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Consider a Boolean model in R
d with balls of random, bounded radii

with distribution F0, centered at the points of a Poisson process of intensity
t > 0. The capacity functional of the infinite cluster Z∞ is given by θL(t) =
P{Z∞ ∩ L �=∅}, defined for each compact L ⊂R

d .
We prove for any fixed L and F0 that θL(t) is infinitely differentiable in t ,

except at the critical value tc; we give a Margulis–Russo-type formula for the
derivatives. More generally, allowing the distribution F0 to vary and viewing
θL as a function of the measure F := tF0, we show that it is infinitely dif-
ferentiable in all directions with respect to the measure F in the supercritical
region of the cone of positive measures on a bounded interval.

We also prove that θL(·) grows at least linearly at the critical value. This
implies that the critical exponent known as β is at most 1 (if it exists) for this
model. Along the way, we extend a result of Tanemura [J. Appl. Probab. 30
(1993) 382–396], on regularity of the supercritical Boolean model in d ≥ 3
with fixed-radius balls, to the case with bounded random radii.

1. Introduction. The Boolean model is a fundamental model of random sets
in stochastic geometry; see Hall (1988), Meester and Roy (1996), Schneider and
Weil (2008), Stoyan, Kendall and Mecke (1987). It is obtained by taking the union
Z of a collection of (in general, random) compact sets (known as grains) centered
on the points of a homogeneous Poisson process of intensity t in d-space. For a
large class of grain distributions, it is known that for t above a critical value tc
that is dependent on the grain distribution, the resulting random set, denoted Z(t),
includes a unique infinite component, denoted Z∞(t).

The random set Z∞ = Z∞(t) is an important and fascinating object of study.
One way to investigate its distribution is through its capacity functional, defined as
the set function L �→ θL(t) := P{Z∞(t) ∩ L �= ∅}, defined for compact L ⊂ R

d .
If L is a singleton, then θ(t) := θ{0}(t) is called the volume fraction of Z∞(t), and
in the case where the grains are all translates of a fixed set K0 (e.g., a unit ball),
θK0(t) is (loosely speaking) the proportion of grains that lie in Z∞. More generally,
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the capacity functional of a random set and, in particular, of Z∞, determines its
distribution; see Schneider and Weil (2008).

In this article, we investigate the capacity functional of Z∞ as a function of the
intensity t . We consider the case where the grains are balls with random radii with
distribution F0 for some probability measure F0 on R+ with bounded support.

We show for any compact L ⊂ R
d that θL(t) is infinitely differentiable in t for

t > tc (it is identically 0 for t < tc), thereby adding to earlier results on continuity
of θL(t), t > tc, and give an explicit expression for the derivatives (Theorem 3.2).
More generally, allowing F0 to vary and viewing θL as a function of the measure
F := tF0, we show (Theorem 3.1) that it is infinitely differentiable in all directions
with respect to the measure F in the supercritical region of the cone of positive
measures on a bounded interval.

We also prove (in Theorem 3.4) that θL grows at least linearly in the right neigh-
bourhood of the threshold tc. This is similar behaviour to that of the percolation
function in discrete percolation models; see Grimmett (1999), Chapter 5, and the
references therein. See Duminil-Copin and Tassion (2015) for a recent alternative
proof of the discrete result, under the assumption of nonpercolation at the critical
point. It would be interesting to try to adapt this to the continuum.

In the course of proving the results mentioned above, we show (in Theorem 3.7)
that if our Boolean model with random but bounded radii is supercritical in R

d

for d ≥ 3, then it is also supercritical in a sufficiently thick slab. Previously, only
the case with fixed radii had been considered, although the analogous result in
the lattice is well known [Grimmett and Marstrand (1990)]. Also noteworthy is
the fact that our proof of Theorem 3.4 requires the continuum Reimer inequality
[Gupta and Rao (1999)].

We believe that our methods could also be used to give smoothness of the n-
point connectivity function as a function of t for t > tc. We also expect similar
methods to be applicable for more general grains. See Section 7 for further discus-
sion.

2. Preliminaries. Let d ∈ N with d ≥ 2. We shall be dealing with a stationary
(spherical) Boolean model in R

d which is described by means of a (marked) point
process. Consider the space X := R

d ×R+ (where R+ := [0,∞)), equipped with
the Borel σ -field B(X) and the space N of integer-valued locally finite measures
ϕ on B(X). For b ∈ (0,∞), let Nb be the space of all ϕ ∈ N that are supported
by R

d × [0, b]. Let N denote the smallest σ -algebra of subsets of N making the
mappings ϕ �→ ϕ(D) measurable for all measurable D ⊂ X. It is often convenient
to write z ∈ ϕ instead of ϕ({z}) > 0.

A point process on X is then a measurable mapping � from some probabil-
ity space (�,F,P) into the measurable space (N,N ). It is convenient to fix the
mapping � and to consider for any locally finite measure μ on B(X) a proba-
bility measure Pμ on (�,F) such that the distribution Pμ{� ∈ ·} of � is that of
a Poisson process with intensity measure μ. This means that under Pμ the point
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process � has independent increments, with �(D) Poisson distributed with mean
μ(D), for each bounded D ∈ B(X). See, for example, Kallenberg (2002) or Last
and Penrose (2017). Expectation under Pμ is denoted by Eμ.

For r > 0, x ∈ R
d , we denote by Br(x) the closed Euclidean ball of radius r

centered at x. Also we write 0 for the origin of Rd and Br for Br(0).
Any ϕ ∈ N is of the form

∑
i δzi

= ∑
i δ(xi ,ri ), where the Dirac measure δz at

z ∈X is defined by δz(D) = 1{z ∈ D} for every D ∈ B(X). We then define Z(ϕ) :=⋃
i Bri (xi). The balls Bri (xi) are referred to as grains.
Connected components of Z(ϕ) are called clusters. Given ϕ ∈ N, let Z∞(ϕ)

denote the union of the unbounded connected components of Z(ϕ), that is, of the
infinite clusters.

In this paper, we deal with Poisson processes whose intensity measure is of the
form μ(d(x, r)) := dxF(dr), where dx is the d-dimensional Lebesgue measure
and F is a finite measure on R+ (not necessarily a probability measure). When
μ is of this form, we shall write PF for Pμ and EF for Eμ. Also let 	F denote
the distribution of � under PF , that is, the probability measure on (N,N ) given
by 	F (·) = PF {� ∈ ·}. Set |F | = F(R+), the total mass of F . Then |F | is called
the density (or intensity) of the Poisson process under PF . We shall assume that
F has no atom at {0}; in any case the singletons do not contribute to percolation
properties of Z we study here.

Let M (resp., M1,M±) denote the class of finite nonzero Borel measures (resp.,
probability measures and finite signed measures) F on R+ satisfying F({0}) = 0.
Given b ∈ (0,∞), we write Mb (resp., Mb

1, Mb±) for the measures that are sup-
ported by [0, b], that is, that satisfy F((b,∞)) = 0. Let M
 := ⋃

b∈(0,∞) Mb, the

measures with bounded support. Likewise, set M

1 := ⋃

b∈(0,∞) Mb
1 and M


± :=⋃
b∈(0,∞) Mb±.
Let F ∈ M. Under PF , the set Z := Z(�) is called a Boolean model. It can

be constructed, alternatively, by first generating an infinite independent sequence
{Ri} from the probability distribution F(·)/|F |, and then placing balls of the cor-
responding radii at the points {Xi} of a homogeneous Poisson point process with
intensity |F | in R

d . This equivalence stems from the independent marking prop-
erty of a Poisson process; for more details, see, for example, Kallenberg (2002) or
Last and Penrose (2017), Chapter 5.

The point process � is stationary under PF , which means that for all x ∈ R
d

we have PF {Tx� ∈ ·} = PF {� ∈ ·}, where for any μ ∈ N, the measure Txμ ∈ N is
defined by Txμ(B ×C) := μ((B +x)×C), with B +x := {y +x : y ∈ B}. Hence,
Z(�) is stationary as well, that is, PF {Z + x ∈ ·} does not depend on x, x ∈ R

d .
Since Z∞(�) + x = Z∞(T−x�) for all x ∈ R

d , Z∞(�) is also stationary.
The volume fraction of the Boolean model is the probability that Z covers a

fixed point, for instance, the origin 0, or in other words, the proportion of space
covered by grains:

PF {0 ∈ Z} = 1 − exp
[
−κd

∫
rdF (dr)

]
,
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where κd := πd/2/(d/2 + 1) stands for the volume of a d-dimensional unit ball.
Under PF , the sets Z(�) and Z∞ := Z∞(�) are almost surely closed. They

are random closed sets, see Molchanov (2005) or Schneider and Weil (2008). Our
primary object of study here is Z∞. For each compact L ⊂ R

d , let

θL(F ) := PF {L ∩ Z∞ �=∅},
so that L �→ θL(F ) is the capacity functional of Z∞ under PF . As mentioned in
Section 1, the capacity functional determines the distribution of Z∞. In particular,
we set

θ(F ) := θ{0}(F ) = PF {0 ∈ Z∞} = EF

∣∣Z∞ ∩ [0,1]d ∣∣,
the volume fraction of Z∞ under PF (also called the percolation function).

