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NUCLEATION SCALING IN JIGSAW PERCOLATION

BY JANKO GRAVNER1 AND DAVID SIVAKOFF

University of California, Davis and The Ohio State University

Jigsaw percolation is a nonlocal process that iteratively merges con-
nected clusters in a deterministic “puzzle graph” by using connectivity prop-
erties of a random “people graph” on the same set of vertices. We presume
the Erdős–Rényi people graph with edge probability p and investigate the
probability that the puzzle is solved, that is, that the process eventually pro-
duces a single cluster. In some generality, for puzzle graphs with N vertices
of degrees about D (in the appropriate sense), this probability is close to 1
or small depending on whether pD logN is large or small. The one dimen-
sional ring and two dimensional torus puzzles are studied in more detail and
in many cases the exact scaling of the critical probability is obtained. The
paper strengthens several results of Brummitt, Chatterjee, Dey, and Sivakoff
who introduced this model.

1. Introduction. The two-dimensional discrete torus is the graph with ver-
tex set V = Z

2
n = {0,1, . . . , n − 1}2 with periodic boundary conditions and edges

between nearest neighbors. We imagine V as pieces of a puzzle and denote this
graph, an instance of a puzzle graph, by Gpuz. Suppose we have a partially solved
puzzle, that is, a collection of Gpuz-connected subsets of V (also known as clus-
ters) that partition V . Then we get closer to the complete solution by merging
together one or more of these clusters. If we have two clusters whose union is a
connected set in Gpuz, how does the information that they fit together, and hence
can be merged, get transmitted? The idea introduced in [6] is that the knowledge
about each piece is held by a separate person and that the N = |V | people are
connected by collaboration edges into the people graph Gppl. This model was pro-
posed as an idealized mechanism by which people with incomplete knowledge
could collaboratively combine their partial solutions to solve a puzzle. As in [6],
we assume that people connections are sparse and assigned at random.

Our general setting is a sequence of graph pairs (Gpuz,Gppl), on a common
vertex set V whose size N increases with an integer parameter n. The dependence
on n or N is typically suppressed in our notation; N will always mean the num-
ber of vertices in the graph, and for particular examples we choose the common
parametrization (e.g., the two dimensional torus graph Z

2
n has N = n2 vertices),

while we formulate our statements about general graphs in terms of dependence
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on N rather than n. The puzzle graph Gpuz = (V ,Epuz) is (for every N ) a con-
nected deterministic graph, while we assume throughout that the random people
graph Gppl = (V ,Eppl) is an Erdős–Rényi graph on V with a small edge probabil-
ity p that also depends on N .

The models we consider retain the general flavor of [6], with a new ingredient:
how easy it is to discover that a puzzle piece fits to a cluster depends on the number
of connections of each type between the piece and the cluster. A simple implemen-
tation of this principle leads to a three-parameter model that we now introduce.

We say that vertices v1, v2 ∈ V are doubly connected if they are connected
in both graphs: {v1, v2} ∈ Eppl ∩ Epuz. For a fixed v ∈ V and a set S ⊂ V , we
let coll(v, S) [resp. link(v, S)] be the number of Gppl-neighbors (resp. Gpuz-
neighbors) of v in S, not including v.

We define jigsaw percolation as a discrete-time dynamics with three thresh-
old parameters: verification threshold σ ≥ 1, link threshold τ ≥ 1, and exemption
threshold θ ≥ τ . At each time t = 0,1,2, . . . , the state of the dynamics is a par-
tition P t = {Wt

i : i = 1, . . . , It } of the vertex set, with P0 a given partition. Given
P t , P t+1 is obtained as follows. Construct the graph Gt with vertex set P t and
unoriented edges between any Wt

i and Wt
j such that at least one of (J1)–(J3) is

satisfied:

(J1) there are doubly connected vertices v1 ∈ Wt
i and v2 ∈ Wt

j ;
(J2) there is a vertex v1 ∈ Wt

i with coll(v1,W
t
j ) ≥ σ and link(v1,W

t
j ) ≥ τ ;

(J3) there is a vertex v1 ∈ Wt
i with link(v1,W

t
j ) ≥ θ .

Then

(J4) to obtain P t+1, merge all sets in P t that belong to the same connected
component of Gt .

The parameter θ is akin to the threshold in bootstrap percolation [1], in that a
vertex will merge with a larger cluster as soon as it has θ Gpuz-neighbors in that
cluster. In the example of Z2

n, when θ = 2, this amounts to filling in puzzle pieces
that “obviously” fit with the partially solved puzzle because they fill in a missing
corner. Of course, due to the nonlocal nature, other sites may be added to the cluster
along with the missing corner (namely, those sites that have previously merged
with the corner). (Another contrast with bootstrap percolation is that we get an
essentially equivalent model if we require that the two neighbors, which a vertex
needs in a neighboring cluster to join, are diagonally adjacent.) The parameters τ

and σ control the levels of redundancy required in the puzzle and people graphs,
respectively, for two clusters to merge. We say that the event Solve happens if,
when P0 consists of all singletons, the partition eventually gathers all vertices into
one set, that is Solve= {Pt = {V } for some t}.

Observe that, for every t , sets in P t are Gpuz-connected; provided that θ = ∞,
they are also Gppl-connected. The model with parameters σ = τ = 1 and θ = ∞
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FIG. 1. AE jigsaw percolation on 10 × 10 torus (i.e., square with periodic boundary), with
p = 0.11, at times t = 0, . . . ,5. The clusters are outlined in orange and colored gray–blue–dark
blue–red according to their sizes. The edges of Gt , that decide which cluster are merged in the next
time step, are depicted in green. The edges connect vertices with the Gppl-connection found by the
algorithm. Clearly, all vertices are in one cluster for the first time at t = 6.

(or equivalently, θ exceeds the maximum degree of Gpuz) was introduced in [6]
as the Adjacent-Edge (AE) jigsaw percolation and we will keep this name. The
paper [6] mostly analyzes the basic jigsaw percolation in which there is an edge
between Wt

i and Wt
j in Gt when

(J5) there are vertices v1, v
′
1 ∈ Wt

i and v2, v
′
2 ∈ Wt

j , such that {v1, v2} ∈ Eppl

and {v′
1, v

′
2} ∈ Epuz.

Our results and their proofs do not distinguish between the basic and AE dynamics,
as our connectivity arguments for lower bounds are the same for both, and we use
only the AE version for upper bounds. In fact, it is an interesting open problem
to devise a class of puzzle graphs with significant difference in behaviors between
the two rules; see the first of our open problems at the end of the paper. We should,
however, point out that the AE dynamics is more difficult to simulate than the basic
one (see Section 10).

A small example of solving the torus puzzle in the AE case is depicted in Fig-
ure 1 and a larger one in Figure 2; see Section 10 for a description of algorithms
we employ. The general message of simulations is that p should be large enough
so that nucleation centers (as in Figure 2) appear. In this sense, jigsaw percolation
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FIG. 2. Jigsaw percolation on 400 × 400 torus. Top left: AE version (σ = τ = 1, θ = ∞) with
p = 0.021, at time t = 31. Top right: σ = τ = 1, θ = 2 with p = 0.009, at t = 31. Bottom: σ = 1,
τ = 2, θ = ∞, with p = 0.11 at t = 91. These pictures illustrate the nucleation and metastability
of the dynamics: most of the space is divided into small clusters (color-coded by size with gray
singletons). A few favorable local configurations generate large (red) clusters that grow unstoppably
and result in Solve.

is similar to bootstrap percolation [1, 13] and Greenberg–Hastings model [8], in
spite of the fact that it is nonlocal. Indeed, to our knowledge the present paper
is the first to establish scaling of critical probabilities and sharp phase transitions
using nucleation techniques in a nonlocal setting.

A characteristic ingredient in analysis of nucleation dynamics, suggested by
Figure 2, is comparison with a much simplified local version, whereby the only
change occurs on a boundary of a single growing nucleus. This idea was pio-
neered in [1] and used extensively since [2, 8, 11–13]. These references and the
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present paper demonstrate that proper utilization of local dynamics depends on
circumstances and may be more involved than in [1] (e.g., large deviation bound
of Lemma 7.2, and general method in Section 4). We formally introduce our local
version in Section 2.

Arguably, the fundamental quantity in nucleation-and-growth models is an or-
der parameter: a function of p and N that determines (for large N ) whether
Pp(Solve) is large or small; often there is sharp transition from probability near
0 to near 1. For example, we will prove that for the Z

2
n case of Figure 1, the order

parameter is p logn, but a sharp transition in this case remains an open problem.
To make this concept precise, we define the critical probability pc = pc(N) by

Ppc(Solve) = 1

2
.

We say that there is sharp transition if P(1−ε)pc(Solve) → 0 and
P(1+ε)pc(Solve) → 1 as N → ∞, for any ε > 0. It is expected that under gen-
eral conditions there is sharp transition [9]. We will prove this for some examples
in which the asymptotic behavior of pc can be determined exactly. The general
results in [9] (and subsequent work) cannot be used as they depend on symmetry
of random bits. This in our case clearly fails as, for example, Gppl-edges between
Gpuz-neighbors do not play exactly the same role as other Gppl-edges. We refer to
[6] for much more background and intuition. We now state our main results, which
are divided into three categories in subsections below.

1.1. Results for general puzzle graphs. Notably, the asymptotic order of pc

can be determined in some generality. In this subsection, we assume the puzzle
graph Gpuz has maximum degree D, which may depend on N . The proof of the
following theorem is given in Section 3.

THEOREM 1. Assume either basic or AE dynamics, and suppose that p =
μ/(D logN) for a constant μ ≤ 1/30. Then Pp(Solve) → 0.

Theorem 2 from [6] demonstrates that for the basic and AE dynamics
Pp(Solve) → 1 if p ≥ C/ logN , for an absolute constant C. The next theorem
provides a more precise result for some well-known D-regular vertex-transitive
graphs: together with Theorem 1 it implies that pc scales as 1/(D logN) in these
cases. On the other hand, in Section 4 we will exhibit a vertex-transitive example
for which this scaling does not hold. Section 4 also contains a general method used
to prove results such as Theorem 2.

THEOREM 2. Assume either basic or AE dynamics, and that p = μ/(D logN)

for a constant μ. For each of the following vertex-transitive graphs, there exists a
universal constant C such that μ ≥ C implies Pp(Solve) → 1: d-dimensional
torus Zd

n with lattice edges; range-r two-dimensional graph on Z
2
n with neighbor-

hood of x given by {y : ‖x − y‖∞ ≤ r}; hypercube with vertex set {0,1}n; and
d-dimensional Hamming graph with vertex set Zd

n .
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An important question we attempt to answer in various contexts is the following:
how costly is it to require a large number of verifications in the people graph? Our
next result, proved in Section 6, clarifies the general answer for the most natural
setting whereby we keep the AE parameters τ = 1, θ = ∞, but assume σ is large.
It turns out that the number of people connections required to solve the puzzle then
increases as the square of σ .

THEOREM 3. Assume that τ = 1, θ = ∞, and σ is arbitrary. Assume also that
the maximum degree D in Gpuz is bounded by a constant independent of N . Then
for any ε > 0 and some c = c(D) > 0, for N ≥ N0(σ, c, ε),

c
σ 2

logN
≤ pc ≤ (1 + ε)

σ 2

2 logN
.

1.2. Results for the ring graph. We next turn to more precise results for low-
dimensional puzzle lattices. As pointed out in [6], the one-dimensional ring puzzle
with V = Zn is already of interest. By exploiting remarkable similarity to two-
dimensional bootstrap percolation (see Section 5 for details), we prove Conjec-
ture 2 of [6] and shed light on Open Problem 1 in the same paper. For σ ≥ 1, we
let

gσ (x) = − logP
(
Poisson(x) ≥ σ

)
and

λσ =
∫ ∞

0
gσ (x) dx.

