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1. Introduction. In the authors’ paper [2], the optimal stopping problems of
the form

(1.1) sup
τ∈T

ρ�
0 (−Yτ )

were studied. Here, (Yt )t∈[0,T ] denotes a nonnegative stochastic process on a fil-
tered probability space (�,F, (Ft )0≤t≤T ,P) with T ∈ ]0,∞[, T stands for the set
of (Ft ) stopping times τ ≤ T and the functional ρ�

0 is a divergence risk measure
w.r.t. a lower semicontinuous convex mapping � : [0,∞[ → [0,∞] (see [2] for
a precise definition and further details). Meanwhile, we have realized that some
assumptions in [2] are unnecessarily strong. More precisely, we required Ft to
be countably generated for any t > 0. However, this excludes many widely used
filtered probability spaces like standard augmentations of the filtered probability
spaces generated by general multidimensional diffusions. A key point in [2] is the
so-called derandomization result (see Proposition 6.3 in [2]), which shows that we
obtain the same optimal value for the stopping problem (1.1) if we enlarge the
set of stopping times to randomized stopping times. A crucial step in the proof of
Proposition 6.3 is Lemma 7.4 which in turn uses an argument from the theory of
angelic spaces (see Proposition B.1). This argument relies on the assumption that
(Ft ) is countably generated for t > 0. In the meantime, we have realized that this
line of argumentation continues to hold true if we only require that for any t > 0,
the L1-space L1(�,Ft ,P|Ft ) is weakly separable, that is, the weak topology on
L1(�,Ft ,P|Ft ) is separable. The latter assumption turns out to be much weaker
than the original one.

The aim of this addendum is to reformulate the main results of [2] under weak-
ened assumptions on the filtration (Ft ). In particular, we show that the case of
augmented filtration generated by a right-continuous stochastic process is now en-
compassed.
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2. New versions of the main results. Let � : [0,∞[ → [0,∞] be some lower
semicontinuous convex mapping with Legendre transform

�∗ : R→R∪ {∞}, y �→ sup
x≥0

(
xy − �(x)

)
.

Furthermore, let int(dom(�)) denote the topological interior of the effective do-
main of �. As in [2] � satisfies

(2.1) 1 ∈ int
(
dom(�)

)
, inf

x≥0
�(x) = 0 and lim

x→∞
�(x)

x
= ∞.

In addition, let H�∗
be the set of all random variables Z on (�,F,P) such that

�∗(λ|Z|) is P-integrable for every λ > 0.
Let us formulate our main primal representation result for the stopping problem

(1.1) which can be viewed as a new version of Theorem 3.1 in [2].

THEOREM 2.1. Let (�,Ft ,P|Ft ) be atomless with L1(�,Ft ,P|Ft ) being
weakly separable for every t > 0. Furthermore, let (2.1) be fulfilled, and let
supt∈[0,T ] Yt ∈ H�∗

, then

sup
τ∈T

ρ�
0 (−Yτ ) = sup

τ∈T
inf
x∈RE

[
�∗(x + Yτ ) − x

]
= inf

x∈R sup
τ∈T

E
[
�∗(x + Yτ ) − x

]
< ∞.

REMARK 2.2. In a similar way as in Theorem 2.1, a dual representation for
the stopping problem (1.1) (see Theorem 3.9 in [2]) can be formulated under the
same weaker assumptions on the filtration (Ft ).