By ergodicity [see Meester and Roy (1996)], if θ(F ) > 0 then PF {Z∞ �= ∅} =
1, and moreover the infinite cluster is PF -a.s. unique (i.e., Z∞ has only one con-
nected component); see Meester and Roy (1996), Theorem 3.6. In this case, we say
that percolation occurs. Conversely, if θ(F ) = 0 then PF {Z∞ �= ∅} = 0. Setting
U to be the class of ϕ ∈ N such that Z(ϕ) has at most one unbounded component,
we thus have

PF {� ∈ U} = 1, for any F ∈ M.(2.1)

Given F ∈ M (not necessarily a probability measure), consider the family of mea-
sures of the form F ∗ = tF with t > 0. By a coupling argument, θ(tF ) is non-
decreasing in t . The critical value (or percolation threshold) tc(F ) is the supre-
mum of those t such that θ(tF ) = 0. If

∫
rdF (dr) < ∞ (e.g., if F ∈ M
)), then

0 < tc(F ) < ∞; see Gouéré (2008). If tc(F ) < 1, we say that F is strictly super-
critical.

It is known that θ(tF ) is continuous in t at least for t �= tc(F ), and right-
continuous for all t ; see Meester and Roy (1996), Theorem 3.9. For d = 2, it is
known [Meester and Roy (1996), Theorem 4.5] that θ(tc(F )F ) = 0 [and, there-
fore, θ(tF ) is continuous for all t], and this is commonly believed to be true for
d ≥ 3 also.

REMARK 2.1. For r ≥ 0, the quantity PF {Br ⊂ Z∞(� + δ(0,r))} = PF {Br ∩
Z∞ �= ∅} = θBr (F ) can be interpreted as the conditional probability (under PF )
that Br belongs to the infinite cluster given that (0, r) belongs to �. Therefore,∫

θBr (F )F (dr)/|F | is the conditional (Palm) probability that a typical grain (cen-
tered at the origin) is a part of the infinite cluster, that is, the proportion of grains
belonging to the unbounded connected component.

Next, we describe two important properties of Poisson processes which we use
in this paper. One is the Mecke identity [see, e.g., Last and Penrose (2017), Chap-
ter 4]:

(2.2) Eμ

∫
f (z,�)�(dz) = Eμ

∫
f (z,� + δz)μ(dz)



1682 G. LAST, M. D. PENROSE AND S. ZUYEV

for any measurable f : X× N → R+. This identity characterises the Poisson pro-
cess.

Another important result is the perturbation formula for functionals of Poisson
processes, an analogue of the Margulis–Russo formula for Bernoulli fields. For
bounded measurable f : N →R, and z ∈ X, define Dzf (ϕ) := f (ϕ + δz) − f (ϕ),
for all ϕ ∈ N. For n ≥ 2 and (z1, . . . , zn) ∈ X

n we define a function Dn
z1,...,zn

f :
N(X) →R inductively by

Dn
z1,...,zn

f := Dz1D
n−1
z2,...,zn

f.(2.3)

The operator Dn
z1,...,zn

is symmetric in z1, . . . , zn; indeed, by induction

Dn
z1,...,zn

f (ϕ) = ∑
I⊂{1,...,n}

(−1)n−|I |f
(
ϕ + ∑

i∈I

δzi

)
,(2.4)

where |I | denotes the number of elements of I .

PROPOSITION 2.2. Let μ be a locally finite measure and ν a finite signed
measure on B(X). Let f : N → R be measurable and bounded. If μ + aν is a
measure for some a > 0, then

d+

ds
Eμ+sνf (�)

∣∣∣∣
s=0

=
∫

EμDzf (�)ν(dz).(2.5)

If also μ − aν is a measure, then Eμ+sνf (�) is differentiable in s at s = 0.

The proof of this perturbation formula can be found in Zuev (1992), The-
orem 2.1 (for the case ν = μ), for finite measures in Molchanov and Zuyev
(2000), Theorem 2.1, and for locally finite measures and square-integrable func-
tions in Last (2014). It may also be found in Last and Penrose (2017).

3. Main results.

3.1. Smoothness of the capacity functional. Our first result concerns differen-
tiating the capacity functional θL with respect to the measure F . This can be useful
to compare the percolation properties of different radius distributions. For exam-
ple, in Gouéré and Marchand (2011) and in Meester, Roy and Sarkar (1994) the
percolation threshold for F a Dirac measure (i.e., balls of fixed radius) has been
compared with the percolation threshold for F the sum of two Dirac measures (i.e.,
for balls of random radius with just two possible values), or with more general F .
Gouéré and Marchand (2011) show that in sufficiently high dimensions the Dirac
measure does not minimise the critical volume fraction (as had been previously
conjectured) but do not quantify the phrase “sufficiently high” and do not rule
out the possibility that the Dirac measure minimises the critical volume fraction
in low dimensions. With sufficient analytic tools, it might be possible to compare
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different radius distributions (perhaps with the same volume fraction) by calculus.
For example, we could compare two measures F1 and F2 by passing continuously
from one to the other.

Our result gives the directional derivative for θL(F ) as we vary F . If we wish
to keep the total measure (i.e., the density) constant, then we need to add to F a
signed measure with total measure zero. More generally, we may consider adding
an arbitrary signed measure G to F . We use notation for the classes of measures
from Section 2 and Dn from (2.3).

THEOREM 3.1. Suppose that F ∈ M
 with tc(F ) < 1, and G ∈ M

± is such

that F + aG is a measure for some a > 0. Let L ⊂ R
d be compact. Then

d+

dh
θL(F + hG)

∣∣∣∣
h=0

(3.1)
=

∫∫
PF

{
L ∩ Z∞(� + δ(x,r)) �= ∅,L ∩ Z∞(�) = ∅

}
G(dr) dx,

and the right-hand side of (3.1) is finite. If also F − aG is a measure, then θL(F +
hG) is infinitely differentiable in a neighbourhood of h = 0, then setting f̃L(ϕ) =
1{L ∩ Z∞(ϕ) �= ∅} for ϕ ∈ N, for all n ∈ N we have

dn

dhn
θL(F + hG)

∣∣∣∣
h=0

(3.2)
=

∫
· · ·

∫
EF Dn

(x1,r1),...,(xn,rn)f̃L(�)dx1G(dr1) · · ·dxnG(drn).

We shall prove Theorem 3.1 in Section 5. The identity (3.1) tells us that the
perturbation formula (2.5) remains valid for f (ϕ) = 1{L ∩ Z∞(ϕ) �= ∅} with
μ(dx dr) = dxF(dr) and ν(dx dr) = dxG(dr), though in this case both μ and
ν are infinite (but σ -finite).

Our next theorem is a corollary of Theorem 3.1, and significantly adds to the
known results mentioned in Section 2 concerning continuity of θL(tF ) for fixed F ,
in the case of deterministically bounded radii. Recall that the Minkowski difference
A � B of two sets A,B ⊂ R

d is defined by {x − y : x ∈ A,y ∈ B}. When B = {x}
for some x ∈ R

d , we write simply A − x for A � {x}.

THEOREM 3.2. Let F ∈ M

1, and let L ⊂ R

d be compact. Then t �→ θL(tF )

is infinitely differentiable on (tc(F ),∞) and setting f̃L(ϕ) = 1{L ∩ Z∞(ϕ) �= ∅}
for all ϕ ∈ N, we have for t > tc(F ) and n ∈ N that

dnθL(tF )

dtn
(3.3)

=
∫

· · ·
∫

EtF Dn
(x1,r1),...,(xn,rn)f̃L(�)dx1F(dr1) · · ·dxnF (drn).



1684 G. LAST, M. D. PENROSE AND S. ZUYEV

In particular, for t > tc(F ) we have

d

dt
θL(tF )

=
∫∫

PtF

{
L ∩ Z∞(� + δ(x,r)) �= ∅,L ∩ Z∞(�) = ∅

}
dxF(dr)(3.4)

= EtF

∫ ∣∣(Z∞(� + δ(0,r)) � L
) \ (

Z∞(�) � L
)∣∣F(dr).(3.5)

PROOF. Let L ⊂ R
d be compact. The infinite differentiability of θL(tF ), and

the formula (3.3) for dn

dtn
θL(tF ), follow from applying Theorem 3.1 to the mea-

sures F ∗ and G∗ given by F ∗ = tF and G∗ = F ; also (3.4) follows as a special
case of (3.3). It remains to prove (3.5). By stationarity, Tx� has the same distribu-
tion as � under PtF , so the right-hand side of (3.4) equals

EtF

∫∫
1
{
(L − x) ∩ Z∞(� + δ(0,r)) �= ∅, (L − x) ∩ Z∞(�) =∅

}
dxF(dr)

= EtF

∫∫
1
{
x ∈ (

L � Z∞(� + δ(0,r))
) \ (

L � Z∞(�)
)}

dxF(dr),

and then (3.5) follows from the fact that for any Borel sets A,B,L we have |(L �
A) \ (L � B)| = |(A � L) \ (B � L)|. �

REMARK 3.3. Making use of the Mecke identity (2.2), we can also rewrite
(3.4) as follows [see also Zuev (1992)]:

d

dt
θL(tF ) = t−1

EtF

∫
1
{
L ∩ Z∞(�) �= ∅,L ∩ Z∞(� − δ(x,r)) = ∅

}
�

(
d(x, r)

)
.

