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In this paper, we study metastable behaviour at low temperature of
Glauber spin–flip dynamics on random graphs. We fix a large number of ver-
tices and randomly allocate edges according to the configuration model with a
prescribed degree distribution. Each vertex carries a spin that can point either
up or down. Each spin interacts with a positive magnetic field, while spins at
vertices that are connected by edges also interact with each other via a ferro-
magnetic pair potential. We start from the configuration where all spins point
down, and allow spins to flip up or down according to a Metropolis dynam-
ics at positive temperature. We are interested in the time it takes the system
to reach the configuration where all spins point up. In order to achieve this
transition, the system needs to create a sufficiently large droplet of up-spins,
called critical droplet, which triggers the crossover.

In the limit as the temperature tends to zero, and subject to a certain key
hypothesis implying metastable behaviour, the average crossover time fol-
lows the classical Arrhenius law, with an exponent and a prefactor that are
controlled by the energy and the entropy of the critical droplet. The crossover
time divided by its average is exponentially distributed. We study the scaling
behaviour of the exponent as the number of vertices tends to infinity, deriv-
ing upper and lower bounds. We also identify a regime for the magnetic field
and the pair potential in which the key hypothesis is satisfied. The critical
droplets, representing the saddle points for the crossover, have a size that is
of the order of the number of vertices. This is because the random graphs
generated by the configuration model are expander graphs.

1. Introduction and main theorems. A physical system is in a metastable
state when it remains locked for a very long time in a phase that is different from
the one corresponding to thermodynamic equilibrium. The latter is referred to as
the stable state. Classical examples are supersaturated vapours, supercooled liq-
uids and ferromagnets in the hysteresis loop. The main three objects of interest for
metastability are the transition time from the metastable state to the stable state,
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the gate of configurations the system has to cross in order to achieve the transi-
tion, and the tube of typical trajectories the system follows prior to and after the
transition.

Metastability for interacting particle systems on lattices has been studied in-
tensively in the past three decades. Various different approaches have been pro-
posed. After initial work by Cassandro, Galves, Olivieri and Vares [9], Neves
and Schonmann [24, 25], a powerful method—known as the pathwise approach
to metastability based on large deviation theory—was developed in Olivieri and
Scoppola [26, 27], Catoni and Cerf [10], Manzo, Nardi, Olivieri and Scoppola
[21], Cirillo and Nardi [11], Cirillo, Nardi and Sohier [12]. This was success-
fully applied to low-temperature Ising and Blume-Capel models subject to Glauber
spin–flip dynamics (in two and three dimensions, with isotropic, anisotropic and
staggered interactions) in Kotecký and Olivieri [18–20], Cirillo and Olivieri [13],
Ben Arous and Cerf [1], Nardi and Olivieri [23]. Later, another powerful method—
known as the potential-theoretic approach to metastability based on the anal-
ogy between Markov processes and electric networks—was developed in Bovier,
Eckhoff, Gayrard and Klein [4–7]. This was shown in Bovier and Manzo [8],
Bovier, den Hollander and Spitoni [3] to lead to a considerable sharpening of ear-
lier results. For other approaches to metastability, as well as further examples of
metastable stochastic dynamics and relevant literature, we refer the reader to the
monographs by Olivieri and Vares [28], Bovier and den Hollander [2].

Recently, there has been interest in the Ising model on random graphs (Dembo
and Montanari [14], Dommers, Giardinà and van der Hofstad [16], Mossel and
Sly [22]). The only results known to date about metastability subject to Glauber
spin–flip dynamics are valid for r-regular random graphs (Dommers [15]). In the
present paper, we investigate what can be said for more general degree distribu-
tions. Metastability is much more challenging on random graphs than on lattices.
Moreover, we need to capture the metastable behaviour for a generic realisation
of the random graph.

In Section 1.1, we define the Ising model on a random multigraph subject to
Glauber spin–flip dynamics. We start from the configuration where all spins point
down, and allow spins to flip up or down according to a Metropolis dynamics at
positive temperature. We are interested in the time it takes the system to reach
the configuration where all spins point up. In Section 1.2, we introduce certain
geometric quantities that play a central role in the description of the metastable
behaviour of the system, and state three general theorems that are valid under a
certain key hypothesis. These theorems concern the average transition time, the
distribution of the transition time and the gate of saddle point configurations for the
crossover, all in the limit of low temperature. They involve certain key quantities
associated with the random graph. Our goal is to study the scaling behaviour of
these quantities as the size of the graph tends to infinity.

In Section 1.3, we describe four examples to which the three general theorems
apply: three refer to regular lattices, while one refers to the Erdős–Rényi random
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graph. In Section 1.4, we recall the definition of the configuration model, which is
an example of a random graph with a nontrivial geometric structure. In Section 1.5,
we state our main metastability results for the latter. In Section 1.6, we place these
results in their proper context and give an outline of the remainder of the paper.

1.1. Ising model and Glauber dynamics. Given a finite connected nonori-
ented multigraph G = (V ,E), let � = {−1,+1}V be the set of configurations
ξ = {ξ(v) : v ∈ V } that assign to each vertex v ∈ V a spin-value ξ(v) ∈ {−1,+1}.
Two configurations that will be of particular interest to us are those where all spins
point up, respectively, down:

(1.1) �≡+1, �≡−1.

For β ≥ 0, playing the role of inverse temperature, we define the Gibbs measure

(1.2) μβ(ξ)= 1

Zβ

e−βH(ξ), ξ ∈�,

where H : �→R is the Hamiltonian that assigns an energy to each configuration
given by

(1.3) H(ξ)=−J

2

∑
(v,w)∈E

ξ(v)ξ(w)− h

2

∑
v∈V

ξ(v), ξ ∈�,

with J > 0 the ferromagnetic pair potential and h > 0 the magnetic field. The first
sum in the right-hand side of (1.3) runs over all nonoriented edges in E. Hence,
if v,w ∈ V have k ∈ N0 edges between them, then their joint contribution to the
energy is −k J

2 ξ(v)ξ(w).
We write ξ ∼ ζ if and only if ξ and ζ agree at all but one vertex. A transition

from ξ to ζ corresponds to a flip of a single spin, and is referred to as an allowed
move. Glauber spin–flip dynamics on � is the continuous-time Markov process
(ξt )t≥0 defined by the transition rates

(1.4) cβ(ξ, ζ )=
{
e−β[H(ζ )−H(ξ)]+, ξ ∼ ζ,

0, otherwise.

The Gibbs measure in (1.2) is the reversible equilibrium of this dynamics. We
write P

G,β
ξ to denote the law of (ξt )t≥0 given ξ0 = ξ , LG,β to denote the associated

generator, and λG,β to denote the principal eigenvalue of LG,β . The upper indices
G,β exhibit the dependence on the underlying graph G and the interaction strength
β between neighbouring spins. For A⊆�, we write

(1.5) τA = inf{t > 0 : ξt ∈A,∃0 < s < t : ξs 
= ξ0}
to denote the first hitting time of the set A after the starting configuration is left.
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1.2. Metastability. To describe the metastable behaviour of our dynamics, we
need the following geometric definitions.

DEFINITION 1.1. (a) The communication height between two distinct config-
urations ξ, ζ ∈� is

(1.6) �(ξ, ζ )= min
γ : ξ→ζ

max
σ∈γ

H(σ ),

where the minimum is taken over all paths γ : ξ → ζ consisting of allowed moves
only. The communication height between two nonempty disjoint sets A,B ⊂� is

�(A,B)= min
ξ∈A,ζ∈B

�(ξ, ζ ).(1.7)

(b) The stability level of ξ ∈� is

(1.8) Vξ = min
ζ∈�:

H(ζ )<H(ξ)

�(ξ, ζ )−H(ξ).

