→ ∞,

and

τVn(c)λVn(c) → ∞ ⇒ τVn

(
c′)λVn

(
c′)→ ∞.
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PROOF. The first part is a corollary of the observation that λVn(c1) ≤ λVn(c2)

for 0 < c1 < c2 < LVn(0). To see the second part, suppose τVn(c)λVn(c) → ∞. By
Lemma 2.6 (see the following), there is γn ≥ λVn(c) such that

τVn(c) = sup
λ≥λVn(c)

{
log(1 + Vn(λ))

λ

}
= log(1 + Vn(γn))

γn

.

This implies

Vn(γn) ≥ log
(
1 + Vn(γn)

)= τVn(c)γn ≥ τVn(c)λVn(c) → ∞.

Consequently, for any c′ > c, there is N = N(c′) such that τVn(c
′) = τVn(c) for

n ≥ N and this leads to τVn(c
′)λVn(c

′) ≥ τVn(c)λVn(c) → ∞. �

In the remaining of this section, we focus on proving Theorem 2.4 and, first,
create two lemmas and one proposition.

LEMMA 2.6. Fix V ∈ V and let F(λ) = λ−1 log(1 + V (λ)) for λ ∈ (0,∞).
Then F is right continuous with left limit and satisfying

lim
λ<c,λ→c

F (λ) ≤ lim
λ>c,λ→c

F (λ).

In particular, for c ∈ (0,LV (0)), there is γ ≥ λV (c) such that τV (c) = γ −1 log(1+
V (γ )).

PROOF. The right continuity and limiting behavior of F is obvious from its
definition. Next, we deal with the second part. Let c ∈ (0,LV (0)). Clearly, λV (c) ∈
(0,∞). By restricting the domain of F to [λV (c),∞), the function F is bounded
and vanishes at infinity. This implies that there is a bounded monotone sequence
un ∈ [λV (c),∞) such that F(un) → τV (c). If γ is the limit of un, then the first
part of this lemma implies τV (c) = limn F (un) ≤ F(γ ) ≤ τV (c) as desired. �

LEMMA 2.7. Let V ∈ V and ε, c, c1, c2 be constants in (0,LV (0)):

(1) LV (τV (c)) ≥ c/(1 + c) and, for s > 0,

LV

(
τV (c) + s

)≤ c + τV (c) + s

sesλV (c)
.

(2) LV (TV (ε)) = ε and, for r ≥ 0, s > 0 and c1 < c2,

LV

(
TV (ε) + r + s

)≤ c1 + c2e
−(TV (ε)+r+s)λV (c1) + ε(TV (ε) + r + s)

(TV (ε) + s)erλV (c2)
.

PROOF. The proof is a little lengthy and delegated to Appendix A. �
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PROPOSITION 2.8. Let V ∈ V , ε, c, c1, c2 be constants in (0,LV (0)) and
α = √

τV (c)λV (c). Then

(2.3)
(

α

α + A

)
TV

(
c + A + α

AeAα

)
≤ τV (c) ≤ TV

(
c

1 + c

)
, ∀A > 0,

and

(2.4) TV

(
c1 + c2e

−TV (ε)λV (c1) + 2εe−B)≤ TV (ε) + 2B

λV (c2)
, ∀B > 0.

In particular, one has

(2.5) τV (2δ) ≤ TV (δ) ≤ 6

δ2 τV

(
δ

2

)
, ∀0 < δ <

LV (0) ∧ 1

2
.

PROOF. (2.3) follows immediately from Lemma 2.7(1) with s = AτV (c)/α.
For (2.4), the replacement of s = r = B/λV (c2) in Lemma 2.7(2) yields

LV

(
TV (ε) + 2B/λV (c2)

)≤ c1 + c2e
−TV (ε)λV (c1) + 2εe−B,

which leads to the desired inequality.
Next, we prove (2.5). From the definitions of λV (c) and τV (c), it is easy to see

that α ≥ √
log(1 + c). As a result, when A = 1/[c√log(1 + c)], one has

1 + α/A

eαA
≤ 1 + α/A

1 + αA
≤ c[1 + c log(1 + c)]

1 + c
≤ c, ∀0 < c < LV (0) ∧ 1.

By (2.3), this implies

c log(1 + c)

c log(1 + c) + 1
TV (2c) ≤ τV (c) ≤ TV

(
c

1 + c

)
≤ TV (c/2).

Replacing c with δ/2 and 2δ in the first and second inequalities, we obtain

τV (2δ) ≤ TV (δ) ≤ δ log(1 + δ/2) + 2

δ log(1 + δ/2)
τV (δ/2) ≤ 6

δ2 τV (δ/2),

for 0 < δ < (LV (0) ∧ 1)/2, where the last inequality uses the fact of log(1 + u) ≥
u/(1 + u) for u > −1. �

PROOF OF THEOREM 2.4. We first show the equivalence of (1), (2) and (3).
Assume that (LVn)

∞
n=1 has a cutoff and let ε > 0 and c > 0. By Remark 2.2, TVn(ε)

can be a cutoff time and this implies

LVn

(
2TVn(ε)

)≥ ∫
(0,λVn(c)]

e−2TVn(ε)λ dVn(λ) ≥ ce−2TVn(ε)λVn(c).

Letting n → ∞ yields TVn(ε)λVn(c) → ∞. This proves (1) ⇒ (2), while (2) ⇒ (3)
is obvious.
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Next, we assume (3) and let ε > 0 be a constant such that TVn(ε)λVn(c) → ∞
for all c > 0. By Lemma 2.1, one has

LVn

(
aTVn(ε)

)= aTVn(ε)

∫
(0,∞)

Vn(λ)e−aTVn(ε)λ dλ, ∀a > 0.

This implies that, for a > 1,

LVn

(
aTVn(ε)

)≤ c + aTVn(ε)

∫
[λVn(c),∞)

Vn(λ)e−aTVn(ε)λ dλ

≤ c + ae(1−a)TVn(ε)λVn(c)TVn(ε)

∫
[λVn(c),∞)

Vn(λ)e−TVn(ε)λ dλ

≤ c + aεe(1−a)TVn(ε)λVn(c),

and, similarly, for a ∈ (0,1),

LVn

(
TVn(ε)

)≤ c + a−1e(a−1)TVn(ε)λVn(c)LVn

(
aTVn(ε)

)
.

Since LVn(0) → ∞, there is N > 0 such tat TVn(ε) > 0 for n ≥ N . This implies
LVn(TVn(ε)) = ε for n ≥ N and

LVn

(
aTVn(ε)

)≥ (ε − c)ae(1−a)TVn(ε)λVn(c), ∀a ∈ (0,1), n ≥ N.

As a consequence, we obtain that, for a > 1,

lim sup
n→∞

LVn

(
aTVn(ε)

)≤ lim sup
c→0

lim sup
n→∞

(
c + aεe(1−a)TVn(ε)λVn(c))= 0,

and, for a ∈ (0,1) and c ∈ (0, ε),

lim inf
n→∞ LVn

(
aTVn(ε)

)≥ lim inf
n→∞ (ε − c)ae(1−a)TVn(ε)λVn(c) = ∞.

This proves that (LVn)
∞
n=1 has a cutoff.

Now, we prove the equivalence of (1)–(6). First, consider (2) ⇒ (4) and set

(2.6) αn(c) =
√

τVn(c)λVn(c), ∀c > 0.

By applying the first inequality of (2.3) to Vn with A = αn(c), we obtain τVn(c) ≥
TVn(c+2)/2. Based on the assumption of (2), this implies τVn(c)λVn(c) ≥ TVn(c+
2)λVn(c)/2 → ∞, which proves (4). (5) ⇒ (6) is obvious, while (6) ⇒ (3) is given
by the second inequality of (2.3). To complete the proof of equivalence, it remains
to show that (4) ⇒ (5). Suppose that (4) holds and let c1, c2 be positive constants.
For convenience, we set Fn(λ) = λ−1 log(1 + Vn(λ)). Since LVn(0) → ∞, one
may select N > 0 such that c1 ∨ c2 < LVn(0) for n ≥ N . By Lemma 2.6, there are
γi,n ≥ λVn(ci) with i ∈ {1,2} such that

(2.7) τVn(ci) = Fn(γi,n) = sup
λ≥λVn(ci )

Fn(λ), ∀i = 1,2.
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The first identity in (2.7) implies

τVn(ci)λVn(ci) ≤ log
(
1 + Vn(γi,n)

)
, ∀n ≥ N,

and, by the assumption of (4), Vn(γi,n) → ∞ for i = 1,2. As a result, we may
refine N such that Vn(γ1,n) ∧ Vn(γ2,n) ≥ c1 ∨ c2 for n ≥ N . By (2.7), this implies

τVn(ci) = sup
{
Fn(λ)|λ ≥ λVn(c1 ∨ c2)

}
, ∀i ∈ {1,2}, n ≥ N,

and hence, τVn(c1) = τVn(c2) for n ≥ N . Consequently, we obtain that both
τVn(c1)λVn(c2) and τVn(c2)λVn(c1) tend to infinity, as desired in (5).

