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CAN ONE MAKE A LASER OUT OF CARDBOARD?

BY KRZYSZTOF BURDZY1,∗ AND TVRTKO TADIĆ2,†

University of Washington∗, Microsoft Corporation† and University of Zagreb†

We consider two-dimensional and three-dimensional semi-infinite tubes
made of “Lambertian” material, so that the distribution of the direction of a
reflected light ray has the density proportional to the cosine of the angle with
the normal vector. If the light source is far away from the opening of the tube
then the exiting rays are (approximately) collimated in two dimensions but
are not collimated in three dimensions. An observer looking into the three-
dimensional tube will see “infinitely bright” spot at the center of vision. In
other words, in three dimensions, the light brightness grows to infinity near
the center as the light source moves away.

1. Introduction. We will examine the behavior of light rays in semi-infinite
tubes. The “cardboard” in the title of the paper refers to a material reflecting light
according to the Lambertian distribution, to be described later in the Introduction.
The Lambertian distribution arises as the only physically possible reflection pro-
cess in which reflected rays have random directions independent of the incidence
angle (this follows from formula (2.3) in [1]). The “laser” effect refers to a pos-
sible collimation of light rays exiting the tube. We will show that if light rays are
released far from the end of the tube and they reflect according to the Lamber-
tian distribution then the exiting rays are collimated in two dimensions but are not
collimated in three dimensions. So the answer to the question posed in the title is
positive only in two dimensions.

The three-dimensional model does involve a singularity but of a milder type. We
will show that an observer looking into the tube will see “infinitely bright” spot at
the center of vision. In other words, the light brightness grows to infinity near the
center as the light source moves away.

The present project is a prelude to the study of Lambertian reflections in fractal
domains. Some fractal domains have narrow channels and one would like to know
how light travels within such channels. This article analyzes a toy model for the
light behavior in a long thin channel. In future articles, we plan to extend this
direction of research to light reflections in thorns with smooth boundaries and,
ultimately, thorns with fractal boundaries.
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Our project is inspired by and related to a number of other projects. Lapidus
and Niemeyer [13–15] considered billiards with the specular (classical) reflection
in fractal billiards. Comets et al. [5–7] studied random Lambertian reflections in
smooth domains with irregular shapes. Angel et al. [1] showed that Lambertian
reflectors could be approximated by deterministic reflectors. Evans [11] studied a
model of stochastic billiards where the reflection angle was uniform.

We will describe the asymptotic behavior (angle and position) of the light ray
when it reaches the end of the tube when the light source is far away. The motion
of light rays along the tube is governed by a random walk. In order to find the exit
position and angle of the light ray, we need to find estimates for the distributions of
undershoot and overshoot of a symmetric random walk. We will derive a number
of explicit formulas using the Wiener–Hopf equation and various results from [2,
4, 8, 10, 16, 18, 19]. See the book by Kyprianou [12] for an introduction to the
topic.

An intriguing and challenging aspect of the two-dimensional model is that it
leads to the “critical” case of the central limit theorem. The model is associated
with a random walk with steps that do not have a finite variance but nevertheless
the CLT holds (although we will not use this fact in our paper).

The rest of the paper is organized as follows. We will present a more detailed
overview of our main results in the next section. Section 3 contains a review of
known results on random walks, Wiener–Hopf equation and related topics. We
will derive there some new results needed later in the paper. Section 4 is devoted
to the analysis of the two-dimensional model, and finally Section 5 presents results
on the three-dimensional tube.

2. The model and main results. We start with the description of Lambertian
reflections of light. A physical surface is Lambertian if its apparent brightness does
not depend on the angle at which the observer is looking at it. The Moon, in its
full moon phase, is approximately Lambertian because it appears to be a globally
flat surface to terrestrial observers despite being round. Lambertian reflections are
also known as the Knudsen law in the theory of gases. We will present the two-
dimensional model in this section. See Section 5 for the three-dimensional case.

Consider a set D ⊂ R
2 with a smooth boundary. Suppose a light ray hits a point

x ∈ ∂D and reflects. The outgoing light ray travels at an angle � with the inward
normal vector at x. The direction of the outgoing light ray is independent of the
direction of the incoming light ray. The density of � is given by (see Figure 1)

(2.1) f (θ) =
⎧⎨⎩

1

2
cos θ, for θ ∈ (−π/2, π/2),

0, otherwise.

The first part of the paper will be devoted to reflections in a semi-infinite strip
D = {(x, y) ∈ R

2 : x ≤ 0,0 ≤ y ≤ 1}. We will assume that the light ray starts at
(−s,0) for some s > 0 and travels in a direction which forms a random angle with
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FIG. 1. Random reflection angle � and its density.

the normal vector, with the density given by (2.1). The horizontal coordinate s of
the starting point will play the role of the main parameter in our model. Whenever
the light ray hits the boundary of D, it reflects according to the Lambertian scheme
(see Figure 2). In particular, all reflection angles are jointly independent. At a
certain time, the light ray will exit the strip through its opening ∂rD := {(x, y) ∈
R

2 : x = 0,0 ≤ y ≤ 1}. Let (0, Ys) be the exit point and let �s be the exit angle
(see Figure 2). Our main result is concerned with the asymptotic behavior of the
joint distribution of (�s,Ys) as s → ∞.

The x-coordinates of the points of reflection constitute a random walk. A step
of this random walk is a symmetric random variable Xk satisfying P(Xk > x) ∼
cx−2 for x → ∞. An essential part of our analysis is devoted to “undershoot” and
“overshoot,” defined informally as follows. The undershoot Us is the horizontal
distance from the last reflection point to ∂rD. The overshoot Os is the difference
between the size of the random walk step that goes beyond 0 and Us (rigorous
definitions will be given below). One of our main results is the following simplified
version of Theorem 4.10:

lim
s→∞P

(√
logUs

log s
≤ t,

Us

Us + Os

≤ u

)
= tu2/2 for t, u ∈ [0,1].

FIG. 2. Starting point (−s,0), exit angle �s and exit location (0, Ys).



1954 K. BURDZY AND T. TADIĆ

FIG. 3. Light rays arriving at the eye placed at (0, y) = (0,2/3).

Let U[a, b] denote the uniform distribution on [a, b]. Our basic result on the
limiting distribution for the exit angle �s and exit location Ys , Theorem 4.13, says
that, when s → ∞,

(�s,Ys)
d→ (

0,U[0,1]).
We use the results on overshoot and undershoot of the random walk to obtain more
accurate information on the joint distribution of �s and Ys in Theorem 4.14. For
t, u ∈ [0,1],

lim
s→∞P

(√
log cot |�s |

log s
≤ u, I�s < 0, Ys ≤ t

)
=
{
u
(
1 − (1 − t)2)/2, I = 1,

ut2/2, I = −1.

At this point, we can answer the question posed in the title of the paper. We
place the eye of the observer at approximately (0, y) (see Figure 3). The distribu-
tion of the light rays arriving at the eye is expressed in terms of �s and given in
Corollary 4.15 as follows. For u,y ∈ [0,1] and ε ∈ (0, y), we have

lim
s→∞P

(√
log cot |�s |

log s
≤ u, I�s ≤ 0

∣∣∣ Ys ∈ (y − ε, y]
)

=
{
u(1 − y + ε/2), I = 1,

u(y − ε/2), I = −1.

The distribution is illustrated in Figure 4. Note the asymmetric singularity at 0. We
continue the discussion of the two-dimensional results in Section 4.3.

We will discuss the three-dimensional case in Section 5. The fundamental dif-
ference between two- and three-dimensional cases is that the asymptotic distri-
bution of the direction of the light ray exiting the tube at a specific point is de-
generate in the two-dimensional case and nondegenerate in the three-dimensional
case. We do not have an explicit formula for the asymptotic exit distribution in
the three-dimensional case but we have some estimates. In three dimensions, we
have the following theorem of different nature. Let vs be the unit vector rep-
resenting the direction of the light ray at the exit time assuming it leaves the
tube at the center of the opening (see Section 5 for the rigorous definitions). Let
B(r) = {(x, y, z) : x2 + y2 + z2 = 1, y2 + z2 ≤ r2, x > 0} denote a ball on the unit
sphere. A somewhat informal statement of Theorem 5.10 is the following.
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FIG. 4. Approximate distribution of �s given Ys = y, with s = 1000 and y = 2/3.

THEOREM 2.1. For any 0 < r1 < r2 < 1,

lim
s→∞ sP

(
vs ∈ B

(
r2

s

) ∖
B
(

r1

s

))
= r2 − r1

2π2 .

Consider an observer at the center of the opening of the tube, looking towards
the interior of the tube. The theorem says that small annuli at the center of the
field of vision, with the area of magnitude 1/s2, receive about 1/s units of light.
Hence, the apparent brightness is about s at the distance 1/s from the center, if
the light source is s units away from the opening. This means that the surface
of the tube does not appear to be Lambertian, that is, the surface does not have
uniform apparent brightness. This can be explained by the fact that not all parts of
the surface of the tube receive the same amount of light.

3. Review of stopped random walks. In this section, we establish notation
that will be used throughout the paper, give some rigorous definitions, recall some
known results and derive some theorems on general random walks, not necessarily
those arising in the random reflection model.

We will study a random walk {Sn,n ≥ 0}, with S0 = 0 and Sn = Sn−1 + Xn for
n ≥ 1, where {Xn,n ≥ 1} is an i.i.d. sequence. We will always assume that Xn’s
are continuous random variables. Some of the results stated in this paper might not
be true for lattice variables.



1956 K. BURDZY AND T. TADIĆ

3.1. Renewal measures and ladder processes. The ascending ladder epochs
{T +

k : k ≥ 0} are defined as

(3.1)
T +

0 = 0,

T +
n = inf

{
k > T +

n−1 : Sk > ST +
n−1

}
, n ≥ 1.

It is easy to see that {(T +
k − T +

k−1, ST +
k

− ST +
k−1

) : k ≥ 1} is an i.i.d. sequence. Let

Z+
k = ST +

k
− ST +

k−1
for k ≥ 1. For n = 1,2, . . . we call H+

n = ST +
n

=∑n
k=1 Z+

k the
ascending ladder heights.

Similarly, we define the descending ladder epochs {T −
k : k ≥ 0} by setting

T −
0 = 0 and T −

n = inf{k > T −
n−1 : Sk < ST −

n−1
} for n ≥ 1. The sequence {(T −

k −
T −

k−1, ST −
k

− ST −
k−1

) : k ≥ 1} is i.i.d. We let Z−
k = ST −

k
− ST −

k−1
for k ≥ 1 and call

H−
n = ST −

n
=∑n

k=1 Z−
k , n ≥ 1, the descending ladder heights.