(c) The set of stable configurations is

(1.9) �stab =
{
ξ ∈� : H(ξ)=min

ζ∈�
H(ζ )

}
.

(d) The set of metastable configurations is

(1.10) �meta =
{
ξ ∈� \�stab : Vξ = max

ζ∈�\�stab
Vζ

}
.

It is easy to check that �stab = {�} for all G because J,h > 0. For general G,
however, �meta is not a singleton, but we will be interested in those G for which
the following hypothesis is satisfied:

(H) �meta = {�}.
The energy barrier between � and � is

(1.11) �� =�(�,�)−H(�).

DEFINITION 1.2. Let (P�,C�) be the unique maximal subset of �×� with
the following properties (see Figure 1):

(1) ∀ξ ∈P�∃ξ ′ ∈ C� : ξ ∼ ξ ′,
∀ξ ′ ∈ C�∃ξ ∈ P� : ξ ′ ∼ ξ .

(2) ∀ξ ∈ P� : �(ξ,�) < �(ξ,�).
(3) ∀ξ ∈ C�∃γ : ξ →�:

(i) maxζ∈γ H(ζ )−H(�)≤ ��.
(ii) γ ∩ {ζ ∈� : �(ζ,�) < �(ζ,�)} =∅.
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FIG. 1. Schematic picture of the protocritical set P� and the critical set C�.

Think of P� as the set of configurations where the dynamics, on its way from
� to �, is “almost at the top”, and of C� as the set of configurations where it is “at
the top and capable of crossing over”. We refer to P� as the protocritical set and
to C� as the critical set. Uniqueness follows from the observation that if (P�

1 ,C�
1)

and (P�
2 ,C�

2) both satisfy conditions (1)–(3), then so does (P�
1 ∪P�

2 ,C�
1 ∪C�

2). Note
that

(1.12)
H(ξ) < �� +H(�) ∀ξ ∈ P�,

H(ξ)= �� +H(�) ∀ξ ∈ C�.

It is shown in Bovier and den Hollander ([2], Chapter 16) that subject to hy-
pothesis (H) the following three theorems hold.

THEOREM 1.3. limβ→∞P
G,β
� (τC� < τ� | τ� < τ�)= 1.

THEOREM 1.4. There exists a K� ∈ (0,∞) such that

(1.13) lim
β→∞ e−β��

E
G,β
� (τ�)=K�.

THEOREM 1.5. (a) limβ→∞ λG,βE
G,β
� (τ�)= 1.

(b) limβ→∞P
G,β
� (τ�/E

G,β
� (τ�) > t)= e−t for all t ≥ 0.

The proofs of Theorems 1.3–1.5 in [2] do not rely on the details of the graph G,
provided it is finite, connected and nonoriented (i.e., allowed moves are possible
in both directions). For concrete choices of G, the task is to verify hypothesis (H)
and to identify the triple (see Figure 2):

(1.14)
(
C�,��,K�).

For lattice graphs this task has been carried out successfully (even for several
classes of dynamics: see [2], Chapters 17–18). For random graphs, however, the
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FIG. 2. Schematic picture of H, �meta, �stab and C�.

triplet in (1.14) is random, and describing it represents a very serious challenge.
In what follows, we focus on a particular class of random graphs called the con-
figuration model. But before doing so, we first summarise what is known in the
literature.

1.3. Examples of applications.

1.3.1. Torus. If the underlying graph is a torus, then the computations needed
to identify the critical set C� and the prefactor K� simplify considerably. As shown
in Bovier and den Hollander ([2], Chapter 17), for Glauber dynamics on a finite
box 
⊂ Z

2 (wrapped around to form a torus), the set C� consists of all �c× (�c−
1) quasi-squares (located anywhere in 
 in any of the two orientations) with an
extra vertex attached to one of its longest sides, where �c = �2J

h
� (the upper integer

part of 2J
h

). Hypothesis (H) has been verified, and the exponent and the prefactor
equal

(1.15) �� = J (4�c)− h
(
�c(�c − 1)+ 1

)
, K� = 1

|
|
1

4
3(2�c − 1)

.

Metastable behaviour occurs if and only if �c ∈ (1,∞), and for reasons of parity it
is assumed that 2J

h
/∈N. Similar results apply for a torus in Z

3.

1.3.2. Hypercube. For Glauber dynamics on the n-dimensional hypercube,
Jovanovski [17] gives a complete description of the set C� and shows that for
0≤ h

J
≤ n,

(1.16) ��
n =

1

3

(
2− h

J
+

⌊
h

J

⌋)(
2�n−h� + 2ε − 1

)− ε

and if in addition h
J

/∈N,

(1.17) K�
n = 2−n

(
1+ 1

n

)
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for h
J
≥ n− 2, and

(1.18) K�
n =

3� h
J
�!

(1+ ε)n!2n

for 0 < h
J

< n− 2, with ε = �n− h�mod 2. Hypothesis (H) has been verified.

1.3.3. Complete graph. For Glauber dynamics on the complete graph Kn, it is
easy to see that any monotone path from � to � is an optimal path. It is straightfor-
ward to show that C� = {U ⊆ V : |U | = n�} with n� = �1

2(n− 1− h
J
)�, whenever

h
J

is not an integer, and to compute

(1.19) ��
n = n�(J (

n− n�)− h
)
, K�

n =
1

|C�|
n

n− n�
.

Metastable behaviour occurs for any value of h and J , provided n is large enough.
Hypothesis (H) is also easy to confirm by observing that every configuration lies on
some optimal path. Like the hypercube, Kn is an expander graph and consequently
the communication height �� grows at least linearly with the number of vertices
(quadratically for Kn).

We can reduce the quadratic growth by introducing an interaction parameter
that is inversely proportional to the size of the graph, for example, J = J ′

n
for

some constant J ′ > 0, with h > 0 fixed. It follows that

(1.20) ��
n = n�

(
J ′

(
n− n�

n
− h

))
,

where this time n� = �n
2 (1− h

J ′ )− 1
2�, and K�

n is the same as in (1.19). Metastable
behaviour occurs if and only if h

J ′ < 1− 1
n

.

1.3.4. Erdős–Rényi random graph. Sharp results of the above type become
infeasible when the graph is random. The Erdős–Rényi random graph is the re-
sult of performing bond percolation on the complete graph, and is a toy model
of a graph with a random geometry. Let ERn(p) denotes the resulting random
graph on n vertices with percolation parameter p = f (n)/n for some f (n) satis-
fying limn→∞ f (n)=∞, the so-called dense Erdős–Rényi random graph. Then,
as shown in the Appendix, metastable behaviour occurs for any h,J > 0, and

(1.21) lim
n→∞

��
n

1
4Jnf (n)

= 1 in distribution under the law of ERn

(
f (n)/n

)
,

which is accurate up to leading order. The computation of C�
n and K�

n , however, is
a formidable task. The reason for this is that, while (1.21) allows for a small error
in the energy, the set C�

n is made up of configurations that have exactly the critical
energy ��

n.
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FIG. 3. Illustration of the construction of CMn. Three steps in the matching of stubs for n= 7 and
degree sequence (5,5,4,5,5,3,5).

When f (n)= λ for some constant λ > 1, the sparse case, an analysis similar to
the one carried out in this paper can be used to obtain lower and upper bounds on
the communication height. However, we have been unable to prove a convergence
of the form in (1.21).

1.4. Configuration model. In this section, we recall the construction of the
random multi-graph known as the configuration model (illustrated in Figure 3).
We refer to van der Hofstad ([29], Chapter 7) for further details.

