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QUICKEST DETECTION PROBLEMS FOR BESSEL PROCESSES1

BY PETER JOHNSON AND GORAN PESKIR

The University of Manchester

Consider the motion of a Brownian particle that initially takes place in a
two-dimensional plane and then after some random/unobservable time con-
tinues in the three-dimensional space. Given that only the distance of the par-
ticle to the origin is being observed, the problem is to detect the time at which
the particle departs from the plane as accurately as possible. We solve this
problem in the most uncertain scenario when the random/unobservable time
is (i) exponentially distributed and (ii) independent from the initial motion
of the particle in the plane. The solution is expressed in terms of a stopping
time that minimises the probability of a false early detection and the expected
delay of a missed late detection.
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1. Introduction. Imagine the motion of a Brownian particle that initially
takes place in a two-dimensional plane and then after some random/unobservable
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time θ continues in the three-dimensional space (Figure 1). Assuming that only the
distance of the particle to the origin is being observed (Figure 2), the problem is to
detect the time θ at which the particle departs from the plane as accurately as pos-
sible (neither too early nor too late). The purpose of the present paper is to derive
the solution to this problem when θ is assumed to be (i) exponentially distributed
and (ii) independent from the initial motion of the particle in the plane.

Denoting the distance of the Brownian particle to the origin by X, it is well
known that X may be viewed as a Bessel process of dimension 2 which then
changes to dimension 3 at time θ . We study the problem above by embedding
it into the more general setting where a Bessel process X of dimension δ0 ≥ 2
changes its dimension to δ1 > δ0 at time θ . In these cases, 0 is known to be an
entrance boundary point for X viewed as a diffusion process in [0,∞) where X

is also known to be recurrent for δ0 = 2 and transient for δ1 > 2. Our methods are
developed to treat these cases and we will leave all other theoretical possibilities
of δ0 �= δ1 ∈ [0,∞) open for future development.

The error to be minimised over all stopping times τ of X is expressed as the lin-
ear combination of the probability of the false alarm Pπ(τ < θ) and the expected
detection delay Eπ(τ − θ)+ where π ∈ [0,1] denotes the probability that θ has
already occurred at time 0. This problem formulation of quickest detection dates
back to [18] and has been extensively studied to date (see [19] and the references
therein). The linear combination represents the Lagrangian and once the optimal
stopping problem has been solved in this form it will also lead to the solution of the
constrained problems where an upper bound is imposed on either the probability of
the false alarm or the expected detection delay, respectively. A canonical example
is the standard Brownian motion with one constant drift changing to another. This
problem has also been solved in finite horizon (see [8] and the references therein).
Books [20], Section 4.4, and [15], Section 22, contain expositions of these re-
sults and provide further details and references. In all these problems, however,
the signal-to-noise ratio (defined as the difference between the new drift and the
old drift divided by the diffusion coefficient) is constant. This is no longer the case
in the quickest detection problem of the present paper and to our knowledge this
is the first time that such a problem has been solved in the literature.

A more general problem formulation for one-dimensional diffusion processes
when one nonconstant drift changes to another has been considered in the recent
paper [9]. This reference serves as a starting point for the present paper and for
future reference we will also make it explicit in the analysis below which argu-
ments/results are applicable/valid in the general case as well. To recognise the
Markovian structure in the optimal stopping problem stated above, one consid-
ers the posterior probability distribution process Π of θ given X, as well as the
posterior probability distribution ratio process Φ of θ given X, in addition to the
observed process X. The two processes Π and Φ are in one-to-one correspon-
dence (the latter stretching the state space [0,1] to [0,∞] of the former) so that
one of them is Markov if and only if the other is Markov. This is the case when the
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FIG. 1. Simulated motion of a Brownian particle (viewed from two angles) that initially takes place
in a two-dimensional plane (blue line) and then after some random/unobservable time θ continues
in the three-dimensional space (red line).

FIG. 2. Distance to the origin of the Brownian particle from Figure 1 above.
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signal-to-noise ratio is constant. On the other hand, if the signal-to-noise ratio is
not constant, then typically both Π and Φ fail to be Markov processes. To remedy
the situation, as noted in [9], one needs to account for X and then both (Π,X)

and (Φ,X) become Markov processes. This shows that if the signal-to-noise ratio
is not constant, as in the quickest detection problem of the present paper, then the
optimal stopping problem under consideration is inherently/fully two-dimensional,
and hence more difficult. Finding and fully characterising the solution to this prob-
lem is the main/principal result of the present paper.

2. Outline of the paper. The exposition of the material is organised as fol-
lows. In Section 3, we formulate the optimal stopping problem and recall the
stochastic differential equations for Π , Φ , L and X from [9], Section 2, where L

is the likelihood ratio process which provides a link from Π and Φ to the observed
process X. The stochastic differential equations for Π , Φ and X are expressed in
terms of the innovation process (standard Brownian motion) so that the stochastic
differential equations for both (Π,X) and (Φ,X) are fully coupled. This makes
the analysis of the optimal stopping problem more complicated.

In Section 4, we show that a measure change from Pπ to P∞ (corresponding to
θ = ∞ formally) simplifies the matters in that the stochastic differential equations
for both (Π,X) and (Φ,X) get uncoupled in the second component. This is an
important step that abandons the innovation process and makes the subsequent
analysis possible. A similar approach to the Poisson disorder problem has been
undertaken in [2] where the quickest detection problem was formulated starting
with P∞ and then built on further from there. The difference in the present case
is that we find/determine the Radon–Nikodym derivative which reformulates the
traditional construction of the problem in terms of P∞ although clearly the two
approaches ought to be equivalent.

The resulting optimal stopping problem is expressed in Lagrange form for
(Φ,X) and in Section 5 we disclose its Mayer formulation (see [15], Section 6,
for the terminology). Since the stochastic differential equations for Φ and X are
driven by the same Brownian motion we know that the resulting infinitesimal gen-
erator equation must be of parabolic type and in Section 6 we describe this reduc-
tion in both probabilistic and analytic terms. This enables us to rewrite the optimal
stopping problem (of Sections 4 and 5) in terms of a new Markov process (U,Φ)

where the process U is of bounded variation. Some precision is needed in this
context as strictly speaking the partial differential equation is parabolic only off
the curve where the integrand forming U takes value 0 (to change its sign). A sim-
ilar reduction to the canonical form has been carried out in [9] in a more general
setting so that the resulting partial differential equation contains mixed derivatives
as well. Nonexistence of the mixed derivatives simplifies some proofs in the sequel
(Section 12).

In Section 7, we recall that a Bessel process of dimension δ ≥ 2 can be time
changed into a geometric Brownian motion. This is a well-known result dating



QUICKEST DETECTION PROBLEMS FOR BESSEL PROCESSES 1007

back to [21] and the time change itself plays a crucial role to derive monotonicity
of the optimal stopping boundary in Section 8. It may be instructive to compare
this derivation with the derivation given in the recent paper [1] where similar time
change arguments were used in a somewhat different setting (leaving a nonmartin-
gale case treated here as an open problem). The proof of monotonicity verifies
by different/rigorous means the implication stated in [9], Proposition 4.1, that the
optimal stopping boundary is decreasing if the signal-to-noise ratio is decreasing.
In Section 8, we also derive further properties of the optimal stopping bound-
ary (its finiteness, its limiting behaviour at zero and infinity, and its regularity for
the stopping set). To establish its monotonicity and regularity, we make use of
the time change arguments combined with a comparison theorem for multidimen-
sional stochastic differential equations given in [7].

Using the regularity of the optimal stopping boundary we show in Section 9
that the value function of the optimal stopping problem is continuous. Similarly, in
Section 10 we show that smooth fit holds in both directions of (Φ,X) at the optimal
stopping boundary. Since the process (Φ,X) is in one-to-one correspondence with
the process (U,Φ) it follows that all the results proved for the process (Φ,X)

and its optimal stopping problem extend in a one-to-one way to the results for the
process (U,Φ) and its optimal stopping problem (implying also that the optimal
stopping problems are equivalent). The advantage of the process (U,Φ) lies in the
fact that its first component is either increasing or decreasing when (U,Φ) is off
a specified curve so that the resulting motion of (U,Φ) is “circular around” the
curve. This reflects the fact that the underlying partial differential equation of its
infinitesimal generator is not globally parabolic (but only locally off the curve).

In Section 11, we present direct probabilistic arguments (based on the regularity
of the optimal stopping boundary alone) which show that the value function is
globally continuously differentiable (see [3] for extensions and broader analysis).
Exploiting further the local parabolicity of the equation through the connection
between (Φ,X) and (U,Φ) this enables us to infer that the value function for the
latter process is twice continuously differentiable with respect the second argument
up to the optimal stopping boundary (within the continuation set). The combined
results of Sections 10 and 11 are then used in Section 12 to derive continuity of
the optimal stopping boundary itself (see [14] for extensions of these arguments to
elliptic equations). Making use of the existence and uniqueness results for partial
differential equations of parabolic type (cf. [11]) this is then used in Section 13
to complete the analytic setting and formulate the free-boundary problem which
stands in one-to-one correspondence with the optimal stopping problem.

In Section 14, we exploit the regularity properties of the value function derived
in Section 11 combined with the local parabolicity of the equation [through the
connection between (Φ,X) and (U,Φ)] and monotonicity of the optimal stop-
ping boundary derived in Section 8. These facts justify the use of the local time–
space formula from [13] which then shows that the optimal stopping boundary
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solves a nonlinear Fredholm integral equation in the same way as the optimal stop-
ping boundary in the time–space problems of optimal stopping solves a nonlinear
Volterra integral equation (see [15], Chapters VI–VIII, and the references therein).
The reason for the appearance of the Fredholm equations instead of the Volterra
equations is that the partial differential equation of the infinitesimal generator is
not globally parabolic (this will also be the case when the equation is elliptic).
This means that the equation is not globally evolutionary, and hence the integra-
tion needs to be performed over the whole state space. The replacement of the
nonlinear Volterra integral equation by the nonlinear Fredholm integral equation
is canonical and the phenomenon holds in general for more complicated (elliptic)
and higher dimensional problems as well.

In Section 14, we further verify that the proof of uniqueness for the nonlinear
Volterra integral equation given originally in [12] and developed further for ex-
ample in [4], Section 3.10, extends to the nonlinear Fredholm integral equation.
This shows that the optimal stopping boundary can be characterised as the unique
solution to the nonlinear Fredholm integral equation and there is a closed triple-
integral representation for the value function expressed in terms of the optimal
stopping boundary. These results also establish uniqueness of the solution to the
free-boundary problem formulated in Section 13 in addition to its existence.

Concluding this section, we can say that the present study addresses a number
of key issues when dealing with fully two-dimensional problems of optimal stop-
ping for diffusion processes and their connections with (locally) parabolic partial
differential equations. The methodology for tackling these problems is of general
probabilistic interest and the arguments developed in the proofs should be applica-
ble in similar two-dimensional settings.

3. Formulation of the problem. In this section, we formulate the quickest
detection problem under consideration and recall stochastic differential equations
for the underlying stochastic processes (cf. [9], Section 2). These considerations
will be completed in the next section by a change of measure argument.

1. We consider a Bayesian formulation of the problem where it is assumed
that one observes a sample path of the Bessel process X whose dimension δ0 ≥ 2
changes to dimension δ1 > δ0 at some random/unobservable time θ taking value
0 with probability π ∈ [0,1] and being exponentially distributed with parameter
λ > 0 given that θ > 0. The problem is to detect the unknown time θ at which the
dimension of X changes as accurately as possible (neither too early nor too late).
This problem belongs to the class of quickest detection problems as discussed in
Section 1 above.

2. The observed process X solves the stochastic differential equation:

(3.1) dXt = [
μ0(Xt) + I (t ≥ θ)

(
μ1(Xt) − μ0(Xt)

)]
dt + σ(Xt) dBt
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driven by a standard Brownian motion B under Pπ specified below where we set

(3.2) μ0(x) = δ0 − 1

2x
, μ1(x) = δ1 − 1

2x
and σ(x) = 1

for x > 0. We assume throughout that X starts at a strictly positive point and we
will see below that this also yields solution when X starts at zero. The unobservable
time θ and the driving Brownian motion B are assumed to be independent under
Pπ for π ∈ [0,1].

3. Standard arguments imply that the previous setting can be realised on a prob-
ability space (
,F,Pπ) with the probability measure Pπ decomposed as follows:

(3.3) Pπ = πP0 + (1 − π)

∫ ∞
0

λe−λtPt dt

for π ∈ [0,1] where Pt is the probability measure under which the observed pro-
cess X undergoes the change of dimension at time t ∈ [0,∞). The decomposi-
tion (3.3) expresses the fact that the unobservable time θ is a nonnegative random
variable satisfying Pπ(θ = 0) = π and Pπ(θ > t |θ > 0) = e−λt for t > 0. Thus,
Pt (X ∈ ·) = Pπ(X ∈ ·|θ = t) is the probability law of a Bessel process whose
dimension δ0 ≥ 2 changes to dimension δ1 > δ0 at time t ∈ [0,∞). To remain
consistent with this notation, we also denote by P∞ the probability measure un-
der which the observed process X undergoes no change of its dimension. Thus,
P∞(X ∈ ·) = Pπ(X ∈ ·|θ = ∞) is the probability law of a Bessel process with
dimension δ0 ≥ 2 at all times.

4. Being based upon continuous observation of X, the problem is to find a
stopping time τ∗ of X [i.e., a stopping time with respect to the natural filtration
FX

t = σ(Xs |0 ≤ s ≤ t) of X for t ≥ 0] that is “as close as possible” to the unknown
time θ . More precisely, the problem consists of computing the value function

(3.4) V (π) = inf
τ

[
Pπ(τ < θ) + cEπ(τ − θ)+

]

and finding the optimal stopping time τ∗ at which the infimum in (3.4) is attained
for π ∈ [0,1] and c > 0 given and fixed. Note in (3.4) that Pπ(τ < θ) is the proba-
bility of the false alarm and Eπ(τ − θ)+ is the expected detection delay associated
with a stopping time τ of X for π ∈ [0,1]. Recall also that the expression on the
right-hand side of (3.4) is the Lagrangian associated with the constrained problems
as discussed in Section 1 above.

5. To tackle the optimal stopping problem (3.4), we consider the posterior prob-
ability distribution process Π = (Πt)t≥0 of θ given X that is defined by

(3.5) Πt = Pπ

(
θ ≤ t |FX

t

)
for t ≥ 0. The right-hand side of (3.4) can be rewritten to read

(3.6) V (π) = inf
τ

Eπ

(
1 − Πτ + c

∫ τ

0
Πt dt

)
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for π ∈ [0,1]. If the signal-to-noise ratio defined by

(3.7) ρ(x) = μ1(x) − μ0(x)

σ (x)

is constant for x > 0, then Π is known to be a one-dimensional Markov (diffusion)
process so that the optimal stopping problem (3.6) can be tackled using established
techniques both in infinite and finite horizon (see [15], Section 22). Note that this
is no longer the case in the setting of the present problem since from (3.2) we see
that

(3.8) ρ(x) = γ

x
�= constant

for x > 0 where we set γ = (δ1 − δ0)/2.
6. To connect the process Π to the observed process X we consider the likeli-

hood ratio process L = (Lt )t≥0 defined by

(3.9) Lt = dP0
t

dP∞
t

,

where P0
t and P∞

t denote the restrictions of the probability measures P0 and P∞
to FX

t for t ≥ 0. By the Girsanov theorem, one finds that

(3.10) Lt = exp
(∫ t

0

μ1(Xs) − μ0(Xs)

σ 2(Xs)
dXs − 1

2

∫ t

0

μ2
1(Xs) − μ2

0(Xs)

σ 2(Xs)
ds

)

for t ≥ 0. A direct calculation based on (3.3) shows that the posterior probability
distribution ratio process Φ = (Φt)t≥0 of θ given X that is defined by

(3.11) Φt = Πt

1 − Πt

can be expressed in terms of L (and hence X as well) as follows:

(3.12) Φt = eλtLt

(
Φ0 + λ

∫ t

0

ds

eλsLs

)

for t ≥ 0 where Φ0 = π/(1 − π). Note that Lt in (3.10) is expressed in terms of a
stochastic integral with respect to X and as such is not an explicit functional of the
observed sample path of X up to time t . We will see in Section 6 below that such
an explicit functional can be determined and that this issue is closely related to the
parabolic nature of the underlying partial differential equation.