3.2. Bounds for the capacity functional. Our next result provides a lower
bound for the capacity functional of the infinite cluster. This bound is linear in
the right neighbourhood of the critical value.

It is known for lattice percolation models that the percolation function grows at
least linearly in the right neighbourhood of the threshold; see Chayes and Chayes
(1986), or Grimmett (1999) and the references therein. Our result shows that this
also holds for the spherical Boolean model.

THEOREM 3.4. Let b > 0. Let F ∈ Mb
1 and let L ⊂ R

d be compact. Set tc :=
tc(F ) and α := PtcF {Bb ⊂ Z(�)}. Then

θL(tF ) − θL(tcF ) ≥ α(t − tc)(1 − θL(tF ))

t
, t > tc.(3.6)

Furthermore,

θL(tF ) − θL(tcF )

t − tc
≥ α(1 − θL(tcF ))

tc
+ o(1) as t ↓ tc.(3.7)
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Theorem 3.4 is proved in Section 6.
The bounds (3.6)–(3.7) also hold for the integrated percolation functions∫

θBr (tF )F (dr); see Remark 2.1. For a given F , an explicit numerical lower
bound for the right-hand side of (3.6) can be established by using the inequality:

1 − θL(tF ) ≥ PtF {L ∩ Z = ∅} = exp
[
−t

∫
|Br � L|F(dr)

]

and applying a numerical estimation method for tc such as that in Zuev and
Sidorenko (1985), for example. Also, it is not difficult to estimate α (the proba-
bility that Bb is fully covered) explicitly from below.

REMARK 3.5. Although the capacity functional t �→ θL(tF ) is believed to be
continuous at the critical value tc, it is certainly not differentiable there. Indeed, if
it is continuous, then θL(tcF ) = 0 and the left-hand derivative of t �→ θL(tF ) at
tc vanishes. But Theorem 3.4 implies that the right-hand derivative, if it exists, is
strictly positive.

REMARK 3.6. Given the common belief for discrete percolation [see
Grimmett (1999)], one might conjecture that θL(tF ) − θL(tcF ) ∼ (t − tc)

β as
t ↓ tc (at least in a logarithmic sense) for some critical exponent β > 0. If this
holds, Theorem 3.4 implies β ≤ 1.

3.3. Percolation in a slab when d ≥ 3. Given K > 0, let S(K) denote the slab
[0,K]×R

d−1. An important result of Grimmett and Marstrand (1990) says that for
Bernoulli lattice percolation if the parameter p is supercritical in Z

d , with d ≥ 3,
then for sufficiently large K the parameter p is also supercritical for the model
restricted to a sufficiently large slab in Z

d .
To prove our results in the case d ≥ 3, we need to adapt this result to the Boolean

model. In the case where the balls have fixed radius, this was done in Tanemura
(1993), and we now describe an extension to balls of random radius. This could
potentially be of use elsewhere.

Given F ∈ M, let us denote by �F a Poisson process in X with distribution
	F , that is, with P{�F ∈ ·} = PF {� ∈ ·}. Given also any measurable function
f : R+ → R+, let us denote by �F,f (ρ) the image of �F under the mapping∑

i δ(xi ,ri ) �→ ∑
i δ(xi ,f (ri )). Thus, �F,f (ρ) has the same distribution as �F◦f −1 ; it

will be convenient for us to mention ρ in the notation, representing the radius of a
ball in the system. For ϕ ∈ N and A ∈ B(X), let ϕ|A denote the restriction of ϕ to
A, that is, ϕ|A(·) = ϕ(· ∩ A). Finally, for B ⊂ R

d write [B] for B ×R+.

THEOREM 3.7. Suppose d ≥ 3 and let F ∈ M
 with tc(F ) < 1. Then there
exists K < ∞ such that PF {Z∞(�|[S(K)]) �= ∅} = 1, and

inf
x∈S(K)

PF

{
x ∈ Z∞(�|[S(K)])

}
> 0.(3.8)
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PROOF. By assumption, F({0}) = 0. By Meester and Roy (1996), Theo-
rem 3.7, for any b > 0 the value of tc(F

′) depends continuously (in the weak topol-
ogy) on F ′ ∈ Mb

1, so one can show that there exists a > 0 with tc(F |[a,∞)) < 1,
where F |[a,∞) denotes the restriction of the measure F to the interval [a,∞).
Since there exist coupled Poisson point processes �,�′ having distribution 	F

and 	F |[a,∞)
, respectively, with �′ ≤ � almost surely, it suffices to prove (3.8)

using the measure F |[a,∞) rather than F . In other words, we may assume without
loss of generality that there exists a > 0 with F([0, a)) = 0, and then by scaling
[see Meester and Roy (1996)] we can (and now do) assume a = 1.

For i = 3,4,5 choose ti with tc(F ) < t3 < t4 < t5 < 1. Then Z∞(�t3F ) �= ∅

almost surely, so that by scaling, there exists δ > 0 with 1/δ ∈ N such that also
Z∞(�t4F,(1−δ)ρ) �= ∅ almost surely and, therefore, also Z∞(�t4F,ρ−δ) �= ∅ since
almost surely ρ ≥ 1 so that (1 − δ)ρ ≤ ρ − δ.

Set �ρ�δ := δ�ρ/δ�, that is, the value of ρ rounded down to the nearest integer
multiple of δ. Then �ρ�δ ≥ ρ − δ, so that Z∞(�t4F,�ρ�δ ) �= ∅ almost surely. Note
that since 1/δ ∈ N we have �ρ�δ ≥ 1 almost surely. By further scaling, we can (and
do) choose ε > 0 such that Z∞(�t5F,(1−2ε)�ρ�δ

) �= ∅ almost surely.
Now let η = ε/(2d). Divide R

d into half-open cubes denoted Qz, z ∈ Z
d ,

where Qz has side length η and is centered at ηz. For x ∈ R
d , let 〈x〉η denote

the point at the center of the cube Qz containing x. For ϕ = ∑
i δ(xi ,ri ) ∈ N,

let 〈ϕ〉η := ∑
i δ(〈xi〉η,ri ) (this counting measure can have multiplicities). Since

|〈x〉η − x| ≤ dη/2 for all x ∈ R
d , and since η is chosen so that dη < ε, we have

that Z∞(〈�t5F,(1−ε)�ρ�δ
〉η) �= ∅ almost surely.

For t > 0, the occurrence of Z∞(〈�tF,(1−ε)�ρ�δ
〉η) �= ∅ is equivalent to ex-

istence of an infinite cluster in the following Bernoulli site percolation model
on Z

d × {1,2, . . . , κ} for some κ ∈ N. Let r1, . . . , rκ denote the possible val-
ues for �ρ�δ (where ρ has distribution F(·)/|F |), listed in increasing order. For
1 ≤ i ≤ κ set πi := P{(1 − ε)�ρ�δ = ri}. For y, z ∈ Z

d and i, j ∈ {1, . . . , κ}, put
(y, i) ∼ (z, j) if and only if |ηy − ηz| ≤ ri + rj . Let each site (z, i) be occupied
with probability pt,i , where we put pt,i = 1−exp(−t |F |ηdπi), independent of the
other sites. Note that (p1,i)i≤κ is supercritical, in that it strictly exceeds (in each
entry) the vector (pt5,i)i≤κ which also percolates.

By the result of Grimmett and Marstrand (1990) adapted to this site percolation
model, there is a choice of K such that Z∞(〈�F,(1−ε)�ρ�δ

|[S(K)]〉η) �= ∅ almost
surely. Therefore, since dη ≤ ε we have Z∞(�F |[S(K)]) �= ∅ almost surely. We
may argue similarly to obtain (3.8), following the proof of Lemma 10.8 in Penrose
(2003) with obvious modifications.

Let us describe how to adapt some of the steps of Grimmett and Marstrand
(1990) to the site percolation model above. In Lemma 2 of Grimmett and
Marstrand (1990), we may replace (1 − p)t by (1 − maxi pλ5,i)

t .
In Lemma 3 of Grimmett and Marstrand (1990), instead of the box Bm con-

sider the box B2m�rκ�. Also the bound (1 − p)dk would be replaced by (1 −
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maxi pλ,i)
−κkB where B denotes the number of sites of Z

d at distance at most
2rκ from the origin.