REMARK 2.3. In many applications, the filtration (�,F, (Ft )0≤t≤T ,P) is as-
sumed to be the standard augmentation of the natural filtration induced by some
d-dimensional right-continuous stochastic process S = (St )t∈[0,T ] on some proba-
bility space (�,F,P) such that the marginals St have absolute continuous distribu-
tions for any t > 0, and S0 has constant value P-a.s. By construction, the filtration
(Ft )t∈[0,T ] is right-continuous with F0 consisting of sets with probability 0 or 1,
and containing all null sets of F . Moreover, for any t > 0, the probability space
(�,Ft ,P|Ft ) supports at least one continuously distributed random variable, as St ′
is assumed to be continuously distributed for t ′ > 0. In particular, the probability
space (�,Ft ,P|Ft ) is atomless for any t > 0. Next, by right-continuity of S, the
σ -algebra F̂ := σ({St | t ∈ [0, T ]}) generated by S is countably generated so that
the space of P|F̂ -integrable random variables is separable w.r.t. the L1-norm (see
e.g. [3], Proposition 3.4.5). Since by construction F = FT is the completion of
F̂ we may conclude from Lemma A.2 (cf. Appendix 3) that for any t > 0, the
space L1(�,Ft ,P|Ft ) is separable w.r.t. the L1-norm, in particular it is weakly
separable. Summing up, the filtered probability space (�,F, (Ft )0≤t≤T ,P) meets
the requirements of Theorem 2.1.
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3. Proof of Theorem 2.1. First, by (2.1) we may apply [2], Lemma A.1, to
observe

(3.1) sup
τ∈T

ρ�
0 (−Yτ ) = sup

τ∈T
inf
x∈RE

[
�∗(x + Yτ ) − x

]
.

Consider the stochastic process (Y r
t )t≥0, defined as

Y r
t : � × [0,1] → R, (ω,u) �→ Yt (ω),

which is adapted w.r.t. the enlarged filtered probability space(
� × [0,1],F ⊗B

([0,1]), (
Ft ⊗B

([0,1]))t∈[0,T ],P ⊗ PU )
.

Here, PU stands for the uniform distribution on [0,1], defined on B([0,1]), the
usual Borel σ -algebra on [0,1]. Moreover, let T r denote the set of all randomized
stopping times τ r ≤ T . Then due to (2.1) under assumption supt∈[0,T ] Yt ∈ H�∗

,
we may conclude from [2], Corollary 7.3 and Proposition 6.2,

sup
τ r∈T r

f

inf
x∈RE

[
�∗(

x + Y r
τr

) − x
] = sup

τ r∈T r
inf
x∈RE

[
�∗(

x + Y r
τr

) − x
]

(3.2)

= inf
x∈R sup

τ r∈T r
E

[
�∗(

x + Y r
τr

) − x
]
.(3.3)

Here, T r
f denotes the set of randomized stopping times from T r with finite range.

Now the following auxiliary result gives a missing link to prove Theorem 2.1.

LEMMA 3.1. Let (2.1) be fulfilled. Furthermore, let τ r ∈ T r
f , and let us de-

note by Tf the set containing all nonrandomized stopping times from T with finite
range. If (�,Ft ,P|Ft ) is atomless with L1(�,Ft ,P|Ft ) being weakly separable
for every t > 0, and if Yt ∈ H�∗

for t > 0, then

(3.4) inf
x∈RE

[
�∗(

x + Y r
τr

) − x
] ≤ sup

τ∈Tf

inf
x∈RE

[
�∗(x + Yτ ) − x

]
.

PROOF. In order to simplify notation, let us assume T ∈ N and that τ r has
values in {0, . . . , T } only. By Fubini’s theorem, we obtain

P ⊗ PU ({τ r = 0}) =
∫ 1

0
P
({

τ r(·, u) = 0
})

du.

Since {τ r(·, u) = 0} ∈ F0 holds for every u ∈ [0,1], we may conclude by assump-
tion on F0 that P ⊗ PU({τ r = 0}) ∈ {0,1} holds. Hence, if P ⊗ PU({τ r = 0}) > 0,
then τ r = 0 P ⊗ PU -a.s. In this case, the statement of Lemma 3.1 follows imme-
diately because τ ≡̇0 belongs to Tf . So without loss of generality, we may assume
that τ r has values in {1, . . . , T } only.

Next, let FYr
τr

denote the distribution function of Y r
τr . Then by Fubini’s theorem

(3.5) FYr
τr

(x) =
T∑

t=1

E
[
1]−∞,x](Yt ) · Zt

]
for x ∈R,
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where

Zt=̇
∫ 1

0
1{t}

(
τ r(·, u)

)
du for t ∈ {1, . . . , T }.