Fix n ∈N, and let V = {v1, . . . , vn}. With each vertex vi we associate a random
degree Di , in such a way that D1, . . . ,Dn ∈ N are i.i.d. with marginal probability
distribution f conditional on the event {∑n

i=1 Di = even}. Consider a uniform
matching of the elements in the set of stubs (also called half-edges), written

(1.22) {xi,j }1≤i≤n,1≤j≤Di
.
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By erasing the second label of the stubs, we can associate with it a multi-graph
CMn satisfying the requirement that the degree of vi is Di for 1≤ i ≤ n. The total
number of edges is 1

2
∑n

i=1 Di .
Throughout the sequel, we use the symbol Pn to denote the law of the random

multi-graph CMn on n vertices generated by the configuration model. To avoid
degeneracies, we assume that

(1.23) dmin =min
{
k ∈N : f (k) > 0

}≥ 3, dave =
∑
k∈N

kf (k) <∞,

that is, all degrees are at least three and the average degree is finite. In this case,
the graph is connected with high probability (w.h.p.), that is, with a probability
tending to 1 as n→∞ (see van der Hofstad [29]).

1.5. Main theorems. We are interested in proving hypothesis (H) and identi-
fying the key quantities in (1.14) for G = CMn, which we henceforth denote by
(C�

n,�
�
n,K

�
n), in the limit as n→∞.

Our first main theorem settles hypothesis (H) for small magnetic field.

THEOREM 1.6. Suppose that the inequality in equation (2.26) holds. Then

(1.24) lim
n→∞Pn(CMn satisfies (H))= 1.

Our second and third main theorem provide upper and lower bounds on ��
n.

Label the vertices of the graph so that their degrees satisfy d1 ≤ · · · ≤ dn. Let
γ : �→� be the path that successively flips the vertices v1, . . . , vn (in that order),
and let �m =∑m

i=1 di .

THEOREM 1.7. Define

(1.25) m̄=min
{

1≤m≤ n : �m

(
1− �m

�n

)
≥ �m+1

(
1− �m+1

�n

)
− h

J

}
<

n

2
.

Then, w.h.p.,

(1.26) ��
n ≤ �+n , �+n = J�m̄

(
1− �m̄

�n

)
− hm̄±O

(
�3/4
n

)
.

For 0 < x ≤ 1
2 and δ > 1, define (see Figure 4)

(1.27)

Iδ(x)= inf
{
0 < y ≤ x :

1 < xx(1−1/δ)(1− x)(1−x)(1−1/δ)(1− x − y)−(1−x−y)/2

× (x − y)−(x−y)/2y−y}
.
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FIG. 4. Plot of the function Iδ(x) for δ = 6.

THEOREM 1.8. Define

(1.28) m̃=min
{

1≤m≤ n : �m ≥ 1

2
�n

}
.

Then, w.h.p.,

(1.29) ��
n ≥ �−n , �−n = JdaveIdave

(
1

2

)
n− hm̃− o(n).

COROLLARY 1.9. Under hypothesis (H) [or the weaker version of (H) intro-
duced in Section 3], Theorems 1.7–1.8 yield the following bounds on the crossover
time (see Dommers [15], Proposition 2.4):

(1.30) lim
β→∞P

G,β
�

(
e�−n −ε ≤ τ� ≤ e�+n +ε)= 1.

In Corollary 4.1, we compute m̄, �m̄, m̃ for two degree distributions: Dirac dis-
tributions and power-law distributions. It is clear that m̃= �1

2n� for Dirac distribu-
tions.

The bounds we have found in Theorems 1.7–1.8 are tight in the limit of large
degrees. Indeed, by the law of large numbers we have that

(1.31) �n

�m̄

�n

(
1− �m̄

�n

)
≤ 1

4
�n = 1

4
daven

[
1+ o(1)

]
.

Hence,

(1.32)
�+n
�−n

=
1
4dave[1+ o(1)] − h

J
m̄
n
+ o(1)

daveIdave(
1
2)− h

J
m̃
n
− o(1)

.

In the limit as dave →∞, we have Idave(
1
2)→ 1

4 , in which case (1.32) tends to 1.
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1.6. Discussion. We close this introduction by discussing our main results.

1. The integer m̄ in (1.25) has the following interpretation. The path γ : �→�
is obtained by flipping (−1)-valued vertices to (+1)-valued vertices in order of
increasing degree. We will see in the proof of Theorem 1.7 that, up to fluctuations
of size o(n), the energy along γ increases for the first m̄ steps and decreases for
the remaining n− m̄ steps.

2. The integer m̃ in (1.28) has the following interpretation. In the proof of Theo-
rem 1.8, to obtain our lower bound on ��

n we consider configurations whose (+1)-
valued vertices have total degree at most 1

2�n. The total number of (+1)-valued
vertices in such configurations is at most m̃.

3. If we consider all sets on G that are of total degree x�n and share y�n edges
with their complement, then Iδ(x) represents (a lower bound on) the least value for
y such that the expected number of such sets is at least 1. In particular, for smaller
values of y this expected number is exponentially small.

4. We believe that Theorem 1.6 holds as soon as

(1.33) 0 < h < (dmin − 1)J,

that is, we believe that in the limit as β →∞ followed by n→∞ this choice
of parameters corresponds to the metastable regime of our dynamics, that is, the
regime where (�,�) is a metastable pair in the sense of [2], Chapter 8.

5. The scaling behaviour of ��
n as n→∞, as well as the geometry of C�

n are
hard to capture. We can only offer some conjectures.

CONJECTURE 1.10. There exists a γ � ∈ (0,∞) such that

(1.34) lim
n→∞Pn

(∣∣n−1��
n − γ �

∣∣ > δ
)= 0 ∀δ > 0.

CONJECTURE 1.11. There exists a c� ∈ (0,1) such that

(1.35) lim
n→∞Pn

(∣∣n−1 log
∣∣C�

n

∣∣− c�
∣∣ > δ

)= 0 ∀δ > 0.

CONJECTURE 1.12. There exists a κ� ∈ (1,∞) such that

(1.36) lim
n→∞Pn

(∣∣∣∣C�
n

∣∣K�
n − κ�

∣∣ > δ
)= 0 ∀δ > 0.

As is clear from the results mentioned in Section 1.3, all three conjectures are
true for the torus, the hypercube and the complete graph. This supports our belief
that they should be true for a large class of random graphs as well.

6. In Section 4.1, we will give a dynamical construction of CMn in which ver-
tices are added one at a time and edges are relocated. This leads to a random graph
process (CMn)n∈N whose marginals respect the law of the configuration model. In
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Section 5, we will show that this process is tail trivial, that is, all events in the tail
sigma-algebra,

(1.37) T = ⋂
N∈N

σ

( ⋃
n≥N

CMn

)

have probability 0 or 1. Consequently, the associated communication height pro-
cess (��

n)n∈N with ��
n = ��(CMn) is tail trivial as well. In particular, both γ ∗− =

lim infn→∞ n−1��
n and γ ∗+ = lim supn→∞ n−1��

n exist and are constant a.s. The-
orems 1.7–1.8 show that 0 < γ ∗− ≤ γ ∗+ <∞. Settling Conjecture 1.10 amounts to
showing that γ ∗− = γ ∗+.

7. It was shown by Dommers [15] that for the configuration model with f =
δr , r ∈ N \ {1,2}, that is, for a random regular graph with degree r , there exist
constants 0 < γ �−(r) < γ �+(r) <∞ such that

(1.38) lim
n→∞ lim

β→∞En

(
P

CMn

�
(
eβnγ �−(r) ≤ τ� ≤ eβnγ �+(r)))= 1,

provided h
J
∈ (0,C0

√
r) for some constant C0 ∈ (0,∞) that is small enough.

Moreover, there exist constants C1 ∈ (0, 1
4

√
3) and C2 ∈ (0,∞) (depending on

C0) such that

(1.39)
γ �−(r)≥ 1

4
J r −C1J

√
r,

γ �+(r)≤ 1

4
J r +C2J

√
r, r ∈N \ {1,2}.

