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We consider the optimal Skorokhod embedding problem (SEP) given full
marginals over the time interval [0,1]. The problem is related to the study of
extremal martingales associated with a peacock (“process increasing in con-
vex order,” by Hirsch, Profeta, Roynette and Yor [Peacocks and Associated
Martingales, with Explicit Constructions (2011), Springer, Milan]). A gen-
eral duality result is obtained by convergence techniques. We then study the
case where the reward function depends on the maximum of the embedding
process, which is the limit of the martingale transport problem studied in
Henry-Labordère, Obłój, Spoida and Touzi [Ann. Appl. Probab. 26 (2016)
1–44]. Under technical conditions, we then characterize the optimal value
and the solution to the dual problem. In particular, the optimal embedding
corresponds to the Madan and Yor [Bernoulli 8 (2002) 509–536] peacock
under their “increasing mean residual value” condition. We also discuss the
associated martingale inequality.

1. Introduction. Given a probability measure μ on R, centered and with fi-
nite first moment, the Skorokhod embedding problem (SEP) consists in finding a
stopping time T for a Brownian motion W , such that WT ∼ μ and the stopped
process (WT ∧·) is uniformly integrable. We consider here an extended version.
Let (μt )t∈[0,1] be a family of probability measures that are all centered, have fi-
nite first moments and are nondecreasing in convex order, that is, t �→ μt(φ) :=∫
R φ(x)μt (dx) is nondecreasing for every convex function φ : R → R. The ex-

tended Skorokhod embedding problem is then to find a nondecreasing family of
stopping times, (Tt )t∈[0,1], for a Brownian motion W , such that WTt ∼ μt , for all
t ∈ [0,1], and the stopped process (WT1∧·) is uniformly integrable. Specifically, we
study an optimal Skorokhod embedding problem which consists in maximizing a
reward value among the class of all such extended embeddings.

It follows from Kellerer’s theorem (see, e.g., Kellerer [31] or Hirsch and
Roynette [21]) that for a family μ = (μt )t∈[0,1] satisfying the above conditions,
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there exists at least one (Markov) martingale whose one-dimensional marginal
distributions coincide with μ. Assume in addition that t �→ μt is right-continuous,
then any associated martingale admits a right-continuous modification. Since, ac-
cording to Monroe [34], any right-continuous martingale can be embedded into
a Brownian motion with a nondecreasing family of stopping times, this implies
that the collection of solutions to the extended Skorokhod embedding problem is
nonempty. Moreover, the full marginal optimal SEP is thus related to the study of
extremal martingales associated with peacocks. A peacock (or PCOC “Processus
Croissant pour l’Ordre Convexe”) is a continuous time stochastic process whose
one-dimensional marginal distributions are nondecreasing in convex order accord-
ing to Hirsch, Profeta, Roynette and Yor [20]. Since Kellerer’s theorem ensures
the existence of martingales with given one-dimensional marginal distributions
(see also [7, 22, 32] for new and insightful proofs of this result), the interesting
subject is to construct these associated martingales; we refer to the book [20] and
the references therein for various techniques. We mention that when the marginal
distributions are those of a Brownian motion, such an associated martingale is also
referred to as a fake Brownian motion; see, e.g., [1, 14, 27, 37].

Our problem of study is motivated by financial applications; specifically, by the
problem of model-independent pricing of exotic options. Indeed, the knowledge of
prices of a continuum of call options with a given maturity, allows one to recover
the marginal distribution of any market model consistent with those prices (see,
e.g., Breeden and Litzenberger [9]). Financial considerations further imply that
any feasible price process should be a martingale. Maximizing the expected value
of an exotic (path-dependent) option over the class of martingales fitting the given
marginals—therefore gives an upper bound on arbitrage-free prices of the option
which are consistent with the market data.

The problem was initially studied under one marginal constraint using the SEP
approach; first by Hobson [25] and later by many others. This approach is based
on the fact that any continuous martingale can be viewed as a time-changed Brow-
nian motion; we refer to the survey papers of Obłój [35] and Hobson [23]. More
recently, it has also been studied using the so-called martingale transport approach
introduced in Beiglböck, Henry-Labordère and Penkner [6] and Galichon, Henry-
Labordère and Touzi [15]. Since then, there has been an intensive development
of the literature on martingale optimal transport and the connection with model-
free hedging in finance. In the present context of full marginals constraint, Henry-
Labordère, Tan and Touzi [19] considered reward functions satisfying the so-called
martingale Spence-Mirrlees condition, and solved the martingale transport prob-
lem via a quasi-explicit construction of the corresponding martingale peacock and
the optimal semi-static hedging strategy. In Hobson [24], yet a martingale peacock
with a certain optimality property has been constructed.

Here, we study the full marginal problem from the SEP perspective. First, tak-
ing the limit of a duality result established for a general optimal SEP under finitely
many marginal constraints in [16] and [5] (extending a duality result in Beiglböck,
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Cox and Huesmann [4]), we obtain a general duality result for the optimal SEP
under full marginal constraints. Thereafter, we study the case when the reward
function depends on the realized maximum of the embedding process. For the case
of one marginal constraint, this problem is solved by the Azéma–Yor [2] embed-
ding; see also Hobson [25]. For multiple marginal constraints which are increasing
in mean residual value [see (3.13) below], Madan and Yor [33] studied an itera-
tion of the Azéma–Yor embedding. They also provided the limiting object in the
full-marginal case and characterized the resulting peacock. When the marginals are
not increasing in mean residual value, the multi-marginal problem becomes signif-
icantly more involved. The two-marginal case was solved in Brown, Hobson and
Rogers [10] (see also Hobson [26]). For a finite number of marginal constraints, an
iterated Azéma–Yor embedding was proposed in Obłój and Spoida [36] under an
additional technical assumption. In the accompanying paper by Henry-Labordère,
Obłój, Spoida and Touzi [18], this embedding was proven to be optimal for the
realized maximum. They also provided the solution to the associated dual prob-
lem and characterized the optimal value of the problem. By applying limiting ar-
guments to these results, under a certain technical assumption we here obtain an
explicit characterization of the optimal value and of the primal and dual optimizers
for the corresponding full marginal optimal SEP. In particular, this defines a pea-
cock, which we refer to as the Azéma–Yor peacock, and which coincides with the
one given in [33] under the additional condition that the marginals are increasing
in mean residual value.

We also provide further intuition for our results and relate them to the corre-
sponding martingale optimal transport (i.e., pricing) problems. Specifically, we
show that for a class of payoffs which are invariant under time changes, our full
marginal SEP provides the limit of the value (i.e., the price) of the multi-marginal
problem as the number of marginals tends to infinity. Meanwhile, the peacock cor-
responding to the optimizer of the full-marginal SEP is in general not a solution to
the full marginal martingale optimal transport problem.

The rest of the paper is organized as follows. The main results are presented in
Section 2: in Section 2.1, we formulate our optimal SEP given full marginals; in
Section 2.2, we provide the general duality result; in Section 2.3, we focus on the
class of maximal reward functions for which we specify the value of the problem
and give the explicit form of a dual optimizer; and in Section 2.4 we present an
associated martingale inequality. In Section 3, we provide further discussion of
our results and relate them to the finite-marginal SEP and to martingale optimal
transport. The proofs are completed in Section 4.

Notation. (i) Let � := C(R+,R) denote the canonical space of all continuous
paths ω on R+ with ω0 = 0, let B be the canonical process and P0 the Wiener
measure under which B is a standard Brownian motion. Further, let F0 = (F0

t )t≥0
denote the canonical filtration generated by B , and Fa = (Fa

t )t≥0 the augmented
filtration under P0.
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We equip � with the compact convergence topology (see, e.g., Whitt [39] or
Stroock and Varadhan [38]):

ρ
(
ω,ω′) := ∑

n≥1

1

2n

sup0≤t≤n |ωt − ω′
t |

1 + sup0≤t≤n |ωt − ω′
t |

, ∀ω,ω′ ∈ �.(1.1)

Then (�,ρ) is a Polish space (separable and complete metric space).
(ii) Let V+

r = V+
r ([0,1],R+) denote the space of all nondecreasing càdlàg func-

tions on [0,1] taking values in R+. Similarly, let V+
l = V+

l ([0,1],R) denote the
space of all nondecreasing càglàd functions on [0,1] taking values in R.

We equip V+
r and V+

l with the Lévy metric: for all θ, θ ′ ∈ V+
r ,

(1.2) d
(
θ, θ ′) := inf

{
ε > 0 : θt−ε − ε ≤ θ ′

t ≤ θt+ε + ε,∀t ∈ [0,1]},
where we extend the definition of θ to [−ε,1+ε] by letting θs := θ0 for s ∈ [−ε,0]
and θs := θ1 for s ∈ [1,1 + ε]. For m ∈ R, denote by V

+,m
l ⊂ V+

l the subset of
functions θ such that θ(1) ≤ m. Then both V+

r and V
+,m
l are Polish spaces (see

Remark A.1).
(iii) We define an enlarged canonical space by � := � ×V+

r , where the canon-
ical process is denoted by B = (B,T ). We introduce the enlarged canonical filtra-
tion F = (F t )t≥0, where F t is generated by (Bs)s∈[0,t] and all the sets {Tr ≤ s}
for s ∈ [0, t] and r ∈ [0,1]. In particular, all the canonical variables (Tr)r∈[0,1] are
F-stopping times.2 We notice that the σ -field F∞ :=∨

t≥0 F t coincides with the
Borel σ -field of the Polish space � (see Lemma A.2).

For a set P of probability measures on �, we say that a property holds P-quasi-
surely (q.s.) if it holds P-a.s. for all P ∈ P .

(iv) Let Cb denote the space of all bounded continuous functions from R to R,
and C1 the space of all functions f :R →R such that f (x)

1+|x| ∈ Cb.

2. Main results. Throughout the paper, we are given a family of probability
measures on R, μ = (μt )t∈[0,1], satisfying the following condition:

ASSUMPTION 2.1. The family of marginal distributions, μ = (μt )t∈[0,1], sat-
isfies

(2.1)
∫
R

|x|μt(dx) < ∞ and
∫
R

xμt(dx) = 0, t ∈ [0,1].
Furthermore, μ0 = δ{0}, t �→ μt is càdlàg w.r.t. the weak convergence topol-
ogy, and μ is nondecreasing in convex order, that is, for every convex function
φ :R →R,

(2.2) μs(φ) ≤ μt(φ) :=
∫
R

φ(x)μt (dx) whenever s ≤ t.

2This definition of filtration follows the idea introduced in [12, 13] to study a general mixed
stochastic control/stopping problem.
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2.1. The optimal SEP given full marginals. Let P(�) denote the collection of
all Borel probability measures on the canonical space �, and define

P := {
P ∈P(�) : B is a F-Brownian motion and

(2.3)
B·∧T1 is uniformly integrable under P

}
.

For the given marginals μ = (μt )t∈[0,1], we then define

P(μ) := {
P ∈P : BTt ∼P μt,∀t ∈ [0,1]}.

LEMMA 2.2. Suppose that Assumption 2.1 holds, then P(μ) is nonempty.