THEOREM 4. Assume the ring puzzle graph. If τ = 1, θ = ∞, and σ ≥ 1 is
arbitrary then, as n → ∞,

pc logn → λσ ,

with sharp transition. For the basic rule, the result is the same as in the AE case:
a sharp transition at the critical probability that satisfies

pc logn → λ1 = π2

6
.

THEOREM 5. Assume any of the rules covered by Theorem 4, and suppose
p ∼ λ/ logn, for some λ > 0. Let Tf = min{t : Pt+1 = Pt } be the time when the
jigsaw dynamics stops. Then, in probability,⎧⎪⎪⎪⎨

⎪⎪⎪⎩
lim sup
n→∞

Tf

logn
< ∞, if λ < λσ ,

lim
n→∞

logTf

logn
= λσ

λ
, if λ > λσ .
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Roughly then, for large n, (logn)−1 logTf as a function of p logn vanishes on
[0, λσ ), has a discontinuous jump to 1 at λσ and then decreases to 0 as the inverse
first power. For a comparison with simulations, see Figure 5b in [6].

1.3. Results for the two dimensional torus. The bulk of the paper is devoted
to the case of two-dimensional lattice torus Gpuz with V = Z

2
n, which will be

assumed in Theorems 6, 7, and 8. We begin with the basic and AE dynamics,
for which Theorems 1 and 2 imply that the order parameter is p logn. While we
are unable to prove sharp transition, we will at least give upper and lower bounds
within a factor of 10. We suspect the lower bound is the cruder of the two; see
Section 7 for a proof.

THEOREM 6. Assume either basic or AE dynamics. For all large enough n,

0.0388

logn
< pc <

0.303

logn
.

The two-dimensional torus is the simplest instance for which we can investigate
the dependence on two puzzle graph thresholds θ and τ . It is not hard to see that for
this Gpuz there are essentially only three interesting cases: τ = 1, θ = ∞; τ = 1,
θ = 2; and θ ≥ τ = 2. The first case is covered by Theorems 6 and 3, while the
other two are addressed in our next two results. Many open problems remain for
other puzzle graphs; see the Open problems section at the end of the paper.

Our most substantial result is about the parameter choice τ = 1 and θ = 2.
In this case, corners are fit automatically, but non-corner pieces require σ ≥ 1
verifications. By contrast to Theorem 3, and perhaps surprisingly, σ now affects
the power of logn in the critical scaling. Change of the order parameter without
a change in the underlying geometry appears to be a novel phenomenon. We let
g(x) = g1(x) = − log(1 − e−x) and

νσ =
∫ ∞

0
g

(
x2σ+1

σ !
)

dx = (σ !)1/(2σ+1)	( 1
2σ+1)ζ(2σ+2

2σ+1)

2σ + 1
.

For example, when σ = 1, ν1 = 	( 1
3 )ζ( 4

3 )

3 ≈ 3.216 and the next theorem implies
that transition occurs at p(logn)3 = ν3

1 ≈ 33.25. See Figure 2 for an illustration
and Section 8 for a proof.

THEOREM 7. Assume τ = 1, θ = 2 and σ ≥ 1. As n → ∞,

pc(logn)2+ 1
σ → ν

2+ 1
σ

σ ,

with sharp transition.
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The final interesting case has τ = 2, and arbitrary θ and σ . The asymptotic
scaling of the critical probability is always 1/ logn, but the only instance we are
able to identify the constant factor is when θ = 2 and the dynamics does not depend
on σ . We give a proof in Section 9 and, again, Figure 2 provides an illustration.

THEOREM 8. Assume θ ≥ τ = 2, and σ ≥ 1. Then

(1.1)
π2

6
≤ lim inf

n→∞ pc logn ≤ lim sup
n→∞

pc logn ≤ π2

6
+ 1

2

∫ ∞
0

gσ (x) dx.

If τ = θ = 2, then

(1.2) pc ∼ π2

6
· 1

logn

as n → ∞, with sharp transition.

The lower bound in (1.1) can be improved for large σ , as Theorem 3 implies
that it can be replaced by a bound on the order σ 2. We do not know whether the
upper bound in (1.1) (which is also on the order σ 2) can be improved.

We remark that for random puzzle graphs, a related result was recently proved
in [5], where it is assumed that both the people and puzzle graphs are Erdős–Rényi
with probabilities p and ppuz, respectively. Then it is shown that there exists a large
enough constant C > 0, so that, under the assumption that p ∧ ppuz ≥ C logN/N ,
the probability of solving the puzzle is close to zero if p · ppuz ≤ 1/(CN logN)

and is close to one if p · ppuz ≥ C/(N logN).
The rest of the paper is organized as follows. We begin with Section 2 that

contains more formal definitions and some useful observations. Sections 3–9 are
devoted to proofs to the above theorems. Section 10 contains a discussion of com-
putational aspects of simulation algorithms, and the paper is concluded by a list of
intriguing open problems.

2. Preliminaries. In this section, we assume an arbitrary Gpuz and a jigsaw
rule with parameters θ , σ , and τ , or the basic rule.

We say that a given partition P is inert if jigsaw percolation started at P0 = P
results in G0 with no edges and thus P1 = P . Clearly, for any P0, P t is inert for
some t ; we call this the final partition started from P0. Note that the final partition
also depends on Gppl.

When not explicitly stated otherwise, the initial partition P0 will consist of all
singletons and in this case we denote the final partition as final.

For a given set S ⊂ V , denote its outside boundary by ∂o(S) = {v /∈ S : {v, v′} ∈
Epuz for some v′ ∈ S}.

PROPOSITION 2.1. Assume that {Pj } is a finite collection of inert partitions
of V , and let the partition P consist of all nonempty intersections

⋂
j Wj for arbi-

trary Wj ∈Pj . Then P is also inert.
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PROOF. Assume first the basic jigsaw dynamics given by (J5) and (J4). Pick
W,W ′ ∈P such that there are vertices v ∈ W and v′ ∈ W ′ such that {v, v′} ∈ Epuz.
Since W and W ′ are distinct and nonempty, there must exist Pj and Wj,W

′
j ∈ Pj

with Wj ∩ W ′
j =∅ such that W ⊂ Wj and W ′ ⊂ W ′

j . Inertness of Pj then implies
that W and W ′ are not connected by an edge in Eppl. This holds for all such pairs
W,W ′ ∈P , so P is inert.

Now assume the dynamics given by (J1)–(J4) for arbitrary σ, τ and θ . A parti-
tion P is inert if and only if for every W ∈ P and every vertex v ∈ ∂o(W) all of the
following hold: v is not doubly connected to any vertex in W ; link(v,W) < θ ;
coll(v,W) < σ or link(v,W) < τ . To show this holds for the so defined P ,
pick v ∈ ∂o(

⋂
j Wj ) for arbitrary Wj ∈ Pj such that their intersection is nonempty.

Then v ∈ ∂o(Wj0) for some j0 and link(v,
⋂

j Wj ) ≤ link(v,Wj0) < θ . Other
verifications are similar. �

By Proposition 2.1, for any partition P0, there exists an inert partition 〈P0〉,
which is the finest of all inert partitions P such that P0 is finer than P .

We call a dynamics on partitions a slowed-down jigsaw percolation if (J4) is
replaced by the following.

(J6) If Gt has no edges, P t+1 = P t ; otherwise use some rule to choose any
nonempty subset of edges of Gt to form a graph G′

t , then merge all sets in P t which
are in the same connected component of G′

t to obtain P t+1.

The following corollary, which is now immediate, in particular states that the
final partition is independent of the slowed-down version.

COROLLARY 2.2. For any slowed-down jigsaw percolation, and any P0,
there exists a t for which P t = 〈P0〉.

We recall that, for a given graph Gpuz and a choice of jigsaw dynamics, we
let Solve be the event {final = {V }} that the jigsaw percolation eventually
gathers all vertices in a single cluster. (Recall also that the random partition final
assumes the default partition P0 that consists of singletons.) Most of this paper will
be concerned with estimating Pp(Solve) for particular choices of p. Figure 2 and
analogy with other nucleation processes [1, 8, 11–13], suggest that the dominant
mechanism in jigsaw percolation is growth from a single center into undisturbed
environment. This approach yields a good, and often optimal, lower bound on the
probability of Solve, as we will see.

Thus we introduce the following local jigsaw percolation. As before, we assume
that Gpuz is a connected deterministic graph on V and Gppl is a random graph
in which each pair of vertices is independently connected with a probability p,
but here V is typically infinite. Fix a center v0 ∈ V . The dynamics iteratively
determines random sets V0 ⊂ V1 ⊂ · · · ⊂ V . Let V0 = {v0}. For t ≥ 0, Vt+1 ⊃ Vt
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is obtained by adjoining to Vt any z ∈ V which is either: doubly connected to a
point in Vt ; or link(z,Vt ) ≥ θ ; or (link(z,Vt ) ≥ τ and coll(z,Vt ) ≥ σ ). We
declare the local version of the basic rule to be the same as for the AE case. Define
the event

Grow=
{⋃

t

Vt = V

}
.

We will use comparison with the local version when Gpuz is the two-dimensional
torus Z2

n. In this case, the corresponding local process is on the first quadrant Z2+
with center (0,0). As we will see, Pp(Solve) ≈ n2

Pp(Grow) in the relevant
regime.

For a graph G = (V ,E) and a subset of vertices, A ⊂ V , let GA denote the
subgraph of G induced by A. That is, GA is the graph with vertex set A and edge
set EA = {{u, v} ∈ E : u, v ∈ A}.

We say that a subset of vertices, A ⊂ V , is internally solved [6] if the jigsaw
percolation process with people graph GA

ppl solves the puzzle graph GA
puz. We de-

note this event as SolveA. Similarly, for a partition P0 of A, we denote by 〈P0〉A
the final partition obtained by running the jigsaw percolation with the two induced
graphs, and let finalA = 〈P0〉A when P0 is the set of singletons of A.

For two sets A ⊂ A′ ⊂ V , we let D(A,A′) be the event that 〈P0〉A′ = {A′} when
the initial partition is P0 = {A, {v} : v ∈ A′ \ A}. Therefore,

Pp(SolveA′ |SolveA) = Pp

(
D

(
A,A′)),

and we may think of D(A,A′) as the event that jigsaw percolation internally solves
A′ provided it has already solved A.

We now state a key observation; see [1] for the analogous result for bootstrap
percolation.

LEMMA 2.3. For any slowed-down jigsaw percolation, all sets in the partition
at any time are internally solved. If Solve happens, then for any k ≤ N/2 there
exists an A ⊂ V , with |A| ∈ (k,2k], such that SolveA happens.

PROOF. The first claim is a simple observation. For the second claim, consider
a slowed-down jigsaw percolation where at each step the graph G′

t in (J6) has at
most one edge, so that if the process does not stop exactly two clusters merge. In
this version, the size of the largest cluster can at most double in a single step. �

We call a set A ⊂ V of vertices unstoppable if every vertex v ∈ V \ A is Gppl-
connected to at least σ vertices in A (for the basic dynamics, a set is unstoppable
if every vertex in V \A has at least one Gppl neighbor in A). The following simple
observation is frequently used.
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LEMMA 2.4. Assume either the basic rule or any rule with τ = 1. For any
A ⊂ V ,

SolveA ∩{A is unstoppable} ⊂ Solve .

LEMMA 2.5. Assume that S ⊂ V is a set of size at least α
logN

p
, for some

α > σ ; in the basic case, require α > 1 and set σ = 1. Then

Pp(S is unstoppable) ≥ 1 − 3σN1−α/σ .

PROOF. If |S| = k,

(2.1)

Pp(S is not unstoppable) ≤ (N − k)
(
1 − P

(
Binomial(k,p) ≥ σ

))
≤ N

(
1 − P

(
Binomial

(�k/σ�,p) ≥ 1
)σ )

= N
(
1 − (

1 − (1 − p)�k/σ�)σ )
≤ N

(
1 − (

1 − e−p�k/σ�)σ )
≤ σNe−p�k/σ�

≤ σNe−pk/σ+1.