The result in (1.38) is derived without hypothesis (H), but it is shown that hypoth-
esis (H) holds as soon as r ≥ 6.

Outline. The rest of the paper is organised as follows. In Section 2, we prove
that hypothesis (H) holds under certain constraints on the magnetic field h and
the minimal degree of the graph dmin. Section 3 gives an alternative to hypothesis
(H), which holds for a broader range parameters, yet still permits us to claim our
bounds on the crossover time. In Section 4, we prove our upper and lower bounds
on ��

n and give two examples for concrete degree distributions. Part of this proof
depends on the dynamical construction of CMn. In Section 5, we derive certain
properties of this construction.

2. Proof of Theorem 1.6. This section gives a proof of hypothesis (H) un-
der condition (2.26). This condition is formulated in terms of the function Iδ(x)

defined in (1.27). First, we prove two properties of this function that will be
useful later on. After that, we construct an explicit path from any configuration
σ ∈� \ {�,�} to a configuration with lower energy such that the energy of con-
figurations on this path never exceed H(σ ) by �� or more, which proves (H). We
start with the following remark about the configurations in �.
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FIG. 5. A contour plot of Ĩ (x,w) for x ∈ (0,1) and w ∈ (0, 1
2 ]. A lighter colour indicates a larger

value.

REMARK 2.1. A natural isomorphism between configurations and subsets of
vertices of the underlying graph G = (V ,E) comes from identifying ξ ∈ � with
the set {v ∈ V : ξ(v)=+1}. With this in mind, we denote by ξ the configuration
corresponding to the complement of this set: {v ∈ V : ξ(v) = −1}. Furthermore,
for ζ, σ ∈� we denote by E(ζ,σ )⊆ E the set of all unoriented edges {(v,w) ∈
E : ζ(v) = σ(w) = +1}. The main use of the last definition will be for σ = ζ :
E(ζ, ζ ) is the edge boundary of the set {v ∈ V : ζ(v)=+1}.

LEMMA 2.2. For all δ ≥ 2 and 0 < x ≤ 1
2 , Iδ(x)≤ (1− x)− (1− x)2(1−1/δ).

PROOF. The claim can be verified numerically. For w ∈ (0, 1
2 ], let ỹ = (1−

x)− (1− x)2(1−w). Figure 5 gives a contour plot of the function

(2.1)
Ĩ (x,w)= xx(1−w)(1− x)(1−x)(1−w)(1− x − ỹ)−(1−x−ỹ)/2

× (x − ỹ)−(x−ỹ)/2ỹ−ỹ .

Note that Ĩ (x,w)≥ 1, which immediately implies Lemma 2.2 when we take w =
1/δ. It is easy to verify that the boundary values corresponding to x ↓ 0 and x ↑ 1
result in Ĩ (x,w) ↓ 1. �
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LEMMA 2.3. The function x→ Iδ(x)
x

is nonincreasing on (0, 1
2 ].

PROOF. By definition of Iδ(x), the function

(2.2)
Î (x, z)= xx(1−1/δ)(1− x)(1−x)(1−1/δ)(1− x − xz)−(1−x−xz)/2

× (x − xz)−(x−xz)/2(xz)−xz

satisfies Î (x, Iδ(x)
x

)= 1 for all x ∈ (0, 1
2 ]. It will therefore suffice to show that

(2.3)
∂

∂x

∣∣∣∣
z= Iδ(x)

x

Î (x, z)≥ 0,

since this implies that, for ε sufficiently small, Î (x + ε, Iδ(x)
x

)≥ 1, and hence that

(2.4) inf
{
w : Î (x + ε,w)≥ 1

}≤ Iδ(x)

x
,

and thus Iδ(x+ε)
x+ε

≤ Iδ(x)
x

. Observe that

(2.5)

∂

∂x
Î (x, z)= Î (x, z)

{
log

((
x

1− x

)(1−1/δ)

(1− x − xz)(1+z)/2

× (x − xz)−(1−z)/2(xz)−z

)}
.

For z= Iδ(x)
x

, Î (x, z)= 1 implies

(2.6)

(
xx(1−1/δ)(1− x)(1−x)(1−1/δ)) 1

x

= (1− x − xz)
1

2x
−(1+z)/2(x − xz)(1−z)/2(xz)z

and hence

(2.7)

∂

∂x
Î (x, z)= Î (x, z)

{
log

((
x

1− x

)(1−1/δ)

× (
xx(1−1/δ)(1− x)(1−x)(1−1/δ))− 1

x (1− x − xz)
1

2x

)}
.

The term inside the logarithm in (2.7) simplifies to (1−x)− 1
x
(1−1/δ)(1−x−xz)

1
2x ,

which satisfies (1 − x)− 1
x
(1−1/δ)(1 − x − xz)

1
2x ≥ 1 whenever 1 − x − (1 −

x)2(1−1/δ) ≥ xz= Iδ(x). By Lemma 2.2, this is true for all x ∈ (0, 1
2 ], and so (2.3)

follows. �

We can now proceed with the proof of hypothesis (H). Let σ ∈�\{�,�} be any
configuration that satisfies x = �σ /�n ≤ 1

2 , where �σ =∑
i∈σ di . We will construct

a path from σ to some σ ′ ∈ � satisfying H(σ ′) < H(σ ) by removing one vertex
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at a time, obtaining a path σ = σ0, . . . , σm = σ ′. In particular, at step t we remove
any vertex vt ∈ σt−1 that minimises the quantity |E(vt , σt−1 \ vt )|− |E(vt , σt−1)|.
It will follow that for every σi in this path, we have |H(σi)−H(σ0)|< ��, which
proves the claim of the theorem.

The probability that some configuration σ , chosen uniformly from all configu-
rations in � with �σ = L, has a boundary of size |E(σ,σ )| =K equals(

L

K

)
K!(L−K − 1)!!

(
�n −L

K

)
(�n −L−K − 1)!!/(�n − 1)!!

≈ (L)!
(L−K)!!

(�n −L)!
K!(�n −L−K)!!

1

�n!!
(2.8)

≈ LL(�n −L)(�n−L)(�n −L−K)−(�n−L−K)/2

× (L−K)−(L−K)/2K−K�−�n/2
n ,

where the symbol ≈ stands for equality up to polynomial terms [here of order
O(n2)]. Let x = L/�n and y =K/�n, so that the above expression becomes

(2.9) exp
[
�n log

(
xx(1− x)(1−x)(1− x − y)−(1−x−y)/2(x − y)−(x−y)/2y−y)]

.

Furthermore, if we define η(x) by

(2.10) exp
[
�n logη(x)

]= ∣∣{U ⊆ V : �U = �nx}
∣∣,

then the probability of there being any configuration of total degree L having a
boundary size K is bounded from above by

(2.11)
exp

[
�n log

(
η(x)xx(1− x)(1−x)(1− x − y)−(1−x−y)/2

× (x − y)−(x−y)/2y−y)]
.

It is easy to see that, by using δ = dmin, the cardinality in the right-hand side of
(2.10) is bounded from above by

( �n/δ
x�n/δ

)
. Using Stirling’s approximation for this

term, and substituting in (2.11), we get

(2.12)

P
[∃A⊆ V : �A = x�n and

∣∣E(A,A)
∣∣= y�n

]
≤ exp

[
�n log

(
xx(1−1/δ)(1− x)(1−x)(1−1/δ)

× (1− x − y)−(1−x−y)/2(x − y)−(x−y)/2y−y)]
.

Recall the definition of Iδ from (1.27) and note that (2.12) is exponentially small
for y < Iδ(x), and by a union bound it is exponentially small for all such y.