7. To derive stochastic differential equations for the posterior processes Π

and Φ , one may apply Itô’s formula in (3.10) to find that

(3.13) dLt = μ1(Xt) − μ0(Xt)

σ 2(Xt)
Lt

[
dXt − μ0(Xt) dt

]
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with L0 = 1. Further applications of Itô’s formula in (3.11) and (3.12) then show
that

dΠt = λ(1 − Πt)dt + ρ(Xt)Πt(1 − Πt)dB̄t ,(3.14)

dΦt =
[
λ(1 + Φt) + ρ2(Xt)

Φ2
t

1 + Φt

]
dt + ρ(Xt)Φt dB̄t(3.15)

upon noting that X solves

(3.16) dXt = [
μ0(Xt) + Πt

(
μ1(Xt) − μ0(Xt)

)]
dt + σ(Xt) dB̄t ,

where B̄ = (B̄t )t≥0 is the innovation process defined by

(3.17) B̄t =
∫ t

0

dXs

σ(Xs)
−

∫ t

0

[
μ0(Xs)

σ (Xs)
+ Πs

μ1(Xs) − μ0(Xs)

σ (Xs)

]
ds

for t ≥ 0 from where we see by Lévy’s characterisation theorem that B̄ is a stan-
dard Brownian motion with respect to (FX

t )t≥0 under Pπ for π ∈ [0,1].
8. From (3.14) and (3.15), it is evident that Π and Φ cannot be Markov pro-

cesses unless the signal-to-noise ratio ρ defined in (3.7) is constant. If ρ is not
constant such as in (3.8) above, then one needs to look at (3.14) + (3.16) and
(3.15) + (3.16) as two systems of stochastic differential equations for the pairs of
processes (Π,X) and (Φ,X), respectively. It is well known (see, e.g., [17], pages
158–163) that when these systems have a unique weak solution then (Π,X) and
(Φ,X) are (time-homogeneous) strong Markov processes under Pπ for π ∈ [0,1].
Recalling known sufficient conditions for the existence and uniqueness of weak
solutions (see, e.g., [17], pages 166–173) we see that this is the case whenever
x �→ μ0(x), x �→ μ1(x) and x �→ σ(x) are continuous with μ0(x) �= μ1(x) and
σ(x) > 0 for all x in the state space of X (possibly excluding entrance bound-
ary points). Note that these conclusions are not confined to the setting of Bessel
processes but hold generally in the quickest detection problems for diffusion pro-
cesses X solving (3.1) when the old drift μ0 is changing to the new drift μ1 at the
random/unobservable time θ .

9. The preceding considerations show that the optimal stopping problems (3.4)
and (3.6) are inherently/fully two-dimensional with the pairs of processes (Π,X)

and (Φ,X) solving (3.14) + (3.16) and (3.15) + (3.16) being strong Markov when
(3.8) holds. This fact makes the subsequent analysis of these problems more chal-
lenging than when the signal-to-noise ratio ρ defined in (3.7) is constant. The
analysis of (3.4) and (3.6) performed in [9] is based on the stochastic differential
equations (3.14) + (3.16) and (3.15) + (3.16) under the probability measure Pπ

for π ∈ [0,1]. In this case, one sees that these two systems of stochastic differen-
tial equations are fully coupled [as both Π and X as well as Φ and X enter both
(3.14) and (3.16) as well as (3.15) and (3.16), respectively]. This makes the analy-
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sis of (3.4) and (3.6) more involved. In the next section, we will see that a change
of measure argument simplifies the setting and decouples the systems (3.14) +
(3.16) and (3.15) + (3.16) in the second equation so that the analysis of (3.4) and
(3.6) becomes easier and more penetrating. This change of measure argument is
not confined to the Bessel process setting and holds in general. Moreover, another
major difficulty encountered in [9] is that both Π and X as well as Φ and X en-
ter the diffusion coefficient (3.15) and (3.16), respectively. This makes the use of
comparison theorems for the systems of stochastic differential equations (3.14) +
(3.16) and (3.15) + (3.16) more challenging. We will see in Section 7 below that
time change arguments remove the dependence of the diffusion coefficient on the
process X in both systems so that known comparison theorems are applicable in
this case. This will enable us in Section 8 below to derive monotonicity of the op-
timal stopping boundary that plays an important role in characterising the solution
to the optimal stopping problems (3.4) and (3.6) above.

4. Measure change. In this section, we show that changing the measure Pπ

for π ∈ [0,1] to P∞ in the optimal stopping problems (3.4) and (3.6) above pro-
vides crucial simplifications of the setting which makes the subsequent analysis
possible. We first describe the rationale for the change of measure calculation and
then furnish its formal verification in the proof of Lemma 1 below. Recalling that
the systems of stochastic differential equations (3.14) + (3.16) and (3.15) + (3.16)
are equivalent our focus in the sequel will be on the system (3.15) + (3.16) for the
pair of processes (Φ,X) after showing that this system takes a simpler form un-
der the new measure P∞. This is then followed by a reformulation of the optimal
stopping problem (3.6) in terms of (Φ,X) under the new measure P∞ in Proposi-
tion 2 below upon recalling that the optimal stopping problems (3.4) and (3.6) are
equivalent.

1. To calculate the Radon–Nikodym derivative corresponding to the change of
measure from Pπ to P∞ with π ∈ [0,1] given and fixed, we may recall that if
Q = αQ1 + (1 −α)Q2 where Q1 and Q2 are probability measures on (
,F) and
α ∈ [0,1] then

(4.1) EQ(X|G) = αEQ1(X|G)
dQG

1

dQG + (1 − α)EQ2(X|G)
dQG

2

dQG

for any (integrable) random variable X on (
,F) and any σ -algebra G ⊆ F where
QG

i and QG denote the restrictions of Qi and Q to G for i = 1,2, respectively.
Clearly, (4.1) follows by a direct verification and the argument extends to more
general convex combinations of probability measures including their integrals as
limiting cases. With this argument in place, we can then return to the setting de-
scribed in Section 3 above and proceed as follows.
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2. Denoting by Ps
t and Pπ,t the restrictions of measures Ps and Pπ to FX

t for
s ≥ 0 and t ≥ 0, we find by (3.3) using the extended version of (4.1) above that

1 − Πt = 1 − Pπ

(
θ ≤ t |FX

t

) = Pπ

(
θ > t |FX

t

)

= πP0(
θ > t |FX

t

) dP0
t

dPπ,t

+ (1 − π)

∫ ∞
0

λe−λsPs(θ > t |FX
t

) dPs
t

dPπ,t

ds(4.2)

= (1 − π)

∫ ∞
t

λe−λs dP∞
t

dPπ,t

ds = (1 − π)e−λt dP∞
t

dPπ,t

,

where we use that P0(θ > t |FX
t ) equals 0 and Ps(θ > t |FX

t ) equals 1 if s > t and 0
if s ≤ t , and we also use that dPs

t /dPπ,t = dP∞
t /dPπ,t for s > t . From (4.2), we

find that

(4.3)
dPπ,t

dP∞
t

= e−λt 1 − π

1 − Πt

for t ∈ [0,∞) and π ∈ [0,1). Using (3.11) and (3.12), it is easily seen that the
right-hand side in (4.3) tends to Lt as π ↑ 1. Given that P1,t coincides with P0

t we
see that this consequence is consistent with (3.9) above.

3. We now formally verify that the identity (4.3) extends to stopping times τ of
X as well. In this case we let P∞

τ and Pπ,τ denote the restrictions of measures P∞
and Pπ to FX

τ for π ∈ [0,1), respectively.

LEMMA 1. The following identity holds:

(4.4)
dPπ,τ

dP∞
τ

= e−λτ 1 − π

1 − Πτ

for all stopping times τ of X and all π ∈ [0,1).

PROOF. It is enough to show that

(4.5)
dP∞

τ

dPπ,τ

= eλτ 1 − Πτ

1 − π

on FX
τ with τ and π as above given and fixed. For this, take F ∈ FX

τ . Then
∫
F

eλτ 1 − Πτ

1 − π
dPπ,τ

= 1

1 − π
Eπ

[
1F eλτ (1 − Πτ)

] = 1

1 − π
Eπ

[
1F eλτ Pπ

(
θ > τ |FX

τ

)]

= 1

1 − π
Eπ

[
Eπ

(
1F eλτ I (θ > τ)|FX

τ

)] = 1

1 − π
Eπ

[
1F eλτ I (θ > τ)

]

= 1

1 − π

(
πE0[

1F eλτ I (θ > τ)
]

(4.6)
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+ (1 − π)

∫ ∞
0

λe−λtEt [1F eλτ I (θ > τ)
]
dt

)

=
∫ ∞

0
λe−λtEt [1F eλτ I (t > τ)

]
dt =

∫ ∞
0

λe−λtE∞[
1F eλτ I (t > τ)

]
dt

= E∞
[
1F eλτ

∫ ∞
τ

λe−λt dt

]
= P∞

τ (F )

as needed to verify (4.5) and the proof is complete. �

4. From (3.15) and (3.17), we see that the stochastic differential equations for
(Φ,X) under the measure P∞ simplify to read as follows:

dΦt = λ(1 + Φt)dt + ρ(Xt)Φt dBt ,(4.7)

dXt = μ0(Xt) dt + σ(Xt) dBt ,(4.8)

where (4.8) follows from (3.1) upon recalling that θ formally equals ∞ under P∞.
Recall that ρ in (4.7) is given by (3.8) above, and μ0 and σ in (4.8) are given in
(3.2) above. The stochastic differential equations (4.7) + (4.8) also hold in general
under P∞ whenever μ0 �= μ1 and σ > 0 are continuous and for the reasons stated
at the end of Section 3 in this case we know that (Φ,X) is a strong Markov process
under P∞. Note also from (3.13) that the stochastic differential equation for L

under P∞ simplifies to read as follows:

(4.9) dLt = ρ(Xt)Lt dBt

so that [as it is also seen from (3.10) above] we have

(4.10) Lt = exp
(∫ t

0
ρ(Xs) dBs − 1

2

∫ t

0
ρ2(Xs) ds

)

for t ≥ 0. The stochastic differential equation (3.14) for the process Π takes a more
complicated form under the measure P∞ and given that this equation is equivalent
to (4.7) due to (3.11) we will not state it explicitly. Thus, our focus in the sequel
will be on the system (4.7) + (4.8) for the pair of processes (Φ,X) under the
measure P∞.

5. We now show that the optimal stopping problem (3.6) admits a transparent
reformulation under the measure P∞ in terms of the process Φ solving (4.7) with
(4.8). Recall that Φ starts at Φ0 = π/(1 − π) and this dependence on the initial
point will be indicated by a superscript to Φ when needed.

PROPOSITION 2. The value function V from (3.6) satisfies the identity

(4.11) V (π) = (1 − π)
[
1 + cV̂ (π)

]
,

where the value function V̂ is given by

(4.12) V̂ (π) = inf
τ

E∞
[∫ τ

0
e−λt

(
Φ

π/(1−π)
t − λ

c

)
dt

]

for π ∈ [0,1) and the infimum in (4.12) is taken over all stopping times τ of X.
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PROOF. With π ∈ [0,1) given and fixed, and dropping the superscript from
Φ in the sequel for simplicity, by standard localisation arguments it is enough to
show that

Eπ

(
1 − Πτ + c

∫ τ

0
Πt dt

)

(4.13)

= (1 − π)

(
1 + cE∞

[∫ τ

0
e−λt

(
Φt − λ

c

)
dt

])

for all bounded stopping times τ of X such that Πτ = (Πt∧τ )t≥0 [and hence Φτ =
(Φt∧τ )t≥0 as well] and ρ(X)τ = (ρ(Xt∧τ ))t≥0 are bounded (recall that X starts at
a strictly positive point and stays away from 0 at all times). Let such a stopping
time τ be given and fixed in the sequel. From (3.14), we find by the optional
sampling theorem that

(4.14) Eπ

(∫ τ

0
Πt dt

)
= 1

λ

[
π + λEπ(τ ) − Eπ(Πτ )

]
.

Inserting this expression into the left-hand side of (4.13) and using Lemma 1 we
get

Eπ

(
1 − Πτ + c

∫ τ

0
Πt dt

)

= Eπ

[
1 −

(
1 + c

λ

)
Πτ + cτ

]
+ c

λ
π

(4.15)

= λ + c

λ
E∞

[
e−λτ 1 − π

1 − Πτ

(
1 − Πτ + λc

λ + c
τ

)]
− c

λ
(1 − π)

= (1 − π)

(
1 + λ + c

λ
E∞

[
−λ

∫ τ

0
e−λt dt + λc

λ + c
τe−λτ (1 + Φτ)

])
,

where we use that 1/(1 − Πt) = 1 + Φt for t ≥ 0. Integration by parts using (4.7)
shows that

Mt := e−λt (1 + Φt) = 1 + Φ0 − λ

∫ t

0
e−λs(1 + Φs)ds +

∫ t

0
e−λs dΦs

(4.16)

= 1 + Φ0 +
∫ t

0
e−λsρ(Xs)Φs dBs

is a continuous local martingale under P∞ for t ≥ 0. Another integration by parts
yields

(4.17) tMt =
∫ t

0
Ms ds +

∫ t

0
s dMs,

where the final integral defines another continuous local martingale under P∞ for
t ≥ 0. Recalling the definition of τ it is easily verified that the optional sampling
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theorem is applicable to that local martingale stopped at τ and in this way we get

E∞[
τe−λτ (1 + Φτ)

] = E∞(τMτ ) = E∞
(∫ τ

0
Mt dt

)

(4.18)

= E∞
[∫ τ

0
e−λt (1 + Φt)dt

]
.

Inserting this expression in (4.15), we find that (4.13) is satisfied and the proof is
complete. �

6. Note that the identities (4.11) and (4.12) are not confined to the setting of
Bessel processes but hold generally in the quickest detection problems for diffu-
sion processes X solving (3.1) when the old drift μ0 is changing to the new drift
μ1 at the random/unobservable time θ . If ρ is not constant such as in (3.8) above,
then to tackle the resulting optimal stopping problem (4.12) for the strong Markov
process (Φ,X) solving (4.7) + (4.8) we will enable (Φ,X) to start at any point
(ϕ, x) in [0,∞) × (0,∞) under the probability measure P∞

ϕ,x so that the optimal
stopping problem (4.12) extends as follows:

(4.19) V̂ (ϕ, x) = inf
τ

E∞
ϕ,x

[∫ τ

0
e−λt

(
Φt − λ

c

)
dt

]

for (ϕ, x) ∈ [0,∞)× (0,∞) with P∞
ϕ,x((Φ0,X0) = (ϕ, x)) = 1 where the infimum

in (4.19) is taken over all stopping times τ of (Φ,X). In this way, we have reduced
the initial quickest detection problems (3.4) and (3.6) to the optimal stopping prob-
lem (4.19) for the strong Markov process (Φ,X) solving the system of stochastic
differential equations

dΦt = λ(1 + Φt)dt + γ
Φt

Xt

dBt ,(4.20)

dXt = δ0 − 1

2Xt

dt + dBt(4.21)

under the measure P∞
ϕ,x with (ϕ, x) ∈ [0,∞) × (0,∞) where we recall that

γ = (δ1 − δ0)/2. Note that this optimal stopping problem is inherently/fully two-
dimensional.

5. Mayer formulation. The optimal stopping problem (4.19) is Lagrange for-
mulated. In this section, we derive its Mayer reformulation which is helpful in the
subsequent analysis. We will first present a stochastic derivation of the Mayer for-
mulation in the proof below and then indicate how this also follows more directly
by verifying that the candidate function (once it is given or found) solves a killed
infinitesimal generator equation for (Φ,X).
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PROPOSITION 3. The value function V̂ from (4.19) satisfies the identity

(5.1) V̂ (ϕ, x) = 1

δ1

[
V̄ (ϕ, x) − (1 + ϕ)x2 − α

]
,

where the value function V̄ is given by

(5.2) V̄ (ϕ, x) = inf
τ

E∞
ϕ,x

(
e−λτ [

(1 + Φτ)X
2
τ + α

])

for (ϕ, x) ∈ [0,∞) × (0,∞) with α = δ0/λ + δ1/c and the infimum in (5.2) is
taken over all stopping times τ of (Φ,X).

PROOF. Set Y = X2 and y = x2 for x > 0. With (ϕ, x) ∈ [0,∞) × (0,∞)

given and fixed, and dropping the subscript from E∞ in the sequel for simplicity,
by standard localisation arguments it is enough to show that

E∞
[∫ τ

0
e−λt

(
Φt − λ

c

)
dt

]

(5.3)

= 1

δ1

[
E∞(

e−λτ [
(1 + Φτ)Yτ + α

]) − (1 + Φ0)Y0 − α
]

for all bounded stopping times τ of (Φ,X) such that Φτ = (Φt∧τ )t≥0 and Y τ =
(Yt∧τ )t≥0 are bounded. Let such a stopping time τ be given and fixed in the sequel.
From (4.21), we find by Itô’s formula that Y solves

(5.4) dYt = δ0 dt + 2
√

Yt dBt .

Using (4.20) and (5.4), we find by another application of Itô’s formula that

(5.5) ΦtYt = Φ0Y0 +
∫ t

0

(
δ1Φs + λ(1 + Φs)Ys

)
ds +

∫ t

0
(2 + γ )Φs

√
Ys dBs

for t ≥ 0. Integration by parts using (5.5) then yields

e−λtΦtYt = Φ0Y0 + δ1

∫ t

0
e−λsΦs ds + λ

∫ t

0
e−λsYs ds

(5.6)

+ (2 + γ )

∫ t

0
e−λsΦs

√
Ys dBs,

where the final integral defines a continuous local martingale under P∞ for t ≥ 0.
Recalling the definition of τ it is easily verified that the optional sampling theorem
is applicable to that local martingale stopped at τ and in this way we get

E∞(
e−λτΦτYτ

)
(5.7)

= Φ0Y0 + δ1E∞
(∫ τ

0
e−λsΦs ds

)
+ λE∞

(∫ τ

0
e−λsYs ds

)
.
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To calculate the final expectation above another integration by parts combined with
(5.4) yields

(5.8) e−λtYt = Y0 − λ

∫ t

0
e−λsYs ds + δ0

∫ t

0
e−λs ds + 2

∫ t

0
e−λs

√
Ys dBs,

where the final integral defines a continuous local martingale under P∞ for t ≥ 0.
For the same reasons as above, the optional sampling theorem is applicable to that
local martingale stopped at τ and in this way we get

(5.9) E∞(
e−λτYτ

) = Y0 − λE∞
(∫ τ

0
e−λsYs ds

)
+ δ0E∞

(∫ τ

0
e−λs ds

)
.