This completes the proof. �

Another useful simple observation concerns “dividing up” the edge probability
in Gppl.

LEMMA 2.6. If pj ≥ 0, then the union of independent Gppl-graphs with edge
probabilities pj (each on the same N vertices) is stochastically dominated by the
Gppl-graph with edge probability 1 ∧ ∑

j pj .

The following elementary lemma is useful when estimating large deviation
probabilities of a binomial random variable with small expectation.

LEMMA 2.7. For all m, k, β ,

(2.2) P
(
Binomial(m,β) ≥ k

) ≤
(
m

k

)
βk ≤

(
3mβ

k

)k

.

In Section 4, we also need the following large deviation bound.

LEMMA 2.8. If p is small enough, P(Binomial(n,p) ≤ np/2) ≤
exp(−np/7).

If we have an event A (that depends on N ), and Pp(A) → 1 as N → ∞, we say
that A occurs asymptotically almost surely (a.a.s.).

Finally, we remark that we often omit integer parts when we specify integer
quantities such as lengths and rectangle dimensions.
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3. General graphs: Lower bound on pc. Assume the puzzle graph Gpuz has
maximum degree D, which may depend on |V | = N . We will prove the following
result, which implies Theorem 1. We assume the basic jigsaw rule throughout this
section. By monotonicity, the results also hold for the AE dynamics, that is, for
parameters τ = σ = 1, θ = ∞.

THEOREM 3.1. If p = μ/(D logN) and μ < min{2e−(3+η), e−(5+η)/2} where
η = lim sup logD

logN
, then for the basic dynamics Pp(Solve) → 0.

REMARK 3.2. Notice that η ∈ [0,1], and the two expressions in the constraint
on μ are equal when η = 2 log 2 − 1.

When combined with Theorem 2 of [6], Theorem 3.1 gives the following corol-
lary.

COROLLARY 3.3. If Gpuz has maximum degree bounded above by D as
N → ∞, then pc is bounded between two constants (depending only on D) times
1/ logN .

The proof of the Theorem 3.1 appears after the next two simple but important
lemmas. Lemma 3.4 observes that Gpuz-connected subsets of properly chosen log-
arithmic size are unlikely to be Gppl-connected and thus unlikely to be internally
solved; Lemma 3.5 controls the entropy factor by the standard bound on the num-
ber of connected sets of a given size.

LEMMA 3.4. Suppose A ⊂ V is a set of vertices such that |A| = α logN and
GA

puz is connected. If p = μ/(D logN) with μ < 2D/α, then for the basic dynam-
ics

Pp(SolveA) ≤ 2D

αμ
N

α(1−αμ/(2D)−log( 2D
αμ

))
.

PROOF. Observe that in order to solve any connected puzzle, the people graph
must at least be connected, and any connected graph on |A| vertices must have at
least |A| − 1 edges, so

(3.1) Pp(SolveA) ≤ Pp

(
GA

ppl is connected
) ≤ Pp

(∣∣EA
ppl

∣∣ ≥ |A| − 1
)
.

The distribution of |EA
ppl| is stochastically dominated by Binomial(|A|2/2,p), so

for any θ > 0 we have

Pp

(∣∣EA
ppl

∣∣ ≥ |A| − 1
) = Pp

(
e
θ |EA

ppl| ≥ eθ(|A|−1))
≤ e−θ(|A|−1)[1 + (

eθ − 1
)
p

]|A|2/2

≤ exp
[(

eθ − 1
)|A|2p/2 − θ |A| + θ

]
.
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Substituting θ = log(2D/(αμ)) > 0, and using inequality (3.1) gives the result.
�

LEMMA 3.5. Fix a vertex v ∈ V , and let

C(v, k) := {
A ⊂ V : v ∈ A, |A| = k,GA

puz is connected
}
.

Then, ∣∣C(v, k)
∣∣ ≤ (eD)k.

The proof follows an argument of Kesten ([14], page 85).

PROOF OF LEMMA 3.5. Consider independent site percolation on Gpuz with
vertex probability 1/D. The probability that A ∈ C(v, k) is a connected component
in the site percolation graph is

(1/D)k(1 − 1/D)|∂oA| ≥ (1/D)k(1 − 1/D)(D−1)k,

where the inequality follows because every vertex in A has at most D neighbors, at
least one of which is in A. Summing the probability that A is a connected compo-
nent in the site percolation graph over all sets A ∈ C(v, k) gives the probability that
v is in a site percolation cluster of size k, which of course is at most 1. Therefore,∣∣C(v, k)

∣∣(1/D)k(1 − 1/D)(D−1)k = ∑
A∈C(v,k)

(1/D)k(1 − 1/D)(D−1)k ≤ 1.

This yields

∣∣C(v, k)
∣∣ ≤ [

D(1 − 1/D)−D+1]k = Dk

[
1 + 1

D − 1

](D−1)k

≤ Dkek,

where in the last inequality we used 1 + x ≤ ex . �

PROOF OF THEOREM 3.1. Apply Lemma 2.3 with k = logN , then apply
Lemmas 3.4 and 3.5 to get

Pp(Solve)

≤ Pp

( ⋃
A⊂V :|A|∈[logN,2 logN]

SolveA

)

≤ ∑
v∈V

∑
k∈[logN,2 logN]

∑
A∈C(v,k)

Pp(SolveA)

≤ (N logN) · sup
α∈[1,2]

{
(eD)α logN 2D

αμ
N

α(1−αμ/(2D)−log( 2D
αμ

))
}

≤ 2

μ
(logN) sup

α∈[1,2]
exp

[(
2α + 1 + logD

logN
− α2μ/(2D)

− α log
(

2

αμ

))
logN

]
.
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When the lim sup of the coefficient of logN in the exponential is strictly smaller
than 0 for any α ∈ [1,2], we see that Pp(Solve) → 0. Recalling that η =
lim sup(logD/ logN), this condition is satisfied whenever

μ < 2e−2 inf
α∈[1,2]

1

α
e−(1+η)/α

= 2e−2 min
{
e−(1+η),

1

2
e−(1+η)/2

}
.

This completes the proof. �

4. General graphs: Upper bound on pc. We first formulate a general theo-
rem, then prove Theorem 2 in subsequent corollaries. Apart from the concluding
counterexample in Proposition 4.7, we will assume the AE dynamics throughout
this section; the results for the basic rule are then implied by monotonicity.

We begin with an informal description of the construction below. We consider
finite paths of vertices to which new vertices are added using a certain recursive
rule, which restricts the choice of consecutive vertices. The basic requirement is
that no matter how previous steps of the path are chosen, the number of choices for
the next vertex is sufficiently large, typically in regular graphs at least a proportion
of the degree; this is the origin of condition (R1) below. Moreover, we inspect
vertices in a given order, which guarantees that no vertex is inspected twice. This
property ensures independence, which is then used in conjunction with (R1) to
obtain a lower bound on the probability of survival of local growth. Finally, the
construction is required to proceed until a sufficiently long path is built—long
enough that all sites Gppl-connected to it form a supercritical percolation cluster
when p is of the appropriate order. This last requirement is the reason for condition
(R2) below. This percolation cluster is of sufficient size to be unstoppable.

Fix a graph G = (V ,E), and positive integers a and k. We will require existence
of a certain set Sk ⊂ V k of sequences of length k, consisting of vertices and started
at a fixed vertex v0 ∈ V . We will assume that Sk is given recursively by a building
algorithm as follows. Let S0 = {v0}. For every i ∈ [1, k], there exists a successor
map Stepi defined on Si−1 that attaches to every sequence (v0, . . . , vi−1) ∈ Si−1
a set Stepi (v0, . . . , vi−1) ⊂ V , so that

Si = {
(v0, . . . , vi−1, vi) : (v0, . . . , vi−1) ∈ Si−1, vi ∈ Stepi (v0, . . . , vi−1)

}
.

We also assume that each B = Stepi (v0, . . . , vi−1) ⊂ V is ordered, and for
w ∈ B , we let

←−
B w be the set of vertices in B that are ahead of, or equal to,

w in the ordering. We think of
←−
B vi as the “inspected” vertices. We call Sk a-

admissible if the following holds. Fix any sequence (v0, . . . , vk) ∈ Sk , and let
Bi = Stepi (v0, . . . , vi−1), 1 ≤ i ≤ k, and B0 = {v0}. Then, for 1 ≤ i ≤ k,

• |Bi | ≥ a;
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• {v0, . . . , vi} is a connected subset of graph G; and
• The selection up to i does not affect selection at i, that is,

(4.1)

(
i−1⋃
j=0

←−
B

vj

j

)
∩ Bi = ∅.

For a fixed probability q , we call Size(G,v, q) the (random) number of ver-
tices in the connected component of v ∈ V in site percolation on G where vertices
other than v are open independently with probability q , and v is open with proba-
bility 1.

For a nondecreasing integer sequence DN , we call a sequence of Gpuz-graphs
DN -regular if the following is true for some constants c,C > 0: DN ≥ 2C and
there exist disjoint sets V� ⊂ V , � = 1, . . . ,Nc, so that induced subgraphs G� =
G

V�
puz have the properties that

(R1) for each � = 1, . . . ,Nc, G� contains a cDN -admissible set of length at
least c logN started at some w� ∈ V�; and

(R2) lim infN inf�P(Size(G�,w�,C/DN) ≥ 2DN(logN)2) > 0.

THEOREM 4.1. If Gpuz is DN -regular, and p = μ
DN logN

for a large enough
constant μ, then for the AE dynamics Pp(Solve) → 1.

PROOF. We will use Lemma 2.6, with three probabilities. Assume first that
p1 = μ1/(DN logN), where μ1 = 3/c2. Fix an � and let F1 be the event that
w� is included in an internally solved set of size c logN within G�. By (R1), we
may build such a cluster by using the building algorithm for the cDN -admissible
set of sequences. In this algorithm, we let v0 = w� and check the vertices in
Stepi (v0, . . . , vi−1) in their given order and stop checking once we find one that
is Gppl-connected to {v0, . . . , vi−1}. Therefore,

(4.2)

Pp1(F1) ≥
c logN∏
i=1

(
1 − (1 − p1)

cDN i)

≥
∞∏
i=1

(
1 − e−p1cDN i)

≥ exp
(∫ ∞

0
log

(
1 − e−p1cDNx)

dx

)

= exp
(
−π2

6c
· 1

p1DN

)

= N
− π2

6cμ1 .
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Now assume that p2 = μ2/(DN logN), for μ2 = 2C/c. Connect each pair of
vertices with a green edge independently with probability p2. Then declare each
vertex in V� to be open if it has a green edge to at least one of the vertices in
the largest internally solved subset of V� containing w� in the independent people
graph with the Gppl-edge probability p1. If F1 happens, the probability that a ver-
tex is open is, since C/DN ≤ 0.5, at least C/DN independently of other vertices,
and (R2) applies. Let F2 be the event that w� is included in an internally solved set
within G� of size 2DN(logN)2. By (R2), (4.2) and Lemma 2.6,

(4.3) Pp1+p2(F2) ≥ αN
− π2

6cμ1 ,

for some constant α > 0. Therefore, by (R1) and (4.3),

(4.4)

Pp1+p2

(
there is an internally solved set of size 2DN(logN)2)

≥ 1 − (
1 − αN

− π2
6cμ1

)Nc

≥ 1 − exp
(−αN

c− 2
cμ1

)
= 1 − exp

(−αNc/3)
.

Now let p3 = 1/(DN logN). If a fixed set V0 of vertices has size at least
2DN(logN)2, then by Lemma 2.5

(4.5) Pp3(V0 is unstoppable) ≥ 1 − 3

N
.

From Lemmas 2.4 and 2.6, and (4.4) and (4.5), it follows that

Pp1+p2+p3(Solve) ≥
(

1 − 3

N

)
· (

1 − exp
(−αNc/3))

,

and the result holds with μ ≥ μ1 + μ2 + 1. �

We now apply the above theorem to some famous vertex-transitive graphs,
where indeed DN will be proportional to the degree. In the corollaries that fol-
low, note that n is the natural parameter in the description of a family of graphs,
and is not equal to the total number of vertices.