Suppose that after s vertices have been removed, we reach a configuration σs

with H(σs) < H(σ ), such that for every vertex v ∈ σs we have

(2.13)
∣∣E(v,σs \ v)

∣∣+ h

J
>

∣∣E(v,σs)
∣∣.
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In other words, equation (2.13) states that after removing s vertices we are at a
configuration of lower energy, and removing any additional vertex leads to a con-
figuration of higher energy. Note that if no such s exists, then we keep on removing
vertices until � has been reached. By the assumption that h is sufficiently small [by
(1.29), it would suffice if h < 1

2JdaveIdave(
1
2) n

m̃
, where m̃ was also defined in the

aforementioned equation], w.h.p., every configuration σ of total degree �σ ≤ 1
2�n

satisfies H(σ ) > H(�). If v ∈ σs has no self-loops, then we have

(2.14)
∣∣E(v,σs \ v)

∣∣= dv −
∣∣E(v,σs)

∣∣
and thus the condition in (2.13) is satisfied when, for all v ∈ σs ,

(2.15)
1

2

(
dv + h

J

)
>

∣∣E(v,σs)
∣∣.

The total number of vertices with self-loops is w.h.p. of order o(n), and so it will
be evident from the bounds below that this assumption is immaterial. The second
inequality in

(2.16)

∣∣E(σs, σs)
∣∣ <

1

2

∑
v∈σs

(
dv + h

J

)
= 1

2

(
x�n −

s∑
i=1

di + h(|σ | − s)

J

)

≤ ∣∣E(σ,σ )
∣∣

holds whenever

(2.17) x�n − 2
∣∣E(σ,σ )

∣∣+ h(|σ | − s)

J
≤

s∑
i=1

di,

which in particular is true when we take the smallest s such that

(2.18)
s∑

i=1

di ≥ x�n − 2Iδ(x)�n + h(|σ | − s)

J
.

Furthermore, by removing s vertices, the change in the size of the boundary at step
t is given by

(2.19)

∣∣E(σt , σt )
∣∣− ∣∣E(σ,σ )

∣∣= t∑
i=1

(∣∣E(vi, σi−1 \ vi)
∣∣− ∣∣E(vi, σi−1)

∣∣)

≤
t∑

i=1

(
di − 2

⌈
di

Iδ(x)

x

⌉)

≤
(

1− 2
Iδ(x)

x

) t∑
i=1

di.

The first inequality in (2.19) follows from the following observation: note that
w.h.p. |E(σ,σ )| ≥ Iδ(x)�n, and hence the “proportion” of the total degree of σ
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that is paired with vertices in σ is at least Iδ(x)/x. This implies that there must be
some vertex vi with a proportion of at least Iδ(x)/x of its degree connected with
vertices in σ . In other words, vi shares at least �di

Iδ(x)
x
� edges with σ .

By the definition of s, we see that |E(σ,σ )| = |E(σs, σs)| + o(n) [when
ds = o(n)], and hence dropping the o(n)-term is of no consequence in the fol-
lowing computations. This implies that if t is such that |E(σt , σt )| − |E(σ,σ )| is
maximised, then we get [again, possibly after dropping a term of order o(n)]

(2.20)

t∑
i=1

(∣∣E(vi, σi−1)
∣∣− ∣∣E(vi, σi−1)

∣∣)

=
s∑

i=t+1

(∣∣E(vi, σi−1)
∣∣− ∣∣E(vi, σi−1)

∣∣).
Let mt denote the left-hand side of (2.20) so that

(2.21)

mt =
t∑

i=1

(
di − 2

∣∣E(vi, σi−1)
∣∣)= s∑

i=t+1

(
di − 2

∣∣E(vi, σi−1)
∣∣)

=
s∑

i=1

(
di − 2

∣∣E(vi, σi−1)
∣∣)− t∑

i=1

(
di − 2

∣∣E(vi, σi−1)
∣∣).

Hence,

(2.22)
t∑

i=1

di

(∑t
i=1(di − 2|E(vi, σi−1)|)∑t

i=1 di

+ 1
)
=

s∑
i=1

di −
s∑

i=t+1

2
∣∣E(vi, σi−1)

∣∣,
and thus

mt =
(∑t

i=1(di − 2|E(vi, σi−1)|)∑t
i=1 di

)(∑t
i=1(di − 2|E(vi, σi−1)|)∑t

i=1 di

+ 1
)−1

×
(

s∑
i=1

di −
s∑

i=t+1

2
∣∣E(vi, σi−1)

∣∣)(2.23)

≤ 1

2

(
1− 2

Iδ(x)

x

)(
1− Iδ(x)

x

)−1(
x�n − 2Iδ(x)�n + h(|σ | − s)

J

)
,

where for the last inequality we use (2.18)–(2.19) and the monotonicity of y →
y(y+1)−1. From (1.29), using the fact that ndave = �n+o(n), we get that H(σt )−
H(σ ) < �� whenever

(2.24)

h

J�n

(
2m̃+ t + (|σ | − s

)(x − 2Iδ(x)

x − Iδ(x)

))

< 2Idave

(
1

2

)
− (

x − 2Iδ(x)
)2(

x − Iδ(x)
)−1

.



METASTABILITY FOR GLAUBER DYNAMICS ON RANDOM GRAPHS 2147

Note that if x < 2Iδ(x), then for sufficiently small h we can find a monotone
downhill path to �. More precisely, x < 2Iδ(x) implies that the terms in the right-
hand side of (2.19) become negative, and hence for h

J
< dmin(

2Iδ(x)
x
−1) every step

in our path is a downhill step. For x ≥ 2Iδ(x), observe first that since the function

u→ (1−2u)2

(1−u)
is nonincreasing for u≤ 1

2 , by Lemma 2.3

(2.25)
(x − 2Iδ(x))2

(x − Iδ(x))
= x

(1− 2 Iδ(x)
x

)2

(1− Iδ(x)
x

)
≤ 1

2

(1− 4Iδ(
1
2))2

(1− 2Iδ(
1
2))

,

and thus a sufficient condition for (2.24) to hold is

(2.26)
h

J

(
1

dave
+ 1

2

)
< 2Idave

(
1

2

)
− 1

2

(
1− 4Idmin

(
1

2

))2(
1− 2Idmin

(
1

2

))−1
.

Hence, we have a path σ → σs [or, when such an s satisfying (2.13) does not
exist, a path σ →�] with H(σs) <H(σ ) that never exceeds H(σ ) by �� or more,
whenever h is sufficiently small and (2.24) holds. This proves the claim of the
theorem for all configurations σ with �σ ≤ 1

2�n.
Note also that, for �σ > 1

2�n, the same argument can be repeated by adding a
vertex at each step, which will also come at a lower cost since at each step the
magnetisation changes by −h.

3. An alternative to hypothesis (H). In this section, we give a weaker version
of hypothesis (H), which nonetheless suffices as a prerequisite for Theorem 1.4.
This weaker version can be verified for a parameter range that is larger than the
one needed in Section 2.

We can repeat the arguments given in Section 2. But, instead of insisting that
Vσ < �� for every configuration σ ∈�, we require that Vσ is bounded from above
by our upper bound on ��, since this guarantees that our upper bound on the
crossover time is still valid and (1.30) still holds (see Dommers [15], Lemma 5.3).
Thus, it follows from the arguments leading to (2.24) that we only need the condi-
tion

(3.1)

h

J�n

(
m̄+ t + |σ | − s

(
x − 2Iδ(x)

x − Iδ(x)

))

≤ 2
�m̄

�n

(
1− �m̄

�n

)
− (

x − 2Iδ(x)
)2(

x − Iδ(x)
)−1

.

For h sufficiently small, the ratio �m̄

�n
can be made arbitrarily close to 1

2 , in which
case the right-hand side of (3.1) becomes strictly positive. This implies that the
inequality in (3.1) holds for any δ ≥ 3 whenever h is sufficiently small.
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4. Proofs of Theorems 1.7 and 1.8.