PROOF. Since the marginal distributions μ = (μt )t∈[0,1] satisfy Assump-
tion 2.1, it follows from Kellerer’s theorem (see, e.g., Kellerer [31] or Hirsch and
Roynette [21]) that there is a martingale M such that Mt ∼ μt for all t ∈ [0,1].
Since t �→ μt is right-continuous, the martingale M can be chosen to be right-
continuous. It follows from Theorem 11 in Monroe [34], that there is a Brown-
ian motion W and a family of nondecreasing and right-continuous stopping times
(τt )t∈[0,1], such that (Wτ1∧·) is uniformly integrable and (Wτ·) has the same finite-
dimensional distributions as (M·). In consequence, the probability induced by
(W·, τ·) on � belongs to P(μ). �

The main objective of the paper is to study the following optimal Skorokhod
Embedding Problem (SEP) under full marginal constraints:

P(μ) := sup
P∈P(μ)

EP[�(B·, T·)
]
,(2.4)

where � : � →R is the reward function.
The optimal SEP (2.4) under full marginal constraints is given in a weak formu-

lation. Indeed, for given marginals μ = (μt )t∈[0,1], let a μ-embedding be a term

α = (
�α,Fα,Fα = (

Fα
t

)
t≥0,P

α,
(
Wα

t

)
t≥0,

(
T α

s

)
s∈[0,1]

)
,(2.5)

such that in the filtered space (�α,Fα,Fα,Pα) the following holds: Wα· is a Brow-
nian motion; T α· is a nondecreasing càdlàg family of stopping times; the stopped
process (Wα

T α
1 ∧·) is uniformly integrable; and Wα

T α
t

∼Pα
μt for every t ∈ [0,1]. De-

note by A(μ) the collection of all such μ-embeddings α. It is then clear that every
μ-embedding α ∈ A(μ) induces a probability measure P ∈ P(μ). On the other
hand, every P ∈ P(μ) together with the canonical space �, the canonical process
B and the canonical filtration, forms an embedding term in A(μ). In consequence,
the set P(μ) is the collection of all probability measures P on � induced by the
embeddings α ∈A(μ). As a direct consequence, the optimal SEP (2.4) admits the
following equivalent formulation:

P(μ) = sup
α∈A(μ)

Eα[�(Wα· , T α·
)]

.(2.6)
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2.2. Duality for the full marginal optimal SEP. In order to introduce the dual
problem, we let L2

loc denote the space of all F-progressively measurable processes,
say H = (Ht)t≥0, defined on the enlarged canonical space �, and such that∫ t

0
H 2

s ds < ∞, P-a.s., for all t > 0 and P ∈ P .

Then, for every H ∈ L2
loc and P ∈ P , the stochastic integral of H w.r.t. the canon-

ical process B under P, denoted by (H · B)·, is well defined. An adapted process
M = (Mt)t≥0 defined on � is called a strong supermartingale under P if Mτ is in-
tegrable for all F-stopping times τ ≥ 0, and for any two F-stopping times τ1 ≤ τ2,
we have that EP[Mτ2 |F τ1] ≤ Mτ1 . We then define H by

H := {
H ∈ L2

loc : (H · B)· is a strong supermartingale under every P ∈ P
}
.

We let M([0,1]) denote the space of all finite signed measures on [0,1] and note
that it is a Polish space under the weak convergence topology. Further, we denote
by 
 the space of all λ : R→ M([0,1]) admitting the representation

λ(x, dt) = λ0(x, t)λ̄(dt),

for some finite positive measure λ̄ ∈ M([0,1]) and some locally bounded measur-
able function λ0 : R× [0,1] →R. For μ = (μt )t∈[0,1], we define


(μ) :=
{
λ ∈ 
 : μ(|λ|) := ∫ 1

0

∫
R

∣∣λ0(x, t)
∣∣μt(dx)λ̄(dt) < ∞

}
,

and

μ(λ) :=
∫ 1

0

∫
R

λ(x, dt)μt (dx) =
∫ 1

0

∫
R

λ0(x, t)μt (dx)λ̄(dt), ∀λ ∈ 
(μ).(2.7)

With the notation λ(B) := ∫ 1
0 λ0(BTs , s)λ̄(ds), we finally set

(2.8) D(μ) := {
(λ,H) ∈ 
(μ) ×H : λ(B) + (H · B)T1 ≥ �(B ·),P-q.s.

}
.

The dual problem for the optimal SEP (2.4) under full marginal constraints is then
defined as follows:

D(μ) := inf
(λ,H)∈D(μ)

μ(λ).(2.9)

Our first main result is the following.

THEOREM 2.3. Let Assumption 2.1 hold true. Suppose in addition that � :
� →R is upper semicontinuous and bounded from above, and satisfies �(ω, θ) =
�(ωθ1∧·, θ) for all (ω, θ) ∈ �. Then there exists a solution P̂ ∈ P(μ) to problem
P(μ) in (2.4) and we have the duality

EP̂
[
�(B·, T·)

]= P(μ) = D(μ).
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EXAMPLE 2.4. The maximum reward function given in (2.11) below aside,
the following are also examples of reward functions which satisfy the conditions
of Theorem 2.3 (see also Remark A.1 on the Lévy metric on V+

r ):

– the weighted variance �(ω, θ) = ∫ 1
0 f (t) dθt , where f : [0,1] → R is bounded

and continuous;
– the knock-in reward function �(ω, θ) = ωθ11{ω∗

θ(1)≥κ}, for some constant κ ∈ R;

– the weighted average value function �(ω, θ) := ∫ 1
0 ωθt f (t) dt for some non-

negative weight function f ∈ L1([0,1]).
We also introduce the weaker version of the dual problem:

D0(μ) := inf
(λ,H)∈D0(μ)

μ(λ),(2.10)

with D0(μ) given by

D0(μ) := {
(λ,H) ∈ 
(μ) ×H : λ(B) + (H · B)T1 ≥ �(B ·),P(μ)-q.s.

}
.

As a consequence of Theorem 2.3, we have the following result.

COROLLARY 2.5. Under the same conditions as in Theorem 2.3, it holds that

P(μ) = D0(μ) = D(μ).

PROOF. Let (λ,H) ∈ D0(μ). For any P ∈ P(μ), taking expectation over the
inequality in the definition of D0(μ), one obtains μ(λ) ≥ EP[�(B·, T·)]. Hence,
μ(λ) ≥ P(μ), which yields the weak duality D0(μ) ≥ P(μ). Since P(μ) ⊆ P , it
follows that D0(μ) ≤ D(μ). In consequence, the result follows from Theorem 2.3.

�

2.3. Maximum maximum given full marginals. We now restrict to the case
where

�(ω, θ) = φ
(
ω∗

θ1

)
with ω∗

t := max
0≤s≤t

ωs, t ≥ 0,(2.11)

for some bounded, nondecreasing and upper semicontinuous (or equivalently
càdlàg) function φ : R+ → R. According to Theorem 2.3 and Lemma 4.3 below,
the duality P(μ) = D(μ) holds for this reward function. The aim of this section
is to compute this optimal value and characterize a solution to the dual problem
(2.10). To this end, we introduce some further conditions on the marginals μ; let
c(t, x) := ∫

R(y − x)+μt(dy) for every (t, x) ∈ [0,1] ×R:

ASSUMPTION 2.6. (i) The function c is differentiable in t and the derivative
function ∂tc is continuous, that is, ∂tc(t, x) ∈ C([0,1] ×R).

(ii) There exists a sequence of discrete time grids (πn)n≥1 with πn = (0 = tn0 <

tn1 < · · · < tnn = 1), such that |πn| → 0 and, for all n ≥ 1, the finite family of
marginals (μtni

)ni=1 satisfies Assumption � in [36].
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For further discussion of Assumption �, see Section 3.1.3 below.
For every fixed m ≥ 0, we introduce a minimization problem: with the conven-

tion that 0
0 = 0 and c

0 = ∞ for c > 0, let

C(m) := inf
ζ∈V+

l :ζ≤m

{
c(0, ζ0)

m − ζ0
+
∫ 1

0

∂tc(s, ζs)

m − ζs

ds

}
.(2.12)

Our first result is on the value of the optimal SEP (2.4).

THEOREM 2.7. Let � be given by (2.11) for some bounded, nondecreasing
and càdlàg function φ. Suppose that Assumptions 2.1 and 2.6(i) hold true. Then

P(μ) = D(μ) ≤ φ(0) +
∫ ∞

0
C(m)dφ(m).(2.13)

Suppose in addition that Assumption 2.6(ii) holds, then equality holds in (2.13).

Our second result is on the existence and characterization of a specific dual
optimizer. To this end, we first introduce a specific class of dual objects. For m > 0
and ζ ∈V+

l such that ζ(1) < m, let the functions λ
ζ,m
c and λ

ζ,m
d be given by

λζ,m
c (x, t) := m − x

(m − ζt )2 1{x≥ζt }1Dc
m
(t)

and

λ
ζ,m
d (x, t) := 1

�ζt

(
(x − ζt )

+

m − ζt

− (x − ζt+)+

m − ζt+

)
1Dm(t) + (x − ζ1)

+

m − ζ1
1{t=1},

where �ζt := ζt+ − ζt , Dm := {t ∈ [0,1) : �ζt > 0} and Dc
m := [0,1) \ Dm. We

then define the static term

(2.14) λζ,m(x, dt) := (
λζ,m

c (x, t) + λ
ζ,m
d (x, t)

)
dζt .

It is clear that λζ,m ∈ 
. Next, let θ−1 : R+ → [0,1] be the right-continuous in-
verse of s �→ θs ; that is, θ−1

s := sup{r ∈ [0,1] : θr ≤ s}. We note that θ−1
s (ω̄) is

F s -measurable for fixed s. Hence, it is càdlàg and F-adapted and therefore F-
progressively measurable. With I− and I+, both functions from R+ to R+, given
by I−(s) := θ(θ−1(s)−) and I+(s) := θ(θ−1(s)), and with τm(ω̄) = inf{t ≥ 0 :
ωθ(t) ≥ m}, we then define the dynamic term:

(2.15) Hζ,m
s (ω, θ) := 1[τm,I+(τm)](s)

m − ζθ−1(τm)

+
1{m≤ω∗

I−(s)
;ζ

θ−1(s)
≤ωI−(s)}

m − ζθ−1(s)

.

Finally, given ζ : [0,1)×R+ →R with ζm· ∈ V+
l and ζm

1 ≤ m, for all m > 0 where
ζm· = ζ(·,m), and such that

∫∞
0

dφ(m)

(m−ζm
1 )2 < ∞, we define the following dual object:

(2.16) λζ (x, dt) :=
∫ ∞

0
λζm,m(x, dt) dφ(m) and Hζ

s :=
∫ ∞

0
Hζm,m

s dφ(m).
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The construction of the dual optimizer below is based on evaluating (λζ ,Hζ )

at an optimizer of the minimization problem (2.12). Hence, we first establish the
existence of such a solution.

LEMMA 2.8. Let Assumptions 2.1 and 2.6(i) hold true. Then there exists a
measurable function ζ̂ : [0,1)×R+ →R such that ζ̂ m· ∈ V+

l is a solution to (2.12),
for all m > 0.