In Lemma 4 of Grimmett and Marstrand (1990), we let T (n) denote the set of
sites (z, i) lying in Bn ∩ ∂((−∞, n] × Z

d−1) × {1, . . . , κ} with all coordinates of
z being nonnegative. �

4. A preparatory result. In this section, we present further notation followed
by a key lemma (Lemma 4.2) which will be used repeatedly in the proof of Theo-
rems 3.4 and 3.1. For A ⊂R

d and ϕ ∈ N, let ZA(ϕ) be the union of all the clusters
of Z(ϕ) which have a nonempty intersection with A. In other words, set

(4.1) ZA(ϕ) := ⋃
i:xi↔ϕA

Bri (xi), for ϕ = ∑
i

δ(xi ,ri ),

where x ↔ϕ A means that x lies in a component of Z(ϕ) which intersects A. Also,
set ϕfin := ∑

(xi ,ri )∈ϕ 1{xi /∈ Z∞(ϕ)}δ(xi ,ri ).
Given b ∈ (0,∞), for ϕ,ϕ′ ∈ Nb and for compact K ⊂ R

d , define ZK(ϕ,ϕ′)
to be the union of all the clusters (connected components) of Z(ϕfin + ϕ′) that
intersect K , but do not intersect Z∞(ϕ). In particular, with 0 denoting the zero
measure we have

(4.2) ZK(ϕ,0) = ⋃
i:xi /∈Z∞(ϕ),xi↔ϕK

Bri (xi), for ϕ = ∑
i

δ(xi ,ri ).

Recall that ϕ|A denotes the restriction of ϕ ∈ N to A ∈ B(X) and [B] = B × R+.
Define the following “radius of stabilization”:

(4.3) RK,b

(
ϕ,ϕ′) := inf

{
nb : n ∈ N,K ∪ ZK

(
ϕ,ϕ′) ⊂ B(n−1)b

}
,

or RK,b(ϕ,ϕ′) := +∞ if there is no such n. Write simply RK for RK,1. Note that
if RK,b(ϕ,ϕ′) = nb for some n ∈ N, then for any ψ ∈ Nb we have

(4.4) ZK

(
ϕ,ϕ′|[Bnb] + ψ |[Rd\Bnb]

) = ZK

(
ϕ,ϕ′|B[nb]

)
,

which is the stabilization property in the present context, and also

(4.5) RK,b

(
ϕ,ϕ′|[Bnb] + ψ |[Rd\Bnb]

) = RK,b

(
ϕ,ϕ′|[Bnb]

)
,

which is the stopping radius property of RK,b. The notions of stabilization and of
stopping radius have proved fruitful in many other stochastic-geometrical contexts;
see, for example, Penrose (2007).

For F,G ∈ M, we denote by �F ,�′
G a pair of independent Poisson process

with distribution 	F and 	G, respectively, that is, with P{�F ∈ ·} = PF {� ∈ ·}
and P{�′

G ∈ ·} = PG{� ∈ ·}.
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LEMMA 4.1. Suppose d ≥ 3, b > 0 and F ∈ Mb, G ∈ Mb± and ε ∈ (0,1) are
such that F + εG ∈ M, and 1 − ε > tc(F ). Then there exists K ∈ (2b,∞) and
γ ∈ (0,1/2) such that for all Borel A ⊂R

d , and h ∈ (0, ε2/2],
max

(
P

{
ZA(�F+hG|[S(K)]) = ∅

}
,

(4.6)
P

{
Z∞(�(1−ε)F |[S(K)]) ∩ ZA

(
�′

εF+hG|[S(K)]
) �= ∅

}) ≥ γ.

PROOF. Choose K as in Theorem 3.7. Assume without loss of generality that
K ≥ 2b.

Suppose P{ZA(�F+hG|[S(K)]) �= ∅} ≥ 1/2 [otherwise (4.6) is immediate].
Since P{Y > 0} ≥ pP{X > 0} for any p ∈ (0,1) and Poisson variables X,Y with
EY = pEX (by Bernoulli’s inequality), also P{ZA(�(ε/2)(F+hG)|[S(K)]) �= ∅} ≥
ε/4. For 0 ≤ h ≤ ε2/2, we have

εF + hG − (ε/2)(F + hG) = (ε/2)
[
F + (2h/ε)(1 − ε/2)G

] ∈ M.

Hence, also P{ZA(�′
εF+hG|[S(K)]) �= ∅} ≥ ε/4. Given ZA(�′

εF+hG|[S(K)]) �= ∅,
the set ZA(�′

εF+hG|[S(K)]) has a nonempty intersection with S(K), and therefore
by Theorem 3.7 and our choice of K , the conditional probability that this set inter-
sects with Z∞(�(1−ε)F |[S(K)]) is bounded below by a strictly positive constant γ1.
Hence, we have (4.6) with γ = γ1ε/4. �

Recall from Section 2 that M
 denotes the class of measures on (0,∞) with
bounded support. We now give the main result of this section.

LEMMA 4.2. Suppose that F ∈ M
, G ∈ M

±, and ε ∈ (0,1) are such that

tc(F ) < 1 − ε and F + εG is a measure. Then for any compact L ⊂ R
d , we have

(4.7) lim sup
n→∞

sup
0≤h≤ε2/2

n−1 logP
{
RL,b

(
�(1−ε)F ,�′

εF+hG

)
> n

}
< 0.

Also, with 0 denoting the zero measure,

(4.8) lim sup
n→∞

n−1 logP
{
RL,b(�F ,0) > n

}
< 0.

The ε2 in the range of h in (4.7) arises because we need h ≤ ε2 to guarantee that
εF + hG is a measure. The fact that it is ε2/2 rather than ε2 in (4.7) is an artefact
of the proof.

PROOF OF LEMMA 4.2. Let F,G,ε be as in the statement of Lemma 4.2. First
suppose d = 2. Using Corollary 4.1 of Meester and Roy (1996) as a starting-point,
we can adapt the proof of Lemma 10.5 of Penrose (2003) to random radius balls,
thereby showing that the probability that Z(�(1−ε)F ) fails to cross the rectangle
[0,3a] × [0, a] decays exponentially in a.



ON THE CAPACITY FUNCTIONAL 1689

Given a > 0, specify a sequence D1(a),D2(a), . . . of rectangles of aspect
ratio 3, alternating between horizontal and vertical rectangles, with D1(a) =
[0,3a] × [0, a], and with Dn(a) crossing Dn+1(a) the short way for each n. By
the union bound and the exponential decay just mentioned, the probability that
for some n there is no long-way crossing of Dn(a) in Z(�(1−ε)F ) decays expo-
nentially in a. Hence, the probability that Z∞(�(1−ε)F ) fails to include a long-way
crossing of [0,3a]×[0, a] is exponentially decaying in a. Likewise for the vertical
rectangle [0, a] × [0,3a].

Let Ea denote the event that Z∞(�(1−ε)F ) includes long-way crossings of each
of the rectangles [−3a/2,−a/2] × [−3a/2,3a/2], [a/2,3a/2] × [−3a/2,3a/2],
[−3a/2,3a/2] × [−3a/2,−a/2] and [−3a/2,3a/2] × [a/2,3a/2] (whose union
is the annulus [−3a/2,3a/2]2 \ (−a/2, a/2)2). By the preceding discussion, 1 −
P[Ea] decays exponentially in a.

If Ea occurs for some a large enough so that L ⊂ [−a/2, a/2]2, then for any
h ≥ 0 and u > 6a + b the set ZL(�(1−ε)F ,�′

εF+hG|[Bu]) is necessarily contained
in the square [−3a,3a]2. The case d = 2 of (4.7) follows.

Now consider d ≥ 3. Suppose 0 ≤ h ≤ ε2/2. Choose b ∈ (0,∞) with F ∈ Mb

and G ∈ Mb±. Set �′′
F+hG := �(1−ε)F + �′

εF+hG. Recall the definition (4.3) of
RK,b. For u > 0, set

Nu =
∫
[L�Bb]

1
{
R{x},b

(
�(1−ε)F ,�′

εF+hG

)
> u

}
�′′

F+hG

(
d(x, r)

)
.

If RL,b(�(1−ε)F ,�′
εF+hG) > u, then Nu ≥ 1, so by Markov’s inequality

P
{
RL,b

(
�(1−ε)F ,�′

εF+hG

)
> u

} ≤ENu.

Define the event Ax,r,u := {R{x},b(�(1−ε)F ,�′
εF+hG + δ(x,r)) > u}, for (x, r) ∈ X

and u > 0. We assert that for u > 1 we have

ENu ≤
∫∫

P(Ax,r,u)(F + hG)(dr) dx.