4.1. A dynamic construction of the configuration model. Prior to giving the
proof of Theorems 1.8 and 1.7, we introduce a dynamical construction of the CM
graph. This will be used to obtain the upper bound in Theorem 1.7.

Let V = {vi}ni=1 be a sequence of vertices with degrees {di}ni=1. In this section,
we construct a graph G= (V ,E) with the same distribution as a graph generated
through the configuration model algorithm, but in a dynamical way, as follows.

Suppose that ξm is a uniform random matching of the integers {1, . . . ,2m},
denoted by ξm = {(x1, x2), . . . , (x2m−1, x2m}, where the pairs are listed in the order
they were created (which is not an important issue, so long as we agree on some
labeling). Next, let u be uniform on {1, . . . ,2m,2m + 1} and set ξm+1 = ξm ∪
{(2m+ 2, u)} if u= 2m+ 1. Else if u 
= 2m+ 1, then w.l.o.g. u= x2i−1 for some
i ≤m, and we set ξm+1 = {ξm \ {(x2i−1, x2i )}} ∪ {(2m+ 2, x2i−1), (2m+ 1, x2i )}.
Then ξm+1 is a uniform matching of the points {1, . . . ,2m,2m + 2}. It is now
obvious how the construction of G follows from the given scheme.

4.2. Energy estimates. Label the vertices of the graph so that their degrees
satisfy d1 ≤ · · · ≤ dn. Let γ : �→� be the path that successively flips the vertices
v1, . . . , vn (in that order), and let �m =∑m

i=1 di . We show that, w.h.p., for every
1≤m≤ n,

(4.1) H(γm)−H(�)= J�m

(
1− �m

�n

)
−mh±O

(
�3/4
n

)
.

We are particularly interested in the maximum of (4.1) over all 1 ≤m ≤ n. To
this avail, observe that the function defined by

(4.2) g(x)= Jx(1− x)− h(x)

has at most one maximum for x ∈ [0,1] if x �→ h(x) is nondecreasing. Thus, tak-
ing x = �m

�n
and h(x) = hx m

�m
, we see that our definition of m̄ in Theorem 1.7 is

justified. Furthermore, note the equivalent conditions

(4.3)

�m

(
1− �m

�n

)
≥ �m+1

(
1− �m+1

�n

)
− h

J
⇐⇒

h

J
≥ dm+1

(
1− 2�m

�n

)
−O

(
d2
m

�n

)
,

with the last term in (4.3) disappearing whenever dm+1 = o(
√

�n). Note that (4.3)
gives us an alternative formulation for m̄ in the statement of Theorem 1.7, which
we will use to compute m̄ below.
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4.3. Two examples. Two commonly studied degree distributions for the con-
figuration model are the Dirac distribution

(4.4) qr(k)= δr(k), k ∈N0,

for some r ∈N (i.e., the r-regular graph), and the power-law distribution

(4.5) qτ,δ(k)= P[di = δ + k] = (δ + k)−τ∑
i∈N0

(δ + i)−τ
, k ∈N0,

for some exponent τ ∈ (2,∞) and shift δ ∈N.
For these degree distributions, we get the following corollary of Theorems 1.7–

1.8.

COROLLARY 4.1. (a) For the Dirac-distribution in (4.4),

(4.6) J rIr

(
1

2

)
n− hn

2
− o(n)≤ ��

n ≤
J r

4
n

(
1−

(
h

J r

)2)
±O

(
n3/4)

.

(b) For the power-law distribution distribution in (4.5), m̄ and �m̄ are given by
(4.11) and (4.12).

(c) For the power-law distribution distribution in (4.5), m̃ is given by (4.15).

PROOF. (a) Straightforward.
(b) {di}ni=1 are i.i.d. with degree distribution qτ,δ . Let sτ,δ,k = ∑n

i=1 1{di ≤
δ + k}, and note that

(4.7) E[sτ,δ,k] = n

(
1− ξτ (δ+ k + 1)

ξτ (δ)

)

with ξτ (a)=∑∞
i=a i−τ for a ≥ 0. We claim that, for k sufficiently small, sτ,δ,k is

concentrated around its mean. Indeed, define aδ,k =∑
i 1{di = δ+ k}, k ∈N0, and

note that for any i.i.d. sequence we have aδ,k
d= Bin(n,pδ,k), where pδ,k = P[di =

δ + k]. From Hoeffding’s inequality, we get that

(4.8) P
[|aδ,k − npδ,k|> n

1
2+ 1

6
]≤ exp

(−2n
1
3
)
.

Hence, for any k =O(n1/6),

(4.9)
P

[∣∣sτ,δ,k −E[sτ,δ,k]
∣∣ > n

1
2+ 1

3
]≤ P

[
k⋃

m=0

|aδ,m − npδ,m|> n
1
2+ 1

6

]

≤ n
1
6 exp

(−2n
1
3
)
.

Note that if pδ,k = qτ,δ(k), then E[aδ,k] = n(δ+k)−τ

ξτ (δ)
, and w.h.p. �n = n

ξτ−1(δ)
ξτ (δ)

+
o(n). Hence, we define

(4.10) κ =min
{
k ∈N : h

J
≥ (δ + k − 1)

(
1−

(
ξτ−1(δ+ k)

ξτ−1(δ)

))}
− 1,
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which certainly satisfies κ = o(n1/6). From (4.3) and the monotonicity of (4.2), it
follows that w.h.p.

(4.11)

m̄= n

[(
1− ξτ (δ + κ)

ξτ (δ)

)

+min
{
y ∈ [0,1] :

h

J
≥ (δ + κ)

(
1−

(
ξτ−1(δ+ κ)

ξτ−1(δ)
+ yκξτ (δ)

ξτ−1(δ)

))}]
+ o(n)

and

(4.12)
�m̄

�n

=
(

ξτ−1(δ + κ)

ξτ−1(δ)
+ yκξτ (δ)

ξτ−1(δ)

)
+ o(1),

where y is the taken as the argument of the minimum in (4.11). Since we know �n

up to o(n), this also gives the value of �m̄.
(c) Note that m̃=∑κ

i=0 aδ,i where κ is the least integer such that

(4.13) δaδ,0 + (δ + 1)aδ,0 + · · · + (δ+ κ)aδ,κ ≥ 1

2
�n.

By the concentration results given above, we see that w.h.p.

(4.14) κ =min
{
m ∈N : ξτ−1(δ)+ ξτ−1(δ+m+ 1)

ξτ (δ)
≥ 1

2
dave

}

and

(4.15) m̃= n

ξτ (δ)

κ∑
i=0

(δ+ i)τ + o(n).
�

PROOF OF THEOREM 1.7. Consider a sequence of matchings {ξ1, ξ2, . . . , ξM/2}
constructed in a dynamical way as outlined above, where M is some even integer.
Let 0 ≤ x ≤ M be even, and define zx,0 = x and zx,t = ∑x

i=1
∑x

m=1 1{(i,m) ∈
ξx/2+t }. Then

(4.16) zx,t+1 = zx,t − 21{Yt+1},
where Yt is the event that x + 2t − 1 and x + 2t are both paired with terms in [x].
Note that

(4.17) P[Yt+1|G x+t ] = zx,t

x + 2+ 1
,

where Gx+t is the σ -algebra generated by {ξ1, . . . , ξx/2+t }. Therefore,

(4.18) E[zx,t+1|G x+t ] = zx,t − 2zx,t

x + 2t + 1
= zx,t

(
x + 2t − 1

x + 2t + 1

)
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and so

(4.19) E[zx,t+1] = z0

t∏
j=0

(
x + 2j − 1

x + 2j + 1

)
= x

(
x − 1

x + 2t + 1

)
.