The following result can be found in [8] [see relations (4a) and (4b)]. A more
general sufficient and necessary condition for the finiteness of ladder step moments
was given in [4].

LEMMA 3.1. Suppose that E(X1) = 0:

(a) If E[(X±
1 )2] < ∞ then E[|Z±

1 |] < ∞.
(b) E[X2

1] < ∞ if and only if E[Z+
1 ]E[−Z−

1 ] < ∞. Moreover,

E
[
X2

1
]= 2E

[
Z+

1

]
E
[−Z−

1

]
.

This immediately implies the following corollary.

COROLLARY 3.2. If X1 is a symmetric random variable, then E[X2
1] < ∞ if

and only if E[Z+
1 ] = E[−Z−

1 ] < ∞. Moreover, 2E[Z+
1 ]2 = E[X2

1].
We define renewal measures by

U
±(dx) =

∞∑
k=1

P
(
H±

k ∈ dx
)
.

One can show that for a measurable set A ⊂ R (see [2], (2.4)),

U
±(A) = E

(T ∓
1 −1∑
k=0

1{Sk∈A}
)
.

This formula can be written in the following way. For a Borel set A ⊂ R,

U
−(A) =

∞∑
n=0

P(S0 ≤ 0, . . . , Sn−1 ≤ 0, Sn ≤ 0, Sn ∈ A).(3.2)
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LEMMA 3.3. We have

(3.3) P
(
Z+

1 ≥ t
)= ∫ 0

−∞
P(X1 > t − s)U−(ds).

PROOF. Using the definition of H+
1 = Z+

1 and (3.2), we obtain

P
(
Z+

1 > t
)= P(S1 > t) + P(S1 ≤ 0, S2 > t) + P(S1 ≤ 0, S2 ≤ 0, S3 > t) + . . .

=
∫ 0

−∞
P(X1 > t − s)

× (
P(S0 ∈ ds) + P(S0 ≤ 0, S1 ∈ ds)

+ P(S0 ≤ 0, S1 ≤ 0, S2 ∈ ds) + · · · )
=
∫ 0

−∞
P(X1 > t − s)U−(ds). �

The following result is the well-known renewal theorem (see [9], Section 3.4;
see [10] for extensions).

THEOREM 3.4. For E[Z+
1 ] ∈ (0,∞] and all h > 0,

lim
t→∞U

+([0, t])/t = 1

E[Z+
1 ] and lim

t→∞U
+([t, t + h])= h

E[Z+
1 ] .

This implies that if E[Z+
1 ] ∈ (0,∞] then for all h > 0,

sup
t≥0

U
+([t, t + h])< ∞.(3.4)

DEFINITION 3.5. (a) For a function r : [0,∞) → [0,∞), let

Ih+(r) = h

∞∑
k=1

sup
{
r(x) : x ∈ [(k − 1)h, kh)

}
,

I h−(r) = h

∞∑
k=1

inf
{
r(x) : x ∈ [(k − 1)h, kh)

}
.

We say that r(x) is directly Riemann integrable (d.R.i.) if limh→0 Ih+(r) =
limh→0 Ih−(r) and the limits are finite.

(b) Recall that the variation V (r) of r over [0,∞) is defined as

sup
n∑

k=1

∣∣r(xk) − r(xk−1)
∣∣,

where the supremum is taken over all sequences 0 ≤ x0 ≤ x1 ≤ · · · ≤ xn.
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REMARK 3.6. (i) It is elementary to check that

Ih+(r) − Ih−(r) ≤ V (r)h.

If
∫∞

0 r(x) dx < ∞, in the sense of the Lebesgue integral, then it is easy to see that

Ih+(r) ≤
∫ ∞

0
r(x) dx + (

Ih+(r) − Ih−(r)
)≤ ∫ ∞

0
r(x) dx + V (r)h,

Ih−(r) ≥
∫ ∞

0
r(x) dx − (

Ih+(r) − Ih−(r)
)≥ ∫ ∞

0
r(x) dx − V (r)h.

This implies that if V (r) < ∞ and
∫∞

0 r(x) dx < ∞ then r(x) is d.R.i.
(ii) If r : [0,∞) → [0,∞) is decreasing, then it has a bounded variation. Hence,

if r is decreasing and
∫∞

0 r(x) dx < ∞ then r(x) is d.R.i.
(iii) Every d.R.i. function is necessarily bounded. Otherwise, we would have

Ih+(r) = ∞ for all h > 0.

LEMMA 3.7. Suppose that r : [0,∞) → [0,∞) is d.R.i. and E[Z+
1 ] ∈ (0,∞].

Then

sup
s≥0

∫ ∞
0

r(s + x)U+(dx) < ∞,(3.5)

lim
s→∞

∫ s

0
r(s − x)U+(dx) = 1

E[Z+
1 ]
∫ ∞

0
r(s) ds.(3.6)

PROOF. The claim (3.6) can be found in [9], (4.9), or [10], Theorem 3.
For (3.5), we fix h ∈ (0,1) and let M1 ∈ (0,∞) be an upper bound for r [see

Remark 3.6(iii)]. By (3.4), there exists M2 > 0 such that U+([t, t + h]) < M2 for
t ≥ 0. Let n0 = �s/h� + 1. Note that 0 ≤ n0h − s < h. We have∫ ∞

0
r(s + x)U+(dx)

=
∫ n0h−s

0
r(s + x)U+(dx) +

∞∑
k=0

∫ (n0+k+1)h−s

(n0+k)h−s
r(s + x)U+(dx)

≤ M1U
+(0, n0h − s)

+
∞∑

k=0

(
sup

{
r(x) : x ∈ [(n0 + k)h, (n0 + k + 1)h

)}
×U

+([(n0 + k)h − s, (n0 + k + 1)h − s
]))

≤ M1U
+([0,1])+ (

Ih+(r)/h
)
M2.

The right-hand side is finite and does not depend on s so (3.5) is true. �
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For s > 0, we let

(3.7)
Ns = inf{n > 0 : Sn > s},
Os = SNs − s, Us = s − SNs−1.

We call Os the overshoot and Us the undershoot of the random walk Sn at s. We
will also use the overshoot and undershoot of the ladder height process, defined by

N+
s = inf

{
n > 0 : H+

n > s
}
,

O+
s = H+

N+
s

− s, U+
s = s − H+

N+
s −1

.

It is easy to see that

(3.8) Os = O+
s and U+

s ≤ Us.

LEMMA 3.8. If E[Z+
1 ] = ∞, then O+

s → ∞ and U+
s → ∞ in probability as

s → ∞.

PROOF. We have

P
(
U+

s ≤ m
)= ∞∑

k=1

P
(
H+

k > s, s − m < H+
k−1 ≤ s

)
=
∫ s

s−m
P
(
Z+

1 > s − y
)
U

+(dy) ≤U
+([s − m,s]).

The right-hand side converges to 0 by Theorem 3.4 so U+
s → ∞ in probability as

s → ∞.
A similar calculation yields

(3.9)

P
(
O+

s < m
)= ∞∑

k=1

P
(
s < H+

k ≤ s + m,H+
k−1 ≤ s

)
=
∫ s

0
P
(
s − y < Z+

1 ≤ s − y + m
)
U

+(dy).

Note that

P
(
s < Z+

1 ≤ s + m
)≤ P

(
km < Z+

1 ≤ (k + 1)m
)+ P

(
(k + 1)m < Z+

1 ≤ (k + 2)m
)

for km < s ≤ (k + 1)m. It follows that∫ ∞
0

P
(
s < Z+

1 ≤ s + m
)
ds

=
∞∑

k=0

∫ (k+1)m

km
P
(
s < Z+

1 ≤ s + m
)
ds
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≤
∞∑

k=0

∫ (k+1)m

km

(
P
(
km < Z+

1 ≤ (k + 1)m
)

+ P
(
(k + 1)m < Z+

1 ≤ (k + 2)m
))

ds

=
∞∑

k=0

m
(
P
(
km < Z+

1 ≤ (k + 1)m
)+ P

(
(k + 1)m < Z+

1 ≤ (k + 2)m
))

≤ 2m < ∞.

In other words, the function s → P(s < Z+
1 < s + m) is integrable over [0,∞).

Since

P
(
s < Z+

1 < s + m
)= P

(
Z+

1 < s + m
)− P

(
s ≥ Z+

1

)
,

the function s → P(s < Z+
1 < s + m) is the difference of two monotone and

bounded functions. It follows that this function has bounded variation. Since it
is also integrable, it is d.R.i., by Remark 3.6(i). Hence, by (3.6),

lim
s→∞

∫ s

0
P
(
s − y < Z+

1 ≤ s − y + m
)
U

+(dy) = 0.

This and (3.9) imply that O+
s → ∞ in probability as s → ∞. �

LEMMA 3.9. Make one of the following assumptions:

(i) E[X1] = 0, E[(X−
1 )2] < ∞ and E[(X+

1 )2] = ∞.
(ii) X1 is symmetric and E(X2

1) = 2E[(X±
1 )2] = ∞.

Then O+
s → ∞ and U+

s → ∞ in probability as s → ∞.

PROOF. Using Lemma 3.1. for case (i), or Corollary 3.2 for (ii), we obtain
E[Z+

1 ] = ∞. The claim follows from (3.8) and Lemma 3.8. �

For functions f,g : (0,∞) → R, we will write f ∼ g if limx→∞ g(x)/

f (x) = 1.

DEFINITION 3.10. For a function h : R+ → R
+, we say that it is regularly

varying with exponent (index) α if

(3.10) lim
t→∞h(xt)/h(t) = xα

for x > 0. A function h is called slowly varying if α = 0.

Recall that h is a regularly varying function with index α if and only if it is of
the form h(x) = xαL(x) where L is a slowly varying function.

The following two results can be found in [10], Theorems 6 and 7.
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THEOREM 3.11. Suppose that P(H+
1 > t) = t−1L(t), where L(t) is a slowly

varying function. Then O+
s /s → 0 and U+

s /s → 0 in probability as s → ∞.

THEOREM 3.12. Suppose that Z has the distribution U[0,1]. If t → P(H+
1 >

t) is regularly varying with index −1 and m(t) = ∫ t
0 P(H+

1 > x)dx, then(
m(O+

t )

m(t)
,
m(U+

t )

m(t)

)
d→ (Z,Z) as t → ∞.

The following theorem can be found in [16], Theorem 1.2.4.

THEOREM 3.13. Suppose that h : R+ → R
+ is regularly varying with index

α < 0. Then for every a > 0, the limit in (3.10) is uniform in x ∈ [a,∞).

