ADDENDUM AND CORRIGENDUM TO "RANDOMIZED URN MODELS REVISITED USING STOCHASTIC APPROXIMATION"

By Sophie Laruelle and Gilles Pagès
Université Paris-Est and Université Paris 6

This is a short addendum and corrigendum to the paper "Randomized Urn Models revisited using Stochastic Approximation" published in Annals of Applied Probability.

The conclusions of items (b) and (c) of Theorem A. 2 in Appendix A of [1] require slightly more stringent assumptions to be true. We thank L.-X. Zhang for pointing out this fact. We provide below an appropriate statement-based on recent results from his paper [3]-for our use in the core of the paper. Then we briefly inspect the (limited) consequences on our main results.

First, we introduce the η-differentiability of the vector field h at θ^{*} :

$$
\begin{align*}
& h(\theta)=h\left(\theta^{*}\right)+D h\left(\theta^{*}\right)\left(\theta-\theta^{*}\right)+o\left(\left\|\theta-\theta^{*}\right\|^{1+\eta}\right) \tag{0.1}\\
& \quad \text { as } \theta \rightarrow \theta^{*} \text { for some } \eta>0 .
\end{align*}
$$

Then we add in Assumption (A.3) from [1] a positive sequence $\left(v_{n}\right)_{n \geq 1}$ to be specified:

$$
\begin{equation*}
(n+1) v_{n} \mathbb{E}\left[\left\|r_{n+1}\right\|^{2} \mathbb{1}_{\left\{\left\|\theta_{n}-\theta^{*}\right\| \leq \epsilon\right\}}\right] \longrightarrow 0 \quad \text { as } n \rightarrow+\infty . \tag{0.2}
\end{equation*}
$$

THEOREM A.2. With the notations and under the hypothesis of Theorem A. 2 of [1], assume furthermore that $\operatorname{Dh}\left(\theta^{*}\right)$ diagonalizes and, for claims (b) and (c), that h is η-differentiable at θ^{*}. Let $\lambda_{\min }$ denote its eigenvalue with the lowest real part.
(a) If $\mathfrak{R e}\left(\lambda_{\min }\right)>\frac{1}{2}$ and and (0.2) holds with $v_{n}=1, n \geq 1$, then, on the convergence set $\left\{\theta_{n} \rightarrow \theta^{*}\right\}$,

$$
\begin{aligned}
& \sqrt{n}\left(\theta_{n}-\theta^{*}\right) \\
& \underset{n \rightarrow+\infty}{\mathcal{L}} \\
& \text { where } \Sigma=\int_{0}^{+\infty} e^{-u\left(D h\left(\theta^{*}\right)-\frac{\mathrm{Id}}{2}\right)^{t}} \Gamma e^{-u\left(D h\left(\theta^{*}\right)-\frac{\mathrm{Id}}{2}\right)} d u .
\end{aligned}
$$

[^0](b) If $\Re e\left(\lambda_{\min }\right)=\frac{1}{2}$ and (0.2) holds with $v_{n}=\log n, n \geq 1$, then, on the convergence set $\left\{\theta_{n} \rightarrow \theta^{*}\right\}$,
\[

$$
\begin{aligned}
& \quad \sqrt{\frac{n}{\log n}}\left(\theta_{n}-\theta^{*}\right) \underset{n \rightarrow+\infty}{\stackrel{\mathcal{L}}{\rightarrow}} \mathcal{N}(0, \Sigma) \\
& \text { where } \Sigma=\lim _{n} \frac{1}{\log n} \int_{0}^{\log n} e^{-u\left(\operatorname{Dh}\left(\theta^{*}\right)-\frac{\mathrm{Id}}{2}\right)^{t}} \Gamma e^{-u\left(D h\left(\theta^{*}\right)-\frac{\mathrm{Id}}{2}\right)} d u .
\end{aligned}
$$
\]

(c) If $\lambda_{\min } \in\left(0, \frac{1}{2}\right)$ and (0.2) holds with $v_{n}=n^{2 \lambda_{\min }-1+\varepsilon}, n \geq 1,(\varepsilon>0)$, then, on the convergence event $\left\{\theta_{n} \rightarrow \theta^{*}\right\}, n^{\lambda_{\min }}\left(\theta_{n}-\theta^{*}\right)$ a.s. converges towards a finite random variable as $n \rightarrow+\infty$.