To compute the second moment, observe that

(4.20) z2
x,t+1 = z2

x,t − 4zx,t1{Yt+1} + 41{Yt+1},
and so

(4.21)
E

[
z2
x,t+1|G x+t

]= z2
x,t −

4z2
x,t

x + 2t + 1
+ 4zx,t

x + 2t + 1

= z2
x,t

(
x + 2t − 3

x + 2t + 1

)
+ 4zx,t

x + 2t + 1
.

Then

E
[
z2
x,t+1

]
= E

[
z2
x,t

](x + 2t − 3

x + 2t + 1

)
+ 4E[zx,t ]

x + 2t + 1

= x2
t∏

i=0

(
x + 2i − 3

x + 2i + 1

)
+

t∑
i=0

4E[zx,i]
x + 2i + 1

t∏
j=i+1

(
x + 2j − 3

x + 2j + 1

)

= x2(x − 3)(x − 1)

(x + 2t + 1)(x + 2t − 1)
(4.22)

+
t∑

i=0

4x(x − 1)

(x + 2i + 1)(x + 2i − 1)

(x + 2i − 1)(x + 2i + 1)

(x + 2t + 1)(x + 2t − 1)

= x2(x − 3)(x − 1)

(x + 2t + 1)(x + 2t − 1)
+ 4x(x − 1)(t + 1)

(x + 2t + 1)(x + 2t − 1)

= x(x − 1)

(x + 2t + 1)(x + 2t − 1)

(
x(x − 3)+ 4(t + 1)

)
,

while

(4.23)
(
E[zx,t+1])2 = x2

(
x − 1

x + 2t + 1

)2

and so

(4.24)
E

[
z2
x,t+1

]− (
E[zx,t+1])2

= x(x − 1)

x + 2t + 1

(
x(x − 3)+ 4(t + 1)

x + 2t − 1
− x(x − 1)

x + 2t + 1

)
.
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It follows that if we let wx,t = zx,t

x+2t
, t ≥ 1, then

(4.25)

E
[
w2

x,t+1
]− (

E[wx,t+1])2

=
x

x+2(t+1)
(x−1)

x+2(t+1)

x + 2t + 1

(
4(t + 1)

x + 2t − 1
+ x − 3

1+ 2 t
x
− 1

x

− x − 1

1+ 2 t
x
+ 1

x

)

=
x

x+2(t+1)
(x−1)

x+2(t+1)

x + 2t + 1

(
4(t + 1)

x + 2t − 1
+ −4 t

x
− 4 1

x

(1+ 2 t
x
− 1

x
)(1+ 2 t

x
+ 1

x
)

)

= 4 x
x+2(t+1)

(x−1)
x+2(t+1)

x + 2t + 1

t + 1

x + 2t − 1

(
1− 1

1+ 2 t
x
+ 1

x

)
.

Observe also that for

(4.26) z̄x,t =
x∑

i=1

M∑
m=x+1

1
{
(i,m) ∈ ξx/2+t

}= x − zx,t

and

(4.27) w̄x,t = z̄x,t

x + 2t
= x

x + 2t
−wx,t

the same variance calculations follow, so that E[w̄2
x,t+1] − (E[w̄x,t+1])2 is also

given by (4.25). For α ∈ (0,1) and 1 ≤ i ≤ k(α) with k(α) =M/�Mα�, let xi =
i�Mα� and note that

k(α)∑
i=1

(
E

[
w̄2

x,t+1
]− (

E[w̄x,t+1])2)

= 1

2
M−2(M − 1)−1(M − 3)−1

k(α)∑
i=1

xi(xi − 1)(M − xi)

(
1− xi

M − 1

)
(4.28)

=O
(
M−α)

.

From Markov’s inequality, we have that

(4.29)

P

[
∃i such that

|z̄xi ,(M−xi)/2 −E[z̄xi ,(M−xi)/2]|
M

> M− α
3

]

= P

[
∃i such that

|z̄xi ,(M−xi)/2 −E[z̄xi ,(M−xi)/2]|2
M2 > M− 2α

3

]

= P
[∃i such that

∣∣w̄xi ,(M−xi)/2 −E[w̄xi ,(M−xi)/2]
∣∣2 > M−2α/3]

=O
(
M−α/3)
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and thus we have that w.h.p. for every 1≤ i ≤ k(α),

(4.30)
∣∣z̄xi ,(M−xi)/2 −E[z̄xi ,(M−xi)/2]

∣∣=O
(
M1−α/3)

.

Now suppose that xi ≤ x ≤ xi+1. Then, clearly, z̄xi ,(M−xi)/2−Mα ≤ z̄x,(M−x)/2 ≤
z̄xi ,(M−xi)/2 +Mα , and via (4.19) and (4.26) we conclude that w.h.p. for every
1≤ x ≤M we have

(4.31)

∣∣z̄x,(M−x)/2 −E[z̄x,(M−x)/2]
∣∣

≤ |z̄x,(M−x)/2 − z̄xi ,(M−xi)/2| +
∣∣z̄xi ,(M−xi)/2 −E[z̄xi ,(M−xi)/2]

∣∣
+ ∣∣E[z̄xi ,(M−xi)/2] −E[z̄x,(M−x)/2]

∣∣
= |z̄x,(M−x)/2 − z̄xi ,(M−xi)/2| +

∣∣∣∣z̄xi ,(M−xi)/2 − xi

(
M − xi

M − 1

)∣∣∣∣
+

∣∣∣∣xi

(
M − xi

M − 1

)
− x

(
M − x

M − 1

)∣∣∣∣
≤Mα +O

(
M1−α/3)+Mα.

Now let γs be any configuration on the path γ :�→� defined above. Then w.h.p.

(4.32)

H(γs)−H(�)

= J
∣∣E(γs, γs)

∣∣− hs

= J z̄�γs ,(�n−�γs )/2 − hs = J�γs

(
1− �γs

�n

)
− hs +O

(
�3/4
n

)
,

where the last line follows from (4.31) with x = �m, M = �n and α = 3
4 , and uses

the fact that E[z̄x,t ] = x(1 − x−1
x+2t+1). By definition, this quantity is maximised

when �γs is replaced by �m̄, from which the statement of the theorem follows. �

PROOF OF THEOREM 1.8. Setting x = 1
2 in (2.11), we get that the probability

of there being any configuration of total degree �n/2 having a boundary size y�n

is bounded from above by

(4.33) exp
[
�n log

(
1

2
η

(
1

2

)(
1

2
− y

)−( 1
2−y)

y−y

)]
.

By the law of large numbers, w.h.p. we have that n= �n/dave + o(n). Combining
this with |{U ⊆ V : �U = �nx}| ≤ 2n, we get that η(1

2) ≤ 21/dave . It follows that if
y < Idave(

1
2), then (4.33) decays exponentially. Hence, all configurations σ with

�σ = �n/2 have, w.h.p., an energy at least

(4.34) H(σ )≥ JIdave

(
1

2

)
�n − h|σ | +H(�),

and the lower bound on ��
n in (1.29) follows. �
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5. Tail properties of the dynamically constructed CMn. In this section, we
explore some properties of the dynamical construction of CMn introduced in Sec-
tion 4.1.