The following result, known as Potter’s theorem, can be found in [3], Theo-
rem 1.5.6.

THEOREM 3.14. Suppose that h : R+ → R
+ is regularly varying with in-

dex α. Then for any chosen δ > 0 and ε > 0 there exists t0 > 0 such that

h(y)

h(x)
≤ δ max

{(
y

x

)α+ε

,

(
y

x

)α−ε}
,

for all t ≥ t0.

DEFINITION 3.15. A random variable X1 is called relatively stable if there
exists a sequence of numbers an > 0, n = 0,1, . . . , such that Sn/an → 1 in proba-
bility as n → ∞.

The following relative stability theorem from [18], Theorem 2 (see also Sec-
tion 8.8 in [3], especially Theorem 8.8.1) provides various characterizations of
stable distributions.

THEOREM 3.16. If P(X1 ≥ 0) = 1, then the following claims are equivalent:

(a) Ox/x → 0 in probability as x → ∞;
(b) Ux/x → 0 in probability as x → ∞;
(c)

∫ x
0 P(X1 ≥ y)dy ∼ L(x) where L(x) is a slowly varying function;

(d) U
+([0, x)) =∑∞

n=1 P(Sn < x) ∼ x/L(x) where L(x) is the same function
as in (c);

(e) X1 is relatively stable.

The following result is taken from [18], Theorem 9.
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THEOREM 3.17. Suppose that Sn/an converge in distribution to a stable law
with index α ≤ 2 for some sequence an. If αP(X1 > 0) = 1, then Z+

1 is relatively
stable.

Theorems 3.16 and 3.17 give the following result.

COROLLARY 3.18. If X1 is symmetric and Sn/an converges to a normal dis-
tribution for some sequence an, then:

(a) Z+
1 and Z−

1 are relatively stable;
(b) U

+([0, x)) = U
−((−x,0]) ∼ x/L(x) where L(x) is a slowly varying func-

tion;
(c)

∫ x
0 P(Z+

1 ≥ y)dy = ∫ x
0 P(−Z−

1 ≥ y)dy ∼ L(x) where L(x) is the same
function as in (b).

A sufficient condition for the convergence of Sn/an to a normal distribution is
contained in the following very general theorem (see [16], Corollary 1.4.8).

THEOREM 3.19. Let P(|X1| > t) = t−2L(t) where L is a slowly varying func-
tion. Then X1 is in the domain of the attraction of the normal distribution.

LEMMA 3.20. Suppose that X1 is a continuous symmetric random variable
and t → P(X1 > t) is regularly varying with index −2. The following claims hold:

(a) E[X2
1] = ∞ and E[Z+

1 ] = ∞;
(b) U

+([0, t)) ∼ t/L(t) where L(t) = ∫ t
0 P(Z+

1 > x)dx is slowly varying.
(c) U

+(t ds)/U+([0, t)) converges weakly to the Lebesgue measure on [0,A]
for any A > 0.

(d) The following limit is uniform in s ≥ 0:

lim
t→∞

P(X1 > t(1 + s))

P(X1 > t)
= 1

(1 + s)2 .

Moreover, for every ε > 0 there exists t0 > 0 such that

P(X1 > t(1 + s))

P(X1 > t)
≤ 1

(1 + s)2−ε
,(3.11)

for all t ≥ t0.

PROOF. (a) It is easy to check that if t → P(X1 > t) is regularly varying with
index −2 then E[X2

1] = ∞. Part (a) then follows from Corollary 3.2.
(b) By Theorem 3.19, the assumptions of Corollary 3.18 are satisfied. We can

take the same slowly varying function function L(t) = ∫ t
0 P(Z+

1 > x)dx in Theo-
rem 3.16(c) and Corollary 3.18 (except in this case the first positive step is denoted
Z+

1 ). Part (b) of the lemma now follows from Corollary 3.18(b).
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(c) It follows from Corollary 3.18(b) that

U
+(t[0, a])
U+([0, t))

∼ at/L(at)

t/L(t)
∼ a,

for all a ∈ [0,A]. This implies part (c) of the lemma.
(d) The claims follow from Theorems 3.13 and 3.14. �

LEMMA 3.21. If X1 is a continuous symmetric random variable and t →
P(X1 > t) is regularly varying with index −2, then

(3.12) lim
t→∞

P(Z+
1 > t)

P(X1 > t)U+([0, t))
= 1.

PROOF. From formula (3.3), we have

P
(
Z+

1 ≥ t
)= ∫ ∞

0
P(X1 > t + s)U+(ds)

= P(X1 > t)U+([0, t)
) ∫ ∞

0

P(X1 > t + s)

P(X1 > t)

U
+(ds)

U+([0, t))
.

The change of variable s = tu gives us

P(Z+
1 ≥ t)

P(X1 > t)U+([0, t))
=
∫ ∞

0

P(X1 > t(1 + u))

P(X1 > t)

U
+(t du)

U+([0, t))
.

It will suffice to show that

lim
t→∞

∫ ∞
0

P(X1 > t(1 + u))

P(X1 > t)

U
+(t du)

U+([0, t))
=
∫ ∞

0

1

(1 + s)2 ds = 1.

It is not hard to see, using Lemma 3.20(c) and (d) that

(3.13) lim
t→∞

∫ A

0

P(X1 > t(1 + u))

P(X1 > t)

U
+(t du)

U+([0, t))
=
∫ A

0

1

(1 + s)2 ds.

According to (3.11), we can pick t0 > 0 such that P(X1 > t(1 + s))/P(X1 >

t) ≤ H(s) := (1 + s)−3/2 for t ≥ t0. For A > t0, using the integration by parts
formula,

(3.14)

∫ ∞
A

P(X1 > t(1 + u))

P(X1 > t)

U
+(t du)

U+([0, t))

≤
∫ ∞
A

H(u)
U

+(t du)

U+([0, t))

= H(u)
U

+([0, tu))

U+([0, t))

∣∣∣∣u=∞

u=A

−
∫ ∞
A

U
+([0, tu))

U+([0, t))
H ′(u) du.
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Recall the slowly varying function function L(t) = ∫ t
0 P(X1 > x)dx and use

Lemma 3.20(b) to find t0 such that

t

2L(t)
≤U

+([0, t
)
) ≤ 2t

L(t)
,

for t ≥ t0. From the fact that L(t) is increasing for t ≥ A, we obtain

U
+([0, ts))

U+([0, t))
≤ 4

L(t)

L(ts)
s ≤ 4s.

Since H(s) ∼ 1
s3/2 and H ′(s) ∼ −1

s5/2 , (3.14) is bounded by

4AH(A) −
∫ ∞
A

4sH ′(s) du.

Choose an arbitrarily small ε > 0 and pick A large enough so that∫ ∞
A

P(X1 > t(1 + u))

P(X1 > t)

U
+(t du)

U+([0, t))
< ε and

∫ ∞
A

1

(1 + s)2 ds < ε.

It follows from this and (3.13) that for large t ,∣∣∣∣∫ ∞
0

P(X1 > t(1 + u))

P(X1 > t)

U
+(t du)

U+([0, t))
− 1

∣∣∣∣
≤
∣∣∣∣∫ A

0

P(X1 > t(1 + u))

P(X1 > t)

U
+(t du)

U+([0, t))
−
∫ A

0

1

(1 + s)2 ds

∣∣∣∣
+
∫ ∞
A

1

(1 + s)2 ds +
∫ ∞
A

P(X1 > t(1 + u))

P(X1 > t)

U
+(t du)

U+([0, t))

≤ ε + ε + ε.

The claim now follows. �

COROLLARY 3.22. Suppose that X1 is a continuous symmetric random vari-
able and t → P(X1 > t) is regularly varying with index −2. Then t → P(Z+

1 > t)

is regularly varying with index −1.

PROOF. The corollary follows from Lemmas 3.20(b) and 3.21. �

LEMMA 3.23. Assume that X1 is a continuous symmetric random variable
and t → P(X1 > t) is regularly varying with index −2. Then

m(t) :=
∫ t

0
P
(
Z+

1 > x
)
dx ∼

√∫ t

0
2xP (X1 > x)dx.(3.15)
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PROOF. Using Lemmas 3.20(b) and 3.21, we get

(3.16) lim
t→∞

P(Z+
1 > t)

∫ t
0 P(Z+

1 > x)dx

tP (X1 > t)
= 1.

Since E[X2
1] = ∞, Corollary 3.2 yields E[Z+

1 ] = ∞. Therefore, m(t) ↑ ∞ and
n(t) := ∫ t

0 xP (X1 > x)dx ↑ ∞ as t → ∞. Hence, we can use l’Hopital’s rule to
calculate the limit limt→∞ m2(t)/n(t), and we get

lim
t→∞

(
∫ t

0 P(Z+
1 > x)dx)2∫ t

0 xP (X1 > x)dx
= lim

t→∞
2m′(t)m(t)

n′(t)
= 2.

The last equality follows from (3.16). This easily implies the lemma. �

The lemma easily implies the following corollary.

COROLLARY 3.24. Suppose that X1 is a continuous symmetric random vari-
able such that limt→∞ t2

P(X1 > t) = c ∈ (0,∞). Then

P
(
Z+

1 > t
)∼ √

c/2

t
√

log t
and

∫ t

0
P
(
Z+

1 > x
)
dx ∼ √

2c
√

log t .

LEMMA 3.25. Suppose that X1 is a symmetric random variable such that
t → P(X1 > t) is regularly varying with index −2:

(a) Os/s → 0 in probability when s → ∞.

(b) If m(t) =
√∫ t

0 2xP(X1 > x)dx then m(Ot)/m(t) → U[0,1] in distribution
when t → ∞.

PROOF. (a) Note that H+
1 = Z+

1 . Part (a) follows from Corollary 3.22, (3.8)
and Theorem 3.11.

(b) Once again, we will use the fact that H+
1 = Z+

1 . Part (b) follows from (3.8),
(3.15), Corollary 3.22 and Theorem 3.12. �

LEMMA 3.26. If X1 is a symmetric random variable such that limt→∞ t2 ×
P(X1 > t) = c ∈ (0,∞), then

√
logOt/ log t → U[0,1] in distribution as t → ∞.

PROOF. The lemma follows from Corollary 3.24 and Lemma 3.25(b). �

3.2. Wiener–Hopf equation. The Wiener–Hopf integral equation is

(3.17) W(s) = g(s) +
∫ s

−∞
W(s − y)F (dy),

where W : [0,∞) →R is an unknown function. The function g : [0,∞) →R and
the probability distribution F on R are given.