In the end, we derive a cutoff time and the bounds in (2.1)–(2.2). Suppose
that (LVn)

∞
n=1 has a cutoff. By Remark 2.2, one has TVn(ε) ∼ TVn(δ) for all

ε, δ ∈ (0,∞) and, referring to the setting in (2.6), (4) implies αn(c) → ∞ for
all c > 0. Applying (2.3) with A = 1 and the fact of ex ≥ 1 + x, we obtain

(2.8)
αn(c)

αn(c) + 1
TVn(c + 1) ≤ τVn(c) ≤ TVn

(
c/(1 + c)

)
,

for all n, c satisfying LVn(0) > c. As LVn(0) → ∞, letting n → ∞ yields τVn(c) ∼
TVn(c/(1 + c)) and, by Remark 2.2, τVn(c) is a cutoff time for all c > 0.

For (2.1), let ε > δ > 0 and c > 0. Since (LVn)
∞
n=1 has a cutoff, Theorem 2.4(2)

implies TVn(ε)λVn(δ/2) → ∞. By applying (2.4) with V = Vn, c1 = δ/2 and c2 =
c and using the fact of LVn(0) → ∞, one may select B > 0 and N > 0 such that,
for n ≥ N ,

TVn(δ) ≤ TVn

(
δ

2
+ ce−TVn(ε)λVn(δ/2) + 2εe−B

)
≤ TVn(ε) + 2B/λVn(c).

As it is clear from the definition of TVn that TVn(δ) ≥ TVn(ε), the above inequalities
lead to (2.1).

To see (2.2), let ε, c ∈ (0,∞) and write∣∣τVn(c) − TVn(ε)
∣∣≤ ∣∣τVn(c) − TVn

(
c/(c + 1)

)∣∣+ ∣∣TVn

(
c/(c + 1)

)− TVn(ε)
∣∣.

Note that, by (2.8), if LVn(0) > c, then∣∣τVn(c) − TVn

(
c/(c + 1)

)∣∣≤ ∣∣TVn

(
c/(1 + c)

)− TVn(c + 1)
∣∣

+ TVn(c + 1)/αn(c)

1 + 1/αn(c)
.

Assuming that (LVn)
∞
n=1 has a cutoff, (2.1) gives∣∣TVn(c̃) − TVn(ε)

∣∣= O
(
1/λVn(c)

)
, ∀c̃ > 0,

and, by the triangle inequality, this implies∣∣TVn

(
c/(1 + c)

)− TVn(c + 1)
∣∣= O

(
1/λVn(c)

)
.
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As a result of Theorem 2.4(4), αn(c) → ∞ and this is equivalent to 1/λVn(c) =
o(
√

τVn(c)/λVn(c)). Since τVn(c) is a cutoff time, Remark 2.2 implies TVn(c+1) ∼
τVn(c) and this leads to

TVn(c + 1)/αn(c)

1 + 1/αn(c)
∼ τVn(c)

αn(c)
=
√

τVn(c)

λVn(c)
,

as desired. �

3. Cutoff of reversible Markov chains. The goal of this section is two-fold.
In the first subsection, we derive criteria for L2-cutoffs and formulas for L2-cutoff
times using the results in Section 2. In the second subsection, we provide a compar-
ison of L2-cutoffs between continuous time chains and lazy discrete time chains.
Note that the theory developed in Section 2 is immediately applicable for the con-
tinuous time case. In the discrete time case, one should be aware that the time
sequence is integer-valued but there is no big difference in concluding similar re-
sults due to the assumption that the L2-mixing time tends to infinity.

As in the Introduction, we write F for a family of irreducible and reversible
finite Markov chains. In the discrete time case, it means F = (μn,Sn,Kn,πn)

∞
n=1

and, in the continuous time case, one has F = (μn,Sn,Ln,πn)
∞
n=1. In either case,

we use dn,2(μn, ·) and Tn,2(μn, ·) to denote the L2-distance and the L2-mixing
time of the nth chain in F .

3.1. L2-Cutoffs for reversible Markov chains. One can see from (1.5) that, to
identify a L2-cutoff, either a precise estimation of the L2-cutoff time is made or
a sophisticated computation of the L2-mixing time is required. Instead of dealing
with the existence of a cutoff directly, it could be more efficient to explore the
existence of a pre-cutoff, which is a necessary condition for a cutoff, in advance.
In the discrete time case, we say that F has a L2-pre-cutoff if there are positive
constants A < B and a sequence of positive reals (tn)

∞
n=1 such that

lim sup
n→∞

dn,2
(
μn, 	Btn
)= 0, lim inf

n→∞ dn,2
(
μn, �Atn�)> 0.

In the continuous time case, the L2-pre-cutoff is similarly defined by removing 	·

and �·�.

It can be seen from the above definition and (1.5) that, for families of con-
tinuous time chains, lim infn πn(|μn/πn|2) > 1 is necessary for the existence of
a L2-pre-cutoff and limn πn(|μn/πn|2) = ∞ is necessary for the presence of a
L2-cutoff. For families of discrete time chains, we consider the specific case that
Tn,2(μn, ε0) → ∞ for some ε0 ∈ (0,∞). By following the definition, if F has a
L2-pre-cutoff, then lim infn πn(|μnKn/πn|2) > 1; if F presents a L2-cutoff, then
limn πn(|μnKn/πn|2) = ∞. It is clear that both conclusions are more rigid than
those necessary conditions in the continuous time case. A reason why we consider
πn(|μnKn/πn|2) instead of πn(|μn/πn|2) is that, by the first identity in (1.1), when
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a chain starts evolving, those eigenvectors corresponding to eigenvalue 0 play no
roles in the L2-distance and thus should be discarded. In other words, when con-
cerning a discrete time chain, say (μ,S,K,π), it is more meaningful to consider
the time-shifted chain (μK,S,K,π) instead.

By (1.3) and (1.4), the following three theorems are immediate applications
of Theorems 2.2–2.4 to finite Markov chains. The first theorem establishes the
equivalence of L2-cutoffs and L2-pre-cutoff, which can fail in general, say in the
total variation and in separation.

THEOREM 3.1. Let F be a family of irreducible and reversible finite Markov
chains:

(1) For the continuous time case, assume that lim infn πn(|μn/πn|2) > 1. Then
F has a L2-cutoff if and only if F has a L2-pre-cutoff.

(2) For the discrete time case, assume that lim infn πn(|μnKn/πn|2) > 1 and
Tn,2(μn, ε0) → ∞ for some ε0 ∈ (0,∞). Then F has a L2-cutoff if and only if F
has a L2-pre-cutoff.

To state the other two theorems, we need the following notation. Let (μ,S,

L,π) be an irreducible and reversible continuous time finite Markov chain and
λ0 = 0 < λ1 ≤ · · · ≤ λ|S|−1 be eigenvalues of −L with L2(π)-orthonormal right
eigenvectors φ0 = 1, φ1, . . . , φ|S|−1. For c > 0, define

(3.1) j (c) := min

{
j ≥ 1

∣∣∣ j∑
i=1

∣∣μ(φi)
∣∣2 > c

}
,

and

(3.2) τ(c) := max
j≥j (c)

{
log(1 +∑j

i=1 |μ(φi)|2)
2λj

}
.

For the discrete time chain (μ,S,K,π), we define j (c), τ (c) by following (3.1)–
(3.2) under the replacement of λi with − log |βi |, where βi ’s and φi ’s are eigen-
values and L2(π)-orthonormal right eigenvectors of K satisfying β0 = 1 > |β1| ≥
· · · ≥ |β|S|−1| and 1/∞ := 0.

THEOREM 3.2. Consider a family of irreducible and reversible continuous
time finite Markov chains F = (μn,Sn,Ln,πn)

∞
n=1. Let 0 < λn,1 < · · · < λn,|Sn|−1

be the eigenvalues of −Ln and jn(c), τn(c) be the constants in (3.1)–(3.2). Assume
that πn(|μn/πn|2) → ∞. Then the following are equivalent:

(1) F has a L2-cutoff.
(2) For all ε > 0 and c > 0, Tn,2(μn, ε)λn,jn(c) → ∞.
(3) There is ε > 0 such that Tn,2(μn, ε)λn,jn(c) → ∞ for all c > 0.
(4) For all c > 0, τn(c)λn,jn(c) → ∞.
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(5) For all c̃ > 0 and c > 0, τn(c̃)λn,jn(c) → ∞.
(6) There is c̃ > 0 such that τn(c̃)λn,jn(c) → ∞ for all c > 0.