THEOREM 2.9. Suppose that φ : R+ →R is nondecreasing and that Assump-
tions 2.1 and 2.6 hold true. Let ζ̂ : [0,1)×R+ →R be a measurable function such
that, for all m > 0, ζ̂ m· ∈V+

l is a solution to (2.12) and∫ ∞
0

dφ(m)

(m − ζ̂ m
1 )2

< ∞.(2.17)

Then (λ̂, Ĥ ) := (λζ̂ ,H ζ̂ ) ∈ 
(μ) × H. Suppose in addition that φ : R+ → R is
bounded and continuous and that, for all t ∈ [0,1],
(2.18) μt is atomless and ζ̂ m

t and its inverse are both continuous in m.

Then (λ̂, Ĥ ) is a dual optimizer for the problem D0(μ) in (2.10). That is, with �

given in (2.11), it holds that

(2.19) μ(λ̂) = D0(μ) and λ̂(B) + (Ĥ · B)T1 ≥ �(B·, T·), P(μ)-q.s.

REMARK 2.10. The condition (2.18) is needed to argue the convergence to
(λ̂, Ĥ ), in an appropriate sense, of the corresponding dual optimizers for the finite
marginal case (see Lemma 4.4). As seen from the proof, if ζ̂ m· can be represented
as a countable sum, that is,

(2.20) ζ̂ m
s =

∞∑
k=0

ζm
k 1(tk,tk+1](s),

for some (ζm
k )k≥0, then (λ̂, Ĥ ) is a dual optimizer regardless of condition (2.18).

2.4. An associated martingale inequality. In this section, we establish a
closely related martingale inequality. We stress that this result does not require
Assumption 2.6.

PROPOSITION 2.11. Let (Mt)t∈[0,1] be a right continuous martingale, φ :
R+ → R a nondecreasing and càdlàg function, and take ζ : [0,1] × R+ → R

such that for each m > 0, ζm· ∈ V+
l and ζm

1 < m, and the set{
t ∈ [0,1) : x �−→ P[Mt ≤ x] is discontinuous at x = ζm

t

}
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is a dζ
m,c
t -null set, where ζ

m,c
t is the continuous part of t �→ ζm

t . Then, with M∗
t :=

max0≤s≤t Ms , it holds that

E
[
φ
(
M∗

1
)]≤ φ(0) +

∫ ∞
0

E

[∫ 1

0
λ̃m(M,dt)

]
dφ(m),

where [cf. (2.14)] λ̃m(x, dt) := λζm,m(x, dt) so that

E

[∫ 1

0
λ̃m(M,dt)

]
=
∫ 1

0

P[Mt > ζm
t ](m − ζm

t ) −E[(Mt − ζm
t )+]

(m − ζm
t )2 dζ

m,c
t

+ E[(M1 − ζm
1 )+]

m − ζm
1

+∑
t

[
E[(Mt − ζm

t )+]
m − ζm

t

− E[(Mt − ζm
t+)+]

m − ζm
t+

]
.

We conclude this section with a remark on an alternative version of the above
martingale inequality.

REMARK 2.12. Suppose that (Mt)t∈[0,1] is a càdlàg martingale such that the
function cM(t, x) := E[(Mt − x)+] is C1 in t . Further, let φ : R+ → R be nonde-
creasing and càdlàg, and take ζ : [0,1]×R+ →R such that ζm· ∈ V+

l and ζm
1 < m,

for all m > 0. Then

E
[
φ
(
M∗

1
)]≤ φ(0) +

∫ ∞
0

(
E[(M0 − ζm

0 )+]
m − ζm

0
+
∫ 1

0

∂tcM(t, ζm
s )

m − ζm
s

ds

)
dφ(m).

Indeed, due to Monroe [34], there is P ∈P(μ) such that

(2.21) E
[
φ
(
M∗

1
)]= EP

[
φ
(

max
0≤t≤1

BTt

)]
≤ EP[φ(B∗

T1

)]
,

where the inequality follows as φ is nondecreasing and max0≤t≤1 BTt ≤ B∗
T1

. The
above inequality is therefore an immediate consequence of Theorem 2.7.

3. Further discussion. In this section, we discuss the relation between the
optimal SEP and the martingale transport problem, and specify how the optimal
SEP given full marginals can be considered as the limit of the approximating prob-
lem defined by a finite subset of marginals. We also discuss the relation to the full
marginal martingale optimal transport problem. Further, we provide a numerical
scheme for the problem C(m) introduced in (2.12).

3.1. The optimal SEP given finitely many marginals. In this section, we con-
sider the optimal SEP given finitely many marginals and recall some results estab-
lished in previous works.
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For n ≥ 1, let πn = {tn0 , . . . , tnn } be a discrete time grid on [0,1] such that 0 =
tn0 < tn1 < · · · < tnn = 1. Recalling the definition of P from (2.3), let

Pn(μ) := {
P ∈ P : BTtn

k
∼P μtnk

, k = 1, . . . , n
}
.

That is, the set Pn(μ) consists of all Skorokhod embeddings of the n marginals
(μtnk

)k=1,...,n. Let �n : � × (R+)n →R be a reward function. The associated opti-
mal SEP is then given by

Pn(μ) := sup
P∈Pn(μ)

EP[�n(B·∧T1, Ttn1
, . . . , Ttnn

)
]
.(3.1)

3.1.1. The duality result. In Guo, Tan and Touzi [16], a duality result is estab-
lished for the optimal SEP (3.1). Let us define

Dn(μ) := inf

{
n∑

k=1

μtnk
(λk) : (λ1, . . . , λn,H) ∈ (C1)

n ×H such that

(3.2)
n∑

k=1

λk(BTtn
k
) + (H · B)T1 ≥ �n(B·∧T1, Ttn1

, . . . , Ttnn
),P-q.s.

}
.

One of the main results in [16] is the following duality result (see also [5] for a
similar result), which is a cornerstone in our proof of Theorem 2.3.

PROPOSITION 3.1. Suppose that Assumption 2.1 holds true and that �n is
upper semicontinuous and bounded from above. Then Pn(μ) = Dn(μ) and the
supremum in problem Pn(μ) in (3.1) is attained.

3.1.2. Optimal SEP and martingale transport problems. One of the main mo-
tivations for studying the optimal Skorokhod embedding problem is the fact that
any continuous local martingale can be seen as a time-changed Brownian motion.
It is therefore natural to relate the optimal SEP to the martingale optimal transport
(MOT) problem.

Let �̃ := C([0,1],R) denote the canonical space of all continuous paths on
[0,1], with canonical process X and canonical filtration F̃ = (F̃t )0≤t≤1. Let M
denote the collection of all martingale measures on �̃, that is, the probability mea-
sures P̃ on (�̃, F̃1) under which X is a martingale. We recall that there exists
a nondecreasing F̃-progressively measurable process 〈X〉 which coincides with
the quadratic variation of X under every martingale measure P̃ ∈ M (see, e.g.,
Karandikar [30]). Let

〈X〉−1
s := inf

{
t : 〈X〉t ≥ s

}
.

Then, under every P̃ ∈ M, the process (X〈X〉−1
s

)s≥0 is a Brownian motion, and

for every t ≥ 0, 〈X〉t is a stopping time w.r.t. the filtration (F̃〈X〉−1
s

)s≥0. Let μ =
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(μt )0≤t≤1 be the given family of marginals satisfying Assumption 2.1. For n ≥ 1
and a discrete time grid πn : 0 = tn0 < tn1 < · · · < tnn = 1, we denote

Mn(μ) := {
P̃ ∈ M : Xtnk

∼P̃ μtnk
, k = 1, . . . , n

}
.

For a reward function ξ : �̃ →R, we then define the MOT problem

P̃n(μ) := sup
P̃∈Mn(μ)

EP̃[ξ(X·)
]
.(3.3)

The problem has a natural interpretation as a model-independent bound on
arbitrage-free prices of the exotic option ξ(X·). In order to introduce the corre-
sponding dual formulation, let H̃ denote the collection of all F̃-progressively mea-
surable processes H̃ : [0,1] × �̃ → R such that

∫ ·
H̃s dXs is a supermartingale

under every P̃ ∈ M. Then, let

D̃n(μ) := inf

{
n∑

k=1

μtnk
(λk) : (λ, H̃ ) ∈ (C1)

n × H̃ such that

n∑
k=1

λk(Xtnk
) + (H̃ · X)1 ≥ ξ(X·),M-q.s.

}
.

The above dual problem gives the minimal robust super-hedging cost of the exotic
option, in the quasi-sure sense, using static strategy λ and dynamic strategy H̃ .

Via the time change argument, the above MOT problem and its dual version
are related to the optimal SEP Pn(μ) and the associated dual formulation Dn(μ).
Specifically, the following result is given in [16].

PROPOSITION 3.2. Suppose that Assumption 2.1 holds true and that the pay-
off function ξ : �̃ →R is given by

ξ(X·) = �n

(
X〈X〉−1· ∧1, 〈X〉tn1 , . . . , 〈X〉tnn

)
,(3.4)

for some �n which is upper semicontinuous and bounded from above. Then,

Pn(μ) = P̃n(μ) = D̃n(μ) = Dn(μ).

3.1.3. The iterated Azéma–Yor embedding. We now consider a lookback op-
tion, whose payoff function is given by ξ(X·) := φ(X∗

1), with X∗
1 := max0≤t≤1 Xt

and φ : R+ → R a nondecreasing, bounded and càdlàg function. We notice that
ξ satisfies the conditions in Proposition 3.2. Indeed, the corresponding � is given
in (2.11). For the one-marginal case, this problem is solved by the (time-changed)
Azéma–Yor embedding. Given multiple marginal constraints with increasing mean
residual value [see (3.13) below], this solution can be iterated to solve the prob-
lem also for multiple marginals; see [33]. For general marginals, the problem be-
comes significantly more involved. The two-marginal case is solved in [10] (see
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also [26]). Under an additional technical assumption, the problem is solved for
a finite number of marginals in Henry-Labordère, Obłój, Spoida and Touzi [18]
using a certain iterated Azéma–Yor embedding introduced in Obłój and Spoida
[36]. We now recall their solution. A first technical step is the following path-wise
inequality (see Section 4.1 in [18]):

PROPOSITION 3.3. Let x be a càdlàg path on [0,1] and denote x∗
t :=

max0≤s≤t xs . Then, for every m > x0 and ζ1 ≤ · · · ≤ ζn < m:

1{x∗
tn

≥m} ≤
n∑

i=1

(
(xti − ζi)

+

m − ζi

+ 1{x∗
ti−1

<m≤x∗
ti
}
m − xti

m − ζi

)
(3.5)

−
n−1∑
i=1

(
(xti − ζi+1)

+

m − ζi+1
+ 1{m≤x∗

ti
,ζi+1≤xti

}
xti+1 − xti

m − ζi+1

)
.

As argued in [18], the above inequality implies that also the following inequality
holds:

(3.6) 1{x∗
tn

≥m} ≤
n∑

i=1

{
λ

ζ,m
i (xti ) +

∫ ti

ti−1

H
ζ,m
t (x) dxt

}
,

with Tm(x) := inf{t ≥ 0 : xt ≥ m} and

λ
ζ,m
i (x) := (x − ζi)

+

m − ζi

− (x − ζi+1)
+

m − ζi+1
1{i<n}, x ∈ R,

H
ζ,m
t (x) := −1(ti−1,t](Tm(x)) + 1[0,ti−1](Tm(x))1{xti−1≥ζi}

m − ζi

, t ∈ [ti−1, ti).