We will make the following assumptions, common in this context:
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• g(x) ≥ 0 for all x ≥ 0 and supx∈[0,a] g(x) < ∞ for all a ≥ 0.
• F is a probability measure with a well-defined mean.
• We will consider only positive solutions to (3.17), that is, W(x) ≥ 0 for all

x ≥ 0.

If g ≡ 0, then we call the equation homogeneous. Spitzer has shown in [19]
that, in general, there is no uniqueness for solutions to the homogeneous equation.
However, uniqueness holds if F is concentrated on [0,∞); see [9].

In this paper, F in (3.17) will be the distribution of X1. For s ≥ 0, we define

(3.18)

Mk = max{Sj : 0 ≤ j ≤ n},

Wmin(s) =
∞∑

k=0

E
(
g(s − Sk)1(Mk≤s)

)
.

We will need the following result from [2], Corollary 3.1.

THEOREM 3.27. Any solution W of the equation (3.17) is of the form W =
Wmin + W0, where W0 is a solution to the homogeneous equation. The function
Wmin(s) defined in (3.18) is the minimal solution.

Once again we quote a result from [2], Proposition 3.3.

THEOREM 3.28. For Wmin, we have

Wmin(s) =
∫ s

0
G(s − x)U+(dx),

where G(s) = ∫ 0
−∞ g(s − y)U−(dy).

LEMMA 3.29. Let F be the probability distribution function of a symmetric
random variable such that∫ ∞

−∞
|x|F(dx) < ∞,

∫ ∞
−∞

|x|2F(dx) = ∞,

and assume that for all s ≥ 0,

g(s) ≤ d(s)r(s),

where d and r are directly Riemann integrable and d is nonincreasing. Then Wmin

the minimal solution to the equation (3.17) has the property that

lim
s→∞Wmin(s) = 0.
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PROOF. Let {Xk} be a sequence of i.i.d. random variables with distribu-
tion F . Since X1 is a symmetric random variable, U+(dx) = U

−(−dx) and we
set U =U

+. Using the notation of Theorem 3.28,

G(s) =
∫ 0

−∞
g(s − y)U−(dy) ≤ d(s)

∫ ∞
0

r(s + y)U(dy) ≤ Cd(s),

where C := sups≥0
∫∞

0 r(s +y)U(dy). It follows from our assumptions and Corol-
lary 3.2 that EZ+

1 = ∞. Hence, we can apply (3.5) to see that the constant C is
finite. By (3.6) and Theorem 3.28,

0 ≤ Wmin(s) =
∫ s

0
G(s − x)U(dx)

≤ C

∫ s

0
d(s − x)U(dx) → 0 when s → ∞. �

COROLLARY 3.30. Suppose that F is the probability distribution function of
a symmetric random variable and 1 − F(x) is regularly varying with index −2.
Assume that there exist C > 0 and α > 0 such that

(3.19) g(s) ≤ C

1 + s2+α
.

Then lims→∞ Wmin(s) = 0, where Wmin is the minimal solution to the equa-
tion (3.17).

PROOF. Let d(s) = r(s) =
√

2C
1+s1+α/2 . Then for all s > 0,

g(s) ≤ C

1 + s2+α
≤
( √

2C

1 + s1+α/2

)2
= d(s)r(s).

Since s →
√

2C
1+s1+α/2 is a decreasing and Lebesgue integrable function on [0,∞),

it is directly Riemann integrable, by Remark 3.6(ii). The claim now follows from
Lemma 3.29. �

REMARK 3.31. Corollary 3.30 may not hold for α = 0, as the following ex-
ample shows. Let F be the cumulative distribution function of a symmetric random
variable with 1 − F(x) = 1/2

1+x2 for x > 0. Let Ns denote the stopping time defined
in (3.7) for the random walk with the step distribution F . In this case we have
Sn/n → 0 a.s., and by the Chung–Fuchs theorem the random walk is recurrent,
hence Ns < ∞, a.s. By Theorem 3.27, equation (3.17) with g(s) = 1 − F(s) for
s ≥ 0 has the minimal solution

Wmin(s) = 1 = P(Ns < ∞) =
∞∑

n=1

P(Ns = n) =
∞∑

k=1

P(Xk > s − Sk−1,Mk−1 < s)

=
∞∑

k=1

E
(
g(s − Sk−1)1(Mk−1<s)

)
.
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4. Two-dimensional model. Recall the two-dimensional model from Sec-
tion 2. First, we will review some properties of the random angle � with the
density function given by (2.1). The cumulative distribution function F� is equal
to

F�(t) = P(� ≤ t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0, t ≤ π/2,
1

2
(sin t + 1), t ∈ (−π/2, π/2),

1, t ≥ π/2.

Note that F−1
� : (0,1) → (−π/2, π/2) is given by

F−1
� (y) = sin−1(2y − 1).

If V has the distribution U(−1,1), then it is easy to check that the following equal-
ities hold in the sense of distribution:

sin� = V, cos� =
√

1 − V 2, tan� = V√
1 − V 2

.(4.1)

In the random reflection model described in Section 2, if the ray is reflected at
the point (x, u) then its next reflection point will be at (x + tan�,1 − u), where
u ∈ {0,1} and � has the density given by (2.1) (see Figure 5).

Let {�n} be a sequence of i.i.d. random variables with density given by (2.1) and
set Xn = tan�n. We define a random walk by setting S0 = 0 and Sn = Sn−1 + Xn

for n ≥ 1. Recall that Ns = inf{n > 0 : Sn > s}. Then the trajectory of the light ray
described in Section 2 consists of:

(i) line segments [(−s + Sn−1, (1 − (−1)n−1)/2), (−s + Sn, (1 − (−1)n)/2)]
for n < Ns ;

(ii) line segment between (−s+SNs−1, (1−(−1)Ns−1)/2) and (−s+SNs , (1−
(−1)Ns )/2).

In view of (4.1), the representation (i)–(ii) given above can start alternatively with

a sequence {Vn} of i.i.d. U(−1,1) random variables and Xn = Vn/
√

1 − V 2
n .

FIG. 5. Step of the random reflection.
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DEFINITION 4.1. We define �s to be the angle between the exiting ray given
in (ii) and the inward normal to the right edge [(0,0), (0,1)]. We let Ys denote the
y-coordinate of the point where the ray exits the tube through the right edge (see
Figure 2).

LEMMA 4.2. (a) The cumulative distribution function of X1 is FX1(x) = 1
2 +

x

2
√

1+x2
and its density is fX1(x) = (1 + x2)−3/2/2 for x ∈R.

(b) E[Xn] = 0 and E[X2
n] = ∞.

(c) The random walk {Sn} is neighborhood recurrent.

PROOF. Part (a) follows from an elementary calculation.
(b) Since

E|Xn| = E

( |Vn|√
1 − V 2

n

)
=
∫ 1

−1

|x|√
1 − x2

1

2
dx =

∫ 1

0

x√
1 − x2

dx = 1,

we must have EXn = 0 by symmetry. The second moment is infinite because

E
[
X2

n

]= ∫ ∞
−∞

2x2

(1 + x2)3/2 dx = ∞.

(c) Since EX1 = 0, the strong law of large numbers shows that Sn/n → 0, a.s.
This also holds in probability so the Chung–Fuchs theorem for random walks im-
plies that {Sn} is a neighborhood recurrent random walk (see [9], Theorems 4.2.1
and 4.2.7). �

It follows from Lemma 4.2(c) that the light ray will hit the line {x = 0}, a.s. In
other words, with probability 1, the light ray will exit the tube (strip) through the
right edge.

LEMMA 4.3. For s > 0 and t1 > t2 > 0, we have

(4.2)
P(X1 > s/t1)

P(X1 > s/t2)
<

t2
1

t2
2

and lim
s→∞

P(X1 > s/t1)

P(X1 > s/t2)
= t2

1

t2
2

.

Moreover, for all t ∈ (0,1] and all s > 0 we have

(4.3) 0 ≤ P(X1 > s/t) − t2
P(X1 > s) ≤ 4

(1 + s2)2 .
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PROOF. Both claims in (4.2) follow easily from the following identity:

P(X1 > s/t1)

P(X1 > s/t2)
=

1
2 − s

2
√

t2
1 +s2

1
2 − s

2
√

t2
2 +s2

=
t2
1√

t2
1 +s2(

√
t2
1 +s2+s)

t2
2√

t2
2 +s2(

√
t2
2 +s2+s)

= t2
1

t2
2

·
√

t2
2 + s2(

√
t2
2 + s2 + s)√

t2
1 + s2(

√
t2
1 + s2 + s)

.

We have

(4.4)

P(X1 > s/t) − t2
P(X1 > s)

= t2
(

1√
t2 + s2(

√
t2 + s2 + s)

− 1√
1 + s2(

√
1 + s2 + s)

)

= t2(1 − t2) 1 + s√
t2+s2+

√
1+s2

(t2 + s2 + s
√

t2 + s2)(1 + s2 + s
√

1 + s2)
.

Clearly, the expression in (4.4) is nonnegative for t ∈ (0,1] and s > 0, t2(1− t2) ≤
1 and since s > 0 we have 1 + s√

t2+s2+
√

1+s2
≤ 2. For s > 1,

1

(t2 + s2 + s
√

t2 + s2)(1 + s2 + s
√

1 + s2)
≤ 1

(1 + s2)2 ,

so by (4.4) we get P(X1 > s/t) − t2
P(X1 > s) ≤ 2

(1+s2)2 . For s ≤ 1, we have

P(X1 > s/t) − t2
P(X1 > s) ≤ P(X1 > s/t) ≤ 1 ≤ 4

(1 + s2)2 .

In either case, (4.3) holds. �

Since E[X2
1] = ∞, we conclude from (3.8) and Lemma 3.9 that, in probability,

when s → ∞,

(4.5) Os = SNs − s → ∞ and Us = s − SNs−1 → ∞.

Let

(4.6)

u(s, t) = P

(
Us

Os + Us

≤ t

)
= P(tXNs > s − SNs−1)

=
∞∑

k=1

P
(
XNs > (s − SNs−1)/t,Ns = k

)

=
∞∑

k=1

P
(
Xk > (s − Sk−1)/t,Mk−1 ≤ s

)
.
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Note that

u(s,1) = 1,(4.7)

because u(s,1) is the probability that the random walk {Sk} will take a value
greater than s and by Lemma 4.2(c), this probability is 1.

LEMMA 4.4. u(s, t) is the minimal solution to the Wiener–Hopf equation

W(s, t) = P(X1 > s/t) +
∫ s

−∞
W(s − y, t)PX1(dy) dy.