To see this, let us write simply � for �(1−ε)F , �′ for �′
εF+hG and �′′ for

�′′
F+hG (so �′′ = � + �′). Suppose (x, r) is a point of �′′ that contributes to

Nu. Then Br(x) ∩ Z∞(�) = ∅ [otherwise R{x},b(�,�′) would be zero]. More-
over, Br(x) lies in a component of Z(�fin + �′) that avoids Z∞(�) and is not
contained in Bub(x). Let � (resp., � ′) be the point process � (resp., �′) with
the point (x, r) removed (if it is a part of the point process in the first place).
Then Z∞(�) = Z∞(�), and there exists a component of Z(�fin ∪� ′) that avoids
Z∞(�), intersects Br(x), and is not contained in Bub(x) (at least if u > 1). But
this conclusion just says that event Ax,r,u occurs if we identify �,� ′ with �,�′,
respectively. Therefore, using the Mecke formula gives us the asserted inequality.

Thus, to prove (4.7) it suffices to prove that P(Ax,r,u) decays exponentially in u,
uniformly over x ∈ L � Bb,h ∈ [0, ε2/2] and r ∈ (0, b]. We now fix such x,h, r .
Let K be as in Lemma 4.1 and choose n0 ∈N with L � B2b ⊂ [−n0K,n0K]d .
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For n ∈ Z let Sn denote the slab ((n − 1)K,nK] ×R
d−1 and let Hn denote the

half-space
⋃

−∞<m≤n Sm. Given u with L ⊂ Bu−b and n ≥ n0, for ϕ,ϕ′ ∈ Nb set

Wu,n

(
ϕ,ϕ′) = Z{x}

(
ϕ|[Hn], ϕ′|[Hn∩Bu]

)
and define the indicator functions:

fu,n

(
ϕ,ϕ′) := 1

{
Z

((
ϕ + ϕ′)|[Sn+1] ∩ Wu,n

(
ϕ,ϕ′)) �= ∅

};
gu,n

(
ϕ,ϕ′) := 1

{
Z∞(ϕ|[Sn+1]) ∩ Wu,n

(
ϕ,ϕ′) = ∅

};
hu,n

(
ϕ,ϕ′) := 1

{
Z{x}

(
ϕ,ϕ′|[Bu]

) \ Hn �= ∅
}
.

Then we claim that fu,n+1(ϕ,ϕ′) ≤ fu,n(ϕ,ϕ′)gu,n(ϕ,ϕ′). Indeed,

if fu,n

(
ϕ,ϕ′) = 0,(4.9)

then Wu,n+1
(
ϕ,ϕ′) = Wu,n

(
ϕ,ϕ′) ⊂ (−∞, nK + b] ×R

d−1,

while if gu,n(ϕ,ϕ′) = 0 then Wu,n+1(ϕ,ϕ′) =∅, and in both cases it is not possible
for Z((ϕ + ϕ′)|[Sn+2]) to intersect with Wu,n+1.

Also hu,n+1(ϕ,ϕ′) ≤ fu,n(ϕ,ϕ′) by (4.9). Therefore, for n = n0 + 2, n0 + 3, . . .

we have

hu,n

(
ϕ,ϕ′) ≤

n−1∏
m=n0

fu,m

(
ϕ,ϕ′) ≤

n−2∏
m=n0

fu,m

(
ϕ,ϕ′)gu,m

(
ϕ,ϕ′).(4.10)

Denote by Fn the σ -field generated by (�(1−ε)F |[Hn],�′
εF+hG|[Hn]). If the con-

ditional expectation of fu,n(�(1−ε)F ,�′
εF+hG + δ(x,r)) with respect to Fn is at

least 1/2, then by Lemma 4.1 with A taken to be Wu,n(�(1−ε)F ,�′
εF+hG + δ(x,r)),

the conditional expectation of 1 − gu,n(�(1−ε)F ,�′
εF+hG + δ(x,r)) is at least γ .

Hence, setting

Vu,n := fu,n

(
�(1−ε)F ,�′

εF+hG + δ(x,r)

)
gu,n

(
�(1−ε)F ,�′

εF+hG + δ(x,r)

)
,

we have

E[Vu,n|Fn] ≤ max(1 − γ,1/2) = 1 − γ.

Also, for each n, Vu,n+1 is Fn-measurable and by (4.10) we have

E
[
hu,n+2

(
�(1−ε)F ,�′

εF+hG + δ(x,r)

)]

≤ E

[
n∏

i=n0

Vu,i

]
= E

[
E[Vu,n|Fn] ×

n−1∏
i=n0

Vu,i

]

≤ (1 − γ )E

n−1∏
i=n0

Vu,i ≤ · · · ≤ (1 − γ )n−n0 ≤ exp
(−γ (n − n0)

)
.
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Arguing similarly in each of the 2d positive or negative coordinate directions
shows that for u a multiple of b we have

P(Ax,r,u) = P
{
Z{x}

(
�(1−ε)F ,�′

εF+hG|[Bu] + δ(x,r)

) \ Bu−b �= ∅
}

≤ P
{
Z{x}

(
�(1−ε)F ,�′

εF+hG|[Bu]
) \ [−(u − b)/d, (u − b)/d

]d
) �=∅

}
≤ 2d exp

(−γ
(⌊

(u − b)/(dK)
⌋ − n0 − 2

))
,

which gives us the result (4.7) for d ≥ 3.
To deduce (4.8), set G = 0 in (4.7), and use the fact that

ZL

(
�(1−ε)F + �′

εF ,0
) ⊂ ZL

(
�(1−ε)F ,�′

εF

)
. �

5. Proof of Theorem 3.1. Suppose that b ∈ R+ and F ∈ Mb and G ∈ Mb±,
with tc(F ) < 1 and F + aG a measure for some a > 0.

To ease notation, we shall assume additionally that b = 1; the result for a general
b can be obtained by using the scaling property of the Boolean model; see, for
example, Meester and Roy (1996).

Choose ε ∈ (0,1) with 1 − ε > tc(F ) and with F + εG a measure. Keep F,G

and ε fixed for the rest of this section.
Let G+ and G− be the positive and negative parts in the Hahn–Jordan de-

composition of G (so that G+ and G− are mutually singular measures and
G = G+ − G−). Let h ∈ [0, ε2]. Then εF − hG− is a measure. Recall from Sec-
tion 2 that 	F denotes the distribution of a Poisson process on R

d ×R+ with inten-
sity measure μ(d(x, r)) = dxF(dr). Let �(1−ε)F , �εF−hG− , �hG− and �hG+ be
independent Poisson processes in R

d ×R+ with respective distributions 	(1−ε)F ,
	εF−hG− , 	hG− and 	hG+ . Set

�′
εF+hG := �εF−hG− + �hG+;

�F := �(1−ε)F + �εF−hG− + �hG−;
�F+hG := �(1−ε)F + �′

εF+hG,

so that �′
εF+hG, �F and �F+hG are Poisson processes with distribution 	εF+hG,

	F , and 	F+hG, respectively. Also, for n ∈ N define

�′
h,n := �εF−hG− + �hG+|[Bn] + �hG−|[Rd\Bn],

which is a Poisson process with intensity dx × (εF + hG)(dr) in [Bn], and with
intensity dx × εF (dr) in [Rd \ Bn]. Since F and G are supported by [0,1], for
ψ ∈ N1 we have

(5.1) Z
(
�(1−ε)F + �′

h,n + ψ
) ∩ Bn−1 = Z(�F+hG + ψ) ∩ Bn−1.

Our next lemma gives us the first part (3.1) of Theorem 3.1, among other things.
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LEMMA 5.1. Let L ⊂ R
d be compact, and let ψ ∈ N1 with ψ(X) < ∞. For

ϕ ∈ N, set f̃L,ψ(ϕ) := 1{L ∩ Z∞(ϕ + ψ) �=∅}. Then

d+

dh
EF+hGf̃L,ψ(�)

∣∣∣∣
h=0

=
∫∫

EF D(x,r)f̃L,ψ(�)G(dr) dx,(5.2)

and the right-hand side of (5.2) is finite. Also, given h ∈ [0, ε2] we have almost
surely

(5.3) f̃L,ψ(�F+hG) = lim
n→∞ f̃L,ψ

(
�(1−ε)F + �′

h,n

)
.

PROOF. To see (5.3), first suppose f̃L,ψ(�F+hG) = 1. If also �F+hG ∈ U
[which is the case almost surely by (2.1)], there must be a path from L through
Z(�′

εF+hG + ψ + �fin
(1−ε)F ) to Z∞(�(1−ε)F ) [if L ∩ Z∞(�(1−ε)F ) �= ∅ we

interpret this path as being empty]. Choose such a path, and choose m ∈ N

such that this path is contained in Bm−1. Then for n ≥ m, by (5.1) we have
f̃L,ψ(�(1−ε)F + �′

h,n) = 1.