Further, if F has a L2-cutoff, then τn(c) is a cutoff time for any c > 0 and∣∣Tn,2(μn, ε) − Tn,2(μn, δ)
∣∣= O(1/λn,jn(c)), ∀ε, δ, c ∈ (0,∞),

and

(3.3)
∣∣Tn,2(μn, ε) − τn(c)

∣∣= O
(√

τn(c)/λn,jn(c)

)
, ∀ε, c ∈ (0,∞).

THEOREM 3.3. Consider a family of irreducible and reversible discrete time
finite Markov chains F = (μn,Sn,Kn,πn)

∞
n=1. Let {1}∪{βn,i : i ≥ 1} be the eigen-

values of Kn satisfying |βn,1| ≥ · · · ≥ |βn,|Sn|−1| and jn(c), τn(c) be the constants
in (3.1)–(3.2) with λn,i = − log |βn,i |. Assume that Tn,2(μn, ε0) → ∞ for some
ε0 > 0 or τn(c) → ∞ for some c > 0. Assume further that πn(|μnKn/πn|2) → ∞.
Then the equivalences in Theorem 3.2 also hold in this case. Further, if F has a
L2-cutoff, then τn(c) is a cutoff time for any c > 0 and∣∣Tn,2(μn, ε) − Tn,2(μn, δ)

∣∣
= O

(
max{1,1/λn,jn(c)}), ∀ε, δ, c ∈ (0,∞),

(3.4)

and

(3.5)
∣∣Tn,2(μn, ε) − τn(c)

∣∣= O
(
max

{
1,
√

τn(c)/λn,jn(c)

})
, ∀ε, c ∈ (0,∞).

REMARK 3.1. Note that the mixing time of a discrete time chain is integer-
valued and this results in the difference of (3.4)–(3.5) from those corresponding
identities in Theorem 3.2.

REMARK 3.2. In Theorem 3.2, the bound on the difference of L2-mixing
times say that, in the continuous time case, if the L2-mixing time is selected as
a L2-cutoff time, then the cutoff window is at most 1/λn,jn(c); if τn(c) is chosen

as a L2-cutoff time, then the cutoff window should be less than
√

τn(c)/λn,jn(c),
which is of order bigger than 1/λn,jn(c). For the discrete time case, Theorem 3.3
provides a somewhat difference conclusion in (3.4)–(3.5) due to the restriction of
integer-valued times. The readers are referred to [7, 8] for a definition and more
information of cutoff windows.

As Theorems 3.2 and 3.3 provide criteria to inspect cutoffs and compute cutoff
times, the following proposition supplies definite bounds on mixing times using
(3.2), which is crucial to a family without cutoff.

PROPOSITION 3.4. Let (μ,S,L,π) and (μ,S,K,π) be irreducible and re-
versible finite Markov chains and j (c), τ(c) be the constants in (3.1)–(3.2). Let
T2(μ, ·) be the L2-mixing time and set α(c) =

√
τ(c)λj (c):
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(1) For the continuous time case, one has, for 0 < c < π(|μ/π |2) − 1 and A >

0,

(3.6)
α(c)

α(c) + A
T2

(
μ,

√
c + A + α(c)

Aeα(c)A

)
≤ τ(c) ≤ T2

(
μ,

√
c

1 + c

)
.

In particular, for 0 < ε <
√

[π(|μ/π − 1|2) ∧ 1]/2,

(3.7) τ
(
2ε2)≤ T2(μ, ε) ≤ 6

ε4 τ
(
ε2/2

)
.

(2) For the discrete time case, one has, for 0 < c < π(|μ/π |2) − 1 and A > 0,

(3.8)
α(c)

α(c) + A

(
T2

(
μ,

√
c + A + α(c)

Aeα(c)A

)
− 1

)
≤ τ(c) ≤ T2

(
μ,

√
c

1 + c

)
.

In particular, for 0 < ε <

√
[π(|μ/π − 1|2) ∧ 1]/2,

(3.9) τ
(
2ε2)≤ T2(μ, ε) ≤ 6

ε4 τ
(
ε2/2

)+ 1.

PROOF. By Proposition 2.8, (3.6)–(3.8) follow immediately from (2.3) and
(3.7)–(3.9) are obvious from (2.5), while T2(μ, ·) is integer-valued and there is a
modification of −1 in (3.8). �

REMARK 3.3. It is easy to see from (3.9) that, in Theorem 3.3, the prerequisite
of Tn,2(μn, ε0) → ∞ for some ε0 > 0 is in fact equivalent to τn(c) → ∞ for some
c > 0. By (3.7), such an equivalence also holds in the continuous time case.

REMARK 3.4. Set θ = infn,x Kn(x, x). Clearly, (Kn − θI )/(1 − θ) is a
stochastic matrix and this implies that the eigenvalues of Kn fall in [2θ − 1,1].
Referring to the setting in (3.1), if θ > 1/2, then λn,jn(c) ≤ − log(2θ − 1). In this
case, the right-hand sides of (3.4)–(3.5) turn into the same forms as in Theorem 3.2.

3.2. Comparisons of L2-cutoffs. In the total variation, a comparison of cutoffs
was made in [9] between continuous time chains and lazy discrete time chains. In
this subsection, we consider the same comparison issue in the L2-distance. For
convenience, we shall use the following notation only in this subsection. For any
discrete time Markov chain (S,K,π) and θ ∈ (0,1), its θ -lazy version refers to
the discrete time chain (S,Kθ ,π), where Kθ := θI + (1 − θ)K , and its associated
continuous time chain refers to (S,L,π), where L = K − I .

THEOREM 3.5. Consider a family of irreducible and reversible discrete time
finite Markov chains F = (μn,Sn,Kn,πn)

∞
n=1. Let Fc and Fθ with θ ∈ (0,1) be

respective families of continuous time chains and θ -lazy chains associated with F .
For n ≥ 1, let T

(c)
n,2(μn, ·) and T

(θ)
n,2 (μn, ·) be the L2-mixing times of the nth chains

in Fc and Fθ . Assume that πn(|μn/πn|2) → ∞:
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(1) For θ ∈ [1/2,1), if Fθ has a L2-cutoff and T
(θ)
n,2 (μn, ε0) → ∞ for some

ε0 > 0, then Fc has a L2-cutoff.
(2) If Fc has a L2-cutoff and T

(c)
n,2(μn, ε0) → ∞ for some ε0 > 0, then Fθ has

a L2-cutoff for all θ ∈ (1/2,1).

In particular, for θ ∈ (1/2,1), if Fc and Fθ have L2-cutoffs and there is ε0 > 0
such that T

(c)
n,2(μn, ε0) → ∞ or T

(θ)
n,2 (μn, ε0) → ∞, then

1 − θ ≤ lim inf
n→∞

T
(c)
n,2(μn, ε)

T
(θ)
n,2 (μn, ε)

≤ lim sup
n→∞

T
(c)
n,2(μn, ε)

T
(θ)
n,2 (μn, ε)

≤ − log(2θ − 1)

2
, ∀ε > 0.

REMARK 3.5. Refer to Theorem 3.5 and let (μn,Sn,Kn,θ ,πn) be the θ -lazy
version of the nth chain in F . Consider the following computations:

πn

(∣∣∣∣μn

πn

∣∣∣∣2)≥ πn

(∣∣∣∣μnKn,θ

πn

∣∣∣∣2)= πn

(∣∣∣∣θ μn

πn

+ (1 − θ)
μnKn

πn

∣∣∣∣2)

≥ θ2πn

(∣∣∣∣μn

πn

∣∣∣∣2).

This implies that πn(|μn/πn|2) → ∞ if and only if πn(|μnKn,θ/πn|2) → ∞ for
all θ ∈ (0,1).

REMARK 3.6. In [9], Chen and Saloff-Coste proved that, when Fc and Fθ

present cutoffs in the total variation, the ratio of their cutoff times tends to a con-
stant dependent on θ but independent of Markov chains. In general, this obser-
vation can fail in the L2-distance. To see an example, let πn be a probability on
Sn = {0,1, . . . , n} and Kn(x, y) = rδx(y) + (1 − r)π(y), where r ∈ (0,1) and δx

is the Dirac delta function. For θ ∈ (0,1), let Kn,θ be the θ -lazy version of Kn

and Ln = Kn − I . It is easy to see that 1 − r and θ + (1 − θ)r are eigenvalues of
−Ln and Kn,θ with multiplicities n. Referring to the notation in (3.1)–(3.2), we
use jn(c), jn,θ (c) and τn(c), τn,θ (c) to denote the corresponding constants associ-
ated with Ln, Kn,θ . When μn = δxn with xn ∈ Sn and 1/πn(xn) − 1 > c, one has
jn(c) = jn,θ (c) = 1 and

τn(c) = log(1/πn(xn) − 1)

2(1 − r)
, τn,θ (c) = log(1/πn(xn) − 1)

−2 log(θ + (1 − θ)r)
.