Inserting (5.9) into (5.7), we find that

E∞
(∫ τ

0
e−λtΦt dt

)
= 1

δ1

[
E∞(

e−λτΦτYτ

) + E∞(
e−λτYτ

)
(5.10)

− δ0E∞
(∫ τ

0
e−λs ds

)
− Φ0Y0 − Y0

]
.

Subtracting (λ/c)E∞(
∫ τ

0 e−λs ds) from both sides in (5.10) and using that

−λ

c
E∞

(∫ τ

0
e−λs ds

)
− δ0

δ1
E∞

(∫ τ

0
e−λs ds

)

(5.11)

= 1

δ1

[(
δ1

c
+ δ0

λ

)
E∞(

e−λτ ) −
(

δ1

c
+ δ0

λ

)]

we see that (5.3) holds as claimed and the proof is complete. �

1. Defining a function M by setting

(5.12) M(ϕ,x) = 1

δ1

[
(1 + ϕ)x2 + α

]

we see from Proposition 3 that the optimal stopping problem (4.19) is equivalent
to the optimal stopping problem defined by

(5.13) V̌ (ϕ, x) = inf
τ

E∞
ϕ,x

[
e−λτM(Φτ ,Xτ )

]

for (ϕ, x) ∈ [0,∞)× (0,∞) where the infimum in (5.13) is taken over all stopping
times τ of (Φ,X). The optimal stopping problem (5.13) is Mayer formulated.
From (5.1), we see that

(5.14) V̌ (ϕ, x) = M(ϕ,x) + V̂ (ϕ, x)

for all (ϕ, x) ∈ [0,∞)× (0,∞). The identity (5.14) can also be obtained by noting
that M from (5.12) is a particular solution to

(5.15) LΦ,XM − λM = H
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on [0,∞) × (0,∞) where we set

(5.16) H(ϕ,x) = ϕ − λ

c

for (ϕ, x) ∈ [0,∞)× (0,∞) and from (4.20) + (4.21) we see that the infinitesimal
generator LΦ,X of (Φ,X) is given by

(5.17) LΦ,X = λ(1 + ϕ)∂ϕ + δ0 − 1

2x
∂x + γ

ϕ

x
∂ϕx + γ 2

2

ϕ2

x2 ∂ϕϕ + 1

2
∂xx.

Applying Itô’s formula to M(Φ,X) and using the optional sampling theorem, we
get

(5.18) E∞
ϕ,x

[
e−λτM(Φτ ,Xτ )

] = M(ϕ,x) + E∞
ϕ,x

[∫ τ

0
e−λtH(Φt ,Xt) dt

]

for all stopping times τ of (Φ,X) as in the proof of Proposition 3 from where we
obtain (5.14) by a simple limiting argument as claimed.

2. Note that the Mayer reformulation (5.1) + (5.2) of the optimal stopping
problem (4.19) is specific to the setting of Bessel processes. To find a Mayer re-
formulation of (4.19) in the quickest detection problems for diffusion processes
X solving (3.1) when the old drift μ0 is changing to the new drift μ1 at the ran-
dom/unobservable time θ , one needs to find a particular solution M to equation
(5.15) where the infinitesimal generator LΦ,X of (Φ,X) is given by

LΦ,X = λ(1 + ϕ)∂ϕ + μ0(x)∂x + ϕρ(x)σ (x)∂ϕx
(5.19)

+ 1

2
ϕ2ρ2(x)∂ϕϕ + 1

2
σ 2(x)∂xx

and ρ is given by (3.7) above. Note that such explicit solutions may not be available
in general. Note also that if ρ is constant then one needs to look for a solution M to
(5.15) that is a function of ϕ only since in this case Φ is a one-dimensional strong
Markov process.

6. Reduction to canonical PDE. Recall that we have reduced the initial
quickest detection problems (3.4) and (3.6) to the optimal stopping problem (4.19)
for the strong Markov process (Φ,X) solving (4.7) + (4.8) which in the setting
of Bessel processes becomes (4.20) + (4.21). It follows in particular that the pro-
cess (Φ,X) forms a sufficient statistic in the quickest detection problems (3.4) and
(3.6). This is a consequence of the fact (which is formally verified in Section 8 be-
low) that the first entry time of (Φ,X) to the stopping set D is an optimal stopping
time in (4.19), and hence in (3.4) and (3.6) as well. It is therefore of theoretical
and practical importance to understand/describe how Φ is being formed through
the observation of X.

On closer look, we see from (3.10) and (3.12) that Φt is expressed in terms of
a stochastic integral with respect to X and as such is not an explicit functional of
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the observed sample path of X up to time t in [0,∞). In this section, we show that
such a functional can be determined explicitly. This is first done in the proof below
using probabilistic arguments. It enables us to rewrite the optimal stopping prob-
lem (4.19) in terms of another strong Markov process (U,Φ) where the process
U is of bounded variation. We then show using analytic arguments that the pas-
sage from (Φ,X) to (U,Φ) is equivalent to the standard reduction of the parabolic
equation LΦ,X to its canonical form LU,Φ where LΦ,X and LU,Φ denote the in-
finitesimal generators of (Φ,X) to (U,Φ), respectively. Note that these facts are
not confined to the setting of Bessel process but hold generally in the quickest de-
tection problems for diffusion processes X solving (3.1) when the old drift μ0 is
changing to the new dirft μ1 at the random/unobservable time θ .

Although the subsequent analysis of Bessel processes will be largely performed
using the process (Φ,X), we will also see that reduction to the process (U,Φ)

has some advantages in the sequel when it comes to proving continuity of the
optimal stopping boundary (Section 12), for example, as well as exploiting the
parabolic (evolutionary) nature of the underlying partial differential equation in a
simplifying/powerful manner (Section 14).

1. To formulate the next result, we assume that x �→ ρ(x)/σ (x) is continuously
differentiable in addition to x �→ μ0(x), x �→ μ1(x) and x �→ σ(x) being contin-
uous with μ0(x) �= μ1(x) and σ(x) > 0 for all x in the state space of X (possibly
excluding entrance boundary points). Note that these assumptions are satisfied in
the case of (3.2) above.

PROPOSITION 4. Let the functions F and K be defined by

F(x) =
∫ x

1

ρ(y)

σ (y)
dy,(6.1)

K = 1

2

[
σ 2F ′′ + (μ1 + μ0)F

′] = 1

2

[
σ 2

(
ρ

σ

)′
+ (μ1 + μ0)

(
ρ

σ

)]
(6.2)

for x in the state space of X. Then the following identity holds:

(6.3) eF(Xt ) = Φte
Ut ,

where the process U = (Ut )t≥0 is defined by

(6.4) Ut = U0 +
∫ t

0

[
K

(
F−1(logΦs + Us)

) − λ
1 + Φs

Φs

]
ds

for t ≥ 0. In particular, the process (U,Φ) solving

dUt =
[
K

(
F−1(logΦt + Ut)

) − λ
1 + Φt

Φt

]
dt,(6.5)

dΦt = λ(1 + Φt)dt + ρ
(
F−1(logΦt + Ut)

)
Φt dBt(6.6)

is a (time-homogeneous) strong Markov process under P∞
u,ϕ with P∞

u,ϕ((U0,Φ0) =
(u,ϕ)) = 1 for (u,ϕ) ∈R× [0,∞).
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PROOF. From (3.12), we see that

(6.7) logΦt = λt + logLt + log
(
Φ0 + λ

∫ t

0

ds

eλsLs

)

for t ≥ 0. From (3.10), we find by Itô’s formula using (6.1) and (6.2) that

logLt =
∫ t

0

(
ρ

σ

)
(Xs) dXs − 1

2

∫ t

0
(μ1 + μ0)

(
ρ

σ

)
(Xs) ds

= F(Xt) − F(X0) − 1

2

∫ t

0
F ′′(Xs) d〈X,X〉s

(6.8)

− 1

2

∫ t

0
(μ1 + μ0)

(
ρ

σ

)
(Xs) ds

= F(Xt) − F(X0) −
∫ t

0
K(Xs) ds

for t ≥ 0. Moreover, integrating by parts we find that

log
(
Φ0 + λ

∫ t

0

ds

eλsLs

)
= logΦ0 + λ

∫ t

0

ds

Φs

(6.9)

for t ≥ 0. Inserting (6.8) and (6.9) into (6.7), we obtain

(6.10) logΦt = F(Xt) − F(X0) + logΦ0 +
∫ t

0

[
λ

(
1 + 1

Φs

)
− K(Xs)

]
ds

for t ≥ 0. From (6.10), we see that

(6.11) F(Xt) = logΦt + Ut,

where Ut is given by the following expression:

(6.12) Ut = U0 +
∫ t

0

[
K(Xs) − λ

(
1 + 1

Φs

)]
ds

for t ≥ 0 with U0 = F(X0) − logΦ0. Applying the exponential function on both
sides of (6.11), we see that (6.3) holds. From (6.11), we also see that Xs =
F−1(logΦs + Us) for s ∈ [0, t]. Inserting this expression back into (6.12), we ob-
tain (6.4). From (6.4), we see that (6.5) holds and (6.6) follows likewise from (4.7)
above. Recalling known sufficient conditions (see, e.g., [17], pages 166–173) we
see that the system of stochastic differential equations (6.5) + (6.6) has a unique
weak solution, and hence by the well-known result (see, e.g., [17], pages 158–163)
we can conclude that (U,Φ) is a (time-homogeneous) strong Markov process un-
der P∞

u,ϕ for (u,ϕ) ∈ R× [0,∞) as claimed. This completes the proof. �

2. We now specialise the general result of Proposition 4 to the case of Bessel
processes when the identities (3.2) above are satisfied.
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COROLLARY 5. If X solves (3.1) with (3.2), then

(6.13) F(x) = log
(
xγ )

and K(x) = β

x2

for x > 0 where γ = (δ1 − δ0)/2 and β = (δ1 − δ0)(δ1 + δ0 − 4)/8. We thus have

(6.14) X
γ
t = Φte

Ut ,

where the process U = (Ut )t≥0 is defined by

(6.15) Ut = U0 +
∫ t

0

[
β

Φ
2/γ
s e

2
γ
Us

− λ
1 + Φs

Φs

]
ds

for t ≥ 0. In particular, the process (U,Φ) solving

dUt =
[

β

Φ
2/γ
t e

2
γ
Ut

− λ
1 + Φt

Φt

]
dt,(6.16)

dΦt = λ(1 + Φt)dt + γ
Φ

1−1/γ
t

e
1
γ

Ut

dBt(6.17)

is a (time-homogeneous) strong Markov process under P∞
u,ϕ with P∞

u,ϕ((U0,Φ0) =
(u,ϕ)) = 1 for (u,ϕ) ∈R× [0,∞).

PROOF. Inserting (3.2) and (3.8) into (6.1) and (6.2), it is easily seen that
(6.13) holds. Rewriting (6.3)–(6.6) in terms of F and K given in (6.13), we obtain
(6.14)–(6.17) as claimed and the proof is complete. �

3. Note from (6.8) above that

(6.18) Lt = eF(Xt )−F(X0)+∫ t
0 K(Xs)ds

for t ≥ 0 with F and K given in (6.1) and (6.2). When specialised to the case of
Bessel processes with (6.13) being satisfied this relation reads

(6.19) Lt =
(

Xt

X0

)γ

e−βAt ,

where A = (At )t≥0 is an additive functional defined by

(6.20) At =
∫ t

0

ds

X2
s

for t ≥ 0. The process A is known to play an important role in time changing X

as discussed in the next section. Recalling the closed form expression (3.12) for
Φt in terms of (Ls)0≤s≤t we see from (6.18)–(6.20) how the observed sample path
(Xs)0≤s≤t builds Φt , and thus yields an optimal stopping strategy as discussed in
the first paragraph above.
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4. The result of Proposition 4 and Corollary 5 shows that the optimal stopping
problem (4.19) for the strong Markov process (Φ,X) solving (4.7) + (4.8) [or
(4.20) + (4.21) in the case of Bessel processes] can be considered as an optimal
stopping problem for the strong Markov process (U,Φ) solving (6.5) + (6.6) [or
(6.16) + (6.17) in the case of Bessel processes], respectively. The two optimal
stopping problems are equivalent and we will make use of this equivalence in the
sequel. The advantage of the latter problem is that the process U is of bounded
variation. The advantage of the former problem in the case of Bessel processes is
that X can be time changed into a geometric Brownian motion for which explicit
calculations in terms of the initial point are possible. This time-change technique
will be discussed in the next section.

5. The arguments used in the proof of Proposition 4 for the passage from (Φ,X)

to (U,Φ) are probabilistic. We now show using purely analytic arguments that this
passage is equivalent to the standard reduction of the parabolic equation

LΦ,X = λ(1 + ϕ)∂ϕ + μ0(x)∂x + ϕρ(x)σ (x)∂ϕx
(6.21)

+ 1

2
ϕ2ρ2(x)∂ϕϕ + 1

2
σ 2(x)∂xx

to its canonical form

LU,Φ =
[
K

(
F−1(logϕ + u)

) − λ
1 + ϕ

ϕ

]
∂u

(6.22)

+ λ(1 + ϕ)∂ϕ + 1

2
ρ2(

F−1(logϕ + u)
)
ϕ2∂ϕϕ,

where LΦ,X and LU,Φ denote the infinitesimal generators of (Φ,X) to (U,Φ),
respectively. For this, let us name the coefficients in (6.21) by setting

a(ϕ, x) = 1

2
ϕ2ρ2(x), 2b(ϕ, x) = ϕρ(x)σ (x) and

(6.23)

c(ϕ, x) = 1

2
σ 2(x)

for (ϕ, x) ∈ [0,∞) × (0,∞) given and fixed. Then

(6.24) b2(ϕ, x) − a(ϕ, x)c(ϕ, x) = 1

4
ϕ2ρ2(x)σ 2(x) − 1

4
ϕ2ρ2(x)σ 2(x) = 0

showing that the equation for LΦ,X in (6.21) is parabolic. Moreover, its unique
family of characteristic curves (obtained by letting u to be constant below) is given
by

dx

dϕ
= b(ϕ, x)

a(ϕ, x)
= σ(x)

ϕρ(x)
⇔ ρ(x)

σ (x)
dx = dϕ

ϕ
(6.25)

⇔ F ′(x) dx = dϕ

ϕ
⇔ F(x) = logϕ + u,
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where we note that the final identity coincides with the identity (6.3) above.
Setting ξ(ϕ, x) = u = F(x) − logϕ and η(ϕ, x) = ϕ, we see that the Jacobian
J = ∂(ξ, η)/∂(ϕ, x) = ξϕηx− ξxηϕ = −F ′(x) = −ρ(x)/σ (x) /∈ {0,∞} as needed
(for the inverse function theorem). It follows that the coefficients A(u,ϕ) and
B(u,ϕ) associated with ∂uu and ∂uϕ in the resulting equation (6.22) are zero (as
is already visible due to the result of Proposition 4). This establishes a full equiv-
alence between the probabilistic and analytic approach as claimed. The canonical
equation (6.22) is easily specialised to the setting of Bessel processes using (6.13)
above [or this can be also read off more directly from (6.16) + (6.17) above] yield-
ing

(6.26) LU,Φ =
[

β

ϕ2/γ e
2
γ
u

− λ
1 + ϕ

ϕ

]
∂u + λ(1 + ϕ)∂ϕ + γ 2

2

ϕ2−2/γ

e
2
γ
u

∂ϕϕ

for (u,ϕ) ∈ R× [0,∞).
6. Note that the process U as the first component of the strong Markov process

(U,Φ) can be either increasing or decreasing depending on the position of (U,Φ)

in the state space R × [0,∞) at which the integrand in (6.4) is positive or nega-
tive, respectively. Specialising to the case of Bessel processes when U is given by
(6.15), it is easily verified that the turning curve z is given by the expression

(6.27) z(ϕ) = γ

2
log

(
β

λ

ϕ1−2/γ

1 + ϕ

)

for ϕ ∈ (0,∞). It means that the state space R × [0,∞) splits into three disjoint
sets P = {(u,ϕ) ∈ R × [0,∞)|u < z(ϕ)}, Z = {(u,ϕ) ∈ R × [0,∞)|u = z(ϕ)},
N = {(u,ϕ) ∈ R×[0,∞)|u > z(ϕ)} and when the process (U,Φ) belongs to P or
N its first component U is increasing or decreasing, respectively. This shows that
the evolutionary character of the parabolic equation (6.26) is fully exhibited only
in the sets P and N alone while Z serves as a crossing set. It is easily seen that
z(∞) = −∞ and z(0) equals ∞ or −∞ depending on whether γ < 2 or γ > 2
while z(0) takes a finite value in R when γ = 2. Moreover, if γ ≤ 2 then it is easily
verified that ϕ �→ z(ϕ) is decreasing on (0,∞). This shows that when γ ≤ 2 the
process (U,Φ) “circles” around the turning curve ϕ �→ z(ϕ) anticlockwise. On
the other hand, if γ > 2 then it is easily verified that ϕ �→ z(ϕ) is increasing on
(0, (γ /2)− 1) and decreasing on ((γ /2)− 1,∞). In the former case, we thus have
that the process (U,Φ) “circles” around the turning curve ϕ �→ z(ϕ) clockwise
and in the latter case we similarly have that the process (U,Φ) “circles” around
the turning curve ϕ �→ z(ϕ) anticlockwise as in the remaining cases above. Bearing
in mind these facts helps to visualise the motion of (U,Φ) which in turn proves
useful in the treatment of the optimal stopping problem (4.19) below.