Conversely, suppose f̃L,ψ(�F+hG) = 0. Then, recalling the definition (4.1) of
ZL(ϕ), we have that ZL(�F+hG + ψ) is bounded so we can choose m such that
ZL(�F+hG + ψ) ⊂ Bm−1. Then for n ≥ m, by (5.1) we have f̃L,ψ(�(1−ε)F +
�′

h,n) = 0. Thus, we have demonstrated (5.3).
For h ∈ [0, ε]2 and n ∈N set,

Uh,n = h−1(
f̃L,ψ

(
�(1−ε)F + �′

h,n

) − f̃L,ψ

(
�(1−ε)F + �′

h,n−1
))

.

By (5.3) and dominated convergence,

Ef̃L,ψ(�F+hG) = lim
n→∞Ef̃L,ψ

(
�(1−ε)F + �′

h,n

)
.

Also �(1−ε)F + �′
h,0 = �F almost surely. Thus,

(5.4) h−1(
Ef̃L,ψ(�F+hG) −Ef̃L,ψ(�F )

) =
∞∑

n=1

EUh,n.

By Proposition 2.2, for each n we have

lim
h→0+EUh,n = lim

h→0+h−1
E

[
f̃L,ψ

(
�(1−ε)F + �′

h,n

) − f̃L,ψ(�F )
]

− lim
h→0+h−1

E
[
f̃L,ψ

(
�(1−ε)F + �′

h,n−1
) − f̃L,ψ(�F )

]
(5.5)

= E

∫
R+

∫
Bn\Bn−1

D(x,r)f̃L,ψ(�F )dxG(dr).

If we can take this limit through the sum on the right-hand side of (5.4), then we
have the desired result (5.2). To justify this interchange, we seek to dominate the
terms of (5.4) by those of a summable sequence, independently of h.
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Note that |Uh,n| ≤ h−1. Also if �′
h,n = �′

h,n−1 then clearly Uh,n = 0, so that

(5.6) {Uh,n �= 0} ⊂ {
�′

h,n �= �′
h,n−1

}
.

Recall that we write RK for the radius of stabilization RK,1 defined at (4.3). We
assert the further event inclusion

(5.7) {Uh,n �= 0} ⊂ {
RL

(
�(1−ε)F ,�′

εF+hG + ψ
)
> n − 1

} ∪ {�F /∈ U}.
To see this, suppose RL(�(1−ε)F ,�′

εF+hG + ψ) ≤ n − 1. Then by the stabiliza-
tion property (4.4), since �′

h,n−1|[Bn−1] = �′
h,n|[Bn−1] = �′

εF+hG|[Bn−1] we have

RL(�(1−ε)F ,�′
h,n +ψ) = RL(�(1−ε)F ,�′

h,n−1 +ψ) ≤ n− 1. If f̃L,ψ(�(1−ε)F +
�′

h,n) = 1 and �F ∈ U, then either Z∞(�(1−ε)F ) ∩ L �= ∅ or there exists a com-
ponent of Z(�′

h,n + ψ + �fin
(1−ε)F ) which meets both L and Z∞(�(1−ε)F ). This

component is contained in Bn−1 by (4.3), so then by (4.4) there must be a compo-
nent of Z((�′

h,n +ψ)|[Bn−1] +�fin
(1−ε)F ) that meets both L and Z∞(�(1−ε)F ), and

hence f̃L,ψ(�(1−ε)F + �′
h,n−1) = 1. Similarly, if f̃L,ψ(�(1−ε)F + �′

h,n−1) = 1

and �F /∈ U, then f̃L,ψ(�(1−ε)F + �′
h,n) = 1. This justifies (5.7).

The event {�′
h,n �= �′

h,n−1} = {(�hG+ +�hG−)(Bn \Bn−1) = 0} is independent
of the event {RL(�(1−ε)F ,�′

εF+hG +ψ) > n− 1} by the stopping radius property
(4.5). Also we have the event inclusion:{

RL

(
�(1−ε)F ,�′

εF+hG + ψ
)
> n − 1

}
⊂ {

RL∪Z(ψ)

(
�(1−ε)F ,�′

εF+hG

)
> n − 1

}
.

Therefore, by (5.6), (5.7) and (2.1), we have

E|Uh,n| ≤ h−1
P

{
�′

h,n �= �′
h,n−1

}
P

{
RL∪Z(ψ)

(
�(1−ε)F ,�′

εF+hG

)
> n − 1

}
.

Also there is a constant c′ ∈ (0,∞) such that P{�′
h,n �= �′

h,n−1} ≤ nd−1hc′. Hence
by Lemma 4.2, there is a constant c ∈ (0,∞) (independent of n and h, provided
0 ≤ h ≤ ε2/2) such that

E|Uh,n| ≤ cnd−1 × exp
(−c−1n

)
which is summable in n. Hence, by (5.4), (5.5) and dominated convergence we
have (5.2). This also shows that the right-hand side of (5.2) is finite. �

PROOF OF THEOREM 3.1. We prove the result just for b = 1. The first part
(3.1) holds by Lemma 5.1. To prove the second part, we take F,G and ε as before
but now assume additionally that F − εG is a measure. Let L ⊂ R

d be compact.
As above, for each ϕ ∈ N and each ψ ∈ N1 with ψ(X) < ∞, set f̃L,ψ(ϕ) := 1{L∩
Z∞(ϕ+ψ) �=∅}, and set f̃L(ϕ) := f̃L,0(ϕ) = 1{L∩Z∞(ϕ) �=∅}. We shall prove
by induction that for n ∈ N and h ∈ (−ε2, ε2), we have

dn

dhn
θL(F + hG)

(5.8)
=

∫
· · ·

∫
EF+hGDn

(x1,r1),...,(xn,rn)f̃L(�)dx1G(dr1) · · ·dxnG(drn),
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which implies (3.2).
First, consider n = 1. Then (5.8) holds for the right derivative at h = 0 by

Lemma 5.1. Also, by applying this fact to −G instead of G we have that (5.8)
holds for the left derivative at h = 0 too, so (5.8) holds at h = 0. Therefore, (5.8)
also holds at other h ∈ (−ε2, ε2) because we can apply the case h = 0 of (5.8) to
F ∗ and G∗, given by F ∗ = F + hG, and G∗ = G. Note that F ∗ is strictly super-
critical because F ∗ = (1− ε)F + ε(F + (h/ε)G) and ε(F + (h/ε)G) is a measure
since |h| < ε2.

Now we perform the inductive step. Let n ∈ N, and suppose (5.8) holds for all
h ∈ (−ε2, ε2). Then for 0 < h < ε2,

h−1
(

dn

dsn
θL(F + sG)

∣∣∣∣
s=h

− dn

dsn
θL(F + sG)

∣∣∣∣
s=0

)
(5.9)

=
∫

· · ·
∫

ux1,r1,...,xn,rn(h) dx1G(dr1) · · ·dxnG(drn),

where we set

ux1,r1,...,xn,rn(h) := h−1(
EDn

(x1,r1),...,(xn,rn)f̃L(�F+hG)

−EDn
(x1,r1),...,(xn,rn)f̃L(�F )

)
.

Applying Lemma 5.1 to the function Dn
(x1,r1),...,(xn,rn)f̃L [expressed as a sum as

in (2.4)] gives us as h → 0 that

ux1,r1,...,xn,rn(h) →
∫∫

EDn+1
(x,r),(x1,r1),...,(xn,rn)f̃L(�F )dxG(dr).(5.10)

For 1 ≤ i ≤ n, write zi for (xi, ri). By (5.3) applied to f̃L,ψ for each ψ ∈ N1

with ψ ≤ ∑n
i=1 δzi

, and dominated convergence, we have for (z1, . . . , zn) ∈ X
n

and |h| < ε2 that

uz1,...,zn(h)

= h−1
(

lim
m→∞EDn

z1,...,zn
f̃L

(
�(1−ε)F + �′

h,m

) −EDn
z1,...,zn

f̃L(�F )
)

(5.11)

=
∞∑

m=1

EV (h,m, z1, . . . , zn),

where we set

V (h,m, z1, . . . , zn) := h−1(
Dn

z1,...,zn
f̃L

(
�(1−ε)F + �′

h,m

)
(5.12)

− Dn
z1,...,zn

f̃L

(
�(1−ε)F + �′

h,m−1
))

.

Now, |V (h,m, z1, . . . , zn)| ≤ 2n+1h−1 and clearly we have{
V (h,m, z1, . . . , zn) �= 0

} ⊂ {
�′

h,m �= �′
h,m−1

}
.(5.13)
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Set M = max(m, |x1|, . . . , |xn|). Suppose M ≥ (2n + 4)(diam(L ∪ {0}) + 4).
Choose I ∈ {1, . . . ,2n + 3} such that the annulus B(I+1)M/(2n+4) \ BIM/(2n+4)

intersects none of the balls Br1(x1), . . . ,Brn(xn) and also does not intersect the
annulus Bm+1 \ Bm−2; to be definite, choose the smallest such I . Define the event

A′
h,m,z1,...,zn

:= {
ZBIM/(2n+4)

(
�(1−ε)F ,�′

h,m−1
) \ B(I+1)M/(2n+4) �= ∅

}
.