By Theorems 3.2–3.3, if πn(xn) → 0, then Fc and Fθ have L2-cutoffs with cutoff
times τn(c) and τn,θ (c). Note that

τn(c)

τn,θ (c)
= − log(θ + (1 − θ)r)

1 − r
,

where the right-hand side takes values on (1 − θ,− log θ) when r ranges over
(0,1).
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PROOF OF THEOREM 3.5. We first make some spectral analysis for chains in
Fc and Fθ . Let (μn,Sn,Kn,πn) be the nth chain in F and let βn,0 = 1 > βn,1 ≥
· · · ≥ βn,|Sn|−1 be eigenvalues of Kn. Set λn,i = 1−βn,i and β

(θ)
n,i = θ +(1−θ)βn,i .

It is easy to see that, for the nth chains in Fc and Fθ , the infinitesimal generator and
the transition matrix have eigenvalues (−λn,i)

|Sn|−1
i=0 and (β

(θ)
n,i )

|Sn|−1
i=0 with common

L2(πn)-orthonormal right eigenvectors. Let jn(c), jn,θ (c) and τn(c), τn,θ (c) be the
constants in (3.1)–(3.2) for the nth chains in Fc, Fθ . Note that β

(θ)
n,i ≥ 2θ − 1 for

all i ≥ 1. When θ ∈ [1/2,1), one has β
(θ)
n,|Sn|−1 ≥ 0. This implies jn(c) = jn,θ (c)

for all c > 0 and, by the following inequalities:

(3.10)

log t ≤ t − 1, ∀0 < t ≤ 1,

log t ≥ loga

1 − a
(1 − t), ∀0 < a < t ≤ 1,

we have

(3.11) − logβ
(θ)
n,i

{≥ (1 − θ)λn,i for θ ∈ [1/2,1),

≤ 2−1[− log(2θ − 1)
]
λn,i for θ ∈ (1/2,1),

and, for all c > 0,

(3.12) τn,θ (c)

{≤ (1 − θ)−1τn(c) for θ ∈ [1/2,1),

≥ 2
[− log(2θ − 1)

]−1
τn(c) for θ ∈ (1/2,1).

Now, we are ready to prove this theorem. For (1), let θ ∈ [1/2,1) and assume
that Fθ has a L2-cutoff with T

(θ)
n,2 (μn, ε0) → ∞ for some ε0 > 0. By Remark 3.5

and Theorem 3.3, one has

(3.13) τn,θ (c)
(− logβ

(θ)
n,jn,θ (c)

)→ ∞, τn,θ (c) → ∞,∀c > 0.

For the case θ ∈ (1/2,1), one may use the second inequality in (3.11) and the
first inequality in (3.12) to conclude τn(c)λn,jn(c) → ∞ for all c > 0. By The-
orem 3.2, this implies that Fc has a L2-cutoff. For the case θ = 1/2, note that if
β

(1/2)
n,j ∈ [0,1/2], then λn,j = 2(1−β

(1/2)
n,j ) ≥ 1. If β

(1/2)
n,j ∈ (1/2,1), then the appli-

cation of the second inequality in (3.10) with a = 1/2 yields λn,j ≥ − logβ
(1/2)
n,j .

As a consequence, we obtain λn,j ≥ min{− logβ
(1/2)
n,j ,1}. By the first inequality in

(3.12) and (3.13), this leads to

τn(c)λn,jn(c) ≥ 1

2
min

{
τn,1/2(c)

(− logβ
(1/2)
n,jn(c)

)
, τn,1/2(c)

}→ ∞,

which proves that Fc has a L2-cutoff.
For (2), assume that Fc has a L2-cutoff and, for some ε0 > 0, T

(c)
n,2(μn, ε0) →

∞. By Theorem 3.2, τn(c)λn,jn(c) → ∞ and τn(c) → ∞ for all c > 0. Combining
the first inequality in (3.11) and the second inequality in (3.12), we obtain (3.13)
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for θ ∈ (1/2,1) and, by Theorem 3.3, Fθ has a L2-cutoff. The comparison of the
L2-cutoff times is immediate from (3.12). �

REMARK 3.7. From the proof of Theorem 3.5, we would like to remark the
observation that, for θ ∈ (1/2,1), T

(θ)
n,2 (μn, ε) → ∞ for some ε > 0 if and only if

T
(c)
n,2(μn, ε) → ∞ for some ε > 0. Note that this can also be proved using Propo-

sition 3.4 and (3.12).

In the following corollary, the laziness is combined with F and the comparison
of cutoffs between F and Fc is summarized from Theorem 3.5.

COROLLARY 3.6. Let F be a family of irreducible and reversible discrete
time finite Markov chain and Fc be the family of continuous time chains associated
with F . Assume that infn,x Kn(x, x) > 1/2, πn(|μn/πn|2) → ∞ and there is ε0 >

0 such that Tn,2(μn, ε0) → 0 or T
(c)
n,2(μn, ε0) → ∞. Then F has a L2-cutoff if and

only if Fc has a L2-cutoff.

PROOF. Set θ = infn,x Kn(x, x) and K̃n = (Kn − θI )/(1 − θ). The proof fol-
lows immediately from the observation of Kn = θI + (1 − θ)K̃n and et(Kn−I ) =
e(1−θ)t (K̃n−I ), and the application of Theorem 3.5 and Remark 3.7 to the family of
(μn,Sn, K̃n,πn)

∞
n=1. �

4. Products chains. In this section, we consider families of continuous time
product chains. Let

(4.1) F = {
(μn,i,Sn,i,Ln,i, πn,i)|1 ≤ i ≤ 
n, n ≥ 1

}
be a triangular array of irreducible continuous time finite Markov chains and

(4.2) P = {pn,i |1 ≤ i ≤ 
n, n ≥ 1}
be a triangular array of positive reals satisfying pn,1 + · · · + pn,
n ≤ 1. For n ≥ 1,
set Sn = Sn,1 × · · · × Sn,
n , μn = μn,1 × · · · × μn,
n , πn = πn,1 × · · · × πn,
n and
define

(4.3) Ln =

n∑

i=1

pn,iIn,1 ⊗ · · · ⊗ In,i−1 ⊗ Ln,i ⊗ In,i+1 ⊗ · · · ⊗ In,
n,

where In,i is the identity matrix indexed by Sn,i and M ⊗ M ′ denotes the
tensor product of matrices M and M ′. In what follows, we write FP for
(μn,Sn,Ln,πn)

∞
n=1 and call it the family of product chains induced by F

and P .
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4.1. The L2-cutoffs of product chains. Referring to the setting in (4.3), if
Hn,i,t = etLn,i and Hn,t = etLn , then

(4.4) Hn,t = Hn,1,p1t ⊗ · · · ⊗ Hn,
n,p
n t .

This leads to the following proposition.

PROPOSITION 4.1. Let F,P be as in (4.1)–(4.2) and FP be the family of
product chains induced by F and P . For n ≥ 1 and 1 ≤ i ≤ 
n, let dn,2(μn, ·) and
dn,i,2(μn,i, ·) be the L2-distances of (μn,Sn,Ln,πn) and (μn,i,Sn,i,Ln,i, πn,i).
Then FP has a L2-cutoff if and only if there is a sequence of positive reals (tn)

∞
n=1

such that

lim
n→∞


n∑
i=1

dn,i,2(μn,i, apn,i tn)
2 =

{
0 for a > 1,

∞ for 0 < a < 1.

Further, if Tn,2(μn, ·) is the L2-mixing time of (μn,Sn,Ln,πn) and

Tn(ε) = min

{
t ≥ 0

∣∣∣ 
n∑
i=1

dn,i,2(μn,i, pn,i t)
2 ≤ ε

}
,

then

(4.5) Tn,2
(
μn,

√
eε − 1

)≤ Tn(ε) ≤ Tn,2(μn,
√

ε).

PROOF. By (4.4), one has

(4.6) dn,2(μn, t)
2 =


n∏
i=1

(
dn,i,2(μn,i, pn,i t)

2 + 1
)− 1.

This implies


n∑
i=1

dn,i,2(μn,i, pn,i t)
2 ≤ dn,2(μn, t)

2 ≤ exp

{

n∑

i=1

dn,i,2(μn,i, pn,i t)
2

}
− 1.