QUICKEST DETECTION PROBLEMS FOR BESSEL PROCESSES 1025

7. Time change. In this section, we return to the optimal stopping problem
(4.19) and expose key elements of the time-change technique which will be applied
in the following sections. The usefulness of the time change itself is twofold. First,
it will enable us to realise the second component of the time-changed process
(geometric Brownian motion) as an explicit Markovian functional of the initial
point. This simplifies the arguments in the sequel and makes a more penetrating
analysis of the optimal stopping problem possible. Second, it will enable us to
remove dependence of the diffusion coefficient in the first component of the time-
changed process on its second component. This makes it possible to use known
comparison theorems for the resulting system of coupled stochastic differential
equations and will be particularly useful in relation to regularity questions in the
subsequent analysis below:

1. To make the time change note that sample paths of the additive functional
A = (At )t≥0 defined by (6.20) are continuous and strictly increasing with A0 = 0
and At ↑ ∞ as t ↑ ∞ (the latter property is well known for Bessel processes X of
dimension δ ≥ 2 but will also be verified below). Hence, the same properties hold
for its inverse T = (Tt )t≥0 defined by

(7.1) Tt = A−1
t

for t ≥ 0. Since A is adapted to (FX
t )t≥0, it follows that each Tt is a stopping

time with respect to (FX
t )t≥0 so that T = (Tt )t≥0 defines a time change relative to

(FX
t )t≥0. The fact that t �→ Tt is continuous and strictly increasing with Tt < ∞

for t ≥ 0 (or equivalently At ↑ ∞ as t ↑ ∞) implies that standard time change
transformations are applicable to continuous semimartingales and their stochastic
integrals without extra conditions on their sample paths (see, e.g., [16], pages 7–9
and pages 179–181) and they will be used in the sequel without explicit mention.
Moreover, since (Φ,X) is a strong Markov process by the well-known result dating
back to [21] (see, e.g., [17], page 175, for a modern exposition) we know that the
time-changed process (Φ̂, X̂) = ((Φ̂t , X̂t ))t≥0 defined by

(7.2) (Φ̂t , X̂t ) = (ΦTt ,XTt )

for t ≥ 0 is a Markov process under P∞
ϕ,x for (ϕ, x) ∈ [0,∞) × (0,∞). It is pos-

sible to verify that (Φ,X) is a Feller process, and hence by the same well-known
result we could also conclude that (Φ̂, X̂) is a strong Markov process, however,
strong Feller property of (Φ,X) and (Φ̂, X̂) also follows from the existence and
uniqueness of a weak solution (cf. [17], page 170) to the systems of stochastic
differential equations for (Φ,X) and (Φ̂, X̂) derived above and below. Moreover,
from (6.20) one can read off that the infinitesimal generator of (Φ̂, X̂) is given by

(7.3) L
Φ̂,X̂

= x2
LΦ,X,

where LΦ,X is the infinitesimal generator of (Φ,X). Note also that σ = Aτ is a
stopping time of (Φ̂, X̂) if and only if τ = Tσ is a stopping time of (Φ,X) [where
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we recall that the natural filtration of (Φ̂, X̂) coincides with the time-changed nat-
ural filtration of (Φ,X) given by F̂Φ,X

t = FΦ,X
Tt

for t ≥ 0]. Finally, in addition to
(6.20) it is easily seen using (7.1) that

(7.4) Tt =
∫ t

0
X̂2

s ds

for t ≥ 0. Below we will make frequent use of this relation also.
2. Recalling that the process (Φ,X) solves the system of stochastic differential

equations (4.20) + (4.21) and making use of these equations we find that

Φ̂t = ΦTt = Φ0 +
∫ Tt

0
λ(1 + Φs)ds +

∫ Tt

0
γ

Φs

Xs

dBs

(7.5)

= Φ̂0 +
∫ t

0
λ(1 + Φ̂s)X̂

2
s ds +

∫ t

0
γ Φ̂s dB̃s,

X̂t = XTt = X0 +
∫ Tt

0

δ0 − 1

2Xs

ds +
∫ Tt

0
dBs

(7.6)

= X̂0 +
∫ t

0

δ0 − 1

2
X̂s ds +

∫ t

0
X̂s dB̃s,

where the process B̃ = (B̃t )t≥0 is defined by

(7.7) B̃t =
∫ t

0

dB̂s

X̂s

=
∫ Tt

0

dBs

Xs

= MTt

upon setting Mt = ∫ t
0 dBs/Xs for t ≥ 0. Since M = (Mt)t≥0 is a continuous lo-

cal martingale with respect to (FX
t )t≥0, it follows that B̃ = (B̃t )t≥0 is a contin-

uous local martingale with respect to (FX
t )t≥0. Note moreover that 〈B̃, B̃〉t =

〈MT ,MT 〉t = 〈M,M〉Tt = ∫ Tt

0 ds/X2
s = ATt = t for t ≥ 0. Hence, by Lévy’s char-

acterisation theorem (see, e.g., [16], page 150) we can conclude that B̃ is a standard
Brownian motion with respect to (FX

t )t≥0. It follows therefore that (7.5) + (7.6)
can be written as the following stochastic differential equations:

dΦ̂t = λ(1 + Φ̂t )X̂
2
t dt + γ Φ̂t dB̃t ,(7.8)

dX̂t =
(

δ0 − 1

2

)
X̂t dt + X̂t dB̃t(7.9)

under P∞
ϕ,x for (ϕ, x) ∈ [0,∞) × (0,∞). Recalling known sufficient conditions

(see, e.g., [17], pages 166–173) we see that the system of stochastic differential
equations (7.8) + (7.9) has a unique weak solution, and hence by the well-known
result (see, e.g., [17], pages 158–163) we can conclude that (Φ̂, X̂) is a (time-
homogeneous) strong Markov process under P∞

ϕ,x for (ϕ, x) ∈ [0,∞) × (0,∞).
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From (7.9), we see that X̂ defines a geometric Brownian motion, and hence the
following explicit representation is satisfied:

(7.10) X̂x
t = x exp

(
B̃t +

(
δ0

2
− 1

)
t

)

for t ≥ 0 and x ∈ (0,∞) under P∞ with respect to which B̃ is a standard Brow-
nian motion. This fact will be useful in the subsequent analysis. From (7.10), one
can also easily verify that limt→∞ At cannot be finite as stated above. Observe
moreover that the diffusion coefficient in (7.8) no longer depends on the process X̂

from (7.9). Finally, note that in exactly the same way as in (7.5)–(7.9) above, we
find that the time-changed process L̂ = (LTt )t≥0 of L from (4.9) and (4.10) solves
the following stochastic differential equation:

(7.11) dL̂t = γ L̂t dB̃t

and hence is given explicitly by

(7.12) L̂t = exp
(
γ B̃t − γ 2

2
t

)

for t ≥ 0. This fact will also be handy in the subsequent analysis.
3. We can now make use of the previous facts and derive a time-changed ver-

sion of the optimal stopping problem (4.19) above.

PROPOSITION 6. The value function V̂ from (4.19) satisfies the identity

(7.13) V̂ (ϕ, x) = inf
σ

E∞
ϕ,x

[∫ σ

0
e−λ

∫ t
0 X̂2

s ds

(
Φ̂t − λ

c

)
X̂2

t dt

]

for (ϕ, x) ∈ [0,∞) × (0,∞) where the infimum is taken over all stopping times σ

of (Φ̂, X̂).

PROOF. Recall that τ = Tσ is a stopping time of (Φ,X) if and only if σ = Aτ

is a stopping time of (Φ̂, X̂). Thus, if either τ or σ is given we can form σ or τ ,
respectively, and using (7.4) note that

E∞
ϕ,x

[∫ τ

0
e−λt

(
Φt − λ

c

)
dt

]
= E∞

ϕ,x

[∫ Tσ

0
e−λt

(
Φt − λ

c

)
dt

]

= E∞
ϕ,x

[∫ σ

0
e−λTt

(
ΦTt − λ

c

)
dTt

]
(7.14)

= E∞
ϕ,x

[∫ σ

0
e−λ

∫ t
0 X̂2

s ds

(
Φ̂t − λ

c

)
X̂2

t dt

]
.

Taking the infimum over all τ and/or σ on both sides of (7.14) as above we see
that (7.13) holds as claimed and the proof is complete. �
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It follows from Proposition 6 that the optimal stopping problem (4.19) is equiv-
alent to the optimal stopping problem defined on the right-hand side of (7.13) for
the strong Markov process (Φ̂, X̂) solving the system of stochastic differential
equations (7.8) + (7.9) under Pϕ,x for (ϕ, x) ∈ [0,∞) × (0,∞). This equivalence
will be exploited in the next section when deriving basic properties of the optimal
stopping boundary.

8. Monotonicity of the optimal stopping boundary. In this section, we es-
tablish the existence of an optimal stopping time in (4.19) and derive basic prop-
erties of the optimal stopping boundary.

1. Recalling that the Lagrange formulated problem (4.19) and the Mayer for-
mulated problem (5.13) are equivalent, we may conclude that the (candidate) con-
tinuation and stopping sets in these problems need to be defined as follows:

C = {
(ϕ, x) ∈ [0,∞) × (0,∞)|V̂ (ϕ, x) < 0

}
(8.1)

= {
(ϕ, x) ∈ [0,∞) × (0,∞)|V̌ (ϕ, x) < M(ϕ,x)

}
,

D = {
(ϕ, x) ∈ [0,∞) × (0,∞)|V̂ (ϕ, x) = 0

}
(8.2)

= {
(ϕ, x) ∈ [0,∞) × (0,∞)|V̌ (ϕ, x) = M(ϕ,x)

}
,

respectively. Using the fact that L from (3.10) is a martingale it is easily verified
that the right-hand side of (3.12) defines a Markovian functional of the initial point.
Time changing (5.13) by (7.1) and recalling that (7.10) also defines a Markovian
functional of the initial point, we see that the expectation in (5.13) defines a contin-
uous function of the initial point (ϕ, x) for every (bounded) stopping time τ given
and fixed. Taking the infimum over all (bounded) stopping times τ , we can thus
conclude that the value function V̌ is upper semicontinuous. From (5.12), we see
that the loss function M is continuous, and hence lower semicontinuous as well.
It follows therefore by [15], Corollary 2.9, that the first entry time of the process
(Φ,X) into the closed set D defined by

(8.3) τD = inf
{
t ≥ 0|(Φt ,Xt) ∈ D

}
is optimal in (4.19) and (5.13) whenever Pϕ,x(τD < ∞) = 1 for all (ϕ, x) ∈
[0,∞)× (0,∞). In the sequel, we will establish this and other properties of τD by
analysing the boundary of D.

2. Since the integrand in (4.19) is strictly negative for ϕ < λ/c, it is clear that
this region of the state space is contained in C [otherwise the first exit times of
(Φ,X) from sufficiently small neighbourhoods would violate stopping at once].
To expand on this further, let us formally define the (least) boundary between C

and D by setting

(8.4) b(x) = inf
{
ϕ ≥ 0|(ϕ, x) ∈ D

}
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for every x > 0 given and fixed. Clearly, b(x) ≥ λ/c and the infimum in (8.4) is
attained for every x > 0 since D is closed. From (3.12), we see that ϕ �→ Φϕ,x

is increasing on [0,∞) for every x > 0 given and fixed (superscripts throughout
indicate the initial points of Markov processes), and hence from the structure of
(4.19) it is evident that

(8.5) ϕ �→ V̂ (ϕ, x) is increasing on [0,∞)

for every x > 0 given and fixed. This shows that if (ϕ1, x) ∈ D and ϕ2 ≥ ϕ1 then
(ϕ2, x) ∈ D because 0 = V̂ (ϕ1, x) ≤ V̂ (ϕ2, x) ≤ 0 so that V̂ (ϕ2, x) = 0 as well
implying the claim. From this fact, it follows that b from (8.4) defines the (entire)
boundary between C and D. The key property of b will be verified shortly below
as a consequence of the following fact.

LEMMA 7. The following inequality holds:

(8.6) V̂ (ϕ, y) ≥ y2

x2 V̂ (ϕ, x)

for all ϕ ≥ 0 and all y ≥ x > 0.

PROOF. By the time change (7.1), we know using the result of Proposition 6
that the value function V̂ from (4.19) is given by the right-hand side of (7.13). To
analyse the latter, we will first reduce the complexity arising from a time-changed
equation (3.12) regarding the initial point and pass to another stochastic differential
equation instead.

1. Set Ψt = e−λtΦt for t ≥ 0 and note that integration by parts using (4.12)
yields

(8.7) dΨt = λe−λt dt + γ
Ψt

Xt

dBt

with Ψ0 = Φ0. Time changing Ψ by setting Ψ̂t = ΨTt where Tt is given by (7.1)
for t ≥ 0 we find in exactly the same way as in (7.8) that

(8.8) dΨ̂t = λe−λTt X̂2
t dt + γ Ψ̂t dB̃t ,

where by (7.4) we also have

(8.9) dTt = X̂2
t dt

as well as by (7.9) we know that

(8.10) dX̂t =
(

δ0 − 1

2

)
X̂t dt + X̂t dB̃t

with (Ψ̂0, T0, X̂0) = (ϕ,0, x) under P∞
ϕ,x for (ϕ, x) ∈ [0,∞) × (0,∞). This shows

that the process (�̂, T , X̂) solves the system of stochastic differential equations
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(8.8) + (8.9) + (8.10) where the diffusion coefficients in (8.8) and (8.10) depend
only on Ψ̂ and X̂, respectively [the analogous fact is also true for (8.9) above].
It follows therefore by the comparison result for solutions to multidimensional
stochastic differential equations given in [7], Theorem 1, that

(8.11) P∞(
Ψ̂

ϕ,x
t ≤ Ψ̂

ϕ,y
t for all t ≥ 0

) = 1

for ϕ ∈ [0,∞) and x ≤ y in (0,∞) where the superscripts ϕ,x indicate depen-
dence on the initial points Ψ̂0 = ϕ, X̂0 = x and dependence on the initial point
T0 = 0 is ignored (as it plays no role in the argument below).

2. Let ϕ ∈ [0,∞) and x ≤ y in (0,∞) be given and fixed. For ε > 0 given and
fixed, we can choose a stopping time τε = τε(ϕ, y) such that

(8.12) V̂ (ϕ, y) + ε ≥ E∞
ϕ,y

[∫ τε

0
e−λt

(
Φt − λ

c

)
dt

]
.

To indicate dependence of At from (6.20) on the initial point x of Xx through
(Xx

s )0≤s≤t in the integral, we will write A
(x)
t , and similarly for its inverse Tt from

(7.1) we will write T
(x)
t in the sequel. Note from (7.4) and (7.10) that T

(x)
t =

x2T
(1)
t for x > 0. Similarly, from (7.10) we see that X̂x

t = xX̂1
t for x > 0. We will

use these facts freely below with no further mention.
Setting σε = A

(y)
τε we find similarly to (7.14) above using the same nota-

tion/arguments that the following facts are satisfied:

E∞
ϕ,y

[∫ τε

0
e−λt

(
Φt − λ

c

)
dt

]

= E∞
[∫ τε

0
e−λt

(
Φ

ϕ,y
t − λ

c

)
dt

]

= E∞
[∫ T

(y)
σε

0
Ψ

ϕ,y
t dt − λ

c

∫ T
(y)
σε

0
e−λt dt

]

= E∞
[∫ σε

0
Ψ̂

ϕ,y
t

(
X̂

y
t

)2
dt − λ

c

∫ σε

0
e−λT

(y)
t

(
X̂

y
t

)2
dt

]

≥ E∞
[∫ σε

0
Ψ̂

ϕ,x
t

(
X̂

y
t

)2
dt − λ

c

∫ σε

0
e−λT

(y)
t

(
X̂

y
t

)2
dt

]

≥ E∞
[∫ σε

0
Ψ̂

ϕ,x
t

(
yX̂1

t

)2
dt − λ

c

∫ σε

0
e−λx2T

(1)
t

(
yX̂1

t

)2
dt

]
(8.13)

= y2

x2 E∞
[∫ σε

0
Ψ̂

ϕ,x
t

(
X̂x

t

)2
dt − λ

c

∫ σε

0
e−λT

(x)
t

(
X̂x

t

)2
dt

]

≥ y2

x2 inf
σ

E∞
[∫ σ

0
Ψ̂

ϕ,x
t

(
X̂x

t

)2
dt − λ

c

∫ σ

0
e−λT

(x)
t

(
X̂x

t

)2
dt

]
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= y2

x2 inf
σ

E∞
ϕ,x

[∫ σ

0
Ψ̂t (X̂t )

2 dt − λ

c

∫ σ

0
e−λTt (X̂t )

2 dt

]

= y2

x2 inf
σ

E∞
ϕ,x

[∫ Tσ

0
Ψtdt − λ

c

∫ Tσ

0
e−λt dt

]

= y2

x2 inf
τ

E∞
ϕ,x

[∫ τ

0
e−λt

(
Φt − λ

c

)
dt

]
= y2

x2 V̂ (ϕ, x),

where in the first inequality we use (8.11) above. Combining (8.12) and (8.13), and
letting ε → 0, we see that (8.6) holds as claimed and the proof is complete. �

We can now derive the following important consequence of Lemma 7 about the
boundary b between the sets C and D.

COROLLARY 8. The mapping x �→ b(x) is decreasing on (0,∞).