Write just � for �(1−ε)F . Event A′
h,m,z1,...,zn

says that there is a crossing of the
annulus B(I+1)M/(2n+4) \ BIM/(2n+4) (which we shall call the “moat”) by a com-
ponent of Zfin

� ∪ Z�′
h,m

, and hence also by a component of Zfin
� ∪ Z�′

h,m−1
. Note

that the events {�′
h,m �= �′

h,m−1} and A′
h,m,z1,...,zn

are independent. We assert that

(5.14)
{
V (h,m, z1, . . . , zn) �= 0

} ⊂ A′
h,m,z1,...,zn

.

To justify this, observe first that by the definition of M , at least one of the sets
Br1(x1), . . . ,Brn(xn),Bm+2 \ Bm−1 is exterior to the moat, that is, has empty in-
tersection with B(I+1)M/(2n+4).

Suppose that no crossing of the moat by a component of Zfin
� ∪ Z�′

h,m
occurs.

Suppose also that one of the balls Bri (xi) [say the ball Br1(x1)] is exterior to the
moat; then for any ψ ∈ N with ψ ≤ ∑n

i=2 δzi
we have

f̃L,ψ

(
� + �′

h,m

) = f̃L,ψ

(
� + �′

h,m + δz1

)
so that Dn

x1,...,xn
f̃L(� + �′

h,m) = 0, and similarly Dn
x1,...,xn

f̃L(� + �′
h,m−1) = 0,

so that V (h,m, z1, . . . , zn) = 0.
Now suppose instead that the annulus Bm+1 \ Bm−2 is exterior to the moat,

and as before that no crossing of the moat occurs. Then for any ψ ∈ N with
ψ ≤ ∑n

i=1 δzi
we have that f̃L,ψ(� + �′

h,m) = f̃L,ψ(� + �′
h,m−1), so that

V (h,m, z1, . . . , zn) = 0. Together with the previous paragraph, this implies the
assertion (5.14).

We show next that for n and L fixed there is a constant c such that for all m, all
z1, . . . , zn ∈ R

d × [0,1] and all h ∈ (−ε2/2, ε2/2) we have

P
[
A′

h,m,z1,...,zn

] ≤ c exp
(−c−1M

)
.(5.15)

Assume again that M ≥ (2n + 4)(diam(L ∪ {0}) + 4). Cover the boundary
∂B(I+0.5)M/(2n+4) of the ball B(I+0.5)M/(2n+4) (i.e., the “middle of the moat”)
with a deterministic collection of unit balls C1, . . . ,Ck(M), each with center in
∂B(I+0.5)M/(2n+4), with k(M) = O(Md−1). If there is a crossing of the moat, there
must be a crossing from one or more of the balls C1, . . . ,Ck(M) to a boundary of
the moat. Therefore,

A′
h,m,z1,...,zn

⊂
k(M)⋃
j=1

{
diamZCj

(
�(1−ε)F ,�′

h,m

) ≥ (
M/(4n + 8) − 2

)}
.
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For each j , let C′
j denote the ball with the same center as Cj and with radius

M/(4n + 8). Since the restriction of Poison process �′
h,m to [C′

j ] has intensity of
product form [either dx × (εF +hG)(dr) or dx × εF (dr), depending on whether
or not the annulus Bm \ Bm−1 is exterior to the moat], we can use the union bound
and Lemma 4.2 to obtain (5.15).

Using (5.13), (5.14), (2.1) and (5.15), we obtain that there is a finite constant
(again denoted c, and depending on n) such that

E
∣∣V (h,m, z1, . . . , zn)

∣∣ ≤ cmd−1 exp
(−(

m + max
(|x1|, . . . , |xn|))/c)

,

which is summable in m with the sum being integrable in (z1, . . . , zm). Then using
(5.11) and dominated convergence we can take the limit (5.10) inside the integral
(5.9), so that

d+

dh

dn

dhn
θL(F + hG)

∣∣∣∣
h=0

= EF

∫
· · ·

∫
Dn+1

(x,r),(x1,r1),...,(xn,rn)f̃L(�)

× dxG(dr) dx1G(dr1) · · ·dxnG(drn).

Also we can repeat this argument using −G instead of G to get the same value for
the left derivative at h = 0 leading to (5.8) for n+1 with h = 0. Then for n+1 and
for a general h ∈ (−ε2, ε2), we have (5.8) by applying the h = 0 result and using
the measure F + hG instead of F . This completes the induction. �

6. Proof of Theorem 3.4. Given a graph G = (V ,E), and given v ∈ V , let us
denote by G \ v the graph G with v and all edges incident to v removed. If u, v,w

are distinct vertices of G, let us say vertex w is (u, v)-pivotal if u and v lie in the
same component of G but different components of G \ w.

LEMMA 6.1. Suppose G = (V ,E) is a finite connected graph, and u, v ∈ E

with u �= v. Then either G has at least one (u, v)-pivotal vertex, or there exist at
least two vertex-disjoint paths in G from u to v. Also, in the first case, every path
from u to v in G passes through the (u, v)-pivotal vertices in the same order.

PROOF. The first assertion is an immediate consequence of Menger’s theorem
[see, e.g., Bollobás (1979)].

To see the second assertion, suppose w,w′ are distinct (u, v)-pivotal vertices,
and there is a path from u to v passing through w before w′, and another such path
passing through w′ before w. Then following the first path from u as far as w, and
then the second path from w to v, we obtain a path from u to v avoiding w′; hence
w′ is not (u, v)-pivotal, which is a contradiction. �

PROOF OF THEOREM 3.4. Our proof uses ideas from Chayes and Chayes
(1986). We start by introducing some notation. Fix b > 0, F ∈ Mb

1 and compact
L ⊂ R

d . Since F is fixed, we write θL(t) for θL(tF ) in this proof. By a path in a
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configuration ϕ ∈ N we mean a finite or infinite sequence K1,K2, . . . of distinct
grains such that Ki = Bri (xi) for some (xi, ri) ∈ ϕ and Ki ∩ Ki+1 �= ∅ for all
i ≥ 1 with Ki+1 part of the sequence. A path intersects a subset of Rd , if one of its
constituent grains intersects this set. If A,A′ are disjoint subsets of Rd and a path
intersects both A and A′, then we say the path joins A to A′. We shall say that two
paths (K1,K2, . . .) and (K ′

1,K
′
2, . . .) in ϕ are disjoint if Ki �= K ′

j for all i, j .
For n ∈ N, introduce events that there is a path joining L to the complement of

Bn or to infinity,

Jn
L := {

ϕ ∈ N : ZL(ϕ) \ Bn �= ∅
}; JL := {

ϕ ∈ N : L ∩ Z∞(ϕ) �= ∅
}
,

where the notation ZL is as defined in (4.1). Assume from now on that n is so large
that L ⊂ Bn−2b. If ϕ ∈ Jn

L , but (x, r) ∈ ϕ is such that ϕ − δ(x,r) /∈ Jn
L , we say that

the grain B(x, r) is pivotal for Jn
L in the configuration ϕ.

Let θn
L(t) := PtF {� ∈ Jn

L}. We claim that when ϕ ∈ Jn
L , either there are at least

two disjoint paths from L to R
d \ Bn in ϕ or there is at least one pivotal grain for

Jn
L and there is a unique last pivotal grain for Jn

L when counting from L. To see
this claim, apply Lemma 6.1 to the intersection graph of the set:

(6.1) Bn = {
Bri (xi) : (xi, ri) ∈ ϕ such that Bri (xi) ∩ Bn �= ∅

} ∪ {
L,Rd \ Bn

}
.