Indeed, if x is continuous at Tm(x), then the inequalities (3.5) and (3.6) coincide.
If x has a jump at Tm(x), then the first component of the dynamic term in (3.6)
strictly dominates the corresponding term in (3.5).

Intuitively, the left-hand side of (3.5) can be interpreted as the payoff of a
specific exotic option; it serves as the basic ingredient for more general exotic
payoffs since any nondecreasing function φ admits the representation φ(x) =
φ(0) + ∫ x

0 1{x≥m} dφ(m). The right-hand side of (3.5) can be interpreted as a
model-independent super-replicating semi-static strategy, the cost of which can
be computed explicitly.

Minimizing the super-hedging cost yields the following optimization problem:

Cn(m) := inf
ζ1≤···≤ζn≤m

n∑
i=1

(
ci(ζi)

m − ζi

− ci(ζi+1)

m − ζi+1
1i<n

)
,(3.7)

where ck(x) := ∫
R(y −x)+μtk (dy). It is argued in [18] that the minimization prob-

lem (3.7) admits at least one solution (ζ̂k(m))1≤k≤n. An immediate consequence
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is that

Dn(μ) = D̃n(μ) ≤ φ(0) +
∫ ∞

0
Cn(m)dφ(m).(3.8)

Under further conditions (Assumption � in [36]; see Assumption 3.5 below),
Obłój and Spoida [36] provide an iterative way to solve (3.7), and to obtain a fam-
ily of continuous functions (ξk)1≤k≤n such that ζ̂k(m) = mink≤i≤n ξi(m),∀m ≥ 0.
Using the family of functions (ξk)1≤k≤n, they further define a family of iterated
Azéma–Yor embedding stopping times, given by τ0 ≡ 0 and

τk := inf
{
t ≥ τk−1 : Bt ≤ ξk

(
B∗

t

)}
, k = 1, . . . , n.(3.9)

The stopping times (τk)k=1,...,n embed the marginals (μtnk
)k=1,...,n. Moreover, it is

proven in [18] that the embedding satisfies

E
[
φ
(
W ∗

τn

)]= φ(0) +
∫ ∞

0
Cn(m)dφ(m).

In consequence, under Assumption � in [36], it holds that

(3.10) Pn(μ) = P̃n(μ) = D̃n(μ) = Dn(μ) = φ(0) +
∫ ∞

0
Cn(m)dφ(m).

We notice that the discrete process (Wτk
)1≤k≤n resulting from this construction is

in general not a Markov chain.

REMARK 3.4. In [18], the result (3.10) is formulated for the continuous mar-
tingale problem as defined in (3.3). However, it can be easily deduced that the
solution is optimal also for the corresponding càdlàg martingale problem. Specif-
ically, let �̃d denote the space of all càdlàg functions on [0,1], X the canonical
process, F̃d the canonical filtration and Md the space of all martingale measures.
Define

P̃ d
n (μ) := sup

P̃∈Md
n(μ)

EP̃[φ(X∗
1
)]

, with Md
n(μ) := {

P̃ ∈ Md : Xtk ∼P̃ μtk ,∀k
}
.

It is clear that P̃n(μ) ≤ P̃ d
n (μ) since every continuous martingale is a càdlàg mar-

tingale. Further, by Monroe’s [34] result, every càdlàg martingale can be repre-
sented as a time-changed Brownian motion. Since max0≤t≤1 ωθt ≤ ω∗

θ1
and φ is

nondecreasing, it follows that P̃ d
n (μ) ≤ Pn(μ). Therefore, according to (3.10), for

the payoff ξ(X·) := φ(X∗
1) with φ :R →R nondecreasing,

P̃n(μ) = P̃ d
n (μ).

We conclude this section with a discussion of Assumption � in [36]. To this
end, we need their explicit definition of the stopping barriers (ξi)1≤i≤n [cf. (3.9)].
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Recall first the one-marginal Azéma–Yor embedding: let b(x) be the barycenter
function of μ given by

(3.11) b(x) = b(x;μ) :=
∫
[x,∞) yμ(dy)

μ([x,∞))
1{lμ<x<rμ} + x1{x≥rμ},

where lμ and rμ is the left and right endpoint of the support of μ: lμ := sup{x :
μ([x,∞)) = 1} and rμ := inf{x : μ((x,∞)) = 0}. Then the Azéma–Yor embed-
ding of μ is given by inf{t ≥ 0 : Bt ≤ b−1(B∗

t )}, where b−1 denotes the right-
continuous inverse of b. As shown in [10], it holds that

b−1(y) = sup
{

argmin
ζ≤y

c(ζ )

y − ζ

}
.

The construction in [36] provides a generalisation of this in that the barriers
are defined as follows: with c0 = 0 and ξ0 = −∞, having previously defined
ξ1(y), . . . , ξn−1(y), let

ζ k
i (y) := min

i≤j≤k
ξj (y), y ≥ 0,1 ≤ i ≤ k,

for k ≤ n − 1, and define the subsequent stopping boundary by ξn(0) = lμn , and

ξn(y) := sup
{
argmin

ζ≤y

Kn

(
ζ n−1

1 (y) ∧ ζ, . . . , ζ n−1
n−1 (y) ∧ ζ, ζ, y

)}
, y > 0,(3.12)

where Kn(ζ1, . . . , ζn, y) := ∑n
i=1

ci(ζi )−ci−1(ζi )
y−ζi

, for ζ1, . . . , ζn ∈ (−∞, y] and
y ≥ 0 [cf. (3.7)].

The relevant quantities for the n-marginal problem are clearly highly nontrivial.
They are, however, crucially defined in an inductive manner. It is also clear that
for the case of one and two marginals, they reduce to the solutions given in [2] and
[10]. The key assumption in [36] now reads as follows:

ASSUMPTION 3.5 (Assumption � in [36]). The marginals μ1, . . . ,μn sat-
isfy conditions (2.1) and (2.2) in Assumption 2.1 and ci−1 < ci on (lμi

, rμi
),

i = 1, . . . , n.3 Further, for all 2 ≤ i ≤ n, and all 0 < y < rμi
, the minimization

problem in (3.12) admits a unique minimizer ζ ∗ on (lμi
, y).

The role of Assumption � is to rule out a certain interdependence between the
marginals. More specifically, it is proven in [36] that under Assumption �, the
barriers y �→ ξ(y) are continuous and increasing. Notably, for the two-marginal
problem where the assumption is not needed, the case when this does not hold
true calls for particular attention; see [10]. The assumption is nontrivial to verify
and we refer to [36] for examples and further discussion (see Section 4 therein);

3Note that under assumption (2.1), (μn) is nondecreasing in convex order [i.e., (2.2) holds] if and
only if ci−1 ≤ ci , i = 1, . . . , n.
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we emphasize that for our results in Section 2.3, we do not need this condition
to hold for any partition but it suffices that there is some sequence of partitions
along which it holds. We also note that in [3], the existence of barriers (ξi)1≤i≤n

such that (τi)1≤i≤n given in (3.9) gives an optimal solution to the multi-marginal
SEP has been established without Assumption �. No explicit solution is however
known for the general case.

3.2. The optimal SEP given full marginals. We now return to our optimal SEP
(2.4) given full marginals. In fact, this problem is obtained as the limit of the
problem given finitely many marginals; see the proof of Theorem 2.3. We pro-
vide here further discussion of the convergence of various optimal values and the
corresponding optimizers.

3.2.1. The limit of the MOT problem given finitely many marginals. Our main
motivation for studying the optimal SEP is the MOT problem, which has a natural
interpretation and application in finance. For the case of finitely many marginal
constraints, and for certain payoff functions, the optimal SEP Pn(μ) in (3.1) is
equivalent to the MOT problem P̃n(μ) in (3.3) (see Proposition 3.2).

When the number of marginals turns to infinity, the question arises whether the
MOT problem (3.3) converges in some sense. Specifically, we are interested in the
convergence of the optimal value and of the optimizer. The following convergence
result is an immediate consequence of the proof of Theorem 2.3.

PROPOSITION 3.6. Suppose that Assumption 2.1 holds true and let ξ : �̃ →R

be given by

ξ(X·) = �
(
X〈X〉−1· ∧1, 〈X〉1

)
,

for some upper semicontinuous and bounded function � : � × R+ → R. Let
P̃n(μ), Pn(μ) and P(μ) be defined with respect to ξ and �, respectively. Then
we have the approximation result

lim
n→∞ P̃n(μ) = lim

n→∞Pn(μ) = P(μ).

Further, the optimal transferences converge in the sense of the convergence of
Skorokhod embeddings (i.e., the convergence of probability measures on �).

The above result implies that the full marginal SEP provides the limit of the
n-marginal continuous MOT problem (i.e., of the robust prices).

For the lookback option, according to Remark 3.4, P(μ) is also the limit of the
n-marginal càdlàg MOT problem. We note that in [17, 19], it is shown that for a
certain class of payoffs, the limit of the n-marginal càdlàg MOT problem equals
the value of the full marginal càdlàg MOT problem. Notably, the maximum payoff
does not satisfy the assumptions imposed therein; see also Remark 3.7 below.
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3.2.2. The limit of the optimal martingale transference plan. Our main results
characterize, under technical conditions, the optimal value as well as the dual op-
timizer for the maximum reward function. As for the (primal) optimal Skorokhod
embedding under full marginal constraints, we only have the existence result but
no explicit construction of the optimal limiting object. However, as we now recall,
in the particular setup of Madan and Yor [33] things are more explicit. In particu-
lar, one can then characterize the corresponding limiting martingale in an explicit
way. To see this, suppose that the family (μt )t∈[0,1] satisfies the so-called property
of increasing mean residual value:

t �→ bt (x) is nondecreasing for every x,(3.13)

where bt (x) = b(x,μt ) is the barycenter function given in (3.11). For any discrete
time grid πn : 0 = tn0 < tn1 < · · · < tnn = 1, it turns out that the boundary functions
(ξk)1≤k≤n defined in [36] are then given by ξk = b−1

tk
(see Example 2.9 in [36]),

and that the iterated Azéma–Yor embedding coincides with the Azéma–Yor em-
bedding:

τt := inf
{
s ≥ 0 : Bs ≤ b−1

t

(
B∗

s

)}
.(3.14)

Recall that the iterated Azéma–Yor embedding induces a continuous martin-
gale, which is the optimal martingale transference for a class of lookback op-
tion given finitely many marginal constraints (cf. Proposition 3.2). It follows that
under condition (3.13), this optimal martingale transference plan converges to
M = (Mt)t∈[0,1], given by

Mt := Bτt .

More precisely, since M may not be right-continuous by its definition, we should
say the limiting martingale is the right-continuous modification of M , which does
exist since t �→ μt is right-continuous. Moreover, it is proven in [33] that M is in
fact a Markov process and that one can compute its generator in explicit form.

REMARK 3.7. (i) Similarly to the martingale optimal transport problem
P̃n(μ) under finitely many marginal constraints, we can introduce the correspond-
ing full marginal version P̃ (μ) by considering

M(μ) := {
P̃ ∈ M : Xt ∼P̃ μt, t ∈ [0,1]}.