PROOF. If (ϕ, x) ∈ D and y ≥ x, then by (8.6) we see that

(8.14) 0 ≥ V̂ (ϕ, y) ≥ y2

x2 V̂ (ϕ, x) = 0

so that V̂ (ϕ, y) = 0, and hence (ϕ, y) ∈ D. This shows using (8.4) above that b is
decreasing on (0,∞) as claimed and the proof is complete. �

3. It is evident from (7.8) and (7.9) using simple comparison arguments
(when δ0 = 2 as well) that the process (Φ,X) hits every quadrant {(ϕ′, x′)|ϕ′ ≥
ϕ1 and x′ ≥ x1} with Pϕ,x -probability one whenever 0 ≤ ϕ < ϕ1 and 0 < x < x1
are given and fixed. It follows therefore by the result of Corollary 8 that τD < ∞
with Pϕ,x -probability one whenever there exists x1 > 0 such that b(x1) < ∞ which
in turn is equivalent to D being nonempty. To rule out the possibility that D is
empty, note that using (8.7) this would imply that

V̂ (ϕ, x) = E∞
ϕ,x

[∫ ∞
0

e−λt

(
Φt − λ

c

)
dt

]

(8.15)
=

∫ ∞
0

[
(1 + ϕ) − (1 + λ/c)e−λt ]dt = ∞

which is a contradiction (with the fact that V̂ is nonpositive). We can therefore
conclude that Pϕ,x(τD < ∞) = 1 for all (ϕ, x) ∈ [0,∞)× (0,∞), and hence τD is
optimal in (4.19) as stated following (8.3) above.

4. Despite being finite at least one point, and hence at all larger points too, the
boundary b could in principle take infinite values as well. We next show that this
is not the case.

PROPOSITION 9. We have b(x) < ∞ for all x > 0.
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PROOF. Suppose that there exists x1 > 0 such that b(x1) = ∞. Then by the
result of Corollary 8 we know that b(x) = ∞ for all x ∈ (0, x1]. Fix any x ∈ (0, x1)

(e.g., take x = x1/2 or similar) and consider the stopping time τ1 = inf{t ≥ 0|Xt ≥
x1} under the measure Pϕ,x where ϕ > 0 is given and fixed. Then clearly τD ≥ τ1
so that

V̂ (ϕ, x) = E∞
ϕ,x

[∫ τD

0
e−λt

(
Φt − λ

c

)
dt

]

≥ E∞
ϕ,x

[∫ τ1

0
e−λtΦt dt

]
+ 1

c

[
E∞

ϕ,x

(
e−λτD

) − 1
]

(8.16)

≥ E∞
[∫ τ

(x)
1

0
L

(x)
t

(
ϕ + λ

∫ t

0

ds

eλsL
(x)
s

)
dt

]
− 1

c

≥ ϕE∞
[∫ τ

(x)
1

0
L

(x)
t dt

]
− 1

c
,

where in the second inequality we make use of (3.12) above. Using that the final
integral in (8.16) is strictly positive and taking ϕ > 0 large enough we can make
the final expression in (8.16) strictly positive so that V̂ (ϕ, x) > 0 which is a contra-
diction. It follows therefore that there is no x1 > 0 such that b(x1) = ∞ as claimed
and the proof is complete. �

5. Recalling from Corollary 8 and Proposition 9 that b is decreasing and finite
valued, we know that the limit of b(x) exists and is finite as x → ∞. We now
identify this limit as the constant appearing in the integrand of (4.19) above.

PROPOSITION 10. The following relation holds:

(8.17) lim
x→∞b(x) = λ

c
.

PROOF. Since the set {(ϕ, x) ∈ [0,∞) × (0,∞)|ϕ < λ/c} is contained in C,
we see that �1 := limx→∞ b(x) ≥ λ/c. Suppose that �1 > λ/c. Choose δ > 0 small
enough so that �0 := (λ/c)+δ < �1 and let ϕ ∈ (�0, �1) be given and fixed (take the
mid point for instance). Consider τ�0,�1 = inf{t ≥ 0|Φt /∈ (�0, �1)} and note from
(4.20) that Φϕ,x → Φϕ,∞ uniformly on finite time intervals with P∞-probability
one as x → ∞ where Φϕ,∞ = (Φ

ϕ,∞
t )t≥0 is a deterministic process with a strictly

positive drift solving (4.20) without the stochastic differential on the right-hand
side. A quick way to establish this convergence is to note from (4.10) (using
the Burkholder–Davis–Gundy inequality (see, e.g., [16], page 161) applied to the
stochastic integral appearing there) that L(x) → 1 uniformly on finite time inter-
vals with P∞-probability one as x → ∞ and then make use of this fact in (3.12)
above. Setting τ�1 = inf{t ≥ 0|Φt ≥ �1} it follows therefore that τ

ϕ,x
�0,�1

→ τ
ϕ,∞
�1

as
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well as τ
ϕ,x
�0,�1

− τD → 0 with P∞-probability one as x → ∞. Using these facts
with τ�0,�1 ≤ τD , we find that

V̂ (ϕ, x) = E∞
ϕ,x

[∫ τD

0
e−λt

(
Φt − λ

c

)
dt

]

≥ E∞
ϕ,x

[∫ τ�0,�1

0
e−λtΦt dt

]
+ 1

c

[
E∞

ϕ,x

(
e−λτD

) − 1
]

≥ �0E∞
ϕ,x

[∫ τ�0,�1

0
e−λt dt

]
+ 1

c

[
E∞

ϕ,x

(
e−λτD

) − 1
]

= 1

c

[
1 − E∞

ϕ,x

(
e−λτ�0,�1

)] + 1

c

[
E∞

ϕ,x

(
e−λτD

) − 1
]

(8.18)

+ δ

λ

[
1 − E∞

ϕ,x

(
e−λτ�0,�1

)]

= 1

c

[
E∞

ϕ,x

(
e−λτD

) − E∞
ϕ,x

(
e−λτ�0,�1

)] + δ

λ

[
1 − E∞

ϕ,x

(
e−λτ�0,�1

)]

= 1

c
E∞(

e−λτ
ϕ,x
D − e

−λτ
ϕ,x
�0,�1

) + δ

λ

[
1 − E∞(

e
−λτ

ϕ,x
�0,�1

)]

→ δ

λ

[
1 − E∞(

e
−λτ

ϕ,∞
�1

)]
> 0

as x → ∞ where the final strict inequality follows from the fact that Φϕ,∞ is a
continuous deterministic motion to the right starting at ϕ which is strictly smaller
than �1 so that τ

ϕ,∞
�1

is strictly positive. From (8.18), we see that for x > 0 large

enough we would have that V̂ (ϕ, x) > 0 which is a contradiction (with the fact
that V̂ is nonpositive). We can therefore conclude that �1 must be equal to λ/c as
claimed and the proof is complete. �

6. For the reasons recalled prior to Proposition 10, we know that the limit of
b(x) exists as x ↓ 0. We now show that this limit is not finite. Note that this also
implies that C and D are not trivial (i.e., b is not identically equal to λ/c).

PROPOSITION 11. The following relation holds:

(8.19) lim
x↓0

b(x) = ∞.

PROOF. Dividing both sides of (7.13) by x2 upon recalling (7.10) and taking
the limsup as x ↓ 0, we see that the question reduces to establish that it is not
optimal to stop at once in the optimal stopping problem

(8.20) inf
σ

E∞
[∫ σ

0

(
Φ̂

ϕ,0
t − λ

c

)(
X̂1

t

)2
dt

]
,
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where the infimum is taken over all stopping times σ of (Φ̂ϕ,0, X̂1) and Φϕ,0

solves (7.8) with no drift term so that Φ̂
ϕ,0
t = ϕ exp(γ B̃t − (γ 2/2)t) for ϕ > 0

and t ≥ 0. Hence, we see that Φ̂
ϕ,0
t → 0 as t → 0 while from (7.10) we infer

that lim supt→∞ X̂1
t = ∞ when δ0 = 2 and X̂1

t → ∞ as t → ∞ when δ0 > 2
all with P∞-probability one. Combining these facts and defining σ−n := {s ≥
0| ∫ s

0 (Φ̂
ϕ,0
t − λ/c)(X̂1

t )
2 dt = −n}, we see that σ−n < ∞ with P∞-probability one

for every n ≥ 1. This shows that the infimum in (8.20) equals −∞ so that it is
not optimal to stop at once as needed. Combining this fact with the initial limsup
equality obtained from (7.13) as x ↓ 0 and the fact that Φ̂ϕ,x → Φ̂ϕ,0 uniformly on
finite time intervals with P∞-probability one as x ↓ 0, we see that for every ϕ > 0
as large as desired, there exists x > 0 small enough such that V̂ (ϕ, x) < 0. This
shows that the limit in (8.19) cannot be finite as claimed and the proof is complete.

�

9. Continuity of the value function. In this section, we prove that the value
function V̂ from (4.19) is continuous. A key argument in the proof is due to the
fact that

(9.1) ϕ �→ σ
ϕ,x
D and x �→ σ

ϕ,x
D are decreasing

on [0,∞) and (0,∞), respectively, where we let

(9.2) σ
ϕ,x
D = inf

{
t ≥ 0|(Φ̂ϕ,x

t , X̂x
t

) ∈ D
}

denote the optimal stopping time for V̂ (ϕ, x) in (7.13) under P∞ with (ϕ, x) ∈
[0,∞) × (0,∞) given and fixed. Indeed, noting that the diffusion coefficients in
(7.8) and (7.9) depend only on Φ̂ and X̂, respectively, we can conclude by the
comparison result for solutions to multidimensional stochastic differential equa-
tions given in [7], Theorem 1, that

(9.3) P∞(
Φ̂

ϕ1,x1
t ≤ Φ̂

ϕ2,x2
t and X̂

x1
t ≤ X̂

x2
t for all t ≥ 0

) = 1

for ϕ1 ≤ ϕ2 in [0,∞) and x1 ≤ x2 in (0,∞) with t ≥ 0 [the second inequality in
(9.3) being also evident from (7.10) above] so that (9.1) follows immediately from
the fact established in Corollary 8 above that x �→ b(x) is decreasing on (0,∞).
Equipped with this conclusion, we can now state the main result of this section.

PROPOSITION 12. For the value function V̂ from (4.19), we have

(9.4) (ϕ, x) �→ V̂ (ϕ, x) is continuous

on [0,∞) × (0,∞).

PROOF. To establish (9.4), it is enough to show that

ϕ �→ V̂ (ϕ, x) is continuous at ϕ0 uniformly over x ∈ [x0 − δ, x0 + δ],(9.5)

x �→ V̂ (ϕ0, x) is continuous at x0(9.6)
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for every (ϕ0, x0) ∈ [0,∞) × (0,∞) given and fixed with some δ > 0 sufficiently
small.

1. To derive (9.5), fix ϕ1 ≤ ϕ2 in [ϕ0 − δ,ϕ0 + δ] and x ∈ [x0 − δ, x0 + δ] for
δ > 0 such that ϕ0 − δ > 0 and x0 − δ > 0 where ϕ0 > 0 and x0 > 0 are given
and fixed (the case ϕ0 = 0 can be treated analogously by replacing ϕ0 − δ with
0 throughout). Let τ

ϕ1,x
D denote the optimal stopping time for V̂ (ϕ1, x) in (4.19)

under P∞. By the time change (7.1) and the result of Proposition 6, we know that
σ

ϕ1,x
D = T (x) ◦ τ

ϕ1,x
D is the optimal stopping time for V̂ (ϕ1, x) in (7.13) under P∞.

It follows therefore as in (7.14) using (3.12) and (8.5) that

0 ≤ V̂ (ϕ2, x) − V̂ (ϕ1, x)

≤ E∞
[∫ σ

ϕ1,x

D

0
e−λT

(x)
t

(
Φ̂

ϕ2,x
t − λ

c

)
dT

(x)
t

]

− E∞
[∫ σ

ϕ1,x

D

0
e−λT

(x)
t

(
Φ̂

ϕ1,x
t − λ

c

)
dT

(x)
t

]
(9.7)

= (ϕ2 − ϕ1)E
∞

[∫ σ
ϕ1,x

D

0
L

(x)

T
(x)
t

(
X̂x

t

)2
dt

]

= (ϕ2 − ϕ1)x
2E∞

[∫ σ
ϕ1,x

D

0
L̂

(1)
t

(
X̂1

t

)2
dt

]

≤ (ϕ2 − ϕ1)(x0 + δ)2E∞
[∫ σ

ϕ0−δ,x0−δ

D

0
L̂

(1)
t

(
X̂1

t

)2
dt

]
,

where in the second equality we use that L̂
(x)
t = L(x) ◦ T

(x)
t = L(1) ◦ T

(1)
t = L̂

(1)
t

by (6.19) above and in the final inequality we use (9.1) above. Since the final
expectation in (9.7) is finite [as is easily seen from (7.13) above] and not dependent
on ϕ1, ϕ2 and x, we see that (9.5) follows from (9.7) as claimed.

2. To derive (9.6) fix x1 and x2 in [x0 − δ, x0 + δ] for δ > 0 such that x0 − δ > 0
with ϕ ≥ 0 and x0 > 0 given and fixed. Let τ

ϕ0,x1
D and τ

ϕ0,x2
D denote the optimal

stopping time for V̂ (ϕ0, x1) and V̂ (ϕ0, x2) in (4.19) under P∞, respectively. By the
time change (7.1) and the result of Proposition 6, we know that σ

ϕ0,x1
D = T (x1) ◦

τ
ϕ0,x1
D and σ

ϕ0,x2
D = T (x2) ◦ τ

ϕ0,x2
D are the optimal stopping times for V̂ (ϕ0, x1) and

V̂ (ϕ0, x2) in (7.13) under P∞, respectively. It follows therefore that the following
two inequalities are satisfied:

E∞
[∫ σ

ϕ0,x2
D

0
e−λT

(x2)
t

(
Φ̂

ϕ0,x2
t − λ

c

)
dT

(x2)
t

]

− E∞
[∫ σ

ϕ0,x2
D

0
e−λT

(x1)
t

(
Φ̂

ϕ0,x1
t − λ

c

)
dT

(x1)
t

]

≤ V̂ (ϕ0, x2) − V̂ (ϕ0, x1)(9.8)
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≤ E∞
[∫ σ

ϕ0,x1
D

0
e−λT

(x2)
t

(
Φ̂

ϕ0,x2
t − λ

c

)
dT

(x2)
t

]

− E∞
[∫ σ

ϕ0,x1
D

0
e−λT

(x1)
t

(
Φ̂

ϕ0,x1
t − λ

c

)
dT

(x1)
t

]
.

For i = 1,2, we find that
∣∣∣∣E∞

[∫ σ
ϕ0,xi
D

0
e−λT

(x2)
t

(
Φ̂

ϕ0,x2
t − λ

c

)
dT

(x2)
t

]

− E∞
[∫ σ

ϕ0,xi
D

0
e−λT

(x1)
t

(
Φ̂

ϕ0,x1
t − λ

c

)
dT

(x1)
t

]∣∣∣∣(9.9)

≤ E∞
[∫ σ

ϕ0,x0−δ

D

0

∣∣H(t;ϕ0, x2) − H(t;ϕ0, x1)
∣∣dt

]
,

where the (random) function H is defined by

(9.10) H(t;ϕ,x) =
[
L̂

(1)
t

(
ϕ + λ

∫ t

0

x2(X̂1
s )

2

e−λx2T
(1)
s L̂

(1)
s

ds

)
− λ

c
e−λx2T

(1)
t

]
x2(

X̂1
t

)2

for t ≥ 0 and (ϕ, x) ∈ [0,∞) × (0,∞), and in the final inequality of (9.9) we use
(9.1) above. Letting x2 − x1 → 0 and using the dominated convergence theorem
we see that the right-hand side of (9.9) tends to zero, and thus the left-hand side
of (9.9) tends to zero as well. Using this fact in (9.8), we see that (9.6) holds as
claimed and the proof is complete. �

10. Smooth fit. In this section, we prove that the value function V̂ from (4.19)
satisfies the smooth fit condition at the optimal stopping boundary b from (8.4).
A key argument in the proof is based upon the fact that the boundary points are
regular for D relative to (Φ,X) and (Φ̂, X̂) in the sense that

(10.1) τ
ϕn,xn

D → 0 and σ
ϕn,xn

D → 0

with P∞-probability one whenever (ϕn, xn) from C tends to (ϕ, x) at its boundary
∂C specified by ϕ = b(x) for x > 0 as n → ∞. Recall in (10.1) that τ

ϕn,xn

D is
the first entry time of (Φϕn,xn,Xxn) into D and σ

ϕn,xn

D is the first entry time of
(Φ̂ϕn,xn, X̂xn) into D for n ≥ 1. It is well known that (10.1) is equivalent to the
fact that the first hitting times of (Φ,X) and (Φ̂, X̂) to D defined by τ̃D = inf{t >

0|(Φt ,Xt) ∈ D} and σ̃D = inf{t > 0|(Φ̂t , X̂t ) ∈ D} are equal to zero with P∞-
probability one whenever (ϕ, x) belongs to ∂C. Given that the time change t �→ Tt

in (7.1) which builds (Φ̂, X̂) from (Φ,X) is strictly increasing on [0,∞) we thus
see that the boundary points in ∂C are regular for D relative to (Φ,X) if and only
if they are regular relative to (Φ̂, X̂). Recalling that (Φ̂, X̂) solves the system of
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stochastic differential equations (7.8) + (7.9) we can modify the first equation in
this system to read

(10.2) dΦ̃t = γ Φ̃t dB̃t

upon noting that the (nonnegative) drift term in (7.8) dominates the (zero) drift
term in (10.2) so that the comparison result for solutions to multidimensional
stochastic differential equations given in [7], Theorem 1, is applicable and yields

(10.3) P∞(
Φ̃

ϕ,x
t ≤ Φ̂

ϕ,x
t for all t ≥ 0

) = 1

for (ϕ, x) ∈ [0,∞) × (0,∞) given and fixed. Since the boundary x �→ b(x) be-
tween C and D is decreasing on (0,∞), this shows that the boundary points in ∂C

are regular for D relative to (Φ̂, X̂) if they are regular relative to (Φ̃, X̂). The latter
process however is just a pair of geometric Brownian motions (driven by the same
Brownian motion) for which [recalling (7.10) above] the regularity at each point ϕ

or x for [ϕ,∞) or [x,∞) is evident from the regularity of 0 for [0,∞) relative to
standard Brownian motion (with drift). These facts establish (10.1) and equipped
with this conclusion we can now state the main result of this section.