PROOF. Fix t > 0 and let g(s) = P(X1 > s/t). Formula (4.6) and the Markov
property imply that u(s, t) = ∑∞

k=0 E(g(s − Sk)1Mk<s). By Theorem 3.27, the
function u(s, t) is the minimal solution to the Wiener–Hopf equation. �

LEMMA 4.5. The function

ũ(s, t) := u(s, t) − t2u(s,1) = u(s, t) − t2

is a solution to the following equation:

W(s, t) = P(X1 > s/t) − t2P(X1 > s) +
∫ s

−∞
W(s − y, t)fX(y) dy.

Moreover, this is the minimal solution to this equation, that is, for every (positive)
solution W of this equation we have ũ(s, t) ≤ W(s, t).

PROOF. We have

u(s, t) − t2u(s,1)

=
∞∑

k=1

P
(
Xk > (s − Sk−1)/t,Mk−1 ≤ s

)

−
∞∑

k=1

t2
P(Xk > s − Sk−1,Mk−1 ≤ s)

=
∞∑

k=1

P
(
Xk > (s − Sk−1)/t,Mk−1 ≤ s

)− t2
P(Xk > s − Sk−1,Mk−1 ≤ s)

= P(X1 > s/t,Mk−1 ≤ s) − t2
P(X1 > s,Mk−1 ≤ s)

+
∞∑

k=2

P
(
Xk > (s − Sk−1)/t,Mk−1 ≤ s

)
− t2

P(Xk > s − Sk−1,Mk−1 ≤ s).
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Setting g(s) := P(X1 > s/t) − t2
P(X1 > s), we obtain

(4.8)

P
(
Xk > (s − Sk−1)/t,Mk−1 ≤ s

)− t2
P(Xk > s − Sk−1,Mk−1 ≤ s)

=
∫ s

−∞
P
(
Xk > (s − y)/t

)
− t2

P(Xk > s − y)P(Sk−1 ∈ dy,Mk−2 ≤ s)

=
∫ s

−∞
g(s − y)P(Sk−1 ∈ dy,Mk−2 ≤ s)

= E
(
g(s − Sk−1)1(Mk−1≤s)

)
.

Hence, ũ(s, t) = ∑∞
k=1 E(g(s − Sk−1)1(Mk−1≤s)), and from (3.18) and Theo-

rem 3.27 we know that this is the minimal solution to the Wiener–Hopf equation
in the statement of the lemma. �

LEMMA 4.6. For a fixed t ∈ (0,1], we have

lim
s→∞ ũ(s, t) = lim

s→∞ u(s, t) − t2u(s,1) = 0.

PROOF. By (4.3), P(X1 > s/t)− t2P(X1 > s) ≤ 4(1+s2)−2. Since
∫∞

0 2(1+
s2)−1 ds < ∞ and s → 2(1 + s2)−1 is decreasing, Remark 3.6(ii) shows that this
function is directly Riemann integrable. This implies that 4(1 + s2)−2 is a product
of two decreasing directly Riemann integrable functions. The lemma now follows
from Lemmas 3.29 and 4.5. �

LEMMA 4.7. (a) We have lims→∞ u(s, t) = t2 for all t ∈ [0,1].
(b) Suppose that Z has the distribution U(0,1). The following limits hold in

distribution, as s → ∞:

Us

Os + Us

→ √
Z,(4.9)

Us

Os

→
√

Z

1 − √
Z

.(4.10)

(c) The following limits hold in probability:

lim
s→∞

logUs − logOs

log s
= 0,

lim
s→∞

log(Us + Os) − logOs

log s
= 0.

PROOF. (a) Recall from (4.7) that u(s,1) = 1 and apply Lemma 4.6.
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(b) Since t2 is the cumulative distribution function of
√

Z and, by defini-
tion, u(s, t) = P( Us

Os+Us
≤ t), (4.9) follows. The formula in (4.10) follows easily

from (4.9).
(c) Take the logarithm of the left-hand side in (4.9) [resp., (4.10)] and divide

by log s. The logarithm of the right-hand side of each (4.9) and (4.10), divided by
log s, converges to 0 in distribution. �

COROLLARY 4.8. Suppose that P(X1 > t) = 1
2 − t

2
√

1+t2
and Z has the dis-

tribution U(0,1). The following limits hold in distribution, as s → ∞:(√
logUs

log s
,

√
logOs

log s

)
→ (Z,Z),(4.11)

(√
log(Us + Os)

log s
,

√
logOs

log s

)
→ (Z,Z).(4.12)

PROOF. The corollary follows from Lemma 3.26 and Corollary 4.7(c). �

4.1. Asymptotic independence of exit characteristics. From the intuitive point
of view, one would expect that when s, the distance from the light source to the
right edge of the strip, is large then the following random variables would be ap-
proximately independent: the size of the undershoot, the ratio of the undershoot
and overshoot, and the last side (upper of lower) visited by the light ray before the
exit from the strip. We will prove that this is actually true. The idea of the proof is
natural but its rigorous presentation requires extensive formulas.

LEMMA 4.9. For t ∈ [0,1] and j = 0,1,

lim
s→∞P

(√
logUs

log s
≤ t,12N(Ns) = j

)
= 1

2
t.

PROOF. We set Sn = ∑n
k=1 Xk and S′

n = ∑n
k=2 Xk . We define Ns = inf{n :

Sn > s}, N ′
s = inf{n : S′

n > s} and Us = s −SNs−1, U ′
s = s −S′

N ′
s−1. The definitions

of Os and O ′
s are analogous. We have

P

(
logUs

log s
≤ t2,Ns ∈ 2N

)

= P

(
logUs

log s
≤ t2,Ns ∈ 2N,min

{
Os,O

′
s,Us,U

′
s

}
/2 > |X1|

)

+ P

(
logUs

log s
≤ t2,Ns ∈ 2N,min

{
Os,O

′
s,Us,U

′
s

}
/2 ≤ |X1|

)
.
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On the event min{Os,O
′
s,Us,U

′
s}/2 > |X1| we have U ′

s = Us − X1 and Ns =
N ′

s + 1. Hence, we have

P

(
logUs

log s
≤ t2,Ns ∈ 2N

)

≤ P

(
log(U ′

s + X1)

log s
≤ t2,N ′

s ∈ 2N− 1,min
{
Os,O

′
s,Us,U

′
s

}
/2 > |X1|

)
+ P

(
min

{
Os,O

′
s,Us,U

′
s

}
/2 ≤ |X1|)

≤ P

(
logU ′

s

log s
≤ t2 + log(1 + X1/U ′

s)

log s
,N ′

s ∈ 2N− 1,

min
{
Os,O

′
s,Us,U

′
s

}
/2 > |X1|

)
+ P

(
min

{
Os,O

′
s,Us,U

′
s

}
/2 ≤ |X1|)

≤ P

(
logU ′

s

log s
≤ t2 + log(3/2)

log s
,N ′

s ∈ 2N− 1,

min
{
Os,O

′
s,Us,U

′
s

}
/2 > |X1|

)
+ P

(
min

{
Os,O

′
s,Us,U

′
s

}
/2 ≤ |X1|)

≤ P

(
logU ′

s

log s
≤ t2 + log(3/2)

log s
,N ′

s ∈ 2N− 1
)

+ P
(
min

{
Os,O

′
s,Us,U

′
s

}
/2 ≤ |X1|).

Since (Sn) and (S′
n) have the same distribution,

P

(
logU ′

s

log s
≤ t2,N ′

s ∈ 2N− 1
)

= P

(
logUs

log s
≤ t2,Ns ∈ 2N− 1

)
.

Hence, subtracting from the previous inequality we get

P

(
logUs

log s
≤ t2,Ns ∈ 2N

)
− P

(
logUs

log s
≤ t2,Ns ∈ 2N− 1

)

≤ P

(
t2 <

logU ′
s

log s
≤ t2 + log(3/2)

log s
,N ′

s ∈ 2N− 1
)

+ P
(
min

{
Os,O

′
s,Us,U

′
s

}
/2 ≤ |X1|)

≤ P

(
t2 <

logU ′
s

log s
≤ t2 + log(3/2)

log s

)
+ P

(
min

{
Os,O

′
s,Us,U

′
s

}
/2 ≤ |X1|).

It follows from Lemma 3.26 and (4.11) that min{Os,O
′
s,Us,U

′
s} → ∞ in proba-

bility as s → ∞. The first term on the right-hand side of the last formula goes to 0
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as s → ∞ in view of (4.11). Thus,

lim sup
s→∞

P

(
logUs

log s
≤ t2,Ns ∈ 2N

)
− P

(
logUs

log s
≤ t2,Ns ∈ 2N− 1

)
= 0.

We can show in a similar manner that

lim sup
s→∞

P

(
logUs

log s
≤ t2,Ns ∈ 2N− 1

)
− P

(
logUs

log s
≤ t2,Ns ∈ 2N

)
= 0.

The claim now follows from the fact that

lim
s→∞P

(
logUs

log s
≤ t2,Ns ∈ 2N− 1

)
+ P

(
logUs

log s
≤ t2,Ns ∈ 2N

)
= t. �

The following is one of our main results.

THEOREM 4.10. For t, v ∈ [0,1], j = 0,1,

lim
s→∞P

(√
logUs

log s
≤ t,

Us

Us + Os

≤ v,12N(Ns) = j

)
= 1

2
tv2.

PROOF. First, note that

P

(√
logUs

log s
≤ t,

Us

Us + Os

≤ v,12N(Ns) = 0
)

= P

(
Us ≤ st2

,
Us

Us + Os

≤ v,12N(Ns) = 0
)

= P

(
s − SNs−1 ≤ st2

,
s − SNs−1

XNs

≤ v,12N(Ns) = 0
)

=
∞∑

k=1

P

(
s − SNs−1 ≤ st2

,
s − SNs−1

XNs

≤ v,Ns = 2k

)

=
∞∑

k=1

P

(
s − S2k−1

v
≤ X2k, s − st2 ≤ S2k−1 ≤ s, S2k−2 ≤ s, . . . , S1 ≤ s

)

=
∫ s

s−st2
P

(
s − u

v
≤ X1

) ∞∑
k=1

P(S2k−1 ∈ du,M2k−1 ≤ s).

We have

As := P

(√
logUs

log s
≤ t,

Us

Us + Os

≤ v,12N(Ns) = 0
)

− v2
P

(√
logUs

log s
≤ t,12N(Ns) = 0

)
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=
∫ s

s−st2

[
P

(
s − u

v
≤ X1

)
− v2

P(s − u ≤ X1)

]

×
∞∑

k=1

P(S2k−1 ∈ du,M2k−1 ≤ s).