However, the convergence of the optimal SEP in Proposition 3.6 does not imply
convergence towards this full marginal MOT problem. This since the limiting mar-
tingale may be càdlàg, and, crucially, we lose information of the Brownian motion
because of the jumps of t �→ Bτt .

(ii) As an example, let us take the maximum reward function ξ(X) = φ(X∗
1)

(with increasing function φ). Under the increasing mean residual value condi-
tion (3.13), we know from Madan and Yor [33] that the optimal SEP P(μ)
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under full marginal constraints is solved by the sequence (τt )0≤t≤1 defined in
(3.14). However, it is clear that one has M∗

1 := sup0≤t≤1 Bτt ≤ B∗
τ1

for the re-
sulting martingale Mt := Bτt due to the jumps of t �→ τt . Therefore, in general,
E[φ(M∗

1 )] �= E[φ(B∗
τ1

)] and M need not be an optimal martingale for the MOT
problem given full marginals.4

3.2.3. The limit of the pathwise inequality. The proof of Theorem 2.9 is based
on applying limiting arguments to the path-wise inequality (3.5) (see Section 4.3).
By use of a similar arguments, we might obtain an almost sure inequality for càdlàg
martingales.

PROPOSITION 3.8. Let (Mt)t∈[0,1] be a right-continuous martingale, take
ζ : [0,1) × R+ → R such that ζm· ∈ V+

l and ζm· < m and let φ : R+ → R+ be
bounded, continuous and nondecreasing. Suppose either (i) that ζ , φ and the
marginals of M satisfy the conditions of Theorem 2.9; or (ii) that ζ admits the
representation (2.20). Then, with λζ given in (2.16), M satisfies the following in-
equality:

φ
(
M∗

1
)≤ ∫ 1

0
λζ (dt,Mt) +

∫ 1

0

∫ ∞
0

1{m≤M∗
t−;ζm

t ≤Mt−}
dφ(m)

m − ζm
t

dMt, a.s.(3.15)

The difference between the right-hand side of (3.15) and (2.19) appear in the
dynamic term [cf. (2.15)]. Specifically, for the martingale formulation, the coun-
terpart of the first dynamic term in (2.19) is always negative and thus vanishes
from the inequality. This is related to the fact that the limit of the first dynamic
component in (3.6) is zero. For continuous martingales, the two inequalities coin-
cide.

3.3. The resolution of C(m). Finally, we would like to discuss the resolution
of the problem C(m) in (2.12), for the main results in Theorems 2.7 and 2.9 rely
on its solution ζ̂ .

It is clear that we can decompose the minimization problem C(m) as follows:

C(m) = inf
x<m

{
c(0, x)

m − x
+ v(0, x)

}
; v(0, x) := inf

ζ∈Ṽ+
l ,ζ0=x

∫ 1

0

∂tc(s, ζs)

m − ζs

ds.

The problem of computing v(0, x) is a standard singular deterministic control
problem. When the function ∂tc(s, x) is continuous, it therefore follows by stan-
dard arguments (see, e.g., [11]) that v can be characterized as a viscosity solution

4To confirm this point, we did some simulations on M , which is a Markov martingale with genera-
tor explicitly given in [33]. Taking the marginals of a Brownian motion on [0,1], we simulated M on
a discrete grid (tk)0≤k≤n for tk := k

n and n = 200: with N = 10,000 simulations, the Monte-Carlo
estimation of E[M∗

1 ] is 0.6199571 with confidence interval [0.6086966,0.6312176] (and confidence
level 95%); for the Brownian motion W itself, however, one has E[W∗

1 ] = E[|W1|] ≈ 0.7978846.
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to the PDE

max
{
−∂xv(t, x),−∂tv(t, x) − ∂tc(t, x)

m − x

}
= 0,(3.16)

equipped with the terminal condition v(1, x) = 0, for all x < m.
We now propose a numerical scheme for the problem C(m). To this end, for a

given partition πn = {tn1 , . . . , tnn }, with 0 = tn0 ≤ · · · ≤ tnn = 1, let Vn
l be the subset

of V+
l for which ζ is constant on (ti−1, ti], i = 1, . . . , n. Further, let

vn(0, x) := inf
ζ∈Vn

l ,

ζ0=x,ζ1<m

∫ 1

0

∂tc(s, ζs)

m − ζs

ds.

For a sequence of partitions such that |πn| → 0, it follows that vn(0, x) → v(0, x);
cf. the proof of Lemma 4.2 below. On the other hand,

vn(0, x) = inf
ζi ,i=1,...,n:

x≤ζ1≤···≤ζn<m

n∑
i=1

�c(tni , ζi)

m − ζi

,

with �c(tni , ζ ) := c(tni , ζ ) − c(tni−1, ζ ). In consequence, vn(0, x) = v̄n(tn0 , x),
where v̄n(tnk , x), k = 0, . . . , n, is iteratively defined by⎧⎪⎨⎪⎩v̄n(tnk , x

)= inf
0≤y<m−x

(
v̄n(tnk+1, x + y

)+ �c(tni , x + y)

m − (x + y)

)
, k ≤ n − 1,

v̄n(tnn , x
)= 0.

This yields a scheme for explicit calculation of vn(0, x) as an approximation of
v(0, x).

4. Proofs.

4.1. Technical lemmas. In preparation for the first lemma, we define as fol-
lows: given n ≥ 1, a partition π : 0 = tn0 < tn1 < · · · < tnn = 1 of [0,1], s =
(s0, s1, . . . , sn) ∈ (R+)n+1 and θ ∈ V+

r , we define θ̂ s = (θ̂ s
r )r∈[0,1] ∈ V+

r by θ̂ s
1 :=

max1≤j≤n sj and

θ̂ s
r := max

0≤j≤i
sj for r ∈ [tni , tni+1

)
, i = 0,1, . . . , n − 1;

further, we let θ̂ θ := θ̂ ŝ , with ŝ = (ŝi)0≤i≤n given by ŝn := θ1 and

ŝi := 1

tni+1 − tni

∫ tni+1

tni

θs ds, i = 0, . . . , n − 1.(4.1)

LEMMA 4.1. Let � : � →R be upper semicontinuous, bounded and such that
�(ω, θ) = �(ω·∧θ1, θ), for all (ω, θ) ∈ �. Further, let (πm)m≥1 be an increasing
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sequence of partitions of [0,1] (i.e., πm+1 ⊃ πm) such that |πm| → 0. Then there
exists a subsequence (mn)n≥1 and a sequence (�n)n≥1 of bounded continuous
functions �n : � × (R+)mn →R such that

�̃n(ω) = �n(ω·∧θ1, ŝ1, . . . , ŝmn) ↘ �(ω) as n → ∞,∀ω ∈ �,(4.2)

where ŝi is defined by (4.1) with partition πmn . In particular, (�̃n)n≥1 is a nonin-
creasing sequence of bounded continuous functions defined on �.

PROOF. Define �k : � ×V+
r →R, k ∈ N, by �k(ω, θ) := �̃k(ω·∧θ1, θ), with

�̃k(ω, θ) := (−k) ∨ sup{�(ω′, θ ′) − kd((ω, θ), (ω′, θ ′))}, so that �k is bounded
and Lipschitz and �k ↘ � as k → ∞. Next, let �k,m : � → R, m ∈ N, be given
by

�k,m(ω, θ) := �k(ω, θ̂θ ),
where θ̂ θ is defined above (4.1) with partition πm = {tmk : 0 ≤ k ≤ m} of [0,1].
In particular, �k,m is a bounded continuous function defined on � since θ �→ θ1

and θ �→ ∫ tmi+1
tmi

θs ds are all continuous. Note further that since d(θ, θ̂ θ ) ≤ |πm| [cf.
(1.2)], we then have∣∣�k,m(ω, θ) − �k(ω, θ)

∣∣= ∣∣�k(ω, θ̂θ )− �k(ω, θ)
∣∣≤ Lk|πm|,

with Lk the Lipschitz constant associated with �k . In consequence,

�̂k,m(ω, θ) := �k,m(ω, θ) + Lk|πm| −→ �k(ω, θ) as m → ∞.

Hence, we may choose an increasing sequence (mk)k≥1 such that �̂k,mk (ω, θ) ≥
�(ω, θ) and �̂k,mk (ω, θ) −→ �(ω, θ), as k → ∞. In consequence, defining

�̃n(ω) := min
1≤k≤n

�̂k,mk (ω) and �n(ω, s1, . . . , smn) := �̃n

(
ω, θ̂ s),

we have that (4.2) holds true. Moreover, since �k,m : � →R is bounded and con-
tinuous, both �̃n and �n are also bounded and continuous, which completes the
proof. �

PROOF OF LEMMA 2.8. We follow the argument at the beginning of Section 3
in [18]. Let

�m(ζ ) := c(0, ζ0)

m − ζ0
+
∫ 1

0

∂tc(s, ζs)

m − ζs

ds.(4.3)

We first consider a constant function ζ̂ z· ≡ z for some constant z < m. By direct
computation, it is easy to see that

�m

(
ζ̂ z)= c(1, z)

m − z
≥ C(m).
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Note that since z �→ c(1, z) is convex and c(1,z)
m−z

is the slope of the tangent to
z �→ c(1, z) intersecting the x-axis in m, it follows that C(m) < 1.

On the other hand, since ∂tc(s, z) ≥ 0, we have

�m(ζ ) ≥ c(0, ζ0)

m − ζ0
→ 1 as ζ0 → −∞.

For the minimization problem C(m) in (2.12), it is therefore enough to consider
the space V+

l ([0,1), [K,m)) for some constant K ∈ (−∞,m), that is,

C(m) = inf
ζ∈V+

l ([0,1),[K,m))
�m(ζ ).

Since, for elements in V+
l , convergence in the Lévy metric implies pointwise con-

vergence at t = 0, ζ �→ �m(ζ ) is continuous. Further, V+
l ([0,1), [K,m)) is com-

pact under the Lévy metric. In consequence, for every m > 0, there exists at least
one solution in V+

l to (2.12). To conclude, it is enough to use a measurable selec-
tion argument to choose a measurable function ζ̂ . �

LEMMA 4.2. Suppose that the function c is differentiable in t and that the
derivative function ∂tc is continuous. Then, for every m > 0, we have

lim
n→∞Cn(m) = C(m).

PROOF. Let Vn
l be the subset of V+

l for which ζ is constant on (ti−1, ti], i =
1, . . . , n − 1, and on (tn−1, tn). For n fixed and ζ ∈ Vn

l , let ζ(tn) := ζ(t−n ). Recall
the definition of �m from (4.3) and notice that for every ζ ∈ Vn

l ,

�m(ζ ) = c(0, ζt0)

m − ζt0

+
n∑

i=1

∫ ti

ti−1

∂tc(s, ζti )

m − ζti

ds

= c(0, ζt0)

m − ζt0

+
n∑

i=1

(
c(ti, ζti )

m − ζti

− c(ti−1, ζti )

m − ζti

)

=
n∑

i=0

(
c(ti, ζti )

m − ζti

− c(ti, ζti+1)

m − ζti+1

1i<n

)
.

Since x0 ≤ m, it holds that
c(t0,ζt0 )

m−ζt0
− c(t0,ζt1 )

m−ζt1
≥ 0. In consequence, recalling the

definition of Cn(m) from (3.7), we obtain

inf
ζ∈Vn

l ,ζ1≤m
�m(ζ ) = inf

ζ∈Vn
l ,ζ1≤m

n∑
i=1

(
c(ti, ζti )

m − ζti

− c(ti, ζti+1)

m − ζti+1

1i<n

)
= Cn(m).