PROPOSITION 13 (Smooth fit). For the value function V̂ from (4.19), we have

V̂ϕ(ϕ, x) = 0 at ϕ = b(x),(10.4)

V̂x(ϕ, x) = 0 at ϕ = b(x)(10.5)

for all x > 0.

PROOF. Let ϕ = b(x) for x > 0 be given and fixed in the sequel. We first
verify that (10.4) holds. This can be done in two steps as follows. We first note that

(10.6) lim inf
ε↓0

V̂ (ϕ − ε, x) − V̂ (ϕ, x)

−ε
≥ 0

due to V̂ (ϕ, x) = 0 and V̂ (ϕ − ε, x) ≤ 0 for ε > 0. We next show that

(10.7) lim sup
ε↓0

V̂ (ϕ − ε, x) − V̂ (ϕ, x)

−ε
≤ 0.

For this, let τε := τ
ϕ−ε,x
D denote the optimal stopping time for V̂ (ϕ−ε, x) in (4.19)

under P∞ with ε > 0. Recalling (3.12), we find that

V̂ (ϕ − ε, x) − V̂ (ϕ, x)

≥ E∞
[∫ τε

0
e−λt

(
Φ

ϕ−ε,x
t − λ

c

)
dt

]
− E∞

[∫ τε

0
e−λt

(
Φ

ϕ,x
t − λ

c

)
dt

]

= E∞
[∫ τε

0

(
L

(x)
t

(
ϕ − ε + λ

∫ t

0

ds

eλsL
(x)
s

)
− λ

c
e−λt

)
dt

]
(10.8)
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− E∞
[∫ τε

0

(
L

(x)
t

(
ϕ + λ

∫ t

0

ds

eλsL
(x)
s

)
− λ

c
e−λt

)
dt

]

= −εE∞
[∫ τε

0
L

(x)
t dt

]

for ε > 0. Hence, we see that

(10.9)
V̂ (ϕ − ε, x) − V̂ (ϕ, x)

−ε
≤ E∞

[∫ τε

0
L

(x)
t dt

]

for ε > 0. Letting ε ↓ 0 and recalling that τε → 0 with P∞-probability one by
(10.1) above we see that (10.9) implies (10.7) as claimed. Combining (10.6) and
(10.7), we obtain (10.4).

We next verify that (10.5) holds. This can be similarly done in two steps as
follows. We first note in parallel to (10.6) that

(10.10) lim inf
ε↓0

V̂ (ϕ, x − ε) − V̂ (ϕ, x)

−ε
≥ 0

due to V̂ (ϕ, x) = 0 and V̂ (ϕ, x − ε) ≤ 0 for ε > 0. We next show in parallel to
(10.7) that

(10.11) lim sup
ε↓0

V̂ (ϕ, x − ε) − V̂ (ϕ, x)

−ε
≤ 0.

For this, let σε := σ
ϕ,x−ε
D denote the optimal stopping time for V̂ (ϕ, x − ε) in

(7.13) under P∞ with ε > 0. Recalling the definition of the (random) function H

in (9.10) we find by the mean value theorem that

V̂ (ϕ, x − ε) − V̂ (ϕ, x) ≥ E∞
[∫ σε

0
e−λT

(x−ε)
t

(
Φ̂

ϕ,x−ε
t − λ

c

)
dT

(x−ε)
t

]

− E∞
[∫ σε

0
e−λT

(x)
t

(
Φ̂

ϕ,x
t − λ

c

)
dT

(x)
t

]

(10.12)

= E∞
[∫ σε

0

(
H(t;ϕ,x − ε) − H(t;ϕ,x)

)
dt

]

= −εE∞
[∫ σε

0
Hx(t;ϕ,yε) dt

]

with some yε ∈ (x − ε, x) for ε > 0. Hence, we see that

(10.13)
V̂ (ϕ, x − ε) − V̂ (ϕ, x)

−ε
≤ E∞

[∫ σε

0
Hx(t;ϕ,yε) dt

]

for ε > 0. Letting ε ↓ 0 and recalling that σε → 0 with P∞-probability one by
(10.1) above we see that (10.13) implies (10.11) as claimed. Combining (10.10)
and (10.11), we obtain (10.5) and the proof is complete. �
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11. Regularity of the value function. In this section, we refine the smooth fit
results from the previous section and establish a global C1 regularity of the value
function V̂ from (4.19). A key argument in the proof is still based upon the fact
that the boundary points are regular for D relative to (Φ,X) and (Φ̂, X̂) in the
sense of (10.1) above. Moreover, recalling reduction of the process (Φ,X) to the
process (U,Φ) established in Section 6 where U is of bounded variation, we will
see that this enables us to extend the global C1-regularity to a local C2 regularity
of Ṽ with respect to the second argument up to the optimal stopping boundary
within the continuation set (the one within the stopping set being evident). These
regularity results play an important role when deriving continuity of the optimal
stopping boundary in Section 12 and when applying the local time–space formula
from [13] to derive a nonlinear Fredholm integral equation for the optimal stopping
boundary in Section 14.

PROPOSITION 14 (C1 regularity). For the value function V̂ from (4.19), we
have

(ϕ, x) �→ V̂ϕ(ϕ, x) is continuous on [0,∞) × (0,∞),(11.1)

(ϕ, x) �→ V̂x(ϕ, x) is continuous on [0,∞) × (0,∞).(11.2)

PROOF. Standard results on partial differential equations of parabolic type (cf.
[11], Chapter V) combined with Itô’s formula and the optional sampling theorem
(cf. [15], pape 131) show that V̂ is C2 on C. Since V̂ equals zero on D, we thus
see that it is enough to prove (11.1) and (11.2) at the optimal stopping boundary.
Let us therefore fix (ϕ, x) ∈ [0,∞) × (0,∞) in the sequel such that ϕ = b(x).

1. We first verify that (11.1) holds. This can be done in two steps as follows.
Take any sequence (ϕn, xn) → (ϕ, x) as n → ∞ upon recalling that ϕ = b(x).
Since V̂ (ϕn, xn) = 0 for (ϕn, xn) ∈ D and we have derived (10.4) at ϕ = b(x), it is
no restriction to assume that (ϕn, xn) ∈ C for all n ≥ 1. Thus, to establish (11.1) it
is enough to verify that

(11.3) lim
n→∞ V̂ϕ(ϕn, xn) = 0.

For this, first note that

(11.4) lim inf
n→∞ V̂ϕ(ϕn, xn) = lim inf

n→∞ lim
h↓0

V̂ (ϕn − h,xn) − V̂ (ϕn, xn)

−h
≥ 0

since ϕ �→ V̂ (ϕ, x) is increasing on [0,∞) for every x > 0 given and fixed by (8.5)
above. Moreover, we next show that

(11.5) lim sup
n→∞

V̂ϕ(ϕn, xn) = lim sup
n→∞

lim
h↓0

V̂ (ϕn − h,xn) − V̂ (ϕn, xn)

−h
≤ 0.
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For this, note from the first identity in (11.5) that we can choose subsequences
(ϕnk

)k≥1, (xnk
)k≥1 and (hk)k≥1 such that

(11.6) lim sup
n→∞

V̂ϕ(ϕn, xn) = lim
k→∞

V̂ (ϕnk
− hk, xnk

) − V̂ (ϕnk
, xnk

)

−hk

with (ϕnk
−hk, xnk

) → (ϕ, x) as k → ∞. Let τk := τ
ϕnk

−hk,xnk

D denote the optimal
stopping time for V̂ (ϕnk

−hk, xnk
) under P∞ with k ≥ 1. Recalling (3.12), we find

in the same way as in (10.8) above that

(11.7) V̂ (ϕnk
− hk, xnk

) − V̂ (ϕnk
, xnk

) ≥ −hkE∞
[∫ τk

0
L

(xnk
)

t dt

]

for k ≥ 1. Using the time change (7.1) and setting σk = Aτk
, we find in the same

way as in (9.7) above that

E∞
[∫ τk

0
L

(xnk
)

t dt

]
= E∞

[∫ σk

0
L̂

(1)
t

(
X̂

xnk
t

)2
dt

]

(11.8)

= x2
nk

E∞
[∫ σk

0
L̂

(1)
t

(
X̂1

t

)2
dt

]

for k ≥ 1. Combining (11.7) and (11.8), we see that

(11.9)
V̂ (ϕnk

− hk, xnk
) − V̂ (ϕnk

, xnk
)

−hk

≤ x2
nk

E∞
[∫ σk

0
L̂

(1)
t

(
X̂1

t

)2
dt

]

for k ≥ 1. Letting k → ∞ and recalling that τk → 0 and σk → 0 with P∞-
probability one by (10.1) above, we see by the dominated convergence theorem
that (11.9) combined with (11.6) implies (11.5) as claimed. Combining (11.4) and
(11.5), we obtain (11.3), and hence (11.1) follows as explained above.

2. We next verify that (11.2) holds. This can be similarly done in two steps as
follows. Recall that to establish (11.2) it is enough to verify that

(11.10) lim
n→∞ V̂x(ϕn, xn) = 0.

For this, we first claim in parallel to (11.4) that

(11.11) lim inf
n→∞ V̂x(ϕn, xn) = lim inf

n→∞ lim
h↓0

V̂ (ϕn, xn − h) − V̂ (ϕn, xn)

−h
≥ 0.

To derive this, note from the first identity in (11.11) that we can choose subse-
quences (ϕnk

)k≥1, (xnk
)k≥1 and (hk)k≥1 such that

(11.12) lim inf
n→∞ V̂x(ϕn, xn) = lim

k→∞
V̂ (ϕnk

, xnk
− hk) − V̂ (ϕnk

, xnk
)

−hk
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with (ϕnk
, xnk

− hk) → (ϕ, x) as k → ∞. Let σk := σ
ϕnk

,xnk

D denote the optimal
stopping time for V̂ (ϕnk

, xnk
) in (7.13) under P∞ with k ≥ 1. Recalling the defi-

nition of the (random) function H in (9.10) we find by the mean value theorem in
the same way as in (10.12) above that we have

V̂ (ϕnk
, xnk

− hk) − V̂ (ϕnk
, xnk

)

≤ E∞
[∫ σk

0

(
H(t;ϕnk

, xnk
− hk) − H(t;ϕnk

, xnk
)
)
dt

]
(11.13)

= −hkE∞
[∫ σk

0
Hx(t;ϕnk

, yk) dt

]

with some yk ∈ (xnk
− hk, xnk

) for k ≥ 1. Hence, we see that

(11.14)
V̂ (ϕnk

, xnk
− hk) − V̂ (ϕnk

, xnk
)

−hk

≥ E∞
[∫ σk

0
Hx(t;ϕnk

, yk) dt

]

for k ≥ 1. Letting k → ∞ and recalling that σk → 0 with P∞-probability one we
see by the dominated convergence theorem that (11.14) combined with (11.12)
implies (11.11) as claimed.

We next claim in parallel to (11.5) that

(11.15) lim sup
n→∞

V̂x(ϕn, xn) = lim sup
n→∞

lim
h↓0

V̂ (ϕn, xn − h) − V̂ (ϕn, xn)

−h
≤ 0.

For this, we can proceed similarly to the arguments given above and choose sub-
sequences (ϕnk

)k≥1, (xnk
)k≥1 and (hk)k≥1 such that

(11.16) lim sup
n→∞

V̂x(ϕn, xn) = lim
k→∞

V̂ (ϕnk
, xnk

− hk) − V̂ (ϕnk
, xnk

)

−hk

with (ϕnk
, xnk

−hk) → (ϕ, x) as k → ∞. Let σk := σ
ϕnk

,xnk
−hk

D denote the optimal
stopping time for V̂ (ϕnk

− hk, xnk
) in (7.13) under P∞ with k ≥ 1. Then in the

same way as in (11.13) we find that

V̂ (ϕnk
, xnk

− hk) − V̂ (ϕnk
, xnk

)

≥ E∞
[∫ σk

0

(
H(t;ϕnk

, xnk
− hk) − H(t;ϕnk

, xnk
)
)
dt

]
(11.17)

= −hkE∞
[∫ σk

0
Hx(t;ϕnk

, yk) dt

]

with some yk ∈ (xnk
− hk, xnk

) for k ≥ 1. Hence, we see that

(11.18)
V̂ (ϕnk

, xnk
− hk) − V̂ (ϕnk

, xnk
)

−hk

≤ E∞
[∫ σk

0
Hx(t;ϕnk

, yk) dt

]
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for k ≥ 1. Letting k → ∞ and recalling that σk → 0 with P∞-probability one we
see by the dominated convergence theorem that (11.18) combined with (11.16)
implies (11.15) as claimed. Combining (11.11) and (11.15), we obtain (11.10) as
needed and the proof is complete. �

1. The result of Proposition 4 and Corollary 5 showed that the optimal stopping
problem (4.19) for the strong Markov process (Φ,X) can be considered as the
optimal stopping problem

(11.19) Ṽ (u,ϕ) = inf
τ

E∞
u,ϕ

[∫ τ

0
e−λt

(
Φt − λ

c

)
dt

]

for the strong Markov process (U,Φ) with P∞
u,ϕ((U0,Φ0) = (u,ϕ)) = 1 for

(u,ϕ) ∈ R × [0,∞) and the infimum in (11.19) is taken over all stopping times
τ of (U,Φ). The two optimal stopping problems are equivalent and the transfor-
mation (6.14) maps the optimal stopping boundary b in the problem (4.19) to the
optimal stopping boundary b̃ in the problem (11.19) that is determined as follows.
Recalling from (6.14) that xγ = ϕeu, or equivalently ϕ = e−uxγ , and using the
results of Corollary 8 and Propositions 9 and 10, we see that for every u ∈ R there
exists a unique x > 0 such that

(11.20) ϕ := b(x) = e−uxγ =: b̃(u).

The global one-to-one nature of this transformation shows that (11.20) defines the
optimal stopping boundary in (11.19) so that its continuation and stopping sets are
given by

C̃ = {
(u,ϕ) ∈ R× [0,∞)|ϕ < b̃(u)

}
,(11.21)

D̃ = {
(u,ϕ) ∈ R× [0,∞)|ϕ ≥ b̃(u)

}
.(11.22)

Moreover, from the results of Corollary 8 and Propositions 9 and 10 we see that

u �→ b̃(u) is decreasing on R,(11.23)

lim
u→−∞ b̃(u) = ∞,(11.24)

lim
u→∞ b̃(u) = λ

c
.(11.25)

From (6.14), we see that the basic relationship between V̂ and Ṽ is described by

(11.26) V̂ (ϕ, x) = Ṽ
(
log

(
xγ /ϕ

)
, ϕ

)
and Ṽ (u,ϕ) = V̂

(
ϕ,ϕ1/γ eu/γ )

for (ϕ, x) ∈ [0,∞) × (0,∞) and u ∈R where xγ = ϕeu as stated in (6.14) above.
2. The advantage of the optimal stopping problem (11.19) in comparison with

the optimal stopping problem (4.19) is that the process U is of bounded variation.
We will now see how this enables us to extend the global continuity of the first
partial derivatives of Ṽ to the continuity of its second partial derivative with respect
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to ϕ up to the optimal stopping boundary b̃ within C̃. For this, let cl(C̃) denote the
(topological) closure of C̃ in R× [0,∞) given by

cl(C̃) = {
(u,ϕ) ∈ R× [0,∞)|ϕ ≤ b̃(u)

}
.(11.27)

Recall from the result and proof of Proposition 14 that V̂ is C1 globally and C2 on
C so that due to (11.26) we see that Ṽ is C1 globally and C2 on C̃. Making use of
the optimal stopping problem (11.19) combined with the fact that the process U is
of bounded variation we can now extend the latter fact as follows.

COROLLARY 15 (C2 regularity). For the value function Ṽ from (11.19), we
have

(11.28) Ṽϕϕ admits a continuous extension from C̃ to cl(C̃).