Lemma 4.3 implies that As ≥ 0. It follows from (4.8) that

As ≤
∫ s

−∞

[
P

(
s − u

v
≤ X1

)
− v2

P(s − u ≤ X1)

] ∞∑
k=1

P(Sk−1 ∈ du,Mk−1 ≤ s)

= ũ(s, v),

where ũ is defined in Proposition 4.5. By Theorem 4.6, lims→∞ ũ(s, v) = 0. The
theorem now follows from Lemma 4.9. �

We record a few variants and corollaries of the last theorem. They follow easily
from Lemma 4.7(c) and Theorem 4.10.

COROLLARY 4.11. For t, v ∈ [0,1], j = 0,1,

lim
s→∞P

(√
logOs

log s
≤ t,

Us

Us + Os

≤ v,12N(Ns) = j

)
= 1

2
tv2,

lim
s→∞P

(√
log(Us + Os)

log s
≤ t,

Us

Us + Os

≤ v,12N(Ns) = j

)
= 1

2
tv2,(4.13)

lim
s→∞P

(
Us

Us + Os

≤ v,12N(Ns) = j

)
= 1

2
v2,(4.14)

lim
s→∞P(Ns ∈ 2N) = lim

s→∞P(Ns ∈ 2N− 1) = 1

2
.(4.15)

4.2. Exit angle and position. We introduced the exit angle �s and position Ys

in Definition 4.1. Now we will describe their joint distribution. Recall that (s +Sn :
0 ≤ n ≤ Ns − 1) are x-coordinates of the reflection points of the light ray inside
the tube before the exit time.

LEMMA 4.12. For s ≥ 0, we have

(4.16) (�s,Ys) =

⎧⎪⎪⎨⎪⎪⎩
(

cot−1(Os + Us),
Us

Os + Us

)
, if Ns ∈ 2N− 1,(

− cot−1(Os + Us),
Os

Os + Us

)
, if Ns ∈ 2N.

PROOF. If Ns is even then the last reflection happened on the upper boundary
of the tube and the angle is negative. Hence, �s = − cot−1(Os +Us). One can use
similar triangles (see Figure 6) to show that Ys = Os

Os+Us
.
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FIG. 6. The case when Ns is even and �s is negative.

The case when Ns ∈ 2N− 1 can be dealt with in a similar way. �

THEOREM 4.13. (�s,Ys) → (0,U[0,1]) in distribution as s → ∞.

PROOF. Recall from (4.5) that Os +Us → ∞ in probability. Therefore, �s →
0 in probability as s → ∞.

It remains to show that Ys → U[0,1]. We use (4.14), (4.15) and (4.16) to see
that

P(Ys ≤ t) = P(Ys ≤ t,Ns ∈ 2N− 1) + P(Ys ≤ t,Ns ∈ 2N)

= P

(
Us

Os + Us

≤ t,Ns ∈ 2N− 1
)

+ P

(
Os

Os + Us

≤ t,Ns ∈ 2N
)

= P

(
Us

Os + Us

≤ t,Ns ∈ 2N− 1
)

+ P(Ns ∈ 2N) − P

(
Us

Os + Us

≤ 1 − t,Ns ∈ 2N
)

→ t2

2
+ 1

2
− (1 − t)2

2
= t. �

THEOREM 4.14. For t, v ∈ [0,1],

lim
s→∞P

(√
log cot |�s |

log s
≤ t, j�s ≤ 0, Ys ≤ v

)

=
{
t
(
1 − (1 − v)2)/2, if j = 1,

tv2/2, if j = −1.

PROOF. It follows from Lemma 4.12 that log cot |�s | = log(Os + Us) and

{j�s ≤ 0, Ys ≤ v} =

⎧⎪⎪⎨⎪⎪⎩
{
Ns ∈ 2N− 1,

Us

Os + Us

≤ v

}
, if j = −1,{

Ns ∈ 2N,1 − Us

Os + Us

≤ v

}
, if j = 1.
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The theorem now follows from (4.13). �

COROLLARY 4.15. For t, y ∈ [0,1] and ε ∈ (0, y), we have

lim
s→∞P

(√
log cot |�s |

log s
≤ t, j�s ≤ 0

∣∣∣ Ys ∈ (y − ε, y]
)

=
{
t (1 − p + ε/2), if j = 1,

t (p − ε/2), if j = −1.

PROOF. Theorem 4.13 shows that lims→∞P(Ys ∈ (y − ε, y]) exists and is
nonzero. This and Theorems 4.13 and 4.14 can be used to derive the asymptotic
formula for the conditional probability. �

4.3. Discussion of the results. Theorem 4.13 says that in the limit (i.e., when
the light source is infinitely far away), the light rays exit the two-dimensional tube
horizontally, and they are equally likely to exit at any point of the right edge.

Next, we discuss the direction from which light rays arrive at an eye located at
a point (0, y) (see Figure 3). Corollary 4.15 says that for large s,(√

log cot |�s |
log s

, sgn�s

)
d≈ (V ,R),

where V has the uniform distribution U[0,1] and R is an independent random
variable with P(R = 1) = y and P(R = −1) = 1 − y. We can “solve for �s” to
derive the following purely heuristic formula:

�s

d≈ R cot−1(sV 2)
.

Approximately y proportion of light arrives from the lower side (yellow rays in
Figure 3), while the remaining rays arrive from the upper side of the tube (or-
ange rays in Figure 3). The histogram in Figure 4 represents a simulation of
R cot−1(sV 2

).

5. Three-dimensional model. This part of the paper will be devoted to light
reflections within a three-dimensional semi-infinite cylinder C = {(x, y, z) ∈ R

2 :
z2 +y2 = 1, x ≤ 0} (see Figure 7). In this case, the exiting light rays are not asymp-
totically parallel when the light source moves to infinity. So the three-dimensional
model is less degenerate than the two-dimensional model. In this case, our results
are less complete than those in the two-dimensional case. The reason is that deriv-
ing explicit formulas for this model is hard—this is a well-known difficulty with
models related to the Wiener–Hopf equation (see Section 6.5 of [12], and espe-
cially Section 6.5.4).

We will assume that the light ray starts at s := (−s,0,−1). At the initial time
and whenever the light ray hits the boundary of C, it reflects according to the
Lambertian scheme, that is:
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FIG. 7. Cylinder.

(i) the outgoing light ray forms a random angle � with the normal to the
tangent plane,

(ii) � is a random variable with density (2.1),
(iii) the projection of the outgoing ray onto the tangent plane forms a random

angle 
 with the line parallel to the x-axis (see Figure 8),
(iv) 
 has the distribution U[−π/2, π/2] and is independent of �.

The consecutive reflection directions are jointly independent.
Consider the light ray leaving the starting point (x,0,−1). The tangent plane

to the cylinder C at that point is {z = −1} and the ray starts moving along the line
parallel to the vector

(5.1) (R sin� cos
,R sin� sin
,R cos�), R > 0.

LEMMA 5.1. Given � and 
, the distance to the next reflection point is

(5.2) R = 2 cos�

sin2 
 sin2 � + cos2 �
.

PROOF. We need to find a point (R sin� cos
 + x,R sin� sin
,R cos� −
1) on the cylinder {y2 + z2 = 1}. A straightforward calculation yields the formula.

�

FIG. 8. Reflection with respect to the tangent plane.
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LEMMA 5.2. If the light ray reflects at the point (x0, y0, z0) and � and 
 are
given, then the next reflection point will occur at(
R sin� cos
+ x0,R(−z0 sin� sin
− y0 cos�),R(y0 sin� sin
− z0 cos�)

)
,

where R is given by (5.2).

PROOF. Note that (x0, y0, z0) = (x0,0,−1)A where A is the matrix represent-
ing the rotation operator about the x-axis and given by

A =
⎡⎣1 0 0

0 −z0 −y0
0 y0 −z0

⎤⎦ .

In view of (5.1)–(5.2), if the light ray starts at (x0, y0, z0), then the next reflection
point will be at the point (R sin� cos
 + x0,R sin� sin
,R cos�)A. �

Next, we establish notation for the process of reflection points inside the cylin-
der C. Recall that the light ray starts at s = (−s,0,−1). The reflection points will
be {Sk +s}k≥0 where {Sk}k≥0 is a random walk defined as follows. Let (�k,
k)

∞
k=1

be an i.i.d. sequence such that:

• �k has the density 1
2 cos θ on [−π/2, π/2] for all k;

• 
k is distributed as U[−π/2, π/2] for all k;
• all random variables in the union of the families (�k)k≥0 and (
k)k≥0 are inde-

pendent.

Set S0 = (0,0,−1),

Rk = 2 cos�k

sin2 
k sin2 �k + cos2 �k

= 2 cos�k

1 − cos2 
k sin2 �k

,

and define Sk = (Sx
k , S

y
k , Sz

k) for k ≥ 1 by

Sx
k = Sx

k−1 + Rk cos
k sin�k,(5.3)

S
y
k = S

y
k−1 + Rk

(−Sz
k−1 sin
k sin�k − S

y
k−1 cos�k

)
,(5.4)

Sz
k = Sz

k−1 + Rk

(
S

y
k−1 sin
k sin�k − Sz

k−1 cos�k

)
.(5.5)

REMARK 5.3. (i) The pair (S
y
k , Sz

k) takes values in the unit circle {y2 + z2 =
1}. It is elementary to see that there exists c1 > 0 such that for any k and any point
(y, z) on the unit circle, the conditional density of (S

y
k+2, S

z
k+2) with respect to

the uniform probability measure, given {(Sy
k , Sz

k) = (y, z)}, is bounded below by
c1 [note that the claim is about the distribution of (S

y
k+2, S

z
k+2), not (S

y
k+1, S

z
k+1)].

A coupling argument now easily implies that the process {(Sy
k , Sz

k), k ≥ 0} is mix-
ing and converges exponentially fast to a stationary distribution (which is neces-
sarily uniform) on the unit circle.
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(ii) The process {(Sx
k ), k ≥ 0} is a random walk. Let ∂rC = {(x, y, z) ∈ R

2 :
y2 + z2 ≤ 1, x = 0}, Ns = inf{n > 0 : Sx

n > s} and let Ys ∈ ∂rC denote the point
where the light ray crosses ∂rC. It follows easily from (5.8) that the exit time Ns

goes to infinity as s → ∞. This and (i) easily imply that the exit distribution on
∂rC is rotationally invariant.

Let Xk = Sx
k − Sx

k−1 denote a step of the random walk {Sx
k }. We will analyze

the distribution of Xk . By (5.3),

(5.6) Xk = 2 cos�k cos
k sin�k

sin2 
k sin2 �k + cos2 �k

.