Hence, the Cn(m) are nonincreasing in n and

Cn(m) = inf
ζ∈Vn

l ,ζ1≤m
�m(ζ ) ≥ inf

ζ∈V+
l ,ζ1≤m

�m(ζ ) = C(m).
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Next, for any ζ ∈ V+
l , by direct truncation we can easily obtain a sequence

ζ n such that ζ n ∈ Vn
l and ζ n → ζ under the Lévy metric. Since ζ → �m(ζ ) is

continuous, it follows that Cn(m) → C(m) as n → ∞. �

LEMMA 4.3. The mapping from � to R given by

(4.4) (ω, θ) �−→ ω∗(θ(1)
) := sup

0≤s≤θ(1)

ω(s),

is continuous with respect to the product topology on �.

PROOF. Let (ωn(·), θn(·)) ∈ �, n ∈ N, be a sequence converging in the prod-
uct topology to (ω̃(·), θ̃ (·)) ∈ �. Recall that C(R+,R) is equipped with the metric
ρ defined in (1.1), which induces the topology of uniform convergence on compact
subsets. Hence,

(4.5) lim
n→∞ sup

0≤s≤m

∣∣ωn(s) − ω̃(s)
∣∣= 0 for all m ≥ 0.

Note that∣∣∣ sup
0≤s≤θn(1)

ωn(s) − sup
0≤s≤θ̃ (1)

ω̃(s)
∣∣∣= ∣∣∣ sup

0≤s≤θn(1)

ωn(s) − sup
0≤s≤θn(1)

ω̃(s)
∣∣∣

+
∣∣∣ sup
0≤s≤θn(1)

ω̃(s) − sup
0≤s≤θ̃ (1)

ω̃(s)
∣∣∣.

The first term is dominated by sup0≤s≤θn(1) |ωn(s) − ω̃(s)| which tends to zero as
n tends to infinity due to (4.5). Recall that for elements in V+

r , convergence in the
Lévy metric implies pointwise convergence at t = 1 (see Remark A.1). Since ω̃(·)
is a continuous path, this implies that the second term tends to zero. Hence, the
mapping in (4.4) is continuous and we conclude. �

LEMMA 4.4. Let �̃d := D([0,1],R) be the space of all càdlàg paths on [0,1]
with canonical process X, and Md the space of all martingale measures on �̃d .
We define

Md(μ) := {
P̃ ∈ Md : Xt ∼P̃ μt,∀t ∈ [0,1]}.

Further, let ζ : [0,1) → (−∞,m) be a nondecreasing càglàd path on [0,1) and
πn : 0 = tn0 < · · · < tnn = 1 a sequence of discrete time grids such that |πn| → 0 as
n → ∞. Let ζ c be the continuous part of ζ , and let λζ,m be given by (2.14). Then:

(i) If μt is atomless for all t ∈ [0,1], it holds Md(μ)-q.s. that as n → ∞,

n∑
k=1

((Xtnk
− ζtnk

)+

m − ζtnk

− (Xtnk
− ζtnk+1

)+

m − ζtnk+1

1{k<n}
)

−→
∫ 1

0
λζ,m(Xt , dt).
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(ii) if ζs =∑∞
k=0 ζk1(tk,tk+1](s), then the convergence in (i) holds path-wise for

all x ∈ �̃d . The integral with respect to dζ c is then identically zero.

PROOF. It follows from the definition of λζ,m, that in order to prove (i), it is
sufficient to show that, Md(μ)-q.s.,

n−1∑
k=1

((Xtnk
− ζtnk+1

)+

m − ζtnk+1

− (Xtnk
− ζtnk

)+

m − ζtnk

)
(4.6)

−→
∫ 1

0

Xt − m

(m − ζt )2 1{Xt≥ζt } dζ c
t +∑

t

(
(Xt − ζt+)+

m − ζt+
− (Xt − ζt )

+

m − ζt

)
.

Observe that for each path x ∈ D([0,1],R), the discrete sum in (4.6) might be
written as

∫ 1
0 fn(t; ζ ) dζt , where

fn(t; ζ ) =
n−1∑
k=1

1t∈(tnk ,tnk+1]
ζtnk+1

− ζtnk

((xtnk
− ζtnk+1

)+

m − ζtnk+1

− (xtnk
− ζtnk

)+

m − ζtnk

)
.

Denote by Dζ ⊂ (0,1) the subset of all discontinuous points of ζ . Now, under
assumption (i), for t /∈ Dc

ζ ∩{t : xt = ζt }, the fn(·; ζ ) converge pointwise to f (·; ζ ),
with

f (t; ζ ) =

⎧⎪⎪⎨⎪⎪⎩
xt − m

(m − ζt )2 1{xt≥ζt }, t ∈ Dc
ζ ,

1

ζt+ − ζt

(
(xt − ζt+)+

m − ζt+
− (xt − ζt )

+

m − ζt

)
, t ∈ Dζ .

On the other hand, by use of Fubini’s theorem and assumption (i), we obtain that
for P ∈ Md(μ),

EP

[∫ 1

0
1{xt=ζt } dζ c

t

]
=
∫ 1

0
P[xt = ζt ]dζ c

t =
∫ 1

0
μt

({ζt })dζ c
t = 0.

That is to say,
∫ 1

0 1{Xt=ξt } dζ c
t = 0, Md(μ)-q.s. Since, for all ε > 0, ζ �→ (x−ζ )+

m−ζ

is Lipschitz on (−∞,m − ε], there is K > 0, such that fn(t) ≤ K , t ∈ [0,1],
n ≥ 0. Hence, by use of dominated convergence we obtain

∫ 1
0 fn(t; ζ ) dζt →∫ 1

0 f (t; ζ ) dζt , Md(μ)-q.s., which implies (4.6).
Next, suppose that assumption (ii) holds. Then, for t ∈ [0,1], the function

fn(t; ζ ) converges pointwise to f 0(t; ζ ), where

f 0(t; ζ ) =
⎧⎪⎨⎪⎩

0, t ∈ Dc
ζ ,

1

ζt+ − ζt

(
(xt − ζt+)+

m − ζt+
− (xt − ζt )

+

m − ζt

)
, t ∈ Dζ .

By use of the same arguments as in case (i), we may then pathwise apply the
dominated convergence theorem and easily conclude. �
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4.2. Proof of Theorem 2.3. We first argue that the optimal SEP given finitely
many marginals, defined in (3.1), may be reformulated similarly to problem (2.6).
Concretely, for a given discrete time grid πn : 0 = tn0 < · · · < tnn = 1, we call
(μ,πn)-embedding a term

α = (
�α,Fα,Fα = (

Fα
t

)
t≥0,P

α,
(
Wα

t

)
t≥0,

(
T α

k

)
k=1,...,n

)
,(4.7)

such that in the filtered space (�α,Fα,Fα,Pα), Wα· is a Brownian motion, T α
1 ≤

· · · ≤ T α
n are stopping times, the stopped process (Wα

T α
n ∧·) is uniformly integrable,

and Wα
T α

k
∼Pα

μtnk
for each k = 1, . . . , n. We also extend the sequence of stopping

times T α to a nondecreasing process, T̃ α = (T̃ α
s )s∈[0,1], by defining T̃ α

s := 0 for
s ∈ [0, tn1 ),

T̃ α
s := T α

k , for s ∈ [tnk , tnk+1
)
, k = 1, . . . , n − 1, and T̃ α

1 := T α
n .

Let An(μ) denote the collection of all (μ,πn)-embeddings α. Then it is clear
that every term in An(μ) induces on the canonical space � a probability measure
in Pn(μ), and that every probability measure P ∈ Pn(μ) together with the space
(�,F,F) forms a (μ,πn)-term in An(μ). Hence, for a given reward function �n :
� × (R+)n →R, we have that

Pn(μ) = sup
α∈An(μ)

EPα [
�n

(
Wα· , T α

1 , . . . , T α
n

)]
.(4.8)

Before proving Theorem 2.3, we present a lemma. Its proof is partly adapted
from the proof of Theorem 11 in Monroe [34] and that of Theorem 3.10 in
Jakubowski [29].

LEMMA 4.5. Let αn ∈ An(μ), n ∈ N, be a sequence of terms of the form (4.7).
Let Pn be the probability measure on � induced by (Wαn· , T̃ αn· ) in the probability
space (�αn,Fαn,Pαn). Then the sequence {Pn}n≥1 is tight, and any limiting point
P lies in P(μ).

PROOF. (i) We first argue that the sequence {Pn}n≥1 is tight. To this end, note
that the projection measure Pn|� on � is the Wiener measure for every n ≥ 1, and
hence the sequence (Pn|�)n≥1 is trivially tight. Next, since T̃

αn

1 are all minimal
stopping times in the sense of Monroe [34], it follows from Proposition 7 in [34]
that

Pn(T1 ≥ λ) = Pαn
(
T̃

αn

1 ≥ λ
)≤ λ−1/3(EPαn [∣∣Wαn

T̃
αn
1

∣∣]2 + 1
)
, ∀λ > 0.

Let Aλ be the set of functions in V+
r ([0,1],R+) which are bounded by λ > 0 and

π the projection of � onto V+
r ([0,1],R+). It follows that

Pn

(
π−1(Aλ)

)= Pn(T1 ≤ λ) ≥ 1 − λ−1/3((μ1
(|x|))2 + 1

)
.

Since Aλ, λ > 0, is compact (see Remark A.1), it follows that {Pn}n≥1 is tight.
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(ii) Let P be a limiting point of (Pn)n≥1; by taking subsequences if necessary,
we can assume that Pn → P. We now prove that B is an F-Brownian motion under
the limiting measure P. Since the measures Pn are induced by (Wαn, T̃ αn) under
Pαn , we know that B is an F-Brownian motion under each Pn, n ≥ 1. Let t > s,
0 < ε < t − s, and φ : � → R be a bounded continuous function which is F s+ε-
measurable. Then, for every ϕ ∈ C2

b(R), we have

EPn

[
φ(B·, T·)

(
ϕ(Bt) − ϕ(Bs+ε) −

∫ t

s+ε

1

2
ϕ′′(Bu) du

)]
= 0.

By taking the limit n → ∞, it follows that

EP

[
φ(B·, T·)

(
ϕ(Bt ) − ϕ(Bs+ε) −

∫ t

s+ε

1

2
ϕ′′(Bu) du

)]
= 0.(4.9)

According to Lemma A.2, the equality (4.9) holds true also for every bounded
random variable φ : � → R that is F s -measurable. Let ε → 0, it follows that for
every φ : � →R bounded and F s -measurable, and every ϕ ∈ C2

b(R),

EP

[
φ(B·, T·)

(
ϕ(Bt) − ϕ(Bs) −

∫ t

s

1

2
ϕ′′(Bu) du

)]
= 0.

Hence, B is an F-Brownian motion under P.
(iii) We now show that the process (Bt∧T1)t≥0 is uniformly integrable under P.

For every ε > 0, there is Kε > 0 such that∫
R

(|x| − Kε

)+
μ1(dx) ≤ ε.