REMARK. The above assumption on $D h\left(\theta^{*}\right)$ can been relaxed: to get (b) and (c), it suffices that all its Jordan blocks of $\lambda_{\text {min }}$ have order 1. When all these orders are not equal to 1 or $\Lambda_{\min }$ is complex in (c), new rates are obtained (even in situations where H is is itself random, see Theorem 2.1 in [3]). Thus, in item (b), if v denotes the maximum size of Jordan blocks of $\lambda_{\min }$ then $\sqrt{\frac{n}{\log n}}$ should be replaced by $\frac{\sqrt{n}}{(\log n)^{v-\frac{1}{2}}}$ and $\frac{1}{\log n}$ by $\frac{1}{(\log n)^{2 v-1}}$ in the definition of Σ.

As a consequence, in Theorem 2.2 from [1], the assumption that the limiting generating matrix H diagonalizes should be added [both Assumption (0.2) and the η-differentiability are satisfied]. In fact, this property is satisfied by the randomized urn models investigated in [1], mainly because the transpose H^{t} of the limiting generating matrix of interest is always reversible with respect to its invariant measure (its "first" left eigenvector v^{*}). Hence, our main results and their proofs remain true as stated (up to this additional condition in Theorem 2.2). For more details, we refer to [2].

In [2] (extended version of this note), we also prove the following precise and new results:

- Spectrum of $\operatorname{Dh}\left(\theta^{*}\right)_{\mid \mathcal{V}_{0}^{2}}$ in Theorem 2.2: If we assume the limiting generating matrix H diagonalizes (resp., in \mathbb{R}), so is the case of $D h\left(\theta^{*}\right)_{\mid \mathcal{V}_{0}^{2}}$ and Theorem A. 2 applies.
- Spectrum of $D \widetilde{h}\left(\widetilde{\theta}^{*}\right)_{\mid \mathcal{V}_{0}^{2}}$ in Theorem 3.1: The differential $D \widetilde{h}\left(\widetilde{\theta}^{*}\right)_{\mid \mathcal{V}_{0}^{2} \times \mathbb{R}^{d}}$ diagonalizes in \mathbb{R}.
- Bai-Hu-Sen model in Section 3.3: For this model, the limiting generating matrix reads

$$
H=\left(p^{i} \delta_{i j}+\frac{p^{i}\left(1-p^{j}\right)}{\pi-p^{j}}\left(1-\delta_{i j}\right)\right)_{1 \leq i, j \leq d} \quad \text { where } \pi=\sum_{i=1}^{d} p^{i}
$$

always diagonalizes in \mathbb{R} since its transpose is reversible with respect to its invariant measure.

A more computational proof is possible when the p^{i} are pairwise distinct which provides bounds for the eigenvalues. Thus, we can give a sufficient condition to get a standard $C L T$ for this randomized urn dynamics.

THEOREM 0.1. Let $d \geq 2$ be an integer. The characteristic polynomial of the above BHS generating matrix H is given by

$$
\operatorname{det}\left(H-\lambda I_{d}\right)=\prod_{i=1}^{d}\left(p^{i}\left(1-a^{i}\right)-\lambda\right)+\sum_{i=1}^{d} p^{i} a^{i} \prod_{i \neq j}\left(p^{j}\left(1-a^{j}\right)-\lambda\right),
$$

where $a^{i}=\frac{1-p^{i}}{\pi-p^{i}}, i \in\{1, \ldots, d\}$. In particular, if for every $i \neq j, p^{i} \neq p^{j}$, then H has pairwise distinct real eigenvalues hence it is diagonalizable with a real-valued spectrum. Furthermore, the second highest eigenvalue $\lambda_{\max _{2}}^{H}$ of H satisfies

$$
\lambda_{\max _{2}}^{H}<\max _{1 \leq i \leq d} \frac{p^{i}\left(1-p^{i}\right)}{\pi-p^{i}} .
$$

A criterion for standard CLT follows from the condition $\lambda_{\min }=1-\lambda_{\max _{2}}^{H}>\frac{1}{2}$.

REFERENCES

[1] Laruelle, S. and Pagès, G. (2013). Randomized urn models revisited using stochastic approximation. Ann. Appl. Probab. 23 1409-1436. MR3098437
[2] Laruelle, S. and Pagès, G. (2015). Randomized urn models revisited using stochastic approximation (extended version). Available at arXiv:1101.2786v6.
[3] Zhang, L.-X. (2016). Central limit theorems of a recursive stochastic algorithm with applications to adaptive designs. Ann. Appl. Probab. 26 3630-3658. MR3582813

LABORATOIRE D'ANALYSE ET DE
Mathématiques Appliquées
Université Paris-Est
UMR 8050, UPEC
France
E-MAIL: sophie.laruelle@u-pec.fr

Laboratoire de Probabilités et
MODÈLES ALÉATOIRES
UMR 7599
UNIVERSITÉ PARIS 6
France
E-MAIL: gilles.pages@upmc.fr

[^0]: Received January 2016; revised July 2016.