The remaining of the proof follows from the above inequalities. �

REMARK 4.1. In general, the identity in (4.6) does not hold in the discrete
time case. To see the details, let F = {(μn,i,Sn,i,Kn,i, πn,i)|1 ≤ i ≤ 
n, n ≥ 1}, P
be as in (4.2) and FP = (μn,Sn,Kn,πn)

∞
n=1, where

Kn = pn,0I +

n∑

i=1

pn,iIn,1 ⊗ · · · ⊗ In,i−1 ⊗ Kn,i ⊗ In,i+1 ⊗ · · · ⊗ In,
n,

and pn,0 = 1 − (pn,1 + · · · + pn,
n). For simplicity, we assume that Kn,i is re-
versible and let {βn,i,j |0 ≤ j < |Sn,i |} and {φn,i,j |0 ≤ j < |Sn,i |} be eigenvalues
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and L2(πn,i)-orthonormal right eigenvectors of Kn,i . For J = (j1, . . . , j
n) with
0 ≤ ji < |Sn,i | and 1 ≤ i ≤ 
n, set βn,J = pn,0 + ∑
n

i=1 pn,iβn,i,ji
and φn,J =

φn,1,j1 ⊗ · · · ⊗ φn,
n,j
n
. It is easy to see that βn,J ’s are eigenvalues of Kn with

L2(πn)-orthonormal right eigenvectors φn,J ’s. As a consequence, if βn,i,0 = 1,
then the L2-distance, dn,2(μn, ·), of (μn,Sn,Kn,πn) satisfies

dn,2(μn,m)2 = ∑
J :J �=0

∣∣μn(φn,J )
∣∣2β2m

n,J ,

where 0 = (0,0, . . . ,0) and μn(φn,J ) = ∏
n

i=1 μn,i(φn,i,ji
). In the continuous

time case of (4.1)–(4.3), if {λn,i,j |0 ≤ j < |Sn,i |} are eigenvalues of Ln,i with
L2(πn,i)-orthonormal right eigenvectors {φn,i,j |0 ≤ j < |Sn,i |}, then λn,J =∑
n

i=1 pn,iλn,i,ji
is an eigenvalue of −Ln with right eigenvector φn,J defined as

before. When λn,i,0 = 0, this implies

dn,2(μn, t)
2 = ∑

J :J �=0

∣∣μn(φn,J )
∣∣2e−tλn,J ,

which is exactly the formula in (4.6). It is worthwhile to note that, in Proposi-
tion 4.1, the reversibility is not required.

THEOREM 4.2. Let F , P be the triangular arrays in (4.1)–(4.2). Assume
that chains in F are reversible and let λn,i,0 = 0, λn,i,1, . . . , λn,i,|Sn,i |−1 be
eigenvalues of −Ln,i with L2(πn,i)-orthonormal right eigenvectors φn,i,0 = 1,
φn,i,1, . . . , φn,i,|Sn,i |−1. Set{

ρn,l

∣∣∣1 ≤ l ≤

n∑

i=1

|Sn,i | − 
n

}
= {

pn,iλn,i,j |1 ≤ j < |Sn,i |,1 ≤ i ≤ 
n

}
in the way that ρn,l ≤ ρn,l+1 and arrange accordingly{

ψn,l

∣∣∣1 ≤ l ≤

n∑

i=1

|Sn,i | − 
n

}
= {

μn,i(φn,i,j )|1 ≤ j < |Sn,i |,1 ≤ i ≤ 
n

}
.

Let Tn,2(μn, ·) be the L2-mixing time of the nth chain in FP and, for c > 0, define

(4.7) j̃n(c) = min

{
j ≥ 1

∣∣∣ j∑
l=1

ψ2
n,l > c

}

and

(4.8) τ̃n(c) = max
j≥jn(c)

{
log(1 +∑j

l=1 |ψn,l|2)
2ρn,j

}
.
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Then FP has a L2-cutoff if and only if τ̃n(c)ρn,j̃n(c)
→ ∞ for all c > 0. Further, if

FP has a L2-cutoff, then τ̃n(c) is a cutoff time and, for all ε > 0 and c > 0,

(4.9)
∣∣Tn,2(μn, ε) − τ̃n(c)

∣∣= O
(√

τ̃n(c)/ρn,j̃n(c)

)
.

PROOF. Let Tn be as in Proposition 4.1 and set

fn(t) :=∑
l≥1

ψ2
n,le

−2ρn,l t =

n∑

i=1

dn,i,2(μn,i, pn,i t)
2.

By Proposition 4.1, FP has a L2-cutoff if and only if (fn)
∞
n=1 has a cutoff. Note

that fn can be regarded as a Laplace transform of some discrete measure on [0,∞).
By Theorem 2.4, (fn)

∞
n=1 has a cutoff if and only if τ̃n(c)ρn,j̃n(c)

→ ∞ for all
c > 0. Further, as a consequence of (2.2), if (fn)

∞
n=1 has a cutoff, then∣∣Tn(ε) − τ̃n(c)

∣∣= O
(√

τ̃n(c)/ρn,j̃n(c)

)
, ∀c, ε ∈ (0,∞).

The desired comparison in (4.9) is then given by the above identity and (4.5). �

REMARK 4.2. Note that j̃n, τ̃n in Theorem 4.2 are different from jn, τn in
Theorem 3.2, while Lemma B.1 provides a comparison between each other, which
is crucial for the discussion in Example 4.1.

4.2. Products of two-state chains. In this subsection, we restrict ourselves to
products of two-state chains and derive a simplified method to determine cutoffs
from Theorem 4.2. For convenience, we shall restrict ourselves to the continuous
time case and all chains in FP will be assumed to start at 0, the zero vector.

THEOREM 4.3. Let F , P be triangular arrays in (4.1)–(4.2) with Sn,i =
{0,1}, μn,i = δ0 and

Ln,i =
(−An,i An,i

Bn,i −Bn,i

)
.

For n ≥ 1, let Tn,2(0, ·) be the L2-mixing time of the nth chain in FP . Suppose
that pn,i ≤ pn,i+1 for 1 ≤ i < 
n and there are a constant R > 1 and a sequence
of positive reals rn such that

(4.10) R−1rn ≤ An,i ≤ Rrn, R−1rn ≤ Bn,i ≤ Rrn, ∀1 ≤ i ≤ 
n, n ≥ 1.

Then FP has a L2-cutoff if and only if

(4.11) lim
n→∞ max

j≥1

log(1 + j)

pn,j /pn,1
= ∞.
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Moreover, assuming that pn,i(An,i + Bn,i) is increasing in i for all n ≥ 1, one has

(4.12) R−2tn ≤ Tn,2(0, ε) ≤ 40R2ε−4tn, ∀0 < ε < 1/(
√

2R),

and further, if (4.11) holds, then

Tn,2(0, ε) = tn + O(bn), ∀ε > 0,

where

(4.13) tn = max
j≥1

log(1 + j)

2pn,j (An,j + Bn,j )
, bn =

√
tn

rnpn,1
.

PROOF. Note that −(An,i + Bn,i) is the nonzero eigenvalue of Ln,i with
L2(πn,i)-orthonormal right eigenvector φn,i = (

√
An,i/Bn,i,

√
Bn,i/An,i). Let ρn,i

be an increasing arrangement of pn,i(An,i + Bn,i) and ψn,i be an arrangement of√
An,i/Bn,i accordingly. For c > 0, let j̃n(c), τ̃n(c) be constants defined in (4.7)–

(4.8). By Theorem 4.2, FP has a L2-cutoff if and only if τ̃n(c)ρn,j̃n(c)
→ ∞ for

all c > 0.
Based on the assumption of (4.10), it is easy to see that

(4.14) R−1 ≤ ψn,i ≤ R, 2R−1rnpn,i ≤ ρn,i ≤ 2Rrnpn,i, ∀1 ≤ i ≤ 
n.

Using the following inequalities,

∀t > 0, log(1 + at) − a log(1 + t)

{
< 0 for a > 1,

> 0 for 0 < a < 1,

one may derive from (4.14) that

(4.15) R−2 log(1 + j) ≤ log

(
1 +

j∑
i=1

ψ2
n,i

)
≤ R2 log(1 + j),

and then

1

4R3rn
sn
(
j̃n(c)

)≤ τ̃n(c) ≤ R3

4rn
sn
(
j̃n(c)

)
,

where

sn(l) = max
j≥l

{
log(1 + j)

pn,j

}
.

As a consequence, FP has a L2-cutoff if and only if p
n,j̃n(c)

sn(j̃n(c)) → ∞ for all
c > 0.