Since |x|1{|x|≥2K} ≤ 2(|x| − K)+, it follows that

EPn
[|BT1∧t |1{|BT1∧t |≥Kε}

]≤ 2EPn
[(|BT1 | − Kε

)+]≤ 2ε, ∀t ≥ 0.

Then, for every bounded continuous function p : R → R such that p(x) ≤
|x|1{|x|≥2Kε}, it follows by the dominated convergence theorem that

EP
[
p(Bt∧T1)

]= lim
n→∞EPn

[
p(Bt∧T1)

]≤ 2ε, ∀t ≥ 0,

which implies that (Bt∧T1)t≥0 is uniformly integrable under P.
(iv) Next, we prove that BTt ∼P μt , t ∈ [0,1]. We shall adapt an idea from the

proof of Theorem 3.10 in Jakubowski [29]. For every n, let αn be the solution of
the optimal SEP (3.1) and denote by mαn the random measure on ([0,1],B([0,1]))
defined by

mαn
([0, t],ω) := T̃

αn
t (ω)

1 + T̃
αn

1 (ω)
, ∀t ∈ [0,1].

Notice that mn takes values in the space M+
1 ([0,1]) of all positive measures

on [0,1] with mass less than 1. Since [0,1] is compact, M+
1 ([0,1]) is tight,



OPTIMAL SEP GIVEN FULL MARGINALS 711

and relatively compact by Prokhorov’s theorem. We can then easily check that
M+

1 ([0,1]) is compact under the weak convergence topology. Therefore, the
sequence (Pαn ◦ (mn)

−1)n≥1 is tight, and hence (Pαn ◦ (Wαn, T̃
αn

1 ,mn)
−1)n≥1

is tight. By taking subsequences, we can assume that Pαn ◦ (Wαn, T̃
αn

1 ,mn)
−1

converges. Next, using the Skorokhod representation theorem, we can further
assume that there is some probability space (�∗,F∗,P∗) in which there are
processes (W ∗,n, T

∗,n
1 ,m∗,n)n≥1, such that Pαn ◦ (Wαn, T̃

αn

1 ,mαn)−1 = P∗ ◦
(W ∗,n, T

∗,n
1 ,m∗,n)−1, for all n ≥ 1, and(

W ∗,n, T
∗,n
1 ,m∗,n)→ (

W ∗, T ∗,m∗), P∗-a.s.

Further, the map t �→ EP∗[m∗([0, t])], from [0,1] to R, is nondecreasing, and
hence admits at most countably many discontinuous points. It follows that there is
some countable set Q1 ⊂ [0,1) such that EP∗[m∗({t})] = 0, for every t ∈ [0,1] \
Q1. Thus, for every t ∈ [0,1] \Q1, we have P∗-a.s. that m∗,n([0, t]) → m∗([0, t]),
and hence T

∗,n
t → T ∗

t , P∗-a.s. In particular, we have

W
∗,n

T
∗,n
t

→ W ∗
T ∗

t
, P∗-a.s. ∀t ∈ [0,1] \Q1.

Moreover, by Hirsch and Roynette [21] Lemma 4.1, there exists a countable set
Q2 ⊂ [0,1] such that t �→ μt is continuous at any s ∈ [0,1] \Q2. Hence, for every
t ∈ [0,1] \ (Q1 ∪Q2), we have for any limit point P of (Pn)n≥1,

P ◦ (BTt )
−1 = P∗ ◦ (W ∗

T ∗
t

)−1 = μt .(4.10)

By the right continuity of t �→ μt , it follows that (4.10) holds true for every t ∈
[0,1].

In summary, we have proven that in the filtered space (�,F∞,F,P), B is a
Brownian motion, T1 is a minimal stopping time and BTt ∼ μt for every t ∈ [0,1].
We easily conclude. �

PROOF OF THEOREM 2.3. By taking expectation over each side of the in-
equality defining D(μ) in (2.8), for all P ∈ P(μ), we easily obtain the weak du-
ality P(μ) ≤ D(μ). Next, consider an increasing sequence (πm)m≥1 of partitions
of [0,1] such that |πm| → 0 as m → ∞. Let (mn)n∈N, (�n)n∈N and (�̃n)n∈N be
the sequences of functions approximating � as given in Lemma 4.1. Further, let
Pn(μ) and Dn(μ) be the primal and dual n-marginal problems defined w.r.t. �n in
(3.1) and (3.2). Since �n ≥ �, it follows that

(4.11) Dn(μ) ≥ D(μ).

For each n ∈ N, let αn ∈ An(μ) be the solution of the optimal SEP Pn(μ) de-
fined with respect to �n in (4.8). Let Pn be the probability measure on � in-
duced by (Wαn· , T̃ αn· ) in the probability space (�αn,Fαn,Pαn). Then, according
to Lemma 4.5, the sequence {Pn}n≥1 is tight, and P ∈ P(μ), when P is a limiting
point of {Pn}n≥1.
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Note that by taking sub-sequences if necessary, we can assume that Pn → P.
Further, notice that (�̃n)n≥1 is a nonincreasing sequence of bounded continuous
functions approximating � by Lemma 4.1. By use of the monotone convergence
theorem and the optimality of Pn for problem (3.1), for n ∈ N, it therefore follows
that

P(μ) ≥ EP[�(B·, T·)
]= lim

n→∞EP[�n(B·, T·)
]≥ lim

n→∞
(

lim
k→∞EPk

[
�n(B·, T·)

])
≥ lim

n→∞
(

lim
k→∞EPk

[
�k(B·, T·)

])= lim
n→∞Pn(μ).

In consequence, since Pn(μ) ≥ P(μ) for all n ≥ 1, we have that

(4.12) lim
n→∞Pn(μ) = P(μ).

Since the �n satisfy (4.2), we may apply the duality result for the optimal SEP
with finitely many marginal constraints (see Proposition 3.1). Hence, it follows
from (4.12) combined with (4.11) that P(μ) ≥ D(μ). Combined with the weak
duality, this yields P(μ) = D(μ). As a by-product, we also obtain that P is an
optimal embedding for the optimal SEP (2.4). This completes the proof. �

REMARK 4.6. The proof of Theorem 2.3 is based on an approximation argu-
ment together with the duality result for the problem given finitely many marginals.
Specifically, if � can be approximated from above by a sequence (�n)n≥1, where
for each n ≥ 1, �n depends only on (tn1 , . . . , tnn ) and ωθ1∧·, and admits a duality
result under n marginal constraints, then one can obtain the same duality result for
the full marginal case.

PROOF OF PROPOSITION 3.6. Given the form of ξ : �̃ → R, Proposition 3.2
applies. Hence, P̃n(μ) = Pn(μ). Next, note that Pn(μ) is of the form (3.1), for all
n ∈ N. Let Pn be the optimal measure for Pn(μ). Then, according to Lemma 4.5,
passing to a subsequence if necessary, Pn → P, with P ∈ P(μ). It follows that

P(μ) ≥ EP[�(B·, T·)
]≥ lim

n→∞EPn
[
�(B·, T·)

]= lim
n→∞Pn(μ).

Since Pn(μ) ≥ P(μ), for n ≥ 1, we easily conclude. �

4.3. Proof of Theorems 2.7 and 2.9.

PROOF OF THEOREM 2.7. By Lemma 4.3, the mapping(
ω(·), θ(·)) �−→ sup

0≤s≤θ(1)

ω(s)

is continuous with respect to the product topology on �. Hence, Theorem 2.3
applies and limn→∞ Pn(μ) = P(μ) = D(μ). Moreover, for the optimal SEP with
finitely many given marginals, we have [see (3.8)]

Pn(μ) = Dn(μ) ≤ φ(0) +
∫ ∞

0
Cn(m)dφ(m),
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where equality holds under Assumption 2.6(ii) [see (3.10)]. It thus suffices to use
Lemma 4.2 together with the monotone convergence theorem to deduce that

lim
n→∞

∫ ∞
0

Cn(m)dφ(m) =
∫ ∞

0
C(m)dφ(m). �

PROOF OF THEOREM 2.9. Due to assumption (2.17), the pair (λ̂, Ĥ ) is well-
defined and (λ̂, Ĥ ) ∈ 
(μ) × H. According to (2.7) and (2.14), for m > 0 and
ζ ∈ V+

l such that ζ < m, the cost of λζ,m is given by

μ
(
λζ,m)= c(1, ζ1)

m − ζ1
−∑

t∈D

[
c(t, ζt+)

m − ζt+
− c(t, ζt )

m − ζt

]
−
∫ 1

0

∂

∂ζ

{
c(t, ζ )

m − ζ

}∣∣∣
ζ=ζ c

t

dζ c
t

= c(0, ζ0)

m − ζ0
+
∫ 1

0

∂tc(s, ζs)

m − ζs

ds,

where it was used that ∂
∂ζ

(x−ζ )+
m−ζ

= 1{x≥ζ } x−m
(m−ζ )2 . Since ζ̂ m· minimizes (2.12), it

follows that μ(λζ̂m,m) = C(m). Integration w.r.t. dφ(m) and application of Theo-
rem 2.7 and Corollary 2.5 yields μ(λ̂) = D0(μ).

Next, let πn : 0 = tn0 < · · · < tnn = 1, n ∈ N, be a sequence of discrete time grids
such that |πn| → 0, as n → ∞. According to Proposition 3.3, for (θ,ω) ∈ �,

1{ω∗
θ(1)≥m} ≤

n∑
i=1

(
(ωθ(ti ) − ζ̂ m

ti
)+

m − ζ̂ m
ti

− (ωθ(ti ) − ζ̂ m
ti+1

)+

m − ζ̂ m
ti+1

1{i<n}
)

+
n∑

i=1

1{ω∗
θ(ti−1)<m≤ω∗

θ(ti )
}
m − ωθ(ti )

m − ζ̂ m
ti

(4.13)

−
n−1∑
i=1

1{m≤ω∗
θ(ti )

;ζ̂ m
ti+1

≤ωθ(ti )
}
ωθ(ti+1) − ωθ(ti )

m − ζ̂ m
ti+1

.

Note that the left-hand side does not depend on the partition. Hence, in or-
der to verify that (λ̂, Ĥ ) satisfies (2.19), it suffices to show, for all P ∈ P(μ),
that the right-hand side in (4.13) integrated w.r.t. dφ(m) converges P-a.s. to∫ 1

0 λ̂(BTs , ds) + ∫ T1
0 Ĥs dBs .

Application of Lemma 4.4, with Xt = BT (t) and ζ = ζ̂ m, yields that the static
term in (4.13) converges to∫ 1

0
λζ̂m,m(BT (t), dt), P(μ)-q.s.

In consequence, integrated w.r.t. dφ(m), the static term in (4.13) converges to
λ̂(B) = ∫ 1

0 λ̂(BTs , ds), P(μ)-q.s.
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As for the first dynamic term in (4.13), the definition of τm yields
n∑

i=1

1{ω∗
θ(ti−1)<m≤ω∗

θ(ti )
}
m − ωθ(ti)

m − ζ̂ m
ti

−→
∫ θ(1)

0

1[τm,I+(τm)](s)
m − ζ̂ m

θ−1(τm)

dBs, P-q.s.

Integration with respect to dφ then gives the convergence of the corresponding
terms.