In order to simplify notation, we define Vk = sin�k . By (4.1), Vk has the dis-
tribution U[−1,1]. Since the distribution of �k is supported on [−π/2, π/2],
cos�k ≥ 0, and hence cos�k =

√
1 − V 2

k . For the same reason cos
k ≥ 0. This
implies that

(5.7) Xk = 2Vk

√
1 − V 2

k cos
k

V 2
k sin2 
k + 1 − V 2

k

= 2Vk

√
1 − V 2

k cos
k

1 − V 2
k cos2 
k

.

LEMMA 5.4. (a) {Xk > 0} = {Vk > 0} and {Xk < 0} = {Vk < 0}.
(b) E[Xk] = 0, E[|Xk|] = 2 − 4/π , E[X2

k ] = π/2.

PROOF. (a) This part follows from (5.7).
(b) We use (5.6) to see that

E
[|Xk|]= ∫ π/2

−π/2

∫ π/2

−π/2

2 cos θ cosφ| sin θ |
sin2 φ sin2 θ + cos2 θ

1

π
dφ

cos θ

2
dθ

= 1

π

∫ π/2

0

∫ π/2

0

8 cos θ cosφ sin θ

sin2 φ sin2 θ + cos2 θ
dφ

cos θ

2
dθ

[h = sinφ] = 1

π

∫ π/2

0

∫ 1

0

8 cos θ sin θ

h2 sin2 θ + cos2 θ
dh

cos θ

2
dθ

= 8

π

∫ π/2

0
tan−1(tan θ)

cos θ

2
dθ

= 4

π

∫ π/2

0
θ cos θ dθ = 2 − 4/π.

Since Xk is symmetric, we have EXk = 0. A similar calculation yields EX2
k =

π/2. �

The following definitions are analogous to (3.1). Recall that Sx
0 = 0, Sx

n =∑n
k=1 Xk , and let Z+

1 = Sx

T +
1

and Z−
1 = Sx

T −
1

where T +
1 = inf{n : Sx

n > 0} and
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T −
1 = inf{n : Sx

n < 0}. It follows from Corollary 3.2 and Lemma 5.4(b) that

E
[
Z+

1

]= E
[−Z−

1

]=√
E
[
X2

1

]
/2 = √

π/2.(5.8)

PROPOSITION 5.5. For t ∈ [0,1],

lim
s→∞P

(
Us

Us + Os

≤ t

)
= �(t) := E[(t (U0 + O0) − U0)

+]
E[O0] .(5.9)

PROOF. We showed in Lemma 4.4 that U(s, t) = P( Us

Us+Os
≤ t) is the minimal

solution to the Wiener–Hopf equation.
We have from Theorem 3.28

P

(
Us

Us + Os

≤ t

)
= P

(
XNs >

s − Sx
Ns−1

t

)
=
∫ s

0
h(s − y)U+(dy),

where

h(s) =
∫ 0

−∞
P

(
X1 >

s − u

t

)
U

−(du)

=
∞∑

k=1

P

(
Xk >

s − Sx
k−1

t
, Sx

k−1 ≤ 0, . . . , Sx
0 ≤ 0

)

= P

(
XN0 >

s − Sx
N0−1

t

)
= P

(
t (U0 + O0) − U0 > s

)
.

Since s → P(t (U0 + O0) − U0 > s), (3.6) implies that

lim
s→∞P

(
Us

Us + Os

≤ t

)
= lim

s→∞

∫ s

0
P
(
t (U0 + O0) − U0 > s − y

)
U

+(dy)

= 1

E[Z+
1 ]
∫ ∞

0
P
(
t (U0 + O0) − U0 > y

)
dy

= E[(t (U0 + O0) − U0)
+]

E[Z+
1 ] = E[(t (U0 + O0) − U0)

+]
E[O0] . �

LEMMA 5.6. The function � : [0,1] → R defined in (5.9) has the following
properties:

(a) � is a continuous, increasing and convex function.
(b) (2π−1/2 − 4π−3/2)t ≤ �(t) ≤ t (note that 2π−1/2 − 4π−3/2 ≈ 0.410).
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(c) �(0) = 0, �(1) = 1, �′(0) = 2π−1/2 − 4π−3/2 and �′(1) = 1
EO0

E[O0 +
U0].

PROOF. (a) Since U0 and O0 are nonnegative, it is clear that � is an increasing
and continuous function. A function of the form t → (at −b)+ is a convex function
for nonnegative a and b. Since t → E[(t (U0 + O0) − U0)

+] is the expected value
of convex functions, it is convex.

(b) By the definition, �(t) = 1
EO0

E[(tO0 − (1 − t)U0)
+]. Since −(1 − t)U0 ≤ 0

we have �(t) ≤ 1
EO0

E(tO0) = t . On the other hand, {U0 = 0} = {X1 > 0}, a.s.,
and on that event we have O0 = X1. Hence,

(5.10)

�(t) = 1

EO0
E
[(

tO0 − (1 − t)U0
)+

(1(U0=0) + 1(U0>0))
]

≥ 1

EO0
E
[(

tO0 − (1 − t)U0
)+1(U0=0)

]= 1

EO0
E
[
(tO0)

+1(U0=0)

]
= 1

EO0
E
[
(tX1)

+1(X1>0)

]= t · E[X11(X1>0)]
EO0

.

It follows from the symmetry of X1 and Lemma 5.4(b) that E[X11(X1>0)] =
1
2E[|X1|] = 1−2/π . Corollary 3.2 and Lemma 5.4(b) imply that E[O0] = EZ+

1 =√
π/2.

E[X11(X1>0)]
EO0

= 2π−1/2 − 4π−3/2.(5.11)

This and (5.10) imply part (b).
(c) It is clear that �(0) = 0 and �(1) = 1. For the derivative at t = 0, we have

�′(0) = lim
t→0+

�(t) − �(0)

t
= lim

t→0+
�(t)

t

= lim
t→0+

1

tEO0
E
[(

tO0 − (1 − t)U0
)+

(1(U0=0) + 1(U0>0))
]

= lim
t→0+

1

tEO0
E
[
(tO0)

+1(U0=0)

]
+ lim

t→0+
1

tEO0
E
[(

tO0 − (1 − t)U0
)+1(U0>0)

]
= E[X11(X1>0)]

EO0
+ lim

t→0+
1

EO0
E

[(
O0 − 1 − t

t
U0

)+
1(U0>0)

]
.

Note that (O0 − 1−t
t

U0)
+1(U0>0) ≤ O0 and limt→0+(O0 − 1−t

t
U0)

+1(U0>0) = 0.
Hence, by dominated convergence and (5.11),

�′(0) = E[X11(X1>0)]
EO0

= 2π−1/2 − 4π−3/2.
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FIG. 9. Exit point Ys is marked with (•).

For the derivative at t = 1, we have

�′(1) = lim
t→1−

�(1) − �(t)

1 − t
= lim

t→1−
1

EO0
E

[
1

1 − t
O0 −

(
t

1 − t
O0 − U0

)+]
.

Since t → 1
1−t

O0 − ( t
1−t

O0 − U0)
+ is an increasing function, the monotone con-

vergence theorem yields

�′(1) = 1

EO0
E[O0 + U0]. �

Let Ys = (Y x
s , Y

y
s , Y z

s ) ∈ ∂rC denote the point through which the light ray exits
the cylinder (see Figure 9) and let Ns = inf{n > 0 : Sx

n > s}. Note that

Ys =
(

0,
s − Sx

Ns−1

XNs

· (Sy
Ns

− S
y
Ns−1

)+ S
y
Ns−1,

s − Sx
Ns−1

XNs

· (Sz
Ns

− Sz
Ns−1

)+ Sz
Ns−1

)
.

It is elementary to derive the following formula from the above definition of Ys :

(5.12)

{
Us

Us + Os

≤ t

}
= {(

Yy
s − (1 − t)S

y
Ns−1

)2 + (
Y z

s − (1 − t)Sz
Ns−1

)2 ≤ t2}.
Let Dt(y0, z0) = {(y, z) : (y − (1 − t)y0)

2 + (z − (1 − t)z0)
2 ≤ t2}. Note that

Dt(y0, z0) is a disc with area πt2. The definition of Dt(y0, z0), (5.9) and (5.12)
yield

lim
s→∞P

(
Ys ∈ Dt

(
S

y
Ns−1, S

z
Ns−1

))= �(t).(5.13)

PROPOSITION 5.7. Let Leb(A) denote the Lebesgue measure on ∂rC:
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(a)

lim
t→0+

lims→∞P(Ys ∈ Dt(S
y
Ns−1, S

z
Ns−1))

Leb(Dt(S
y
Ns−1, S

z
Ns−1))

= ∞.

(b)

lim
t→1−

lims→∞P(Ys ∈ ∂rC \ Dt(S
y
Ns−1, S

z
Ns−1))

Leb(∂rC \ Dt(S
y
Ns−1, S

z
Ns−1))

= 1

2πE[O0]E[O0 + U0].

PROOF. (a) We have Leb(Dt(S
y
Ns−1, S

z
Ns−1)) = πt2 so part (a) follows from

Lemma 5.6(b) and (5.13).
(b) By (5.13),

lim
t→1−

lims→∞P(Ys ∈ ∂rC \ Dt(S
y
Ns−1, S

z
Ns−1))

Leb(∂rC \ Dt(S
y
Ns−1, S

z
Ns−1))

= lim
t→1−

1 − �(t)

π(1 − t2)

= lim
t→1−

1

π(1 + t)

�(1) − �(t)

1 − t
= �′(1)

2π
.

Part (b) now follows from Lemma 5.6(c). �

Let Br(0) = {(y, z) ∈ ∂rC : y2 + z2 ≤ r2}.

THEOREM 5.8. For r ∈ (0,1),

lim
s→∞P

(
Ys ∈ Br(0)

)≤ �

(
1 + r

2

)
− �

(
1 − r

2

)
,(5.14)

lim
s→∞P

(
Ys ∈ Br(0)

)
(5.15)

≤ a(r) := (
1/2 + π−1/2 − 2π−3/2)r + 1/2 − π−1/2 + 2π−3/2,

where � is given by (5.9).

REMARK 5.9. The linear function a(r) takes values a(0) ≈ 0.29 and
a(1) = 1.

PROOF OF THEOREM 5.8. Since Br(0) ⊂ D(1+r)/2(y0, z0) \ D(1−r)/2(y0, z0)

for any (y0, z0) on the unit circle, we obtain (5.14) by applying (5.13). We derive
(5.15) from (5.14) and Lemma 5.6(b). �
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5.1. Brightness singularity. We will show that the apparent brightness of the
light arriving at the eye placed at the center of the tube opening ∂rC goes to infinity
close to the center of the field of vision as the light source moves to infinity. The
precise statement of the result is the following.