Let R be the constant as before. By the first inequality of (4.14), one has jn(c) =
1 for all 0 < c < R−2 and n ≥ 1. This implies that if FP has a L2-cutoff, then
pn,1sn(1) → ∞. Conversely, we assume that pn,1sn(1) → ∞. Note that

pn,isn(i) ≤ max
{
log j,pn,j sn(j)

}
, ∀i ≤ j.
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As a result, this implies pn,j sn(j) → ∞ for all j ≥ 1. Following (4.15), we obtain
that, for any c > 0, j̃n(c) is bounded and this leads to p

n,j̃n(c)
sn(j̃n(c)) → ∞,

which proves the equivalence of the L2-cutoff of FP .
To bound the L2-mixing time, we assume that pn,i(An,i +Bn,i) is increasing in

i for all n ≥ 1. In this case, ρn,i = pn,i(An,i + Bn,i) and, by (4.15), one has

(4.16) j̃n(c) = 1, R−2tn ≤ τ̃n(c) ≤ R2tn, ∀c ∈ (0,R−2),
where tn is the constant in (4.13). Let Tn(ε) be the corresponding constant in
Proposition 4.1. As a result, we have

(4.17) Tn

(
ε2)≤ Tn,2(0, ε) ≤ Tn

(
log
(
1 + ε2))≤ Tn

(
ε2/2

)
, ∀ε ∈ (0,1),

where the last inequality uses the fact of log(1 + t) ≥ t/(1 + t) for all t ≥ 0. By
Proposition 2.8, (2.5) yields

(4.18) τ̃n(2δ) ≤ Tn(δ) ≤ 12

δ2 τ̃n(δ/2), ∀δ ∈ (0,1/
(
2R2)).

Consequently, (4.12) follows immediately from (4.16), (4.17) and (4.18).
To estimate the L2-cutoff time, we assume that (4.11) holds. Let tn, bn be those

constants in (4.13) and c ∈ (0,R−2). As before, we have j̃n(c) = 1 for all n ≥ 1
and

τ̃n(c) = max
j≥1

log(1 +∑j
l=1 |ψn,l|2)

2pn,j (An,j + Bn,j )
.

By (4.14), one may derive

log(1 + j) − 2 logR ≤ log

(
1 +

j∑
l=1

|ψn,l|2
)

≤ log(1 + j) + 2 logR,

and, as a result of (4.10), this yields

(4.19)
∣∣τ̃n(c) − tn

∣∣≤ logR

pn,1(An,1 + Bn,1)
≤ R logR

2rnpn,1
.

It is easy to check, using (4.11), that (rnpn,1)
−1 = o(bn) and bn = o(tn). Conse-

quently, (4.19) leads to τ̃n(c) ∼ tn, and hence,∣∣τ̃n(c) − tn
∣∣= o(bn), τ̃n(c)/ρn,j̃n(c)

� b2
n.

The desired identity for the L2-mixing time is then given by (4.9). �

In the next theorem, we consider specific triangular arrays P .
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THEOREM 4.4. Let F be a triangular array in (4.1) with

Sn,i = {0,1}, Ln,i =
(−An,i An,i

Bn,i −Bn,i

)
,

and assume

An,i + Bn,i = An,1 + Bn,1, ∀i ≥ 1, 0 < inf
i,n

An,i

Bn,i

≤ sup
i,n

An,i

Bn,i

< ∞.

Consider a sequence of positive integers (xn)
∞
n=1 and a positive function f defined

on (0,∞). Let P be a triangular array in (4.2) given by

pn,i = pn,1f (xn + i − 1)

f (xn)
, pn,1 ≤ f (xn)∑
n

i=1 f (xn + i − 1)
.

(1) If f (t) = eat with a > 0, then FP has no L2-cutoff.
(2) If f (t) = exp{a[log(1 + t)]b} with a > 0 and b > 0, then

FP has a L2-cutoff ⇔ xn ∧ 
n → ∞.

Further, if xn ∧ 
n → ∞, then

(4.20) Tn,2(0, ε) = κn

2(An,1 + Bn,1)pn,1
+ O

( √
κn

(An,1 + Bn,1)pn,1

)
, ∀ε > 0,

where κn = (logxn − b log logxn) ∧ log
n.
(3) If f (t) = [log(1 + t)]a with a > 0, then

FP has a L2-cutoff ⇔
{
xn ∧ 
n → ∞ for a ≥ 1,


n → ∞ for 0 < a < 1.

Further, if a ≥ 1 and xn ∧ 
n → ∞, then (4.20) holds with κn = (logxn) ∧
(log
n). If 0 < a < 1 and 
n → ∞, then (4.20) holds with κn = [log(1 + xn ∧

n)]a(log
n)

1−a .

Moreover, for Case (1), for Case (2) with xn ∧ 
n = O(1) and for Case (3) with
xn ∧ 
n = O(1), when a ≥ 1, and 
n = O(1), when 0 < a < 1, one has

Tn,2(0, ε) � 1

(An,1 + Bn,1)pn,1
, ∀ε ∈ (0, S/

√
2),

where S = infn,i{(An,i ∧ Bn,i)/(An,1 + Bn,1)}.
PROOF. For n ≥ 1, set rn = An,1 + Bn,1 and define

�n = max
1≤j≤
n

log(1 + j)

f (xn − 1 + j)/f (xn)
.

Immediately, one can see that 0 < infi,n An,i/rn ≤ supi,n An,i/rn < 1, which is
equivalent to (4.10), and by Theorem 4.3, (4.11) yields

(4.21) FP presents a L2-cutoff ⇔ �n → ∞.
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Further, if �n → ∞, then (4.13) implies

(4.22) Tn,2(0, ε) = tn + O(bn), ∀ε > 0,

where

tn = �n

2rnpn,1
, bn =

√
�n

rnpn,1
.

In what follows, we treat f case by case.
For (1), assume that f (t) = eat with a > 0. In this case, it is easy to see that

�n = max
1≤j≤
n

log(1 + j)

ej−1 = log 2,

where the last inequality uses the fact that

log(1 + j)

log j
≤ 1 + 1

j log j
< 2, ∀j ≥ 2.

As a result, FP has no L2-cutoff for all sequences xn and 
n.
For (2), let f (t) = exp{a[log(1 + t)]b} with a > 0 and b > 0. In this

case, we define Fc(t) = log(1 + t)/f (c − 1 + t) for c ≥ 1 and write �n =
f (xn)max1≤j≤
n Fxn(j). In some computations, one can show that

Gc(t) := (1 + t)f (c − 1 + t)F ′
c(t) = 1 − ab

[
log(c + t)

]b
gc(t), ∀t > 0,

where

(4.23) gc(t) = (1 + t) log(1 + t)

(c + t) log(c + t)
.

Note that the mapping s �→ s log s is strictly increasing on [e−1,∞). This implies
g′

c(t) > 0 for t > 0 and, hence, Gc is strictly decreasing on (0,∞). Along with the
observation of

lim
t>0,t→0

Gc(t) = 1, lim
t→∞Gc(t) = −∞, ∀c ≥ 1,

one may select, for each c ≥ 1, a constant tc ∈ (0,∞) such that F ′
c(t) > 0 for

t ∈ (0, tc) and F ′
c(t) < 0 for t ∈ (tc,∞). Consequently, this implies

�n = f (xn)max
{
Fxn

(
(un − 1) ∨ 1

)
,Fxn(un)

}
,

where un = 	txn
 ∧ 
n.
Note that if xn∧
n is bounded, then un = O(1), and, hence, �n ≤ log(1+un) =

O(1), which implies that FP has no L2-cutoff. Next, we assume that xn ∧ 
n →
∞. In this setting, one has

lim
c→∞Gc

(
Ac

(log c)b

)
= 1 − abA, ∀A > 0.
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Clearly, this implies tc ∼ (ab)−1c(log c)−b as c → ∞, and thus, we have un ∼
((ab)−1xn(logxn)

−b) ∧ 
n = o(xn). To estimate �n, we write[
log(1 + xn)

]b = (logxn)
b + byn,

[
log(xn + un)

]b = (logxn)
b + bzn,

and

log(1 + un) = logun + vn,
f (xn)

f (xn − 1 + un)
= eab(yn−zn) = 1 − abwn.

It is an easy exercise to derive from the above setting that

yn ∼ (logxn)
b−1

xn

, zn ∼ un(logxn)
b−1

xn

= O

(
1

logxn

)
,

wn ∼ zn, vn ∼ 1

un

.

As a consequence, this leads to

�n = (1 − abwn)(logun + vn) = logun + O(1) = ξn + O(1),

where ξn = (logxn − b log logxn) ∧ log
n. By (4.21)–(4.22), FP has a L2-cutoff
and

Tn,2(0, ε) = ξn

2rnpn,1
+ O

(√
(logxn) ∧ (log
n)

rnpn,1

)
, ∀ε > 0.