PROOF. Recalling (11.26), we see from (11.1) and (11.2) that

(11.29) Ṽ is C1 on R× [0,∞)

as noted above. Moreover, from the Lagrange formulation (11.19) we know that

(11.30) LU,ΦṼ − λṼ = −(ϕ − λ/c)

in C̃ where LU,Φ is the infinitesimal generator of (U,Φ) given by (6.26) above.
Noting that the left-hand side in (11.30) contains only one second partial derivative
Ṽϕϕ in addition to Ṽu and Ṽϕ , we see that (11.29) combined with (11.30) implies
that (11.28) holds as claimed. �

12. Continuity of the optimal stopping boundary. In this section, we prove
that the optimal stopping boundary b from (8.4) is continuous. The proof makes
use of the fact that its optimal stopping problem (4.19) of (Φ,X) is equivalent to
the optimal stopping problem (11.19) of (U,Φ) for which the boundary b̃ from
(11.20) is optimal. The advantage of the latter problem is that the infinitesimal
generator LU,Φ from (6.26) contains only one second partial derivative (with re-
spect to the second argument) so that simple techniques based on its dual L∗

U,Φ are
directly applicable. This is another consequence of the fact that the infinitesimal
generator LΦ,X from (5.17) is of parabolic type.

PROPOSITION 16. The mapping x �→ b(x) is continuous on (0,∞).

PROOF. Let us first show that x �→ b(x) is right-continuous. For this, fix
x ∈ (0,∞) and take any sequence xn ↓ x as n → ∞. Since x �→ b(x) is decreas-
ing on (0,∞) as established in Corollary 8, it follows that the right-hand limit
b(x+) exists. Because (b(xn), xn) ∈ D for n ≥ 1 and D is closed this implies that
(b(x+), x) ∈ D. Hence, by definition of b in (8.4) we see that b(x) ≤ b(x+). Since
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the reverse inequality follows clearly from the fact that x �→ b(x) is decreasing on
(0,∞), we see that b(x+) = b(x) as claimed.

Suppose that at some point x∗ in (0,∞) the function b makes a jump. Us-
ing the transformation xγ = ϕeu originating in (6.14) and recalling the results of
Corollary 8 and Propositions 9 and 10, we thus see from (11.20) that at some
point u∗ in R the function b̃ makes a jump. Fix a point u1 < u2 close to u2 upon
setting u2 = u∗, denote ϕ1 = b̃(u2) and ϕ2 = b̃(u2−), and consider the rectan-
gle R = [u1, u2] × [ϕ1, ϕ2] with vertices (u1, ϕ1), (u2, ϕ1), (u1, ϕ2) and (u2, ϕ2).
Note from (11.23) and (11.25) that there is no loss of generality in assuming that
ϕ1 > λ/c since otherwise we could formally replace ϕ1 by (ϕ1 +ϕ2)/2 in the proof
below and still have ϕ1 < ϕ2 due to the jump of b̃ at u2 as needed.

Recall from (6.26) that

(12.1) LU,ΦF =
[

β

ϕ2/γ e
2
γ
u

− λ
1 + ϕ

ϕ

]
Fu + λ(1 + ϕ)Fϕ + γ 2

2

ϕ2−2/γ

e
2
γ
u

Fϕϕ

for a smooth function F = F(u,ϕ) with (u,ϕ) ∈R×[0,∞). Motivated by partic-
ular needs that will become clearer below, define

f (u) = u − u1,(12.2)

g(ϕ) = 1

ϕ2 − ϕ1

[
1 + cos

(
2ϕ − ϕ1 − ϕ2

ϕ2 − ϕ1
π

)]
(12.3)

for u ∈ [u1, u2] and ϕ ∈ [ϕ1, ϕ2], respectively. Note that f (u1) = 0, f ′(u) = 1
and f ′′(u) = 0 for u ∈ [u1, u2] and it is easily verified that g(ϕi) = g′(ϕi) = 0 for
i = 1,2 with g(ϕ) > 0 for ϕ ∈ (ϕ1, ϕ2) and

∫ ϕ2
ϕ1

g(ϕ)dϕ = 1. Defining

(12.4) F(u,ϕ) = f (u)g(ϕ)

for u ∈ [u1, u2] and ϕ ∈ [ϕ1, ϕ2] this shows that

F(u,ϕ1) = 0 and F(u,ϕ2) = 0,(12.5)

Fϕ(u,ϕ1) = 0 and Fϕ(u,ϕ2) = 0,(12.6)

F(u1, ϕ) = 0 and Fϕ(u1, ϕ) = 0(12.7)

for all u ∈ (u1, u2) and ϕ ∈ (ϕ1, ϕ2). Moreover, recalling (10.4) and (10.5) together
with (11.26) and the fact that (u2, ϕ) ∈ D̃, we see that the instantaneous stopping
condition and the smooth fit condition in the optimal stopping problem (11.19)
read as follows:

Ṽ (u2, ϕ) = 0,(12.8)

Ṽu(u2, ϕ) = 0(12.9)

for all ϕ ∈ (ϕ1, ϕ2). A lengthy calculation based on a repeated integration by parts
that makes use of (12.5)–(12.7) and (12.8) + (12.9) then shows that

(12.10)
∫ u2

u1

∫ ϕ2

ϕ1

FLU,ΦṼ dudϕ =
∫ u2

u1

∫ ϕ2

ϕ1

ṼL
∗
U,ΦF dudϕ,
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where we set

L
∗
U,ΦF = −

([
β

ϕ2/γ e
2
γ
u

− λ
1 + ϕ

ϕ

]
F

)
u

(12.11)

− (
λ(1 + ϕ)F

)
ϕ +

(
γ 2

2

ϕ2−2/γ

e
2
γ

u
F

)
ϕϕ

.

Recalling that Ṽ solves (11.30) in C̃, we see using (12.10) that
∫ u2

u1

∫ ϕ2

ϕ1

−(ϕ − λ/c)F dudϕ =
∫ u2

u1

∫ ϕ2

ϕ1

(LU,ΦṼ − λṼ )F dudϕ

(12.12)
=

∫ u2

u1

∫ ϕ2

ϕ1

Ṽ
(
L

∗
U,ΦF − λF

)
dudϕ.

To proceed further, we will now estimate the initial and the final expression in
(12.12).

First, using (12.4) we find that
∫ u2

u1

∫ ϕ2

ϕ1

−(ϕ − λ/c)F dudϕ ≤ −(ϕ1 − λ/c)

∫ u2

u1

∫ ϕ2

ϕ1

f (u)g(ϕ)dudϕ

(12.13)

= −(ϕ1 − λ/c)
(u2 − u1)

2

2
,

where we recall that ϕ1 > λ/c so that the final term is strictly negative.
Second, note that the mean value theorem together with the continuous/smooth

fit (12.8) + (12.9) and the regularity fact (11.29) imply the existence of a point
v ∈ (u,u2) such that

(12.14)
∣∣Ṽ (u,ϕ)

∣∣ = ∣∣Ṽ (u,ϕ) − Ṽ (u2, ϕ)
∣∣ = ∣∣Ṽu(v,ϕ)

∣∣|u − u2| ≤ ε(u2 − u)

for all (u,ϕ) ∈ (u1, u2) × (ϕ1, ϕ2) with u2 − u1 < δ.
Third, it is easily seen from (12.4) with (12.2) + (12.3) and (12.11) that

(12.15)
∣∣L∗

U,ΦF − λF
∣∣ ≤ C

on [u1, u2]× [ϕ1, ϕ2] for some C > 0 large enough. Using (12.14) and (12.15), we
find that∫ u2

u1

∫ ϕ2

ϕ1

Ṽ
(
L

∗
U,ΦF − λF

)
dudϕ ≥ −

∫ u2

u1

∫ ϕ2

ϕ1

|Ṽ |∣∣L∗
U,ΦF − λF

∣∣dudϕ

≥ −εC(ϕ2 − ϕ1)

∫ u2

u1

(u2 − u)du(12.16)

= −εC(ϕ2 − ϕ1)
(u2 − u1)

2

2
.
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Combining (12.12), (12.13) and (12.16), we get

(12.17) −εC(ϕ2 − ϕ1)
(u2 − u1)

2

2
≤ −(ϕ1 − λ/c)

(u2 − u1)
2

2
for all (u,ϕ) ∈ (u1, u2) × (ϕ1, ϕ2) with u2 − u1 < δ. This implies that ε ≥ (ϕ1 −
λ/c)/(ϕ2 − ϕ1) for all ε > 0 and letting ε ↓ 0 we get that ϕ1 = λ/c which is a
contradiction with the fact that ϕ1 > λ/c. It follows therefore that b̃ does not make
a jump, and hence the same fact is true for b as claimed. This completes the proof.

�

13. Free-boundary problem. In this section, we derive the free-boundary
problems that stand in one-to-one correspondence with the optimal stopping prob-
lems (4.19) and (11.19), respectively. The two free-boundary problems are equiv-
alent and the latter problem can be seen as a canonical reformulation of the for-
mer problem by means of the diffeomorphic transformation (6.14). Using results
derived in the previous sections, we show that the value functions and their opti-
mal stopping boundaries (V̂ , b) and (Ṽ , b̃) from (4.19) and (11.19) solve the free-
boundary problems, respectively. This establishes the existence of a solution. Its
uniqueness in natural classes of functions will follow from a more general unique-
ness result derived in Section 14 below. This will also yield a triple-integral rep-
resentation for the value function V̂ expressed in terms of the optimal stopping
boundary b. A similar integral representation also holds for the value function Ṽ

expressed in terms of the optimal stopping boundary b̃ but we will not state it
explicitly.

1. We first consider the optimal stopping problem (4.19) where the strong
Markov process (Φ,X) solves the system of stochastic differential equations
(4.20) + (4.21) under the measure P∞

ϕ,x with (ϕ, x) ∈ [0,∞) × (0,∞). Recall-
ing that the infinitesimal generator LΦ,X of (Φ,X) is given by (5.17) and relying
on other properties of V̂ and b derived above, we are naturally led to formulate the
following free-boundary problem for finding V̂ and b:

λ(1 + ϕ)V̂ϕ + δ0 − 1

2x
V̂x + γ

ϕ

x
V̂ϕx + γ 2

2

ϕ2

x2 V̂ϕϕ + 1

2
V̂xx − λV

(13.1)

= −
(
ϕ − λ

c

)
in C,

V̂ (ϕ, x) = 0 for (ϕ, x) ∈ D (instantaneous stopping),(13.2)

V̂ϕ(ϕ, x) = 0 for ϕ = b(x) with x > 0 (smooth fit),(13.3)

V̂x(ϕ, x) = 0 for ϕ = b(x) with x > 0 (smooth fit),(13.4)

where the (continuation) set C and the (stopping) set D are given by

C = {
(ϕ, x) ∈ [0,∞) × (0,∞)|ϕ < b(x)

}
,(13.5)

D = {
(ϕ, x) ∈ [0,∞) × (0,∞)|ϕ ≥ b(x)

}
.(13.6)
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Clearly, the global condition (13.2) can be replaced by the local condition
V̂ (ϕ, x) = 0 for ϕ = b(x) with x > 0 so that the free-boundary problem (13.1)–
(13.4) needs to be considered on the closure of C only (the extension of V̂ to D as
zero being then evident). Moreover, the free-boundary problem (13.1)–(13.4) can
be reformulated in a number of ways. Among these, we could consider the Mayer
reformulation (Section 5) or the time-change reformulation (Section 7), as well as
various combinations of these and other possibilities [such as the one correspond-
ing to the Markov process (U,X) which we do not consider]. All these reformula-
tions of the free-boundary problem (13.1)–(13.4) are equivalent and among them
we will only single out a canonical reformulation corresponding to the parabolic
PDE reduction (Section 6).

2. We next consider the optimal stopping problem (11.19) where the strong
Markov process (U,Φ) solves the system of stochastic differential equations
(6.16) + (6.17) under the measure P∞

u,ϕ with (u,ϕ) ∈ R × [0,∞). Recalling that
the infinitesimal generator LU,Φ of (U,Φ) is given by (6.26) and relying on the
connection between (U,Φ) and (Φ,X) realised through (6.14) combined with
other properties of Ṽ and b̃ derived above, we are naturally led to formulate the
following free-boundary problem for finding Ṽ and b̃:

[
β

ϕ2/γ e
2
γ
u

− λ
1 + ϕ

ϕ

]
Ṽu + λ(1 + ϕ)Ṽϕ + γ 2

2

ϕ2−2/γ

e
2
γ

u
Ṽϕϕ − λṼ

(13.7)

= −
(
ϕ − λ

c

)
in C̃,

Ṽ (u,ϕ) = 0 for (u,ϕ) ∈ D̃ (instantaneous stopping),(13.8)

Ṽu(u,ϕ) = 0 for ϕ = b̃(u) with u ∈R (smooth fit),(13.9)

Ṽϕ(u,ϕ) = 0 for ϕ = b̃(u) with u ∈ R (smooth fit),(13.10)

where the (continuation) set C̃ and the (stopping) set D̃ are given by

C̃ = {
(u,ϕ) ∈R× [0,∞)|ϕ < b̃(x)

}
,(13.11)

D̃ = {
(u,ϕ) ∈R× [0,∞)|ϕ ≥ b̃(x)

}
.(13.12)

Clearly, the global condition (13.8) can be replaced by the local condition
Ṽ (u,ϕ) = 0 for ϕ = b̃(u) with u ∈ R so that the free-boundary problem (13.7)–
(13.10) needs to be considered on the closure of C̃ only (the extension of Ṽ to D̃

as zero being then evident).
3. To formulate the existence and uniqueness result for the problem (13.1)–

(13.4), we let C denote the class of pairs of functions (F, a) such that

F belongs to C1(C̄a) ∩ C2(Ca) and is bounded on [0,∞) × (0,∞),(13.13)

a is continuous and decreasing on (0,∞) with a(x) ≥ λ/c for x > 0,(13.14)

where we set Ca = {(ϕ, x) ∈ [0,∞) × (0,∞)|ϕ < a(x)}.
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THEOREM 17. The free-boundary problem (13.1)–(13.4) has a unique solu-
tion (V̂ , b) in the class C where V̂ is given by (4.19) and b is defined in (8.4).

PROOF. For the value function V̂ from (4.19) and its optimal stopping bound-
ary b from (8.4), it was established in Proposition 14 that V̂ belongs to C1(C̄) ∩
C2(C) and in Proposition 16 with Corollary 8 that b is continuous and decreas-
ing on (0,∞). Since V̂ is bounded this shows that the pair (V̂ , b) belongs to the
class C. Moreover, from the Lagrange formulation (4.19) we know that V̂ solves
(13.1) and from Proposition 13 we know that V̂ satisfies (13.3) and (13.4). Since
V̂ evidently satisfies (13.2) this shows that the pair (V̂ , b) is a solution to the
free-boundary problem (13.1)–(13.4) in the class C. To derive uniqueness of the
solution, we will first see in the next section that any solution (F, a) to (13.1)–
(13.4) in the class C admits a closed triple-integral representation for F expressed
in terms of a, which in turn solves a nonlinear Fredholm integral equation, and
we will then show that this equation cannot have other solutions satisfying (13.14)
above. Putting these facts together shows that there could be no more than one
solution to (13.1)–(13.4) in the class C as claimed. �

4. To formulate the existence and uniqueness result for the problem (13.7)–
(13.10), we let C̃ be defined in exactly the same way as C above with the domains
[0,∞) × (0,∞) and (0,∞) being replaced by the domains R × [0,∞) and R,
respectively.

COROLLARY 18. The free-boundary problem (13.7)–(13.10) has a unique so-
lution (Ṽ , b̃) in the class C̃ where Ṽ is given by (11.19) and b̃ is defined in (11.20).

PROOF. This follows from Theorem 17 using the fact that the value function
Ṽ from (11.19) and its optimal stopping boundary b̃ from (11.20) are a canonical
reformulation of the value function V̂ from (4.19) and its optimal stopping bound-
ary b from (8.4) obtained by means of the diffeomorphic transformation (6.14) as
explained in Section 6 above. �

14. Nonlinear integral equation. In this section, we show that the optimal
stopping boundary b from (8.4) can be characterised as the unique solution to
a nonlinear Fredholm integral equation (Theorem 19). This also yields a closed
triple-integral representation of the value function V̂ from (4.19) expressed in
terms of the optimal stopping boundary b. Analogous results also hold for the op-
timal stopping boundary b̃ from (11.20) and the value function Ṽ from (11.19) but
we will not state them explicitly. As a consequence of the existence and unique-
ness result for the nonlinear Fredholm integral equation we also obtain uniqueness
of the solution to the free-boundary problems (13.1)–(13.4) and (13.7)–(13.10) as
explained in the proofs of Theorem 17 and Corollary 18 above. Finally, collecting
the results derived throughout the paper we conclude our exposition at the end of
this section by disclosing the solution to the initial problem (Corollary 20).
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1. To formulate the theorem below, let p denote the transition density of the
(time-homogeneous) Markov process (Φ,X) under P∞ in the sense that

(14.1) P∞
ϕ,x(Φt ≤ ψ,Xt ≤ y) =

∫ ψ

0

∫ y

0
p(t;ϕ,x;η, z) dη dz

for t > 0 with (ϕ, x) and (ψ, x) in [0,∞)×(0,∞). The function p is characterised
as the unique nonnegative solution to the Kolmogorov backward equation

pt(t;ϕ,x;η, z) = LΦ,X(p)(t;ϕ,x;η, z),(14.2)

p(0+;ϕ,x;η, z) = δ(ϕ,x)(η, z) (weakly)(14.3)

satisfying
∫ ∞

0
∫ ∞

0 p(t;ϕ,x;η, z) dη dz = 1 for t > 0 with (ϕ, x) and (η, z) in
[0,∞) × (0,∞) (cf. [6]) where we recall that LΦ,X is given in (5.17) above and
δ(ϕ,x) denotes the Dirac measure at (ϕ, x). The initial value problem (14.2) +
(14.3) can be used to determine p.