Let vs = (SNs − SNs−1)/|SNs − SNs−1| be the unit vector representing the di-
rection of the light ray at the exit time. Let B(r) = {(x, y, z) : x2 + y2 + z2 =
1, y2 + z2 ≤ r2, x > 0} denote a ball on the unit sphere and recall that Br(0) =
{(y, z) ∈ ∂rC : y2 + z2 ≤ r2}.

THEOREM 5.10. For any 0 < r1 < r2 < 1,

lim
s→∞ lim

δ→0

s

πδ2P

(
vs ∈ B

(
r2

s

)∖
B
(

r1

s

)
, Ys ∈ Bδ(0)

)
= r2 − r1

2π2 .

The proof of the theorem will be preceded by a lemma. The lemma is an esti-
mate for the Green function of the random walk Sx

k . The estimate is rather standard
and it is likely to be known but we could not find a ready reference. Let Ms(x1, x2)

be the number of k ≤ Ns − 1 such that Sx
k − s ∈ (x1, x2).

LEMMA 5.11. For any 0 < a1 < a2 < 1,

lim
s→∞

1

s2EMs(−sa2,−sa1) = a2
2 − a2

1

π
.

PROOF. Let D[0,∞) denote the space of RCLL functions equipped with the
Skorokhod topology. Some of the functions in this space can be “killed.” We for-
malizing this idea by adding a “coffin” absorbing state to the state space and send-
ing there all killed functions. We will use the convention that all functions take
value 0 on the coffin state.

Let {Ws
t , t ≥ 0} be the one dimensional Brownian motion with Ws

0 = −s. Let
τ0 = inf{t ≥ 0 : Ws

t = 0} and let Gs(x) denote the Green function of Ws killed at
time τ0, that is, Gs is the function defined by the requirement that for all −∞ <

x1 < x2 < ∞, ∫ x2

x1

Gs(x) dx = E

∫ τ0

0
1(x1,x2)

(
Ws

t

)
dt.

It is standard to show that

Gs(x) =

⎧⎪⎪⎨⎪⎪⎩
−s, x < −s,

−x, −s ≤ x ≤ 0,

0, x > 0.

(5.16)

Recall from Lemma 5.4(b) that EXk = 0 and EX2
k = π/2. According to the

Skorokhod embedding theorem (see [17]), there exist stopping times Tk , k ≥ 0,
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such that T0 = 0, {Tk −Tk−1, k ≥ 1} is an i.i.d. sequence with E(Tk −Tk−1) = π/2,
and {Ws

Tk
− Ws

Tk−1
, k ≥ 1} are i.i.d. with the same distribution as {Xk, k ≥ 1}. Let

NW
s = inf{k ≥ 0 : Ws(Tk) > 0} and let MW

s (x1, x2) be the number of k ≤ NW
s − 1

such that Ws(Tk) ∈ (x1, x2). It will suffice to prove the lemma for MW
s in place

of Ms .
Fix an arbitrarily small ε > 0. Let c1 > 0 be so large that, for all k, a.s.,

E

(∫ Tk

Tk−1

1(Ws(Tk−1)−c1,W
s(Tk−1)+c1)

(
Ws

t

)
dt
∣∣∣FTk−1

)
≥ π/2 − ε.(5.17)

Suppose that 0 < a1 < a2 < 1 and s is so large that (−sa2 − c1,−sa1 + c1) ⊂
(−s,0). Then (5.16) and (5.17) show that

(π/2 − ε)EMW
s (−sa2,−sa1)

= E

NW
s∑

k=1

(
1Ws(Tk−1)∈(−sa2,−sa1)(π/2 − ε)

)

=
∞∑

k=1

E
(
1k≤NW

s
1Ws(Tk−1)∈(−sa2,−sa1)(π/2 − ε)

)

≤
∞∑

k=1

E

(
1k≤NW

s
1Ws(Tk−1)∈(−sa2,−sa1)

×E

(∫ Tk

Tk−1

1(Ws(Tk−1)−c1,W
s(Tk−1)+c1)

(
Ws

t

)
dt
∣∣∣FTk−1

))

=
∞∑

k=1

E

(
1k≤NW

s
1Ws(Tk−1)∈(−sa2,−sa1)

×
∫ Tk

Tk−1

1(Ws(Tk−1)−c1,W
s(Tk−1)+c1)

(
Ws

t

)
dt

)

≤ E

∫ T
NW

s

0
1(−sa2−c1,−sa1+c1)

(
Ws

t

)
dt

≤ E

∫ τ0

0
1(−sa2−c1,−sa1+c1)

(
Ws

t

)
dt +E

∫ T
NW

s

T
NW

s
−1

1(−sa2−c1,−sa1+c1)

(
Ws

t

)
dt

≤
∫ −sa1+c1

−sa2−c1

Gs(x) dx +E(TNW
s

− TNW
s −1)

= 1

2

(
(−sa2 + c1)

2 − (−sa1 − c1)
2)+ π/2.
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It follows that

lim sup
s→∞

1

s2EMs(−sa2,−sa1) ≤
1
2(a2

2 − a2
1)

π/2 − ε
.

Since ε > 0 is arbitrarily small,

lim sup
s→∞

1

s2EMs(−sa2,−sa1) ≤ a2
2 − a2

1

π
.(5.18)

Let

V s
t = Sx

k

s

√
π2/2

for t ∈ [k/s2, (k + 1)/s2), k ≥ 0.

The processes {V s
t , t ≥ 0} converge to {W 1

t , t ≥ 0} in distribution in the Skorokhod
topology when s → ∞.

For a, b and δ > 0 such that a + δ < b − δ, choose some continuous function
λ(a, b, δ, t) :R→ [0,1] such that

λ(a, b, δ, t) =

⎧⎪⎪⎨⎪⎪⎩
0, if t < a,

1, if a + δ < t < b − δ,

0, if t > b.

Fix any u < ∞. The functional f → ∫ u
0 λ(a, b, δ, f (t)) dt is bounded and contin-

uous on D[0,∞) in the Skorokhod topology. It follows that

lim inf
s→∞ E

(
1

s2 Ms(−sa2,−sa1)

)
≥ lim inf

s→∞ E

∫ u

0
λ
(−a2/

√
π/2,−a1

√
π/2, δ,V s

t

)
dt

= E

∫ u

0
λ
(−a2/

√
π/2,−a1

√
π/2, δ,W 1

t

)
dt

≥
∫ −a1

√
π/2−δ

−a2/
√

π/2+δ
Gs(x) dx

= 1

2

(
(−a2/

√
π/2 + δ)2 − (−a1

√
π/2 − δ)2).

Since δ > 0 can be arbitrarily small,

lim inf
s→∞ E

(
1

s2 Ms(−sa2,−sa1)

)
≥ a2

2 − a2
1

π
.

This and (5.18) prove the lemma. �

PROOF OF THEOREM 5.10. Recall that Br(0) = {(y, z) ∈ ∂rC : y2 +z2 ≤ r2}.
If s is large, δ > 0 is small and the light ray leaves a point (−sa,0,1) in the random
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direction determined by (5.3)–(5.5) then the probability that this ray will exit the
tube through Bδ(0) is

πδ2 1

2πsa

1

2(sa)2 + o
(
δ2/s3)= δ2

4s3a3 + o
(
δ2/s3).(5.19)

The factors on the left-hand side represent the following quantities. The area of
Bδ(0) is equal to πδ2. The hitting density is the product of two factors, corre-
sponding to 
 and � (see the beginning of Section 5 for the definitions). The
factor representing the density of 
 is 1

2πsa
(the reciprocal of the radius of the

circle centered at the starting point and passing through the center of ∂rC, up to a
term of lower order). The factor representing the density of � is 1

2(sa)2 because of
(2.1) and scaling by the radius sa, just like in the case of the density of 
; once
again, the terms of lower order are ignored.

For fixed r1 and r2, large s, and small δ > 0, a light ray arriving at Bδ(0) in the
direction vs ∈ B( r2

s
) \ B( r1

s
) must have have left the surface of the tube at a point

with the x-coordinate in the range [−s/r1 +o(s)+O(δs),−s/r2 +o(s)+O(δs)].
We define a measure Ms by Ms(A) = E(

∑Ns−1
k=0 1A(Sx

k )) for every Borel subset
A of R. Lemma 5.11 can be rephrased as

lim
s→∞

1

s2Ms

(
(−sa2,−sa1)

)= a2
2 − a2

1

π
.

A formal calculation based on this formula yields for small ε > 0,

Ms

(−s(a + ε),−sa
)≈ 2aεs2

π
.(5.20)

It is routine, using techniques from the proofs of Lemmas 3.3 and 3.21, to provide
a rigorous argument based on (5.19) and (5.20), showing that for any 0 < r1 <

r2 < 1,

lim
s→∞ lim

δ→0

s

πδ2P

(
vs ∈ B

(
r2

s

) ∖
B
(

r1

s

)
, Ys ∈ Bδ(0)

)

= lim
s→∞ lim

δ→0

s

πδ2

∫ −1/r2+o(s)/s+O(δs)/s

−1/r1+o(s)/s+O(δs)/s

[
δ2

4s3a3 + o
(
δ2/s3)]

M(s da)

= lim
s→∞

(
s

∫ 1/r1

1/r2

1

4πs3a3

2as2

π
da

)
= r2 − r1

2π2 . �

5.2. Discussion of the results. The behavior of the light reflection process in
the three-dimensional tube is much different from that in the two-dimensional case.
The most notable difference is that the overshoot Os and undershoot Us (in the x-
direction) converge to a nontrivial distribution [instead of going to infinity as in
(4.5)]. The reason is that the ladder variable Z+

1 has finite expectation [see (5.8)],
unlike in the two-dimensional case. This fact and the Wiener–Hopf equation can be
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used to show existence of the limiting distributions for many quantities of interest.
Unfortunately, most of the formulas that can be obtained in this way are abstract
integrals that cannot be easily interpreted.

Theorem 5.10 says that small annuli at the center of the field of vision, with
the area of magnitude 1/s2, receive about 1/s units of light. Hence, the apparent
brightness is about s at the distance 1/s from the center, if the light source is s

units away. This means that the surface of the tube does not appear to the eye to be
Lambertian, that is, the surface does not have uniform apparent brightness. This
can be explained by the fact that not all parts of the surface of the tube receive the
same amount of light.
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