COROLLARY 4.2. If Gpuz is the d-dimensional lattice torus with V = Z
d
n ,

there exists a universal constant C so that p ≥ C/(d2 logn) implies
Pp(Solve) → 1.

PROOF. In this and subsequent proofs, we will omit the obvious integer parts
required to make certain quantities integers. In the torus, find nd/2 disjoint sub-
cubes congruent to [1,

√
n]d . In each of these subcubes, consider the set of ori-

ented percolation paths, which is clearly d-admissible: Bi only depends on vi−1
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and is the set {vi−1 + e1, . . . , vi−1 + ed} (where ej are the standard basis vectors).

The order is immaterial, as (4.1) holds with all
←−
B

vj

j replaced by Bj . Then (R1)
holds with c = 1/2, provided

√
n ≥ 2d logn. To verify (R2), use the well-known

fact that the critical probability of site percolation on Z
d scales as 1/(2d) [15]. �

COROLLARY 4.3. If Gpuz is the graph with vertices V = Z
2
n and edges be-

tween all pairs of vertices x and y such that ‖x − y‖∞ ≤ r , there exists an univer-
sal constant C so that P ≥ C/(r2 logn) implies Pp(Solve) → 1.

PROOF. Divide Z
2
n into

√
n × √

n squares. In each, consider the set of neigh-
borhood paths, which start at the lower left corner and are oriented (i.e., both co-
ordinates are increasing along the paths). Here, Bi is the (r + 1) × (r + 1) square
with its leftmost lowest corner at vi−1, with vi−1 excluded. Moreover, the ordering
of points in Bi is given as follows: (x1, y1) < (x2, y2) if either x1 + y1 < x2 + y2;
or x1 + y1 = x2 + y2 and x1 < x2. Then (R1) holds provided

√
n > 2r logn. See

[10] for the relevant site percolation result to verify (R2). �

COROLLARY 4.4. If Gpuz is the n-dimensional hypercube with V = {0,1}n,
there exists an universal constant C so that p ≥ C/n2 implies Pp(Solve) → 1.

PROOF. Let dist be the Hamming distance, and divide the graph into 2n/4 dis-
joint (3n/4)-dimensional subcubes. In each subcube, we find a (n/4)-admissible
set of length n/4 by letting Bi be the set of hypercube-neighbors w of vi−1 that
have dist(w, v0) > dist(vi−1, v0), and the order is immaterial. To verify (R2), use
the percolation result from [4]. �

To prove our Hamming torus result in low dimensions, we need a lemma on
connectivity of high-density random subsets.

LEMMA 4.5. Assume that every vertex of the two-dimensional Hamming torus
with vertex set V = [0, n−1]2 is open independently with probability that may vary
among vertices but is bounded below by n−γ for some γ < 2/3. Then, with prob-
ability approaching 1, for each pair x, y ∈ V there exist open vertices z1, z2, z3 so
that z1 is a neighbor of x and of z3, and z2 is a neighbor of y and of z3. Further-
more, a.a.s. all open vertices form a connected set of size at least 0.5n2−γ .

PROOF. Fix any two vertices x and y, and let E be the event that vertices
z1, z2, z3 with specified properties exist. Let E1 be the event that the horizontal
line through x and the vertical line through y both have at least 0.5n1−γ open
vertices. Then, by Lemma 2.8,

P(E1) ≥ 1 − 2 exp
(−n1−γ /7

)
.
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Conditioned on E1, there are at least 0.25n2−2γ independent candidates for an
open vertex that is incident to open vertices in both neighborhoods of x and y. As
γ < 2/3, by Lemma 2.8,

P(E|E1) ≥ 1 − exp
(−0.03 · n2−3γ )

,

which easily finishes the proof of the first claim. The second claim is then another
easy application of Lemma 2.8. �

COROLLARY 4.6. If Gpuz is the d-dimensional Hamming torus on the ver-
tex set Zd

n , there exists a universal constant C so that p ≥ C/(d2n logn) implies
Pp(Solve) → 1.

PROOF. Assume first that d ≥ 4. Let d1 = �d/2� − 1. For any d1-tuple a =
(a1, . . . , ad1), let Ma be the set of vertices whose last d1 coordinates equal a. There
are nd1 disjoint sets Ma , each of which is a Hamming torus of dimension d − d1 ≥
3. In each of these tori, Stepi (v0, . . . , vi−1) comprises vertices that are in the
neighborhood of vi−1, but not in the neighborhood of any of the previous points,
v0, . . . , vi−2. This defines a dn/4-admissible set of length d logn; the order is
again immaterial. This verifies (R1). Theorem 1.2 from [19] implies that the giant
component in Ma is on the order of nd−d1−1 � DN(logN)2 = d3n(logn)2, which
implies (R2).

Theorem 4.1 thus handles the case d ≥ 4. The cases d = 2,3 require a modified
argument that we now present. For d = 2 consider the entire puzzle graph, and
for d = 3 consider a fixed two-dimensional subgraph. Assume first that the Gppl
probability is p1 = μ1/(n logn). We will describe a sequence (zi) of vertices,
divided into ordinary and base vertices. The sequence starts with an arbitrary z0 ∈
V , a base vertex. Given vertices z0, . . . , zi−1, let zj , be the base vertex with the
largest index j < i. Inspect one by one all vertices in the neighborhood of zi−1
which are not in the neighborhood of any previous vertices, z0, . . . , zi−2, until
either:

• a vertex that is Gppl-connected to one of the vertices zj , . . . , zi−1 is found, which
is then declared an ordinary vertex zi ; or

• all vertices are exhausted, in which case zi is a new base vertex, selected arbi-
trarily outside of the neighborhoods of vertices z0, . . . , zi−1.

We continue this construction until we either: encounter a subsequence of n0.7

consecutive ordinary vertices, in which case we call the sequence successful; or the
sequence reaches length n0.9. By construction, the number of vertices available for
inspection is always at least n − o(n). Thus, conditioned on any outcome of prior
inspections, a new base vertex is the last base vertex with probability at least n−0.1

for a large enough μ1, by a calculation similar to (4.2). The number of base vertices
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in an unsuccessful sequence is at least n0.2 and so

(4.6)
Pp1

(
there is an internally solved set of size n0.7)
≥ Pp1(sequence successful) ≥ 1 − exp

(−n0.1)
.

Now let p2 = 1/(n logn), and as in the proof of Theorem 4.1 assume that each
pair of vertices is connected by a green edge with probability p2, and then declare
a vertex open if it is connected by a green edge to the largest internally solved set
at edge density p1. On the event that the largest p1-internally solved cluster has
size at least n0.7, the p2-probability of a fixed vertex being open is at least(

1 − (1 − p2)
n0.7)

> n−1/2,

independently of other vertices. By (4.6) and Lemma 4.5,

Pp1+p2

(
there is an internally solved set of size 0.5n3/2) → 1.

As 0.5n3/2 � n(logn)2, the proofs for both d = 2 and d = 3 are easily concluded
using the unstoppability Lemma 2.5 and additional density p3 = 1/(n logn), as at
the end of the proof of Theorem 4.1. �

PROOF OF THEOREM 2. The stated scaling properties follow directly from
Theorem 1, and Corollaries 4.3, 4.2, 4.4 and 4.6. �

As we see from the examples in Theorem 2, for many vertex-transitive graphs
of N vertices and degree D, pc scales as 1/(D logN). This is however not always
true. The easiest counterexample is the complete graph Kn where p = μ/(n logn)

yields a disconnected graph Gppl, and in fact pc ∼ logn/n, as observed in [6].
We now show by an example that this scaling may fail to hold even if Gppl is
connected.

PROPOSITION 4.7. Consider the Cartesian product graph Gpuz = Kn ×
R(logn)3 of a complete graph Kn (of n vertices) and a ring graph R(logn)3 [of

(logn)3 vertices], and p = μ/(n logn) for some constant μ > 0. If the dynamics
is either basic or AE, Gppl is a.a.s. connected, but Pp(Solve) → 0.

PROOF. We assume the basic dynamics for the proof; the result for AE dy-
namics follows by monotonicity. The threshold for Gppl-connectivity scales as
1/(n(logn)2) � p, so the first statement follows. To prove the second state-
ment, we find an upper bound for the number C(v, k) of connected sets of size
k =O(logn) that include a specific vertex v.

Divide the set of vertices into copies of Kn, denoted by K ′
i , i = 1, . . . , (logn)3,

which are in cyclic order connected by the ring graph edges. We will assume that
the vertices in K ′

i have a prescribed order. A connected set A, with v ∈ A, of size k
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in Gpuz must be divisible into � contiguous sets (on the ring) K ′
i0+1, . . . ,K

′
i0+�, for

some � ∈ [1, k] and some i0. Thus, there exist k1, . . . , k� ≥ 1, with k1 + · · · + k� =
k, so that there are ki vertices in each A∩K ′

i0+i , i = 1, . . . , �. We now fix a choice
of A recursively as follows. Once the ki points in Ki0+i are chosen, we choose the
first point in the ordering that has a ring connection to a point in A∩Ki0+i+1. This
fixes one of ki+1 points in A∩Ki0+i+1, which we call the base point, and we have
at most

( n
ki+1−1

)
choices for the others. We choose, say, the first point in the set

A ∩ Ki0+1 as its base point. This gives

(4.7)

C(v, k) ≤ kn
∑
�

∑
k1,...,k�

k1 · · ·k�−1

(
n

k1 − 1

)
· · ·

(
n

k� − 1

)

≤ n

k∑
�=1

k�

(
n�

k − �

)
≤ n · max

1≤�≤k
k�+1

(
n�

k − �

)
.

We now use
(n
k

) ≤ (en/k)k , so that from (4.7)

C(v, k) ≤ n exp
(
(� + 1) log k + (k − �)

(
1 + logn + log� − log(k − �)

))
,

and the derivative of the expression inside exp with respect to � is

log k + log
(

k

�
− 1

)
+ k

�
− 3 − logn.

This last expression is negative for all n ≥ e2, � ≥ 1, and 1 ≤ k ≤ 1
2 logn. Assum-

ing these inequalities,

C(v, k) ≤ exp
(
k logn − k log k +O(logn)

)
.

Now by Lemma 3.4, for an A of size |A| = α logn,

Pp(SolveA) ≤ exp
(−α(logn)2 +O(logn)

)
.

When Solve occurs, so does SolveA for some A with A ∈ [1
4 logn, 1

2 logn], and
then

Pp(Solve) ≤ exp
(
−1

4
logn log logn +O(logn)

)
,

which ends the proof. �

5. Ring puzzle: Sharp transition. In this section, we assume that Gpuz is the
ring graph Zn of n vertices. The dynamics either has parameters τ = 1, θ = ∞
and arbitrary σ ≥ 1, or is the basic rule. The arguments for basic and AE rules are
identical, so it should be assumed σ = 1 when following the proof for basic jigsaw
percolation.

We first prove Theorem 4 and then use it to prove Theorem 5. As already noted,
the proof of Theorem 4 is an adaptation of the argument in [13]. The key steps
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(whose proofs of course differ from their analogues in [13]) are: Lemma 5.2, which
bounds the probability of advance of an internally solved interval of critical size,
that is, of length on the order 1/p; and the simple Lemma 5.3, which will be used
to bound the probability that a very small interval is internally solved, where de-
pendence on σ is not needed. These two lemmas and the deterministic observations
in Lemmas 5.1 and 5.4 will make Holroyd’s argument for the lower bound on pc

go through. The upper bound is provided by the local rule, and is already carried
out in [6] when σ = 1.

LEMMA 5.1. The function gσ is positive, decreasing, and convex on (0,∞).