Having p, we can then evaluate the expression of interest appearing in the state-
ment of the theorem below as follows:∫ ∞

0
e−λtE∞

ϕ,x

[
H(Φt,Xt)I

(
Φt < b(Xt)

)]
dt

(14.4)

=
∫ ∞

0

∫ ∞
0

∫ b(y)

0
e−λtH(ψ,y)p(t;ϕ,x;ψ,y)dψ dy dt

for (ϕ, x) in [0,∞) × (0,∞) where we recall that H is defined in (5.16) above.

THEOREM 19 (Existence and uniqueness). The optimal stopping boundary b

in the problem (4.19) can be characterised as the unique solution to the nonlinear
integral equation

(14.5)
∫ ∞

0

∫ ∞
0

∫ b(y)

0
e−λtH(ψ,y)p

(
t;b(x), x;ψ,y

)
dψ dy dt = 0

in the class of continuous and decreasing functions x �→ b(x) satisfying b(x) ≥
λ/c for x > 0. The value function V̂ in the problem (4.19) admits the following
representation:

(14.6) V̂ (ϕ, x) =
∫ ∞

0

∫ ∞
0

∫ b(y)

0
e−λtH(ψ,y)p(t;ϕ,x;ψ,y)dψ dy dt

for (ϕ, x) in [0,∞) × (0,∞). The optimal stopping time in the problem (4.19) is
given by

(14.7) τb = inf
{
t ≥ 0|Φt ≥ b(Xt)

}

under P∞
ϕ,x with (ϕ, x) in [0,∞) × (0,∞) given and fixed (see Figure 3 above).



1050 P. JOHNSON AND G. PESKIR

FIG. 3. Kinematics of the process (Φ,X) associated with the Bessel motion from Figure 2 above
and location of the optimal stopping boundary b.

PROOF. 1. Existence. We first show that the optimal stopping boundary b

in the problem (4.19) solves the nonlinear integral equation (4.5). Recalling that
x �→ b(x) is a continuous and decreasing function satisfying b(x) ≥ λ/c for x > 0
as established above, this will prove the existence of the solution to (4.5). For this,
we will first show that Itô’s formula is applicable to V̂ composed with (Φ,X).
Indeed, due to the bijective C2 transformation (6.14) we see that it is enough to
show that Itô’s formula is applicable to Ṽ composed with (U,Φ). For this, recall
from the proof of Corollary 15 that Ṽ is C1,2 on the closure of C̃ and equals zero
on D̃. We thus see that the local time–space formula from [13], Theorem 2.1, is
applicable to Ṽ composed with (U,Φ) as long as b̃(U) is shown to be a (continu-
ous) semimartingale. For this, we know that b̃ is decreasing and U is of bounded
variation (both continuous), however, this is generally insufficient to conclude that
b̃(U) is of bounded variation itself (see [10]). We do know however that U is
monotone off the curve z defined in (6.27) above. This fact can be used to estab-
lish the existence of a piecewise monotone process Un (i.e., monotone on each
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[ti−1, ti) forming a partition of [0,∞) for i ≥ 1) with continuous sample paths
such that Un converges to U uniformly on compacts of [0,∞), and the total vari-
ation of Un converges to the total variation of U on each [0, T ] for T > 0, both
in probability as n → ∞. One way of doing that is to take four continuous curves
zn

1 < zn
2 < z < zn

3 < zn
4 converging to z uniformly on [0,∞) as n → ∞, and if

(U,Φ) starts outside the area between zn
2 and zn

3 , consider the first hitting time of
(U,Φ) to either zn

2 or zn
3 , letting Un be equal to U up to that time and freezing its

value afterwards until (U,Φ) hits either zn
1 or zn

4 , and then continuing by induction
analogously; if (U,Φ) starts inside the area between zn

2 and zn
3 then Un can be set

equal to the initial value of U until (U,Φ) hits either zn
1 or zn

4 , and we can then
continue by induction as above. The resulting process is piecewise monotone and
discontinuous, however, a simple straight-line approximation will make it continu-
ous. Similar other constructions are also possible. Since each b̃(Un) is evidently of
bounded variation and hence a (continuous) semimartingale, the local time–space
formula from [13], Theorem 2.1, is applicable to Ṽ composed with each (Un,Φ),
and due to the smooth-fit condition (11.29) we see that the local-time term in this
formula vanishes, thus reducing it to Itô’s formula for every n ≥ 1 given and fixed.
Letting then n → ∞ and using the C1,2 regularity of Ṽ up to b̃ combined with the
convergence relations of Un to U (including the total variation in particular) this
shows (see [5], Section 2.2) that Itô’s formula extends from Ṽ composed with each
(Un,Φ) for n ≥ 1 to Ṽ composed with (U,Φ) as needed. It follows therefore that
Itô’s formula is applicable to V̂ composed with (Φ,X) as claimed.

Integrating further by parts this yields

e−λt V̂ (Φt ,Xt) = V̂ (ϕ, x) +
∫ t

0
e−λs(LΦ,XV̂ − λV̂ )(Φs,Xs)I (Φs �= Xs)ds

+
∫ t

0
e−λs

[
γ

Φs

Xs

V̂ϕ(Φs,Xs) + V̂x(Φs,Xs)

]
dBs(14.8)

= V̂ (ϕ, x) −
∫ t

0
e−λsH(Φs,Xs)I

(
Φs < b(Xs)

)
ds + Mt

under P∞
ϕ,x with (ϕ, x) ∈ [0,∞) × (0,∞) given and fixed, where in the second

equality we make use of (13.1) and (13.2), and Mt = ∫ t
0 e−λs[γ (Φs/Xs)V̂ϕ(Φs,

Xs) + V̂x(Φs,Xs)]dBs is a continuous local martingale for t ≥ 0. Choosing a lo-
calisation sequence (τn)n≥1 of stopping times for M and taking E∞

ϕ,x on both sides
of (14.8) with τn in place of t we find by the optional sampling theorem that

E∞
ϕ,x

[
e−λτnV̂ (Φτn,Xτn)

]
(14.9)

= V̂ (ϕ, x) − E∞
ϕ,x

[∫ τn

0
e−λsH(Φs,Xs)I

(
Φs < b(Xs)

)
ds

]

for n ≥ 1. From (4.19), it is easily seen that

(14.10) −1

c
≤ V̂ ≤ 0
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on [0,∞) × (0,∞) so that the left-hand side in (14.9) tends to zero as n → ∞.
Moreover, from the form of H given in (5.16) we see that the integral in (14.9)
equals the difference of two integrals where the expected value of the second inte-
gral converges to a finite value. Letting n → ∞ in (14.9) and using the monotone
convergence theorem we therefore find that

(14.11) V̂ (ϕ, x) =
∫ ∞

0
e−λsE∞

ϕ,x

[
H(Φs,Xs)I

(
Φs < b(Xs)

)]
ds

for (ϕ, x) ∈ [0,∞) × (0,∞). Combining this expression with (14.4), we see that
(14.6) holds as claimed. Setting ϕ = b(x) in (4.15) for x > 0 given and fixed, and
using that V̂ (b(x), x) = 0, we see that b solves (14.5) and this completes the proof
of existence.

2. Uniqueness. We next show that b is a unique solution to (14.5) in the
class of continuous and decreasing functions x �→ b(x) satisfying b(x) ≥ λ/c for
x > 0. For this, take any continuous and decreasing function c which solves
(14.5) and satisfies c(x) ≥ λ/c for x > 0. Motivated by (14.11) define the func-
tion V̂ c : [0,∞) × (0,∞) →R by setting

(14.12) V̂ c(ϕ, x) =
∫ ∞

0
e−λsE∞

ϕ,x

[
H(Φs,Xs)I

(
Φs < c(Xs)

)]
ds

for (ϕ, x) ∈ [0,∞) × (0,∞). Observe that c solving (14.5) means exactly that
V̂ c(c(x), x) = 0 for all x > 0. Moreover, applying the strong Markov property of
(Φ,X) at its first hitting time ρc to {(c(x), x)|x > 0} under P∞

ϕ,x we see from

the previous fact that V̂ (ϕ, x) is finite as long as E∞
ϕ,x[

∫ ρc

0 H(Φs,Xs)I (Φs <

c(Xs)) ds] is finite. Letting ρ denote the first hitting time of (Φ,X) to any given
and fixed quadrant {(ϕ′, x′)|ϕ′ ≥ ϕ1 and x′ ≥ x1} with 0 ≤ ϕ < ϕ1 and 0 < x < x1
such that its boundary lies above c we see that the latter expectation is finite as
long as E∞

ϕ,x[
∫ ρ

0 H(Φs,Xs)I (Φs < c(Xs)) ds] is finite. From (5.18), we see that
the latter expectation is finite as long as limn→∞ E∞

ϕ,x[e−λρnM(Φρn,Xρn)] is finite
(noting that the limit exists) where ρn is any localised version of ρ meeting the
requirements of (5.18) with ρn ↑ ρ as n → ∞. The fact that the latter limit is finite
follows from (5.8) and (8.7) by the optional sampling theorem (upon localisation)
combined with the facts that Φρ and Xρ are constant on the set where (Φ,X) hits
the quadrant at its vertical or horizontal side, respectively (recall from Section 8
that this happens with Pϕ,x -probability one). This shows that V̂ c is finite valued as
claimed. On closer inspection, we also see that these arguments show that V̂ c is
bounded on [0,∞) × (0,∞).

(i) We show that V̂ c(ϕ, x) = 0 for (ϕ, x) ∈ [0,∞) × (0,∞) such that ϕ ≥
c(x). For this, take any such (ϕ, x) and note that the Markov property of (Φ,X)

implies that

e−λt V̂ c(Φt ,Xt) +
∫ t

0
e−λsH(Φs,Xs)I

(
Φs < c(Xs)

)
ds(14.13)
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is a continuous martingale under P∞
ϕ,x . Consider the stopping time

(14.14) σc = inf
{
t ≥ 0|Φt ≤ c(Xt)

}
under P∞

ϕ,x . Replacing σc by σc ∧ n in the sequel and letting n → ∞ there is no

restriction to assume that σc is bounded. Since V̂ c(c(x), x) = 0 for all x > 0, we
see that V̂ c(Φσc,Xσc) = 0 under P∞

ϕ,x . Replacing t by σc in (14.13), taking E∞
ϕ,x

on both sides and applying the optional sampling theorem, we thus find that

V̂ c(ϕ, x) = E∞
ϕ,x

[
e−λσc V̂ c(Φσc,Xσc)

]
(14.15)

+ E∞
ϕ,x

[∫ σc

0
e−λsH(Φs,Xs)I

(
Φs < c(Xs)

)
ds

]
= 0,

where the second expectation equals zero by definition of σc. This shows that V̂ c

equals zero above c as claimed.
(ii) We show that V̂ c(ϕ, x) ≥ V̂ (ϕ, x) for (ϕ, x) ∈ [0,∞) × (0,∞). For this,

take any such (ϕ, x) and consider the stopping time

(14.16) τc = inf
{
t ≥ 0|Φt ≥ c(Xt)

}
under P∞

ϕ,x . Replacing τc by τc ∧ n in the sequel and letting n → ∞ there is no

restriction to assume that τc is bounded. We claim that V̂ c(Φτc ,Xτc) = 0 under
P∞

ϕ,x . Indeed, if ϕ ≥ c(x) then τc = 0 so that V̂ c(Φτc ,Xτc) = V̂ c(ϕ, x) = 0 by

(i) above. On the other hand, if ϕ < c(x) then the claim follows since V̂ c(c(x),

x) = 0 as noted above. Replacing t by τc in (14.13), taking E∞
ϕ,x on both sides and

applying the optional sampling theorem, we thus find that

V̂ c(ϕ, x) = E∞
ϕ,x

[
e−λτc V̂ c(Φτc ,Xτc)

]

+ E∞
ϕ,x

[∫ τc

0
e−λsH(Φs,Xs)I

(
Φs < c(Xs)

)
ds

]
(14.17)

= E∞
ϕ,x

[∫ τc

0
e−λsH(Φs,Xs) ds

]
≥ V̂ (ϕ, x),

where the second equality follows by definition of τc and the inequality follows by
definition of V̂ in (4.19). This shows that V̂ c ≥ V̂ on [0,∞) × (0,∞) as claimed.

(iii) We show that c(x) ≤ b(x) for all x > 0. For this, suppose that there exists
x > 0 such that c(x) > b(x). Fix any ϕ ≥ c(x) and consider the stopping time

(14.18) σb = inf
{
t ≥ 0|Φt ≤ b(Xt)

}
under P∞

ϕ,x . Replacing σb by σb ∧ n in the sequel and letting n → ∞ there is no
restriction to assume that σb is bounded. Replacing t by σb in (14.13), taking E∞

ϕ,x

on both sides and applying the optional sampling theorem, we find that

V̂ c(ϕ, x) = E∞
ϕ,x

[
e−λσb V̂ c(Φσb

,Xσb
)
]

(14.19)

+ E∞
ϕ,x

[∫ σb

0
e−λsH(Φs,Xs)I

(
Φs < c(Xs)

)
ds

]
.
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Since ϕ ≥ c(x), we know that V̂ c(ϕ, x) = 0 by (i) above. Moreover, since V̂ c ≥ V̂

by (ii) above and V̂ (Φσb
,Xσb

) = 0, we see that V̂ c(Φσb
,Xσb

) ≥ 0. Combining the
two conclusions in (14.19), we find that the following inequality holds:

(14.20) E∞
ϕ,x

[∫ σb

0
e−λsH(Φs,Xs)I

(
Φs < c(Xs)

)
ds

]
≤ 0.

The fact that c(x) > b(x) and the continuity of b and c imply that there exist
x1 < x and x2 < x such that c(y) > b(y) for all y ∈ [x1, x2]. Consequently, the
P∞

ϕ,x -probability of (Φ,X) spending a strictly positive amount of time below c

(with respect to Lebesgue measure) before hitting b on [x1, x2] is strictly positive.
Combined with the fact that b lies above λ/c where H is strictly positive, this
forces the expectation in (14.20) to be strictly positive and provides a contradiction.
Hence, c ≤ b on (0,∞) as claimed.

(iv) We show that c(x) = b(x) for all x > 0. For this, suppose that there exists
x > 0 such that c(x) < b(x). Fix any ϕ ∈ (c(x), b(x)) and consider the stopping
time

(14.21) τb = inf
{
t ≥ 0|Φt ≥ b(Xt)

}
under P∞

ϕ,x . Replacing τb by τb ∧ n in the sequel and letting n → ∞, there is no
restriction to assume that τb is bounded. Replacing t by τc in (14.8), taking E∞

ϕ,x

on both sides and applying the optional sampling theorem, we find that

(14.22) V̂ (ϕ, x) = E∞
ϕ,x

[
e−λτb V̂ (Φτb

,Xτb
)
] + E∞

ϕ,x

[∫ τb

0
e−λsH(Φs,Xs) ds

]
.

Similarly, replacing t by τb in (14.13), taking E∞
ϕ,x on both sides and applying the

optional sampling theorem, we find that

V̂ c(ϕ, x) = E∞
ϕ,x

[
e−λτb V̂ c(Φτb

,Xτb
)
]

(14.23)

+ E∞
ϕ,x

[∫ τb

0
e−λsH(Φs,Xs)I

(
Φs < c(Xs)

)
ds

]
.

Since V̂ (ϕ, x) < 0 due to ϕ < b(x) and V̂ (Φτb
,Xτb

) = 0, we see that the final
expectation in (14.22) is strictly negative. Since V̂ c(ϕ, x) = 0 by (i) above due to
ϕ > c(x), and V̂ c(Φτb

,Xτb
) = 0 again by (i) above due to b ≥ c by (iii) above, we

see that the final expectation in (14.23) equals zero. Combining the two conclu-
sions on the final expectations in (14.22) and (14.23), it follows that

(14.24) E∞
ϕ,x

[∫ τb

0
e−λsH(Φs,Xs)I

(
Φs ≥ c(Xs)

)
ds

]
< 0.

But then as in (iii) above the continuity of b and c combined with the fact that c

lies above λ/c where H is strictly positive forces the expectation in (14.24) to be
strictly positive and provides a contradiction. Thus, c = b on (0,∞) as claimed
and the proof is complete. �
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Collecting the results derived throughout we now disclose the solution to the
initial problem.

COROLLARY 20. With initial point x > 0 of the process X solving (3.1) +
(3.2) given and fixed, the value function of the initial problem (3.6) is given by

(14.25) V (π) = (1 − π)

[
1 + cV̂

(
π

1 − π
,x

)]

for π ∈ [0,1] where the function V̂ is given by (14.6) above. The optimal stopping
time in the initial problem (3.6) is given by

τ∗ = inf
{
t ≥ 0

∣∣∣
(

Xt

x

)γ

e
λt−β

∫ t
0

ds

X2
s

(
π

1 − π
(14.26)

+ λ

∫ t

0

ds

(Xs

x
)γ e

λs−β
∫ s

0
dr

X2
r

)
≥ b(Xt)

}
,

where γ = (δ1 − δ0)/2, β = (δ1 − δ0)(δ1 + δ0 − 4)/8 and b is a unique solution
to the integral equation (14.5) in the class of continuous and decreasing functions
x �→ b(x) satisfying b(x) ≥ λ/c for x > 0.

PROOF. The identity (14.25) follows by combining (4.11) + (4.12) in Propo-
sition 2 with the result of Theorem 19. The explicit form (14.26) follows from
(14.7) in Theorem 19 combined with (3.12) and (6.19) + (6.20) completing the
proof. �
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