5.1. Trivial tail σ -algebra. Let Vn = (v1, . . . , vn) be the vertices with corre-
sponding degree sequence

(5.1) �dn = (d1, . . . , dn),

and let Gn = (Vn,En) and Gn′ = (Vn,En′) be two independent configuration
models with the same degree sequence �dn. We will extend Gn and Gn′ to larger
graphs, Gn+t = (Vn+t ,En+t ) and Gn+t ′ = (Vn+t ,En+t ′), respectively, with de-
gree sequence

(5.2) �dn = (d1, . . . , dn, dn+1, . . . dn+t ),

by utilising a pairing scheme similar to the one introduced in Section 4.1:

• If ξm is a uniform random matching of the integers {1, . . . ,2m}, denoted by
ξm = {(x1, x2), . . . , (x2m−1, x2m)}, then take u1 to be uniform on {1, . . . ,2m} and
u2 to be uniform on {1, . . . ,2m,2m+ 1}. If u2 = 2m+ 1, then set ξm+1 = ξm ∪
{(2m+ 1,2m+ 2)}. Otherwise add to ξm the pairs (2m+ 1, u1) and (2m+ 2, u2)

when u1 
= u2, and when u1 = u2, only add to ξm the pair (2m+ 2, u2). In either
case, if there are two remaining terms that are unpaired, then pair them to each
other and add this pair to ξm. Needless to say, we also remove from ξm old pairs that
were undone by the introduction of 2m+ 1 and 2m+ 2. Again, this construction
leads to ξm+1, a uniform matching of the points {1, . . . ,2m+ 2}.
Now construct the coupled graphs (Gn+t ,Gn+t ′) by starting with (Gn,Gn′) and
using the same uniform choice

(5.3) {ui}| �dn+t |−| �dn|
i=1

to determine new edges in both graphs. Note that, under this scheme, every term
(half-edge) s > | �dn| is paired with the same term in Gn+t as in Gn+t ′. In other
words, for all 1 ≤ j ≤ | �dn+t | we have (s, j) ∈ En+t if and only if (s, j) ∈ En+t ′.
For s ≤ | �dn| and 1≤ j ≤ | �dn+t |, we have

(5.4)

P[1{(s,j)∈En+t } 
= 1{(s,j)∈En+t ′}]

≤ P

[| �dn+t |−| �dn|⋂
i=1

{ui 
= s}
]
=
|�dn+t |∏
i=| �dn|

(
1− 1

i − 1

)
= | �dn| − 2

| �dn+t | − 1
.

Hence,

(5.5) P

[| �dn|⋃
s=1

{1{(s,j)∈En+t } 
= 1{(s,j)∈En+t ′}}
]
≤ | �dn|(| �dn| − 2)

| �dn+t | − 1
.

Thus, we conclude that P[Gn+t 
=Gn+t ′] =O(1
t
).
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We can now make the following standard argument to show that the pro-
cess above has a trivial tail-sigma-algebra. Let Ft = σ(ξ1, . . . , ξt ) and F+

t =
σ(ξt+1, . . .). The tail sigma-algebra is given by T =⋂

n∈N F+
t . For any A ∈ T ,

there is a sequence of events A1,A2, . . . such that

(5.6) lim
t→∞P[At A] = 0,

and hence also

(5.7) lim
t→∞P[At ∩A] = P[A], lim

t→∞P[At ] = P[A].
But, since A ∈F+

t for all t , it follows that P[At ∩ A] = P[At ]P[A], and hence
P[A] = P[A]2. This shows that T is a trivial sigma-algebra. Therefore, given
{di}i∈N (but also by the law of large numbers for i.i.d. sequences),

(5.8) lim sup
n→∞

��
n

n
= γ ∗+, lim inf

n→∞
��

n

n
= γ ∗−,

for some γ ∗+, γ ∗− ∈R with γ ∗+ ≥ γ ∗−.

5.2. Oscillation bounds. To show that γ ∗+ = γ ∗−, it would suffice to prove Con-
jecture 1.10. By means of the following lemma, we will show in (5.13) that, for
the dynamic construction given above, it is possible to obtain bounds on potential
oscillations of n �→ ��

n/n.

LEMMA 5.1. Let G = (V ,E) and G̃ = (Ṽ , Ẽ) be two finite, connected
graphs. Suppose that |E�Ẽ| ≤ k under some labelling of the vertices in V and Ṽ

(i.e., a one-to-one map from the smaller to the larger of the sets V and Ṽ ). Then

(5.9)
∣∣�� − �̃�

∣∣≤ Jk+ h
∣∣|Ṽ | − |V |∣∣.

PROOF. Without loss of generality assume that |Ṽ | ≥ |V |. Given the la-
belling of the vertices that satisfies the above condition, let γ : � → �, de-
noted by γ = (γ1, . . . , γm), be an optimal path for the Glauber dynamics on
G. Now let γ̃ : �̃ → �̃ be the Glauber path of configurations on G̃, denoted
by γ̃ = (γ̃1, . . . , γ̃m, γ̃m+1, . . . , γ̃m+|Ṽ |−|V |), and defined by the following rule:
whichever vertex v ∈ V is flipped at step i in the path γ , flip the correspond-
ing vertex ṽ ∈ Ṽ also at step i in γ̃ . For steps m + 1, . . . ,m + |Ṽ | − |V |, flip
the remaining −1 valued vertices in any arbitrary order. Then it follows that, for
1≤ i ≤m,

(5.10) H̃(γ̃i)− H̃(�̃)= J
∣∣Ẽ(γ̃i , γ̃i)

∣∣− h|γ̃i | ≤ J
(∣∣E(γi, γi)

∣∣+ k
)− h|γ̃i |.

Similarly, for m≤ i ≤m+ |Ṽ | − |V |, we have

(5.11) H̃(γ̃i)− H̃(�̃)≤ Jk − h
(|γi | − |V |).



2156 DOMMERS, DEN HOLLANDER, JOVANOVSKI AND NARDI

It follows that �̃� ≤ �� + Jk − h(|Ṽ | − |V |). A similar argument gives �� ≤
�̃� + Jk+ h||Ṽ | − |V ||. �

Now let G = (V ,E) and G̃ = (Ṽ , Ẽ) be two configuration models and sup-
pose w.l.o.g. that the total degree of the vertices in V is �V and the total de-
gree of vertices in Ṽ is �

Ṽ
≥ �V . Let Gt and G̃t be the extension of each these

two graphs, obtained by adding vertices {v1, . . . , vt } and {ṽ1, . . . , ṽt }, both with
the same degree sequence {d1, . . . , dt }. We will couple the construction leading
to the two graphs Gt and G̃t in the following manner: for 1 ≤ i ≤ ∑t

k=1 dk ,
choose ui uniformly as described above, and pair i with ui in Gt . Let δi =
(�

Ṽ
− �V )/[(�

Ṽ
+ i − 1)(�V + i − 1)] and set ũi = ui with probability 1 − δi ,

and with probability δi independently and uniformly pick one of the remaining
(�

Ṽ
− �V ) points. Then

(5.12) E
[|Et�Ẽt |]≤ |E�Ẽ| +∑

i

δi ≤ |E�Ẽ| + 2(�
Ṽ
− �V ).

Hence, from Markov’s inequality and from Lemma 5.1, it follows that, w.h.p. and
for any function f (t) such that limt→∞ f (t)=∞,

(5.13)
∣∣�̃�

t − ��
t

∣∣≤ J
(|E�Ẽ| + 2(�

Ṽ
− �V )+ f (t)

)− h
(∣∣|Ṽ | − |V |∣∣).

Hence, by this pairing scheme, we have that �̃�
t /��

t → 1 as t →∞.

APPENDIX

For the Erdős–Rényi random graph with n vertices and percolation parameter p,
any configuration σ chosen uniformly from all configurations of size |σ | satisfies
(E denotes expectation w.r.t. bond percolation)

(A.1) E
(∣∣E(σ,σ )

∣∣)= μ|σ | with μ|σ | = p|σ |(n− |σ |).
Using Chernoff’s inequality and a union bound, we can show that if |σ | =�(n),
then

(A.2) H(σ )−H(�)= Jμ|σ |
[
1± o(1)

]− h|σ |.
Furthermore, any σ of size |σ | ≤ [1 − o(1)]n2 has (modulo small fluctuations) a
downhill path to � (e.g., by flipping +1 spins in any arbitrary order), while every
|σ | ≥ [1 + o(1)]n2 has a downhill path to � (e.g., by flipping −1 spins in any
arbitrary order). This proves hypothesis (H), and the claim in (1.21).
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