Let ϕ ∈ N and n ∈ N. Suppose there is a unique last pivotal grain for J n
L and

denote this last pivotal grain by K := Br(x). If K ⊂ Bn, then there exist three
disjoint paths in ϕ − δ(x,r): one which joins L to K and two which join K to
R

d \ Bn. If not (i.e., if K \ Bn �= ∅), there is still a path joining K to L. Even in
this case, we say that there are two disjoint paths joining K to R

d \ ∂Bn which are
just both empty; see Figure 1. We then have

θn
L(t) = PtF

{
there are two disjoint paths in � joining L to R

d \ Bn

}
+EtF

∫
1
{
Br(x) is the last pivotal grain for Jn

L in �
}
�

(
d(x, r)

)
≤ (

θn
L(t)

)2

+ t

∫∫
PtF

{
Br(x) is the last pivotal grain for Jn

L in � + δ(x,r)

}
dxF(dr),

FIG. 1. Geometry of the paths (depicted as black curves) connecting L to R
d \ Bn. Pivotal grains

for Jn
L are coloured white. The last pivotal grain starting from L is denoted K .
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where we have used the B-K inequality [Meester and Roy (1996), Theorem 2.3],
to bound the first term from above and the Mecke identity (2.2) for the second
term. Now Br(x) is the last pivotal grain for Jn

L in � + δ(x,r) if and only if there
are two disjoint paths in the configuration � + δ(x,r), one of them joining Br(x)

and R
d \ Bn [possibly empty, if Br(x) \ Bn �= ∅], and the other one joining L and

R
d \ Bn and using Br(x), and all paths joining L to R

d \ Bn use Br(x). We claim
that this is the same as saying the events

En,x,r := {
ϕ : ϕ + δ(x,r) ∈ Jn

L,ϕ /∈ Jn
L

}
and Jn

Br(x) occur disjointly in the sense of Gupta and Rao (1999), so that by the
continuum Reimer inequality in that paper, we get

(6.2) θn
L(t) ≤ (

θn
L(t)

)2 + t

∫∫
PtF {� ∈ En,x,r}PtF

{
� ∈ Jn

Br(x)

}
dxF(dr).

Let us justify our claim. With probability 1, there exists a finite (random) ε such
that displacement of the locations xi with (xi, ri) ∈ �|[Bn+2b] by at most ε, and
modification of the corresponding ri by at most ε, would not affect the intersection
graph on Bn ∪ Br(x). Suppose � is such that there are disjoint paths P,P ′ in
configuration � + δ(x,r), with P joining Br(x) and R

d \ Bn and P ′ joining L and
R

d \ Bn and using Br(x), and suppose also all paths joining L to R
d \ Bn use

Br(x). Let ε be as defined above. Let K be a union of rational (d + 1)-cubes of
side less than ε/(d + 1) centered on the points (xi, ri) such that Bri (xi) ∈ P . Let
L be the complement of K in Rd ×R+.

If we modify our configuration � arbitrarily in L, then we are still in Jn
Br(x),

since the points of � inside K guarantee occurrence of Jn
Br(x).

On the other hand, if we modify � arbitrarily in K then we still have a path
joining L to R

d \ Bn using Br(x) (because our configuration in L contains such
a path) but every such path uses Br(x) [because in � our path P did not intersect
with any path joining L to Br(x), and hence, by the choice of ε, neither does
any modification of P by moving points a distance at most ε/(d + 1) in each
coordinate, and the rest of � is unchanged].

Note that our regions K,L are unions of rational rectangles in (d + 1)-space,
not in d-space as in Gupta and Rao (1999). To see that Gupta and Rao (1999)
is applicable, note that we can generate our Poisson process � = ∑

i δ(xi ,ri ) in
R

d × R+ from a homogeneous point process
∑

i δyi
of intensity t in R

d × [0,1],
with the spatial locations xi generated by projecting yi onto the first d coordinates
and the random radii ri generated as a suitable increasing function (namely, the
quantile function of F ) of the final coordinate of yi .

Now let n → ∞. Since (J n
L)n≥1 is a decreasing sequence of events and

⋂
n J n

L =
JL, we have θn

L(t) → θL(t), and for every ϕ ∈ N we have

1{ϕ ∈ En,x,r} → 1{ϕ + δ(x,r) ∈ JL}1{ϕ /∈ JL}.
Also PtF {� ∈ Jn

Br(x)} → PtF {� ∈ JBr(x)} = θBr (t) by stationarity.
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By the definition (4.2), the first factor of the integrand in (6.2) satisfies

PtF {� ∈ En,x,r} ≤ PtF

{
ZL(�,0) ∩ Br(x) �= ∅

}
,

since if ZL(�,0) ∩ Br(x) = ∅, then Br(x) cannot be pivotal for Jn
L in � + δ(x,r).

Indeed, there must be a path joining L to Br(x) to give Br(x) a chance of being
pivotal, but if this path is part of Z∞(�) then Br(x) is not pivotal.

Recall that we are assuming F((b,∞)) = 0. By (4.3), we have ZL(�,0) ⊂
BRL,b(�,0), PtF -almost surely. Hence, by (4.8) from Lemma 4.2 the integrand in
(6.2) is bounded by an integrable function of (x, r). Hence, by (6.2) and dominated
convergence, setting θ ′

L(t) := d
dt

θL(t) we have

θL(t) ≤ (
θL(t)

)2 + t

∫∫
PtF {� + δ(x,r) ∈ JL,� /∈ JL}θBr (t) dxF (dr)

(6.3)
≤ (

θL(t)
)2 + tθBb

(t)θ ′
L(t),

where for the last line we have used Theorem 3.2 and the monotonicity of θBr (t)

in r .
Next, we bound θL(t)/θBb

(t) from below. Pick x ∈ L. If Bb(x) ∩ Z∞(�) �=
∅ and also Bb(x) ⊂ Z(�), then L ∩ Z∞(�) �= ∅. Hence, by the Harris-FKG
inequality for Poisson processes [see, e.g., Last and Penrose (2017), Chapter 20],
and translation-invariance, we have for t ≥ tc that

(6.4) θL(t) ≥ θBb(x)(t)PtF

{
Bb(x) ⊂ Z

} = θBb
(t)PtcF {Bb ⊂ Z}.

Setting α = PtcF {Bb ⊂ Z} and substituting (6.4) into (6.3), we get to

θ ′
L(t) ≥ (1 − θL(t))θL(t)

tθBb
(t)

≥ α(1 − θL(t))

t
.

Integrating over t , using the continuity of θ ′
L(·) on (tc,∞) and the monotonicity

of θL(·), we therefore have that

θL(t) − θL(tc) ≥ α(t − tc)
1 − θL(t)

t
,

which is (3.6). Since θL(t) is continuous from the right, θL(t) = θL(tc) + o(1) as
t ↓ tc, giving (3.7). �

7. Final remarks. In this paper we have studied the capacity functional of
the infinite cluster of a spherical Boolean model. Our main results (Theorems 3.2
and 3.4) require the radii to be deterministically bounded. It can be expected that
these results also hold for more general Boolean models with connected grains
having a deterministically bounded circumradius. It can also be conjectured that
good moment properties of the circumradius should suffice to imply the result for
unbounded radii. The proof of this latter extension, however, does not seem to be
straightforward.
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The methods of this paper can probably be used to derive differentiability prop-
erties of the expectations of other functionals of the Boolean model. A whole
family of such functionals in the subcritical regime can be defined in terms of
the number Nr , r > 0, of grains in the cluster of Z(� + δ(0,r)), intersecting the
ball Br . Given F ∈ M


1 and m ∈ Z, it is then of interest to study the functional∫
EtF [Nm

r ]F(dr) as a function of t < tc. In the case m = −1, this is the mean
number of clusters per Poisson point. Preliminary results in the latter case can be
found in Jiang, Zhang and Guo (2011).

A natural step after the infinite differentiability would be to show that the ca-
pacity is an analytic function of intensity in the supercritical phase. It might be
possible to use (3.3) to show that for fixed supercritical t , the Taylor series for
θL((t + h)F ) as a function of h has positive radius of convergence; however, this
seems to need tighter bounds than those used here, and hence, new ideas.

Also of interest is the n-point connectivity function of the Boolean model. Given
x1, . . . , xn ∈ R

d , and given F ∈ M

1, for t > 0 let τx1,...,xn(t) denote the PtF -

probability that the points x1, . . . , xn all lie in the same component of Z(�). It
is not hard to prove that τx1,...,xn(t) is continuous in t [see, e.g., Jiang, Zhang
and Guo (2011)]. Using the method of proof of Theorem 3.1, it should be possi-
ble to show further that τx1,...,xn(t) is infinitely differentiable in t on the interval
(tc(F ),∞). Moreover, the n-point connectivity function of Z∞(�) [as opposed to
that of Z(�)] is certainly infinitely differentiable, since by the inclusion-exclusion
formula the probability PtF [⋂n

i=1{xi ∈ Z∞(�)}] can be expressed as a linear com-
bination of the capacity functionals of the subsets of {x1, . . . , xn}, plus a constant.

It may be possible to generalize Theorem 3.4 as follows. Let F0 ∈ M
 and
F ∈ M


1. Let tc(F0,F ) be the supremum of those t such that θ(F0 + tF ) = 0 and
assume F0,F are such that tc(F0,F ) > 0. Then we might expect that similar re-
sults to (3.6) and (3.7) would hold with tF replaced by F0 + tF (and tcF replaced
by F0 + tcF and t1F replaced by F0 + t1F ) wherever they appear.

We have shown that θL is (under the assumptions of Theorem 3.2) infinitely
differentiable on (tc,∞). It would be extremely interesting to understand the be-
haviour of the second derivative near the critical value. We leave this as a challeng-
ing problem for future research.
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