PROOF. Positivity is obvious, and

g′
σ (x) = − 1

(σ − 1)!∑∞
i=σ

xi−σ+1

i!
implies the other two properties. �

LEMMA 5.2. Fix a, b, ε > 0. Then there exists a δ > 0 so that the following
holds. Assume R ⊂ R′ are intervals with |R| = x/p and |R′| = (x + δ)/p. Then,
if p is small enough,

p logPp

(
D

(
R,R′)) ≤ −(1 − ε)gσ (x)δ,

for all x ∈ [a, b].
PROOF. Let M be the number of vertices in R′ \R that have no Gppl-neighbors

in R′ \ R. Let L = |R′| − |R|. We will show that M is very likely to be close to L

even in the large deviation regime.
Let X be the number of Gppl-edges between vertices in R′ \ R. Then, by (2.2),

Pp(L − M ≥ εL) ≤ Pp(X ≥ εL/2) ≤ P
(
Binomial

(
L2/2,p

) ≥ εL/2
)

≤
(

3δ

ε

)εL/2
.

Further, for p small enough, by Poisson approximation [3], for any y ∈ R′ \ R,

Pp(y has at least σ Gppl-neighbors in R) ≤ e−gσ (x) + p.

Therefore, by independence between edges within R′ \ R and those leading out of
this set,

(5.1)

Pp

(
D

(
R,R′)) ≤ (

e−gσ (x) + p
)(1−ε)L + Pp

(
M < (1 − ε)L

)
≤ exp

(−gσ (x)(1 − ε)L + Cp(1 − ε)L
)

+ 2 · exp
[
−

(
1

2
log

ε

3δ

)
εL

]
.
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Here, C is a constant that depends only on a and b. The second term can be made
smaller than the first term (uniformly for x ∈ [a, b]), by choosing δ small enough,
and then the result follows. �

LEMMA 5.3. Fix any interval R,

Pp(R internally solved) ≤ (
2|R|p)|R|

.

PROOF. This follows from (2.2) as Pp(|ER
ppl| ≥ |R|) = P(Binomial(|R|(|R|−

1)/2,p) ≥ |R|). �

LEMMA 5.4. Let R be an internally solved interval with |R| ≥ 2. Then there
are nonempty internally solved intervals R′, R′′ which partition R such that
〈{R′,R′′}〉 = R.

PROOF. This follows from the slowed-down jigsaw percolation on the pair
GR

puz, GR
ppl, whereby G′

t in (J6) has exactly one edge. If T R
f is the minimal time

when the final configuration is reached, then the partition at time T R
f − 1 satisfies

the theorem. �

We now adapt the key concepts from [13] that we use to prove the lower bound
on pc. None of what we do in the next two lemmas is original, but we give
some details mainly to demonstrate how much simpler the argument is in this
one-dimensional case.

Pick small constants T and Z; we will also assume that T is much smaller
than Z. A hierarchy H is a finite directed tree in which each vertex u is associated
with a nonempty interval Ru. A special vertex r , the root, is associated with an
interval R. All edges point away from the root, and u → v implies Ru ⊃ Rv . Each
vertex u is one of the three kinds:

• a seed with no children;
• normal with a single child v, written as u ⇒ v; or
• a splitter with two children v,w, written as u ⇒ v,w.

To say that a hierarchy occurs we further require that Rv and Rw partition
Ru whenever u ⇒ v,w, that Ru is internally solved for each seed u and that
D(Rv,Ru) happens whenever u ⇒ v. Finally, we impose the following conditions
on the lengths of the intervals:

(H1) |Ru| < 2Z/p for every seed u;
(H2) |Ru| ≥ 2Z/p for every splitter and every normal vertex;
(H3) u ⇒ v and v is not a splitter implies |Ru| − |Rv| ∈ [T/(2p),T /p];
(H4) u ⇒ v and v is a splitter implies |Ru| − |Rv| ≤ T/p; and
(H5) u ⇒ v,w implies |Ru| − |Rv| ≥ T/(2p) and |Ru| − |Rw| ≥ T/(2p).
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LEMMA 5.5. If R is an internally solved interval, a hierarchy with Rr = R

occurs.

PROOF. This is proved in the same way as the proof of Proposition 32 in [13]
by using Lemma 5.4. �

LEMMA 5.6. Fix a, ε > 0, b ≥ a, and an interval R of length �b/p�. Then

Pp(SolveR) ≤ exp
(
−p−1(1 − 2ε)

∫ b

a
gσ (x) dx

)
,

for small enough p.

PROOF. For an interval R′, we let

V
(
R′) = −p

∣∣R′∣∣ log
(
2p

∣∣R′∣∣)
and for R′ ⊂ R′′, we let

U
(
R′,R′′) =

∫ p|R′′|
p|R′|

gσ (x) dx.

Observe that U(R′,R′′) ≤ g(p|R′|)(p|R′′| − p|R′|) by Lemma 5.1.
Then we have, for a given hierarchy H,

(5.2) Pp(H occurs) ≤ exp
(
−p−1

[
(1 − ε)

∑
u⇒v

U(Ru,Rv) + ∑
w seed

V (Rw)

])
.

Here, the first sum is over pairs u, v of vertices in H with u ⇒ v and the second
sum is over seeds w of H. We get (5.2) from Lemmas 5.2 (with a suitable choice
of T , which is now fixed) and 5.3.

Now let S be the interval with its length equal to the combined length of all
seeds in H, positioned inside R (say, so that the left endpoints agree, although the
exact position is not essential). Note that S is analogous to what [13] refers to as a
pod. Then we claim that

(5.3)
∑
u⇒v

U(Rv,Ru) ≥ U(S,R).

This assertion is proved by induction on the number of vertices in H. If R is a seed,
then (5.3) is trivial. If the root r (with Rr = R) is a normal vertex with child y, then
apply the induction hypothesis to the hierarchy rooted at y to get∑

u⇒v

U(Rv,Ru) ≥ U(Ry,R) + U(S,Ry) ≥ U(S,R).

If r is a splitter with children y1, y2, then we apply the induction hypothesis to the
hierarchies rooted at y1 and y2 with respective pods S1 and S2, to get∑

u⇒v

U(Rv,Ru) ≥ U(S1,Ry1) + U(S2,Ry2) ≥ U(S,R),
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as it is easy to see by Lemma 5.1 using |S| = |S1| + |S2| and |R| = |Ry1 | + |Ry2 |.
This establishes (5.3).

For a seed w, by the definition of V and property (H1) of seeds,

∑
w seed

V (Rw) ≥ p|S| log
1

4Z
.

Therefore,

(5.4) Pp(H occurs) ≤ exp
(
−p−1

[
(1 − ε)U(S,R) + p|S| log

1

4Z

])
.

Choose Z so small that log 1
4Z

> λc/a. Then, if p|S| > a,

p|S| log
1

4Z
≥ (1 − ε)

∫ b

a
gσ (x) dx.

If p|S| ≤ a, then U(S,R) ≥ ∫ b
a gσ (x) dx. Then, by (5.4),

(5.5) Pp(H occurs) ≤ exp
(
−p−1(1 − ε)

∫ b

a
gσ (x) dx

)
.

It is not hard to see [13] that the number of hierarchies H that satisfy (H1)–(H5)
is bounded above by p−K , where K is a constant that depends only on b and T .
But if p is small enough,

K log
1

p
≤ εp−1

∫ b

a
gσ (x) dx,

which ends the proof. �

PROOF OF THEOREM 4. Assume that p = λ/ logn for some λ < λ′ < λc.
Then choose a, b and ε so that (1−2ε)

∫ b
a gσ (x) dx > λ′. By Lemmas 2.3 and 5.6,

Pp(Solve) ≤ Pp

( ⋃
R:|R|∈[b/p,2b/p]

SolveR

)

≤ bλ−1n logn · exp
(−(

λ′/λ
)

logn
) = bλ−1n1−λ′/λ logn → 0,

which proves the lower bound for pc.
The proof of the upper bound generalizes the one in [6] for σ = 1. Fix a small

ε > 0. We will later choose a small a > 0 and a large b dependent on ε.
Let p = λ/ logn, for some λ > λc + 5ε. Fix an interval R with length L =

�3ε−1(logn)2�. We will find a lower bound for Pp(SolveR). For notational con-
venience, we will assume the left endpoint of R is at the origin.

Let

Hk = {
k is Gppl-connected to at least σ points in [0, k − 1]},
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and define the following four events:

G1 = {{k, k + 1} ∈ Gppl, for all k ≤ p−1/2}
,

G2 = ⋂
p−1/2<k≤ap−1

Hk,

G3 = ⋂
ap−1<k≤bp−1

Hk,

G4 = ⋂
bp−1<k<L

Hk.

Clearly these are independent events and G1 ∩G2 ∩G3 ∩G4 ⊂ SolveR . We now
estimate their probabilities. Clearly,

(5.6) Pp(G1) ≥ exp
(
−p−1/2 log

1

p

)
> exp

(−p−1ε
)
,

for small enough p. Moreover, with all products and sums over k in the corre-
sponding range

(5.7)

Pp(G2) ≥ ∏
k

P
(
Binomial(k − 1,p) ≥ σ

)

≥ ∏
k

P
(
Binomial

(⌊
(k − 1)/σ

⌋
,p

) ≥ 1
)σ

≥ exp
(
σ

∑
k

log
(
1 − e−pk/(2σ)))

≥ exp
(
p−1σ

∫ a

0
log

(
1 − e−x/(2σ))dx

)

≥ exp
(−p−1ε

)
,

for small enough a. Similarly,

(5.8) Pp(G4) ≥ exp
(
p−1σ

∫ ∞
b

log
(
1 − e−x/(2σ))dx

)
≥ exp

(−p−1ε
)
,

for large enough b. Finally, for p small enough [3],

(5.9)

Pp(G3) ≥ ∏
k

(
P

(
Poisson(kp) ≥ σ

) − 2p
)

≥ exp
(
p−1

∫ b

a
log

(
P

(
Poisson(x) ≥ σ

) − 2p
)
dx

)

≥ exp
(
−p−1ε − p−1

∫ b

a
gσ (x) dx

)

≥ exp
(−p−1λσ − p−1ε

)
.
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From (5.6)–(5.9), we get

(5.10) Pp(SolveR) ≥ exp
(−p−1λσ − 4p−1ε

)
and then

(5.11)
Pp(there exists an internally solved interval of length L)

≥ 1 − (
1 − n−(λσ +4ε)/(λσ +5ε)) 1

4 εn(logn)−2 → 1.

For a fixed interval R with length L, we also have

(5.12) Pσε/ logn(R is unstoppable) ≥ 1 − 3σn−2,

by Lemma 2.5. For the final step, assume that p = λ/ logn with λ > λσ +(5+σ)ε.
By Lemmas 2.4 and 2.6, (5.11), and (5.12), Pp(Solve) → 1. This finishes the
proof. �

To prove Theorem 5, we need a simple observation.

LEMMA 5.7. Assume Solve happens and there is an interval R ⊂ V with
|R| = L such that no element of the partition finalR exceeds size �. Then Tf ≥
L/(2�).

PROOF. By monotonicity of jigsaw percolation, we may start with the parti-
tion R0 = finalR ∪ {Rc}. If t < L/(2�) the graph Gt has at most two edges,
as the cluster that contains Rc may only advance into R from either end, and so
t < Tf . �

PROOF OF THEOREM 5. The result for λ < λσ is proved in the proof of Theo-
rem 4, as all intervals in the final partition are a.a.s. of logarithmic size. We assume
that λ > λσ for the rest of the proof.

Take any λ′ < λσ , and fix an interval R of length eλ′/p . Then a.a.s. finalR

only contains intervals of size C logn for some constant C. By Lemma 5.7,

Tf ≥ (2C logn)−1eλ′/p = (2C logn)−1nλ′/λ,

and so

(5.13) lim inf(logn)−1 logTf ≥ λ′/λ.