For (3), we assume that f (t) = [log(1 + t)]a with a > 0. As before, we set

F̃c(t) = log(1 + t)

f (c − 1 + t)
, G̃c(t) = (1 + t)f (c − 1 + t)F̃ ′

c(t).

Clearly, �n = f (xn)max1≤j≤
n F̃xn(j). In a similar computation, one can show
that

G̃c(t) = 1 − agc(t), ∀t > 0,

where gc is the function in (4.23). As g′
c > 0 on (0,∞), one may conclude that G̃c

is strictly decreasing on (0,∞). Based on the following observation,

lim
t>0,t→0

G̃c(t) = 1, lim
t→∞ G̃c(t) = 1 − a,

we treat two subcases.
Case 1: a > 1. Clearly, there is t̃c ∈ (0,∞) such that F̃ ′

c > 0 on (0, t̃c) and
F̃ ′

c < 0 on (t̃c,∞). This implies

�n = f (xn)max
{
F̃xn

(
(ũn − 1) ∨ 1

)
, F̃xn(ũn)

}
,

where ũn = 	t̃xn
 ∧ 
n. Based on the observation of

lim
c→∞ G̃c(Ac) = 1 − aA

A + 1
, ∀A > 0,
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one has tc ∼ c/(a − 1) as c → ∞. As a result, there exists M > 0 such that ũn ≤
M(xn ∧ 
n) for n ≥ 1, which leads to

�n ≤ log(1 + ũn) ≤ log
(
1 + M(xn ∧ 
n)

)
.

By (4.21), if lim infn xn ∧ 
n < ∞, then FP has no L2-cutoff.
Next, assume that xn ∧ 
n → ∞. In this case, ũn ∼ (xn/(a − 1)) ∧ 
n and a

similar reasoning as in Case (2) yields

log(1 + xn) = logxn + O(1/xn), log(xn + ũn) = logxn + O(1),

and

log(1 + ũn) = log ũn + O(1/ũn) = (logxn) ∧ (log
n) + O(1).

This leads to �n = (logxn) ∧ (log
n) + O(1). By (4.22), FP has a L2-cutoff and

Tn,2(0, ε) = (logxn) ∧ (log
n)

2rnpn,1
+ O

(√
(logxn) ∧ (log
n)

rnpn,1

)
, ∀ε > 0.

Case 2: 0 < a ≤ 1. In this case, it is clear that F̃ ′
c > 0 on (0,∞), and hence, one

has

(4.24) �n = f (xn) log(1 + 
n)

f (xn + 
n − 1)
=
(

log(1 + xn)

log(
n + xn)

)a

log(1 + 
n).

Observe that

log(1 + xn ∨ 
n) ≤ log(
n + xn) ≤ 2 log(1 + xn ∨ 
n)

and

(4.25)
[
log(1 + xn)

][
log(1 + 
n)

]= [
log(1 + xn ∨ 
n)

][
log(1 + xn ∧ 
n)

]
.

This implies �n/2 ≤ �n ≤ �n, where

(4.26) �n = [
log(1 + xn ∧ 
n)

]a[log(1 + 
n)
]1−a

.

By (4.21), when a = 1, FP has a L2-cutoff if and only if xn ∧ 
n → ∞. When
0 < a < 1, FP has a L2-cutoff if and only if 
n → ∞. For a = 1, assuming xn ∧

n → ∞ yields �n = (logxn) ∧ (log
n) + O(1), and by (4.22),

Tn,2(0, ε) = (logxn) ∧ (log
n)

2rnpn,1
+ O

(√
(logxn) ∧ (log
n)

rnpn,1

)
, ∀ε > 0.

For 0 < a < 1, suppose 
n → ∞. Note that

1 + xn ∨ 
n ≤ xn + 
n ≤ 2(1 + xn ∨ 
n).
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This implies log(xn + 
n) = log(1 + xn ∨ 
n) + O(1), and by (4.25) and (4.26),

�n = �n

(
1 + O

(
1

log(xn ∨ 
n)

))

= [
log(1 + xn ∧ 
n)

]a
(log
n)

1−a

(
1 + O

(
1

log(xn ∨ 
n)
+ 1


n log
n

))
= [

log(1 + xn ∧ 
n)
]a

(log
n)
1−a + O(1).

By (4.22), we receive

Tn,2(0, ε) = ζn

2rnpn,1
+ O

( √
ζn

rnpn,1

)
, ∀ε > 0,

where ζn = [log(1 + xn ∧ 
n)]a(log
n)
1−a .

When a cutoff fails to exist, the bound on the mixing time follows is given by
(4.12) and the details is omitted. �

PROOF OF THEOREM 1.2. The proof of Theorem 1.2 follows immediately
from Theorem 4.4 with the replacement of

An,i = Axn+i−1, Bn,i = Bxn+i−1, pn,i = pxn+i−1

qn

.

The cutoff times in (1.12) and (4.20) are somewhat different up to a multiple con-
stant qn and this result in the accelerating constant qn in G. �

The goal of the following example is to remark some optimality of Theorem 1.1
and we shall show in the following that, for some c > 0, the limits in conditions
(2)–(3) are not sufficient for an L2-cutoff.

EXAMPLE 4.1. Consider the triangular arrays F , P in (4.1)–(4.2) with


n = 2n, Sn,i = {0,1}, Ln,i =
(−An,i An,i

Bn,i −Bn,i

)
and

An,i =
{

1/n ∀1 ≤ i ≤ n,

1/
√

n ∀n < i ≤ 2n,
Bn,i = 1,

pn,i =
{
i/n3 ∀1 ≤ i ≤ n,

(log i)/n2 ∀n < i ≤ 2n.

We first prove that FP = (μn,Sn,Ln,πn)
∞
n=1 has no L2-cutoff. For n ≥ 1 and

1 ≤ i ≤ 2n, set ρn,i = pn,i(An,i + Bn,i) and

Dn(t) =
2n∑
i=1

An,ie
−2ρn,i t , Tn(ε) = min

{
t ≥ 0|Dn(t) ≤ ε

}
.
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By Proposition 4.1, FP has a L2-cutoff if and only if Tn(ε) ∼ Tn(δ) for all ε, δ ∈
(0,∞). Note that, for A > 0,

n∑
i=1

An,ie
−2ρn,iAn2 = 1

n

n∑
i=1

exp
{
−2Ai(1 + 1/n)

n

}

∼
∫ 1

0
e−2As ds = 1 − e−2A

2A

and
2n∑

i=n+1

An,ie
−2ρn,iAn2 = 1√

n

2n∑
i=n+1

exp
{
−2A(log i)

(
1 + 1√

n

)}

∼ 1√
n

2n∑
i=n+1

e−2A log i = 1√
n

2n∑
i=n+1

i−2A.

It is an easy exercise to show that

0 <

∫ 2n

n
s−2Ads −

2n∑
i=n+1

i−2A ≤ n−2A

and ∫ 2n

n
s−2A ds =

⎧⎪⎨⎪⎩
log 2 for A = 1/2,

21−2A − 1

1 − 2A
n1−2A for A �= 1/2.

As a consequence of the above computations, one has

lim
n→∞Dn

(
An2)=

⎧⎪⎪⎨⎪⎪⎩
∞ for 0 < A < 1/4,

2
(√

2 − e−1/2) for A = 1/4,(
1 − e−2A)/(2A) for A > 1/4,

and this leads to

(4.27) Tn(ε) ∼
{
n2/4 for ε ∈ (2(1 − e−1/2),∞)

,

Cεn
2 for ε ∈ (0,2

(
1 − e−1/2)],

where Cε ≥ 1/4 is the constant such that (1 − e−2Cε)/(2Cε) = ε. As the mapping
s �→ (1 − e−s)/s is strictly decreasing on (0,∞), Cε > Cδ for δ > ε ≥ 2(1 −
e−1/2). This proves that FP has no L2-cutoff.

Next, we compute the L2-mixing time. By Proposition 4.1, (4.27) leads to
Tn,2(0, ε) � n2 for all ε > 0. Further, by applying the fact of α(c) ≥ √

log(1 + c)

to (3.6) with A = 1, one has√
log(1 + c)√

log(1 + c) + 1
Tn,2(0,

√
c + 1) ≤ τn(c) ≤ Tn,2

(
0,
√

c/(1 + c)
)
,
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for all 0 < c < (1 + 1/n)n(1 + 1/
√

n)n − 1. As a result, the constant in (1.9)
satisfies τn(c) � n2 for all c > 0.