Note that 1{t}(τ r) is P|Ft ⊗ PU -integrable so that by Fubini theorem, Zt is a
random variable on (�,Ft ,P|Ft ) which satisfies 0 ≤ Zt ≤ 1 P-a.s. for every
t ∈ {1, . . . , T }. In addition, we may observe that

∑T
t=1 Zt = 1 holds P-a.s. Since

the probability spaces (�,Ft ,P|Ft ) (t = 1, . . . , T ) are assumed to be atomless
with L1(�,Ft ,P|Ft ) being weakly separable, we may draw on Corollary C.4
along with Lemma C.1 and Proposition B.1, all from [2], to find a sequence
((B1n, . . . ,BT n))n∈N in ×T

t=1 Ft such that B1n, . . . ,BT n is a partition of � for
n ∈ N, and

lim
n→∞E[1Btn · g] = E[Zt · g]

holds for g ∈ L1(�,Ft ,P|Ft ) and t ∈ {1, . . . , T }. In particular, we have by (3.5)

FYr
τr

(x) = lim
n→∞

T∑
k=1

E
[
1]−∞,x](Yt ) · 1Btn

]
for x ∈ R.

We can define a sequence (τn)n∈N of nonrandomized stopping times from Tf via

τn :=
T∑

t=1

t1Btn,

so that

FYr
τr

(x) = lim
n→∞

T∑
k=1

E
[
1]−∞,x](Yt ) · 1Btn

] = lim
n→∞FYτn

(x) for x ∈ R.

Now, one may show just in the same way as in the proof of Lemma 7.4 from [2]
that

lim
n→∞ inf

x∈RE
[
�∗(x + Yτn) − x

] = inf
x∈RE

[
�∗(

x + Y r
τr

) − x
]

holds. This completes the proof. �

Now we are ready to show Theorem 2.1. By (3.2) along with Lemma 3.1 and
(3.3), we obtain

sup
τ∈T

inf
x∈RE

[
�∗(x + Yτ ) − x

] ≥ sup
τ∈Tf

inf
x∈RE

[
�∗(x + Yτ ) − x

]

≥ sup
τ r∈T r

f

inf
x∈RE

[
�∗(

x + Y r
τr

) − x
]

= sup
τ r∈T r

inf
x∈RE

[
�∗(

x + Y r
τr

) − x
]
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= inf
x∈R sup

τ r∈T r
E

[
�∗(

x + Y r
τr

) − x
]

≥ inf
x∈R sup

τ∈T
E

[
�∗(x + Yτ ) − x

]
≥ sup

τ∈T
inf
x∈RE

[
�∗(x + Yτ ) − x

]
.

Then Theorem 2.1 follows immediately from (3.1).

APPENDIX

In the following, we shall denote by L1(�,F,P) the space of P-integrable ran-
dom variables.

LEMMA A.2. Let (�,F,P) be some probability space with completion
(�,F,P), and let A be any sub σ -algebra of F . If L1(�,F,P) is separable w.r.t.
the L1-norm, then L1(�,A,P|A) is separable w.r.t. the L1-norm.

PROOF. By assumption, there is some sequence (fn)n∈N in L1(�,F,P)

which is dense w.r.t. the L1-norm. Let us fix g ∈ L1(�,A,P|A) and ε > 0. Since
(�,F,P) is the completion of (�,F,P), we may find some random variable f

on (�,F,P) such that g = f P-a.s. (cf. [1], Theorem 10.35). Obviously, f is
P-integrable because g is P-integrable, and thus g = EP[f |A] P-a.s. Then there
exists some n ∈N such that EP[|f − fn|] = EP[|f − fn|] < ε. This implies

EP
[∣∣g −EP[fn|A]∣∣] = EP

[∣∣EP[f |A]| −EP[fn|A]∣∣]
≤ EP

[
EP

[|f − fn||A]]
= EP

[|f − fn|] < ε.

Hence, we have shown that (EP[fn|A])n∈N is dense in L1(�,A,P|A) which com-
pletes the proof. �
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