Now take λ′′ ∈ (λσ , λ). For any fixed interval R of length L = eλ′′/p , and for p

small enough, SolveR happens with probability at least 0.5. Furthermore, a.a.s.,
every interval of length L is unstoppable [as is every interval of length � (logn)2;
see the previous proof]. Therefore, by the run-length problem, a.a.s. each v ∈ V

is at most C logn intervals away from an internally solved unstoppable interval of
length L, for some constant C. It follows that Tf ≤ L · C logn, and

(5.14) lim sup(logn)−1 logTf ≤ λ′′/λ.

The two inequalities (5.13) and (5.14) end the proof. �
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6. Bounded degree graphs with large σ . In this section, we prove Theo-
rem 3. Thus, our dynamic parameters are τ = 1, θ = ∞, and a large σ . We also
assume that the maximum degree of Gpuz with |V | = N is bounded above by a
fixed constant D. All constants will depend on D, in addition to explicitly stated
dependencies.

To prove the upper bound on pc, we will need the method used to prove The-
orem 2 of [6]. Namely, we need to find a sufficient number of linear graphs of
a given size within a tree, and thus within any connected graph. This method is
presented in the lemma below, whose simple proof we provide for completeness.

Let T be a tree with N vertices and N − 1 edges; generate 2(N − 1) ori-
ented edges by giving each edge both orientations. Consider an oriented cycle of
length �, i.e., a vector of oriented edges (f0, . . . , f�−1) such that the head-vertex
of fi is the tail-vertex of fi+1, 0 ≤ i ≤ �; in a cycle, indices are always reduced
modulo �. A segment of length m ≤ � in such cycle is a vector (fi, . . . , fi+m−1),
for some i. For a segment, we call its edge set and vertex set the set of all its
(unoriented) edges, and the set of all vertices incident to its edges, respectively.

LEMMA 6.1. If T is a tree with N vertices, there is an oriented cycle that
includes each oriented edge exactly once. Further, for any integer L ∈ [1,N − 1]
there exist �(N − 1)/(2L2)� segments with the following three properties: (1) the
edge set of each segment has cardinality L; (2) any two segments have disjoint
edge sets; and (3) any two segments have vertex sets whose intersection is at most
a singleton.

PROOF. The first statement is well known and easy to prove by induction.
Observe that it implies that the vertex and edge sets of any segment determine a
connected subtree of T . This observation, together with (2), implies (3).

Start with any segment with edge set of size L. This segment has length at
most 2L. Assume j segments satisfying (1) and (2) are found. A (j +1)st segment
can then be selected provided that there is an segment of length 2L whose edge
set is disjoint from the union U of edge sets of all j segments. The set U has size
Lj , and these edges are in at most 4L2j segments of length 2L. One of 2(N − 1)

segments of length 2L therefore contains no edge in U provided 2(N −1) > 4L2j ,
that is, j < (N − 1)/(2L2). �

PROOF OF THEOREM 3. To prove the upper bound (which does not require
the bound on the degree), we prove that

(6.1) lim sup
N→∞

pc logN ≤ λσ .

To prove (6.1), replace Gpuz by its spanning tree T . As in the proof of Theorem 4
in Section 5, assume that λ > λσ +5ε and p = λ/ logN . Then use Lemma 6.1 with
L = �3ε−1(logN)2�. Let Ti be subtrees given by the edge and vertex sets of the
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resulting segments. As each Ti is connected, it is easy to adapt the proof of (5.10)
to get the same lower bound on the probability that Ti is internally solved. Notice
also that, by (3) in Lemma 6.1, the subtrees Ti are internally solved independently.
Thus, the probability that at least one of them is internally solved is bounded below
by the following analogue of (5.11),

1 − (
1 − N−(λσ +4ε)/(λσ +5ε))(N−1)/(2L2) → 1,

since (N − 1)/(2L2) ∼ 4.5ε2N/(logN)4. The proof of (6.1) is now finished in the
same way as the proof of Theorem 4 after (5.11). Once we have (6.1), the upper
bound follows from the following asymptotic fact, valid as σ → ∞,

λσ ∼
∫ σ

0
(σ logσ − σ logx − σ + x)dx = 1

2
σ 2,

which follows from an elementary large deviation estimate for Poisson distribu-
tion.

To prove the lower bound, assume that p = λ/ logN . Fix a Gpuz-connected set
A ⊂ V of size |A| = �, with logN/σ − 1 ≤ � ≤ 2 logN/σ . Consider the version
of slowed-down jigsaw percolation on (GA

puz,G
A
ppl) in which G′

t in (J6) has at most
one edge when t ≥ 1. When t = 0, we let G′

0 = G0, that is, all components of
doubly connected vertices are merged at the first time step.

For a vertex v ∈ A, let

Ev = {
GA

ppl-degree of v is at least σ
}
.

A merge at a time t ≥ 1 uses a set of σ GA
ppl-edges that are incident to a single

vertex and disjoint from the sets of GA
ppl-edges used at other times. Moreover, the

number of clusters in the partition P1 is at least � − |EA
puz ∩ EA

ppl|. It follows that
for every k ≥ 0

(6.2) SolveA ⊂ {∣∣EA
puz ∩ EA

ppl
∣∣ ≥ � − k

} ∪
(⋃

Ev1 ◦ · · · ◦ Evk

)
,

where the last union is over sets {v1, . . . , vk} ⊂ A of k different vertices and the
symbol ◦ represents disjoint occurrence of events. Choose k = ��/2�. Then, as
|EA

puz| ≤ D�,

Pp

(∣∣EA
puz ∩ EA

ppl
∣∣ ≥ � − k

)
(6.3)

≤ Pp

(∣∣EA
puz ∩ EA

ppl
∣∣ ≥ �/4

) ≤ 2D�p�/4 ≤ e−c(logN)2
,

for some constant c > 0. Moreover, by Lemma 2.7,

(6.4) P(Ev) ≤
(

3�p

σ

)σ

≤
(

6λ

σ 2

)σ
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and therefore by (6.2)–(6.4) and the BK inequality,

(6.5) Pp(SolveA) ≤ e−c(logN)2 + 2�

(
6λ

σ 2

)σk

≤ e−c(logN)2 +
(

24λ

σ 2

)logN/3
,

for sufficiently large N , provided that λ ≤ σ 2/24. Now, by (6.5), Lemma 2.3 and
Lemma 3.5, for every σ ≥ 1,

(6.6) Pp(Solve) ≤ N logN

(
(eD)2 logNe−c(logN)2 +

(
24e6D6λ

σ 2

)logN/3)
.

If λ ≤ σ 2/(24e10D6), then (6.6) implies that Pp(Solve) → 0 as N → ∞. �

7. Two-dimensional torus puzzle: Basic and AE dynamics. For the rest of
the paper, we assume that the puzzle graph is the two-dimensional lattice torus
with V = Z

2
n. To make sure that pc is small, we also assume that τ is either 1

or 2. Indeed, when τ ≥ 3, Pp(Solve) is close to 0 unless p is close to 1. To
see this, assume there is a 2 × 2 square S none of whose four vertices are doubly
connected to any other vertex. Then each of the four vertices of S is in its own sin-
gleton cluster in final and therefore Solve cannot happen. Thus, Pp(Solve)

is exponentially small if p is bounded away from 1.
Observe that when τ = 1 and θ = ∞, Theorem 4 and Theorem 1 imply that the

order parameter is p logn for all σ . To prove Theorem 6, we will further restrict our
attention to either basic or AE dynamics for the remainder of this section (except
in Proposition 7.3 at the very end), and set p = λ

logn
. We begin with the lower

bound, which uses only local connectivity of Gppl.

LEMMA 7.1. Assume the basic rule. Assume also that λ is any number such
that, for some c > 0,

inf
α∈[1,2]

(−αc log
(
1 − e−λαc) − αc log 4.65

)
> 2.

Then Pp(Solve) → 0; in fact, a.a.s. there is no internally solved set of size at
least c logn.

PROOF. Recall that the number of connected subsets on Z
2 of size k that con-

tain the origin is at most 4.65k , for large k (see Section 3 of [7]). Moreover, by
Theorem 3.2 in [16], for any c, ε > 0, the Erdős–Rényi graph with n vertices and
edge probability c/n is connected with probability at most (1 − e−c + ε)n for a
large enough n.

It follows that, for large n,

Pp(Solve) ≤ cn2 logn sup
α∈[1,2]

(4.65)αc logn(
1 − e−λαc + ε

)αc logn
,

which ends the proof. �
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It is easy to use Theorem 4 to show that lim supn pc logn ≤ π2/12. We now
establish a significant improvement of this upper bound by using a percolation
comparison similar to the one in Section 3 of [8]. This method is in essence a
large deviation computation for the probability that an oriented site percolation
cluster connects the origin to a far-away diagonal line x + y = m. For a useful
comparison to the AE rule, we need to consider increasing site occupation proba-
bility on successive diagonals as we build a larger and larger jigsaw cluster. This
occupation probability starts at 0 and ends at the percolation threshold, as from
then on the expansion is “free.” Additional improvement is achieved by coarse-
graining, whereby we look for the most advantageous cluster increase between
diagonals at distance k. The very last step, a numerical approximation of the inte-
gral in Lemma 7.2, is of course a computer computation.

Fix integers k > 0 and � ≥ 0. For a probability r ∈ (0,1), assume that the origin
(0,0) is open, every other point in Qk = {(x, y) ∈ Z

2+ : x +y ≤ k} is open indepen-
dently with probability r , and no point in Qc

k is open. Let φk,�(r) be the probability
that there is a connected cluster of at least k + 1 + � open sites containing (0,0)

and a site on the line x + y = k. Observe that φk,0(r) is the probability of a (pos-
sibly unoriented) connection between (0,0) and the line x + y = k within Qk .
Further, φk,0(r) is bounded away from 0 independently of k as soon as p > psite

c

[17]; here, psite
c is the critical probability for site percolation. Finally, observe that

each φk,� is a polynomial of degree k(k + 3)/2, readily computable for small k,
and nondecreasing on [0,1].

LEMMA 7.2. Assume AE dynamics, and that

λ >
1

2

∫ − log(1−psite
c )

k+�

0
− logφk,�

(
1 − exp

(−(k + �)r
))

dr,

for some k and �. Then Pp(Solve) → 1.

PROOF. Observe that the integrand is a positive decreasing function and that
the integral is finite. We will drop the subscripts k and � which are fixed throughout
the proof.

Pick r0 > − log(1−psite
c )

k+�
and ε > 0 so that

λ ≥ ε + λ0,

where

λ0 = ε + 1

2

∫ r0

0
− logφ

(
1 − exp

(−(k + �)r
))

dr.

We will use Lemma 2.6: Gppl with probability λ/ logn stochastically dominates
the union of two independent people graphs, with probabilities λ0/ logn and
ε/ logn.
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Write M = �logn/λ0�, J = �Mr0�. Let G1 be the event that there is a cluster
of at least J (k + �) sites inside QJk that connects (0,0) to the line x + y = Jk.
Then

Pλ0/ logn(G1)

≥ φ(1/M) ·
J∏

j=1

φ
(
1 − exp

(−(k + �)j/M
))

= exp

(
logφ(1/M) − M ·

J∑
j=1

1

M

(− logφ
(
1 − exp

(−(k + �)j/M
))))

(7.1)

≥ exp
(

logφ(1/M) − M ·
∫ J/M

1/M
− logφ

(
1 − exp

(−(k + �)r
)
dr

))

≥ exp
(
−M ·

∫ r0

0
− logφ

(
1 − exp

(−(k + �)r
)
dr − C logM

))
,

for some constant C. Let G2 be the event that QM3 contains an internally solved
cluster connecting (0,0) to a point on the line x + y = M3. As

1 − (1 − λ0/ logn)(k+�)J ≥ 1 − exp
(−(k + �)r0

)
> psite

c ,

the classic result of Russo [17] implies that there exists an α = α(r0) > 0 so that

(7.2) Pλ0/ logn(G2|G1) ≥ α.