To prove the convergence of the second dynamic term in (4.13), we first inte-
grate with respect to dφ. The integrated term may then be rewritten as follows:

n−1∑
i=1

∫ ∞
0

1{m≤ω∗
θ(ti )

;ζ̂ m
ti+1

≤ωθ(ti )
}

dφ(m)

m − ζ̂ m
ti+1

(ωθ(ti+1) − ωθ(ti ))

=
n−1∑
i=1

∫ ζ̂−1
ti+1

(ωθ(ti )
)∧ω∗

θ(ti )

0

dφ(m)

m − ζ̂ m
ti+1

∫ θ(ti+1)

θ(ti )
dBs(4.14)

=
∫ θ(1)

0

n−1∑
i=1

∫ ζ̂−1
ti+1

(ωθ(ti )
)∧ω∗

θ(ti )

0

dφ(m)

m − ζ̂ m
ti+1

1(θ(ti ),θ(ti+1)](s) dBs,

where ζ̂−1
ti+1

denotes the inverse of ζ̂ ·
ti+1

. We denote the integrand in (4.14) by Hn.

Note that the Hn are predictable. Further, since ζ̂ satisfies (2.17) and φ is bounded,
the Hn are uniformly bounded. Due to assumption (ii), we also have that Hn → H

on � × (0,∞), with

Hs =
∫ ζ̂−1

θ−1(s)
(ωI−(s))∧ω∗

I−(s)

0

dφ(m)

m − ζ̂ m
θ−1(s)

.

In consequence, for all P ∈P , we have that
∫ θ(1)

0 Hn
s dBs → ∫ θ(1)

0 Hs dBs in prob-
ability. Hence, convergence holds a.s. along a subsequence and we conclude. �

4.4. Proof of Propositions 3.8 and 2.11.

PROOF OF PROPOSITION 3.8. Let m > 0 fixed and take φ(x) = 1{x≥m}; the
general case follows by integration with respect to dφ(m). Recall that (3.5) holds
for all càdlàg paths x (although in the proof of Theorem 2.9 we only made use of
this result for continuous paths). For a given sequence of partitions πn : 0 = tn0 <

· · · < tnn = 1, such that |πn| → 0 as n → ∞, it therefore suffices to argue that the
right-hand side in (3.5) converges to the right-hand side of (3.15). The static term in
(3.15) coincides with the static term in (2.19). Hence, the convergence follows by
use of the same arguments as in the proof of Theorem 2.9. Next, consider the first
dynamic term in (3.5). For each càdlàg path x ∈ D([0,1],R), let τm(x) := inf{t ≥
0 : xt ≥ m}. Due to the right-continuity of x, we have xτm(x) ≥ m. In consequence,

lim
n→∞

n∑
i=1

1{x∗
ti−1

<m≤x∗
ti
}
m − xti

m − ζti

= m − xτm(x)

m − ζτm(x)

≤ 0.
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Next, consider the second dynamic term in (3.5). First, we argue its convergence
under assumption (ii). To this end, we rewrite it as follows:

n−1∑
i=1

1{m≤x∗
ti
;ζti+1≤xti

}
xti+1 − xti

m − ζti+1

=
n−1∑
i=1

1{m≤x∗
ti
;ζti+1≤xti

}
∫ ti+1

ti

dMt

m − ζti+1

=
∫ 1

0

n−1∑
i=1

1{m≤x∗
ti
;ζti+1≤xti

}
1(ti ,ti+1](t)
m − ζti+1

dMt .

Denote the integrand on the right-hand side by Hn. Note that the Hn are pre-
dictable and uniformly bounded. Further, since ζs =∑∞

k=0 ζm
k 1(tk,tk+1](s), we may

choose a sequence of partitions πn : 0 = tn0 < · · · < tnn = 1 such that Hn → H on
D([0,1],R), with

Ht = 1{m≤x∗
t−;ζt≤xt−}

1

m − ζt

.

It follows that
∫ 1

0 Hn
t dMt → ∫ 1

0 Ht dMt in probability; cf. Theorem I.4.40 in [28].
Hence, convergence holds a.s. along a subsequence and we conclude. Under as-
sumption (i), the result follows by first integrating the pathwise inequality w.r.t.
dφ(m), and then modifying the argument along the same lines as in the proof of
Theorem 2.9 [cf. (4.14)]. �

PROOF OF PROPOSITION 2.11. Let m > 0 fixed and take φ(x) = 1{x≥m}; the
general case follows by integration with respect to dφ(m). The proof is based on
the path-wise inequality (3.5). Since ζ· is nondecreasing and M is càdlàg, it implies
that

1{M∗
1 ≥m} ≤

n∑
i=1

(
(Mti − ζti )

+

m − ζti

− (Mti − ζti+1)
+

m − ζti+1

1{i<n}
)

−
n−1∑
i=1

1{m≤M∗
ti
,ζti+1≤Mti

}
Mti+1 − Mti

m − ζti+1

+
n∑

i=1

1{M∗
ti−1

<m≤M∗
ti
}
m − Mti

m − ζti

.

We proceed by taking expectation on both sides of this inequality, and then passing
to the limit. To this end, note that the expected value of the dynamic terms is
bounded from above by zero (cf. Proposition 3.2 in [18]). Since the left-hand side
of the inequality is independent of the partition, it follows that

E[1{M∗
1 ≥m}] ≤ E[(M1 − ζ1−)+]

m − ζ1−
− lim

n→∞

∫ 1

0
fn(t) dζt ,

where

fn(t) =
n−1∑
i=1

1t∈(ti ,ti+1]
ζti+1 − ζti

(
E[(Mti − ζti+1)

+]
m − ζti+1

− E[(Mti − ζti )
+]

m − ζti

)
.
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Let

f (t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
E[(Mt − ζt )

+] − P[Mt > ζt ](m − ζt )

(m − ζt )2 , t ∈ Dc
ζ ,

1

ζt+ − ζt

(
E[(Mt − ζt+)+]

m − ζt+
− E[(Mt − ζt )

+]
m − ζt

)
, t ∈ Dζ .

Observe that since Mt is integrable, ζ �→ E[(Mt − ζ )+]/(m − ζ ) is Lipschitz
on (−∞,m − ε], for all ε > 0. Hence, it is differentiable almost everywhere and
it follows that fn(t) converges pointwise to f (t), for t ∈ [0,1] \ D, where D =
Dc

ζ ∩ {t : F(·, t) discontinuous at ζt }, with F(x; t) := P[Mt > x]. Moreover, there
is K > 0 such that |fn(t)| ≤ K , t ∈ [0,1], n > 0. Hence, by use of dominated
convergence, it follows that

∫ 1
0 fn(t) dζt → ∫ 1

0 f (t) dζt and we conclude. �

APPENDIX

We here discuss the Lévy metric on V+
r and provide a characterization of the

filtration on the canonical space � := � ×V+
r .

REMARK A.1. Recall that V+
r denotes the class of all nondecreasing càdlàg

functions defined on [0,1] and taking values in R+. Denote by M+([0,1]) the col-
lection of all finite positive measures on [0,1]. Then every function θ ∈V+

r can be
identified with a measure mθ ∈ M+([0,1]) by defining mθ([0, t]) := θ(t) for all
t ∈ [0,1]. Moreover, θn → θ in the Lévy metric is equivalent to mθn → mθ in the
weak convergence topology (which can be deduced from Problem 14.5 of Billins-
ley [8] together with an easy scaling technique). Using the above equivalence, we
can easily obtain the following facts:

• V+
r is a Polish space under the Lévy metric.

• Let f : [0,1] → R be a bounded continuous function, then θ �→ ∫ 1
0 f (t) dθt is

continuous from V+
r to R.

• If θn → θ , then θn
1 = mθn

([0,1]) → mθ([0,1]) = θ(1). In other words, the map
θ �→ θ1 is continuous, and hence θ �→ ∫ 1

0 θt dt = θ1 − ∫ 1
0 tdθt is also continuous.

• Let λ > 0. Notice that since [0,1] is compact, the set {m ∈ M+([0,1]) :
m([0,1]) ≤ λ} is compact under the weak convergence topology, and hence
{θ ∈ V+

r : θ1 ≤ λ} is compact under the Lévy metric.

LEMMA A.2. The Borel σ -field of the Polish space � is given by F∞ :=∨
t≥0 F t . Moreover, F t− :=∨

0≤s<t F s coincides with the σ -field generated by all
bounded continuous functions ξ : � →R which are F t -measurable.

PROOF. (i) We first prove that F∞ is the Borel σ -field of the Polish space �.
Define V+

t as the σ -field on V+
r , generated by all sets of the form {θ ∈ V+

r , θu ≤



OPTIMAL SEP GIVEN FULL MARGINALS 717

s} for u ∈ [0,1] and s ≤ t ; and V+∞ :=∨
t≥0 V+

t . Then F∞ = F0∞ ⊗ V+∞, where
F0∞ :=∨

t≥0 F0
t is the Borel σ -field of � (see, e.g., the discussion at the beginning

of Section 1.3 of Stroock and Varadhan [38]). So it is enough to check that V+∞ is
the Borel σ -field B(V+

r ) of the Polish space V+
r . First, by the right-continuity of

θ ∈V+
r , the Lévy metric on V+

r can be defined equivalently by

d
(
θ, θ ′) := inf

{
ε > 0 : θt−ε − ε ≤ θ ′

t ≤ θt+ε + ε,∀t ∈ Q∩ [0,1]},
where Q is the collection of all rational numbers. Then it follows that B(V+

r ) ⊆
σ(Tu : u ∈ Q) ⊆ V+∞. On the other hand, for every u ∈ [0,1), the map θ �→
1
ε

∫ u+ε
u θ(s) ds is continuous under the Lévy metric, and hence Borel measur-

able. Letting ε → 0, it follows that θ �→ θ(u) is also Borel measurable, and hence
V+∞ ⊆ B(V+

r ). We then obtain that F∞ = B(�).
(ii) We now consider the σ -field generated by bounded continuous functions.

First, it is well known that the filtration F0 on � is left-continuous and F0
t− =

F0
t is generated by all bounded continuous functions ξ1 : � → R which are F0

t

continuous.
Next, we notice that for every t ≥ 0,

V+
t− := ∨

0≤s<t

V+
s := σ

(
Tu ∧ t : u ∈ [0,1]).

Let ξ2 :V+
r →R be a bounded continuous function which is also V+

t -measurable.
Then ξ2((θu)u∈[0,1]) = ξ2((θu ∧ u)r∈[0,1]), which is σ(Tu ∧ t : u ∈ [0,1])-measu-
rable. On the other hand, the function θ �→ 1

ε

∫ u+ε
u (T�(θ) ∧ t) d� from V+

r to R is
continuous and V+

t -measurable for ε > 0. By taking ε → 0, it follows that Tu ∧ t

is measurable w.r.t. the σ -field generated by all bounded continuous functions ξ2 :
V+

r →R which are V+
t -measurable. Therefore, V+

t− is the σ -field generated by all
bounded continuous functions on V+

r which are V+
t -measurable.

Finally, since F s = F0
s ⊗ V+

s , it follows that F t− = F0
t− ⊗ V+

t−. We hence
conclude that F t− is the σ -field generated by all bounded continuous functions
ξ : � →R which are F t -measurable. �
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