Now, we examine the limits in Theorem 1.1. Let jn(c) be the constant in (1.8),
j̃n(c) be the constant in (4.7) and set{

�n,l|0 ≤ l < 22n}= σ(−Ln),

where ρn,l ≤ ρn,l+1 and �l ≤ �l+1. By Lemma B.1, one has ρ
n,j̃n(log(1+c))

≤
�n,jn(c) ≤ ρ

n,j̃n(c)
. It is easy to show that

j̃n(c) =
{
cn
(
1 + o(1)

) ∀0 < c < 1,

n + (c − 1)
√

n
(
1 + o(1)

) ∀c > 1,

which implies

ρ
n,j̃n(c)

∼
{
cn−2 ∀0 < c < 1,

(logn)n−2 ∀c > 1.

Consequently, we obtain

�n,jn(c)

{� n−2 ∀0 < c < 1,

∼ (logn)n−2 ∀c > e − 1,

and this leads to

Tn,2(0, ε)�n,jn(c)

{� 1 ∀0 < c < 1,

→ ∞ ∀c > e − 1,

τn(c)�n,jn(c)

{� 1 ∀0 < c < 1,

→ ∞ ∀c > e − 1,

for all ε > 0.

APPENDIX A: PROOF OF LEMMA 2.7

We first prove (1). Note that λV (c) ∈ (0,∞) for c ∈ (0,LV (0)). By Lemma 2.6,
there is γ ≥ λV (c) such that eτV (c)γ = 1 + V (γ ). This implies

LV

(
τV (c)

)≥ ∫
(0,γ ]

e−τV (c)λ dV (λ) ≥ V (γ )

eτV (c)γ
= V (γ )

1 + V (γ )

≥ V (λV (c))

1 + V (λV (c))
≥ c

1 + c
,

where the last two inequalities use the monotonicity of x �→ x/(1 + x) on (0,∞).
Next, we consider the second inequality of (1). By Lemma 2.1, one has

LV (t) = t

∫
(0,∞)

V (λ)e−tλ dλ ≤ c + t

∫
[λV (c),∞)

V (λ)e−tλ dλ.
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Note that V (λ) ≤ eτV (c)λ − 1 ≤ eτV (c)λ for λ ≥ λV (c). This implies, for t > τV (c),∫
[λV (c),∞)

V (λ)e−tλ dλ ≤
∫
[λV (c),∞)

e−(t−τV (c))λ dλ = e−(t−τV (c))λV (c)

t − τV (c)
.

The desired inequality is then given by the replacement of t with τV (c) + s.
For (2), the first identity is obvious from the continuity of LV . For the second

inequality, one may use Lemma 2.1 to write that, for r ≥ 0 and s > 0,

LV

(
TV (ε) + r + s

)= (
TV (ε) + r + s

) ∫
(0,∞)

V (λ)e−(TV (ε)+r+s)λ dλ.

Note that (
TV (ε) + r + s

) ∫
(0,λV (c1))

V (λ)e−(TV (ε)+r+s)λ dλ ≤ c1,

and(
TV (ε) + r + s

) ∫
[λV (c1),λV (c2))

V (λ)e−(TV (ε)+r+s)λ dλ ≤ c2e
−(TV (ε)+r+s)λV (c1),

and ∫
[λV (c2),∞)

V (λ)e−(TV (ε)+r+s)λ dλ

≤ e−rλV (c2)
∫
[λV (c2),∞)

V (λ)e−(TV (ε)+s)λ dλ.

The desired inequality is then given by adding up the above three bounds and
applying the observation of∫

[λV (c2),∞)
V (λ)e−(TV (ε)+s)λ dλ ≤

∫
(0,∞)

V (λ)e−(TV (ε)+s)λ dλ

= LV (TV (ε) + s)

TV (ε) + s
≤ ε

TV (ε) + s
,

where the second-to-last equality applies Lemma 2.1 again.

APPENDIX B: TECHNIQUES FOR PRODUCT CHAINS

Let (μi,Si ,Li,πi)
n
i=1 be irreducible and reversible continuous time finite

Markov chains, (pi)
n
i=1 be positive constants satisfying

∑n
i=1 pi ≤ 1, and (μ,S,

L,π) be a continuous time Markov chain with S = S1 × · · ·×Sn, μ = μ1 × · · ·×
μn, π = π1 × · · · × πn and

L =
n∑

i=1

piI1 ⊗ · · · ⊗ Ii−1 ⊗ Li ⊗ Ii+1 ⊗ · · · ⊗ In,

where Ii is the identity matrix indexed by Si . Let λi,0 = 0, λi,1, . . . , λi,|Si |−1 be
eigenvalues of −Li with L2(πi)-orthonormal right eigenvectors φi,0 = 1, φi,1, . . . ,



CUTOFFS FOR MARKOV CHAINS 2339

φi,|Si |−1. Set � = {j = (j1, . . . , jn)|0 ≤ ji < |Si |,∀1 ≤ i ≤ n} and, for J =
(j1, . . . , jn) ∈ �, define λJ =∑n

i=1 piλi,ji
and φJ =∏n

i=1 φi,ji
. It is easy to see

that, for J ∈ �, λJ is an eigenvalue of −L with L2(π)-orthonormal right eigen-
vector φJ . Write

(B.1)

{
�l

∣∣∣1 ≤ l <

n∏
i=1

|Si |
}

= {λJ |J ∈ �,J �= 0}

and

(B.2)

{
ρl

∣∣∣1 ≤ l ≤
n∑

i=1

|Si | − n

}
= {

piλi,j |1 ≤ j < |Si |,1 ≤ i ≤ n
}

in the way that ρl ≤ ρl+1 and �l ≤ �l+1. We rearrange μ(φJ )’s and μi(φi,j )’s
accordingly and write them as ψl’s and ϕl’s. Consider the following setting. For
c > 0, set

(B.3) j (c) = min

{
j ≥ 1

∣∣∣ j∑
i=1

ψ2
j > c

}
, j̃ (c) = min

{
j ≥ 1

∣∣∣ j∑
i=1

ϕ2
j > c

}
.

LEMMA B.1. Referring to the setting in (B.1), (B.2) and (B.3), one has

�j(c) ≤ ρ
j̃(c)

≤ �j(ec−1), ∀c > 0,

where min∅ := ∞.

PROOF. Suppose that λi,j ≤ λi,j+1. Fix c > 0 and let J = (J1, J2, . . . , Jn) ∈ �

be a vector such that

(B.4)
{
ρl|1 ≤ l ≤ j̃ (c)

}=
n⋃

i=1

{piλn,j |1 ≤ j ≤ Ji}.

Note that {λjiei
|1 ≤ ji ≤ Ji,1 ≤ i ≤ n} = {ρl|1 ≤ l ≤ j̃ (c)}, where ei is a vector

with 1 in the ith coordinate and 0 in the others. This implies that there is an integer
N ≥ 1 such that �N = ρ

j̃(c)
and{

ϕl|1 ≤ l ≤ j̃ (c)
}⊂ {ψl|1 ≤ l ≤ N}.

Clearly, one has

N∑
l=1

ψ2
l ≥

j̃ (c)∑
l=1

ϕ2
l > c.

As a consequence, this leads to j (c) ≤ N and then �j(c) ≤ �N = ρ
j̃(c)

, which
proves the first inequality.

For the second inequality, let J be the vector as before. Up to a permuta-
tion of {Si |1 ≤ i ≤ n}, we may assume J1 ≥ 1 and p1λ1,J1 = ρ

j̃(c)
. Set J ′ =
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(J ′
1, . . . , I

′
n), where J ′

1 = J1 − 1 and J ′
i = Ji for 2 ≤ i ≤ n. For I = (i1, . . . , in)

and J = (j1, . . . , jn), we write I � J if ik ≤ jk for all 1 ≤ k ≤ n. Using the fact
of log(1 + t) ≤ t , one may derive

∑
J :0�J�J ′

φ2
J = ∑

J :J�J ′
φ2
J − 1 =

n∏
i=1

J ′
i∑

j=0

∣∣μi(φi,j )
∣∣2 − 1

≤ exp

{
n∑

i=1

J ′
i∑

j=1

∣∣μi(φi,j )
∣∣2}− 1 ≤ ec − 1.

Further, by the setting in (B.4), it is easy to see that λjei
≥ ρ

j̃(c)
for all j > J ′

i and
1 ≤ i ≤ n. If I = (i1, . . . , in) � J ′, then there is 1 ≤ k ≤ n such that ik > J ′

k and
this implies λI ≥ λikek

≥ ρ
j̃(c)

. Consequently, we have �j(ec−1) ≥ ρ
j̃(c)

, as desired.
�
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