The square [0, n − 1]2 contains at least 0.5n2/M6 disjoint translations of QM3

and each of them independently contains a translate of the event G2. Therefore, by
(7.1) and (7.2), for large n,

(7.3)

Pλ0/ logn

(
there is an internally solved cluster of size ≥ M3)

≥ 1 − (
1 − Pλ0/ logn(G2)

)0.5n2/M6

≥ 1 − exp
(
−e−2 logn+ε logn/λ0 · 0.5n2

M6

)

= 1 − exp
(−nε/λ0/M6) → 1,

as n → ∞.
The final step uses sprinkling: for any fixed set S ⊂ [0, n − 1]2 of size M3,

(7.4) Pε/ logn(S is unstoppable) → 1,

by Lemma 2.5. Now Lemmas 2.4 and 2.6, together with (7.3) and (7.4) finish the
proof. �

PROOF OF THEOREM 6. The lower bound is obtained by talking c = 1.5116
in Lemma 7.1, which yields the infimum 2.008 for λ = 0.0388. The upper bound
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is obtained by using Lemma 7.2 with k = 6, � = 4 and the best rigorous upper
bound for psite

c known, psite
c < 0.6795 [20]. �

We remark that one could also get a valid upper bound by allowing � to change
with r in Lemma 7.2. The resulting improvement in our constant is too small to
justify additional complications.

We end this section with a simple proposition that shows that only the θ = 2
case may have a different scaling when σ = τ = 1. Indeed, we show in Section 8
that it does.

PROPOSITION 7.3. Assume that θ ≥ 3, while τ = σ = 1. Then Pp(Solve) →
0 if p < 1

4 · 0.0388/ logn.

PROOF. Assume for simplicity that n is even and divide the torus into 2 × 2
squares. Create a new torus G′

puz with a (n/2) × (n/2) vertex set V ′. The new
people graph G′

ppl has an edge between (i, j) and (i ′, j ′) if and only if there is at

least one Gppl edge connecting 2 × 2 squares (2i,2j) + {0,1}2 and (2i′,2j ′) +
{0,1}2. Let Solve′ be the event that the AE jigsaw percolation solves the puzzle
with the pair G′

puz, G′
ppl. As no point in a 2 × 2 square on (the original) Gpuz has

3 neighbors outside it, it is easy to see that Solve ⊂ Solve′. The result then
follows from Theorem 6. �

8. Two-dimensional torus puzzle: θ = 2 and τ = 1. In this section, we de-
termine how the scaling of pc depends on σ when τ = 1 and θ = 2 and the puzzle
graph is the two-dimensional torus, proving Theorem 7. To give the basic idea, we
explain the power of logn. For a small p, consider an L × L square with L on the
order p−σ/(2σ+1) � p−1/2. Then, the probability that a point on the boundary is
Gppl-connected to a point inside is on the order L(L2p)σ = L2σ+1pσ , which is of
constant order. This suggests that this order of L is critical and that the probability
of the formation of clusters that traverse such sizes is about exp(−Cp−σ/(2σ+1)),
for some constant C. This probability must exceed 1/n2 for the puzzle to be
solved, which gives the claimed power for pc.

To prove the upper bound, we begin, as usual, with the lower bound on the
probability of local growth.

LEMMA 8.1.

lim inf
p→0

pσ/(2σ+1) logPp(Grow) ≥ −2νσ .

PROOF. Let Bh
k = [0, k] × {k + 1}, Bv

k = {k + 1} × [0, k]. One scenario that
assures that Grow happens is that the pairs (k − 1,0)–(k,0) and (0, k − 1)–(0, k)

are doubly connected for k = 1, . . . , σ + 1, and then for every k > σ + 1 there are
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points zk ∈ Bh
k and z′

k ∈ Bv
k with coll(zk, [0, k]2) ≥ σ and coll(z′

k, [0, k]2) ≥
σ . Thus,

(8.1)

Pp(Grow) ≥ p2(σ+1)
∞∏

k=σ+1

[
1 − P

(
Binomial

(
k2,p

)
< σ

)k]2

≥ p2(σ+1)
∞∏

k=σ+1

[
1 − exp

(−k · P(
Binomial

(
k2,p

) ≥ σ
))]2

.

Fix an ε > 0. When k ≥ p−1/2+ε and p is small enough,

P
(
Binomial

(
k2,p

) ≥ σ
) ≥ P

(
Binomial

(
p−1+2ε,p

) ≥ σ
)

≥ P
(
Binomial

(
p−1+2ε,p

) = σ
) ≥ cp2εσ ,

for some constant c > 0 that depends on σ . Therefore,

(8.2)

∏
k≥p−1/2+ε

[
1 − exp

(−k · P(
Binomial

(
k2,p

) ≥ σ
))]

≥ exp
(∑

k≥1

log
[
1 − exp

(−ckp2εσ )])

≥ exp
(
−p−2εσ

∫ ∞
0

g(cx) dx

)

≥ exp
(−c−1p−2εσ )

.

Moreover, when σ + 1 ≤ k ≤ p−1/2+ε and p is small enough,

k · P(
Binomial

(
k2,p

) = σ
) ≥ (k − σ)2σ+1

σ ! pσ (1 − p)p
−1+2ε

≥ (1 − ε)
(k − σ)2σ+1

σ ! pσ ,

and so

(8.3)

p−1/2+ε∏
k=σ+1

[
1 − exp

(−k · P(
Binomial

(
k2,p

) ≥ σ
))]

≥ exp
(∑

k≥1

log
[
1 − exp

(
−(1 − ε)

k2σ+1

σ ! pσ

)])

≥ exp
(
−p−σ/(2σ+1)

∫ ∞
0

g

(
(1 − ε)

x2σ+1

σ !
)

dx

)
.

If ε < 1/(4σ + 2), (8.1)–(8.3) imply that

lim inf
p→0

pσ/(2σ+1) logPp(Grow) ≥ −2
∫ ∞

0
g

(
(1 − ε)

x2σ+1

σ !
)

dx.



428 J. GRAVNER AND D. SIVAKOFF

Now we send ε → 0 to get the desired inequality. �

The upper bound on pc is established by our next lemma.

LEMMA 8.2. Assume λ > ν
2+1/σ
σ . If p ≥ λ/(logn)2+1/σ , then Pp(Solve) →

1.

PROOF. By Lemma 2.5, for any fixed set S of size (logn)5, and any ε > 0,

(8.4) Pε/(logn)2+1/σ (S is unstoppable) → 1.

Assume λσ/(2σ+1) > λ′′ > νσ . Divide the torus into disjoint (logn)5 × (logn)5

squares. Call such a square good if the local jigsaw process, started from its lower
left corner, produces an internally solved rectangle whose longest side has length
(logn)5. By Lemma 8.1, each of these squares is good with probability at least
exp(−2λ′′p−σ/(2σ+1)), independently of others. Then

(8.5) Pp(there is a good square) ≥ 1 − (
1 − n−2λ′′λ−σ/(2σ+1))n2/(logn)10 → 1.

The two inequalities (8.4) and (8.5), together with Lemma 2.4, finish the proof.
�

The rest of this section is devoted to proving the claimed lower bound on pc.
We proceed by proving four lemmas: the first two are simple deterministic observa-
tions, the third is a bound on the probability of internally solving small rectangles,
and the fourth is the key bound on advancement probabilities on the critical scale.
After these lemmas are established, the proof of the lower bound on pc proceeds
by a variant of the argument in [13].

Observe that if a subset of the vertex set V is internally solved, so is the small-
est rectangle containing it, therefore we will exclusively deal with internally solved
rectangles in the rest of this section. The maximum (resp. minimum) of two dimen-
sions of a rectangle R will be denoted by long(R) [resp. short(R)].

LEMMA 8.3. If Solve happens, there exists an internally solved rectangle R

with long(R) ∈ [logn,2 logn].
PROOF. The argument is the same as for Lemma 2.3. �

For a rectangle R, we say that its column I is isolated if, for every point v ∈ I ,
coll(v,R \ I ) < σ and v is not doubly connected to any point in R \ I . Further,
we say that I is inert if no two vertices within I are doubly connected.

LEMMA 8.4. Assume R is a rectangle with at least two columns. If σ > 1,
SolveR ⊂ {no column of R is both isolated and inert}, while if σ = 1, SolveR ⊂
{no column of R is isolated}.
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PROOF. If σ > 1, let I be a column that is both isolated and inert and assume
that, at some time t , all points in I are in singleton clusters. If σ = 1, assume that
I is isolated and assume that at time t no cluster intersects both I and R \ I . In
either case, it is easy to see that the condition remains true at time t + 1. �

LEMMA 8.5. Fix b > 0 and Z ∈ (0, b). There exists a constant C dependent
only on σ so that for small enough p the following is true. For any rectangle R

with long(R) ≤ bp−σ/(2σ+1) and short(R) ≤ Zp−σ/(2σ+1),

Pp(R is internally solved) ≤ (
CbσZσ+1)long(R)/(σ+1)

.

PROOF. For a vertex v ∈ R, define the event

Ev = {v is doubly connected to another vertex in R} ∪ {
coll

(
v,R \ {v}) ≥ σ

}
.

Then, by Lemma 2.7,

(8.6) Pp(Ev) ≤ 4p +
(

3

σ

)σ (|R|p)σ
.

Assuming that long(R) is the number of columns of R, by Lemma 8.4,

(8.7) Pp(R is internally solved) ≤ Pp

(∑
v

1Ev ≥ long(R)

)
.

Let k = �long(R)/(σ + 1)�. As each Ev only requires the presence of at most σ

Gppl-edges connecting at most σ + 1 vertices,{∑
v

1Ev ≥ long(R)

}
⊂ ⋃

(Ev1 ◦ · · · ◦ Evk
),

where the union is over all subsets {v1, . . . , vk} ⊂ R of size k, and the symbol ◦
denotes disjoint occurrence of the events. Therefore, by the BK inequality, (8.6)
and Lemma 2.7,

(8.8)

Pp

(∑
v

1Ev ≥ long(R)

)

≤
(|R|

k

)(
4p +

(
3

σ

)σ (|R|p)σ )k

≤
[
12(σ + 1)pshort(R)

+ 3(σ + 1)

(
3

σ

)σ

short(R)σ+1 long(R)σpσ

]long(R)/(σ+1)

.

Now, pshort(R) = o(1) and short(R)σ+1 long(R)σpσ ≤ Zσ+1bσ , so (8.8)
and (8.7) finish the proof. �
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FIG. 3. The rectangles S1, . . . , S8 in the proof of Lemma 8.6.

We pause in our quest to prove Theorem 7 to see how our results up to this point
imply a weaker result: pc is between two constants times 1/(logn)2+1/σ . Indeed,
we can use Lemmas 8.3 and 8.5 to get, for any b and λ, with p = λ/(logn)2+1/σ ,

Pp(Solve) ≤ Cn2(logn)
(
Cb2σ+1) b

2(σ+1)
λ−σ/(2σ+1) logn

.

Now, we first choose b small enough so that Cb2σ+1 < e−1, and then λ so small
that

b

2(σ + 1)
λ−σ/(2σ+1) > 2

to ensure that Pp(Solve) → 0.
The key to proving the sharp transition is the next lemma, which gives an ad-

equately precise upper bound on the probability that the solving progresses from
a rectangle with sides on the scale p−σ/(2σ+1) to a rectangle slightly larger on the
same scale.

LEMMA 8.6. Fix small a, ε > 0 and large b > 0. Then there exists a δ > 0
so that the following holds uniformly over x, y ∈ [a, b]. Assume that R ⊂ R′ are
rectangles with dimensions xp−σ/(2σ+1) ×yp−σ/(2σ+1) and (x + δx)p

−σ/(2σ+1) ×
(y + δy)p

−σ/(2σ+1), with δx, δy < δ. Then, for a small enough p,

pσ/(2σ+1) logPp

(
D

(
R,R′)) ≤ −(1 − ε)

(
g

(
1

σ !x
σ yσ+1

)
δx + g

(
1

σ !x
σ+1yσ

)
δy

)
.

PROOF. Divide R′ \ R into eight disjoint rectangles S1, . . . , S8 as in Figure 3.
Let Sh = S1 ∪ S2 ∪ S3 ∪ S5 ∪ S6 ∪ S7, Sv = S7 ∪ S8 ∪ S1 ∪ S3 ∪ S4 ∪ S5, and

Sc = S1 ∪ S3 ∪ S5 ∪ S7. Call a vertex v ∈ R′ \ R (resp. v ∈ Sv) exceptional (resp.
horizontally exceptional) if it is either doubly connected to another vertex in R′, or
it has both coll(v,R′) ≥ σ and coll(v, Sh ∪ Sv) ≥ 1 [resp. coll(v, Sh) ≥ 1].
Moreover, declare v successful (resp. horizontally successful) if coll(v,R) ≥ σ

[resp. coll(v,R′ \ Sh) ≥ σ ].
Without loss of generality, we may assume δx ≤ δy . We divide our argument

into two cases.
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Case 1: δx ≥ εδy .
Define the following events:

(8.9)

G1 = {
at least εδyp

−σ/(2σ+1) vertices in Sh are exceptional
}
,

G2 = {
at least εδxp

−σ/(2σ+1) vertices in Sv are exceptional
}
,

G3 = {
at least ε(δx ∧ δy)p

−σ/(2σ+1) vertices in Sc are successful
}
,

G4 = {
at least (1 − 3ε)δyp

−σ/(2σ+1) rows in

S2 ∪ S6 contain a successful vertex
}
,

G5 = {
at least (1 − 3ε)δxp

−σ/(2σ+1) columns in

S4 ∪ S8 contain a successful vertex
}
.

By Lemma 8.4,

(8.10) D
(
R,R′) ⊂ G1 ∪ G2 ∪ G3 ∪ (G4 ∩ G5).

From now on, C will be a generic constant that depends on a, b, and σ . We have,
for any vertex v,

Pp(v is exceptional) ≤ Cδpσ/(2σ+1).

As in the proof of Lemma 8.5, on G1 there must exist 1
σ+1εδyp

−σ/(2σ+1) vertices
that are exceptional disjointly, and analogous statement holds for G2. Therefore,
by Lemma 2.7,

(8.11)
Pp(G1) ≤ (Cδ/ε)

1
σ+1 εδyp−σ/(2σ+1)

,

Pp(G2) ≤ (Cδ/ε)
1

σ+1 εδxp−σ/(2σ+1)

.

Moreover, for p small enough,

(8.12) psucc = Pp(v successful) ≤ (1 + ε)
1

σ !(xy)σpσ/(2σ+1) ≤ Cpσ/(2σ+1),

so that, by Lemma 2.7, as the points in Sc are successful independently,

(8.13) Pp(G3) ≤ (Cδ/ε)εδxp−σ/(2σ+1)

.

Now, as points in S2 ∪ S4 ∪ S6 ∪ S8 are also successful independently, G4 and
G5 are independent. To estimate Pp(G4), we see that the number of choices
of the required number of rows that contain a successful vertex is bounded
above by exp(Cε log 3

ε
δyp

−σ/(2σ+1)), which we will, for simplicity, bound by
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exp(C
√

εδyp
−σ/(2σ+1)). Moreover, for p small enough, by (8.12),

(8.14)

Pp(G4) ≤ exp
(
C

√
εδyp

−σ/(2σ+1))
× (

1 − (1 − psucc)
xp−σ/(2σ+1))(1−3ε)δyp−σ/(2σ+1)

≤ exp
[(

C
√

εδyp
−σ/(2σ+1))

− g
(
(1 + ε)psuccxp

−σ/(2σ+1))(1 − 3ε)δyp
−σ/(2σ+1)]

≤ exp
[(

C
√

εδyp
−σ/(2σ+1))

− g

(
(1 + ε)2 1

σ !x
σ+1yσ

)
(1 − 3ε)δyp

−σ/(2σ+1)

]

≤ exp
[
−(1 − C

√
ε)g

(
1

σ !x
σ+1yσ

)
δyp

−σ/(2σ+1)

]
and

(8.15) Pp(G5) ≤ exp
[
−(1 − C

√
ε)g

(
1

σ !x
σyσ+1

)
δxp

−σ/(2σ+1)

]
.

Let β be the upper bound on Pp(G4 ∩ G5) = Pp(G4)Pp(G5) obtained by (8.14)
and (8.15). Now we claim that Pp(G1), Pp(G2), and Pp(G3) are, for small
enough δ, all smaller than β . It is here that we use the Case 1 assumption. For
example, for arbitrary large M > 0, δ can be chosen small enough so that

Pp(G2) ≤ (Cδ/ε)
1

σ+1 ε2δyp−σ/(2σ+1) ≤ exp
(−Mδyp

−σ/(2σ+1)),
while

β ≥ exp
(−Cδyp

−σ/(2σ+1)).
Therefore, for small enough δ, Pp(D(R,R′)) ≤ 4β , which finishes the proof in
this case.

Case 2: δx ≤ εδy .
In this case, it is enough to show

(8.16) Pp

(
D

(
R,R′)) ≤ exp

[
−(1 − C

√
ε)g

(
1

σ !x
σ+1yσ

)
δyp

−σ/(2σ+1)

]
as, for x, y ∈ [a, b],

g

(
1

σ !x
σ yσ+1

)
δx ≤ Cεg

(
1

σ !x
σ+1yσ

)
δy.

To demonstrate (8.16), introduce the following two events:

G6 = {
at least εδyp

−σ/(2σ+1) vertices in Sh are horizontally exceptional
}
,

G7 = {
at least (1 − ε)δyp

−σ/(2σ+1) rows in Sh

contain a horizontally successful vertex
}
.
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Now P(D(R,R′)) ≤ P(G6) + P(G7) and the rest of the proof is similar as in
Case 1. �

PROOF OF THEOREM 7. The upper bound on pc follows from Lemma 8.2.
The proof of the lower bound, at this point, follows rather closely the argument in
Sections 6–10 in [13] and we merely identify the key steps. The functional w on
paths γ is now given by

w(γ ) =
∫
γ

(
g

(
xσ yσ+1

σ !
)

dx + g

(
xσ+1yσ

σ !
)

dy

)
,

and analogous variational principles as in Section 6 of [13] hold. The disjoint span-
ning properties and hierarchies also have analogous formulations, and then the ar-
gument in Section 10 of [13] goes through by the use of key Lemmas 8.5 and 8.6.

�

9. Two-dimensional torus puzzle: τ = 2. Here we assume the two-
dimensional torus with τ = 2. We will assume that θ ≥ 2 and σ ≥ 1 are arbitrary
and show that the asymptotic scaling of the critical probability is always 1/ logn,
proving Theorem 8. We begin with the local result.

LEMMA 9.1. Assume that τ = 2, θ = ∞ and σ ≥ 1. Then

lim inf
p→0

p logPp(Grow) ≥ −π2

3
+

∫ ∞
0

logP
(
Poisson(x) ≥ σ

)
dx.

PROOF. Fix ε > 0. For a b > 0 (which will depend on ε), let J = �(b/p)1/2�.
Let G1 be the event that the pairs of points {(0, j − 1), (0, j)} and {(j −
1,0), (j,0)}, 1 ≤ j ≤ J are all doubly connected.

Order the points in Z
2+ as in the proof of Corollary 4.3: (x1, y1) < (x2, y2) if

either x1 +y1 < x2 +y2 or x1 +y1 = x2 +y2 and x1 < x2. Let G2 be the event that
every point (x, y) ∈ (0, J ]2 has at least σ Gppl-neighbors within ([0, J ] × {0}) ∪
({0} × [0, J ]) ∪ ←−−−

(x, y). Here,
←−−−
(x, y) is the set of points that strictly precede (x, y)

in the ordering.
As in the proof of Lemma 8.1, let Bh

k = [0, k − 1] × {k} and Bv
k = {k} × [0, k −

1]. Let G3 be the event that, for every k > J , there are points zk ∈ Bh
k and z′

k ∈ Bv
k ,

each of which is doubly connected to a point in [0, k − 1]2, and let G4 be the event
that, for every k > J , each point in Bh

k ∪Bv
k ∪ {(k, k)} is Gppl-connected to at least

σ points in [0, k − 1]2.
By the FKG inequality, P(G3 ∩ G4) ≥ P(G3)P (G4), while G1, G2, and G3 ∩

G4 are independent. It is easy to see that G1 ∩ G2 ∩ G3 ∩ G4 ⊂ Grow. Therefore,

(9.1) Pp(Grow) ≥ Pp(G1)Pp(G2)Pp(G3)Pp(G4),
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and we estimate each factor separately. Clearly

(9.2) Pp(G1) = p2J ,

and, by the same estimates as in (5.7) and (5.9),

(9.3) Pp(G2) ≥ exp
(
−2εp−1 + p−1

∫ ∞
0

logP
(
Poisson(x) ≥ σ

)
dx

)
,

for small enough p. Further,

(9.4)

Pp(G3) =
∞∏

k=J+1

(
1 − (1 − p)k

)2 ≥
∞∏

k=1

(
1 − (1 − p)k

)2

≥ exp
(
−p−1 · π2

3

)
,

by the standard calculation, and

(9.5)

Pp(G4) =
∞∏

k=J+1

P
(
Binomial

(
(k − 1)2,p

) ≥ σ
)2k+1

≥
∞∏

k=J+1

P
(
Binomial

(⌊
(k − 1)2/σ

⌋
,p

) ≥ 1
)(2k+1)σ

≥ exp

(
3σ

∞∑
k=J+1

k log
(
1 − e−0.5σ−1pk2))

= exp

(
3σp−1

∞∑
k=J+1

k
√

p · log
(
1 − e−0.5σ−1(k

√
p)2)√

p

)

≥ exp
(

3σp−1
∫ ∞
b

x log
(
1 − e−0.5σ−1x2)

dx

)

≥ exp
(−εp−1)

,

for small enough p and large enough b. The result now follows from (9.1)–(9.5).
�

PROOF OF THEOREM 8. We first consider the parameter choice θ = 2, which
makes the growth easiest. The resulting analysis is also the easiest, as the dynamics
is a slight variant of the modified bootstrap percolation [13]. Namely, it is equiva-
lent to the following edge-growth process. Initially, the edges that connect doubly
connected vertices are occupied. Then one simply “completes the squares,” that is,
when two Gpuz-edges {v, v1}, {v, v2} adjacent to the vertex v are occupied, there
exists a unique v′ so that the two Gpuz-edges {v′, v1}, {v′, v2} are adjacent and
each (if not already occupied) becomes occupied at the next time. By following
the argument from [13], (1.2) follows.
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Therefore, for any ε > 0, and p ≤ (1 − ε)(π2/6)/ logn, Pp(Solve) → 0 in all
cases, proving the lower bound in (1.1). The upper bound in (1.1) follows imme-
diately from Lemma 9.1. �

10. Two-dimensional torus puzzle: Computational aspects. For concrete-
ness, we assume the AE dynamics throughout this section. This is more challeng-
ing to simulate than the basic jigsaw percolation [6] as a cluster cannot be “col-
lapsed” into a vertex. For large two-dimensional tori Z2

n, the simulations seem
daunting at first, as generation of Gppl alone involves n2(n2 − 1)/2 coin flips.
However, as we will see, only a small proportion of these flips is ever likely to
be used, leading to a significant reduction in computational requirements. The key
idea is that the status of edges of Gppl can be determined dynamically as needed,
rather than at the beginning.

We begin by describing an implementation of the dynamics. We recall that the
state at time t is a partition P t = {Wt

i : i = 1, . . . , It} of Z2
n into disjoint nonempty

sets that are internally solved; in particular, they are connected clusters in both
graphs. One may use an appropriate pointer-based data structure which makes
Union and Find operations efficient, for example shallow (threaded) trees [18].
We change the terminology slightly in that we consider Gppl a random configura-
tion on the set of complete graph edges in which each edge is independently open
with probability p and closed otherwise. At any time t = 0,1, . . . one performs the
following two operations:

(1) For any point z ∈ Wt
i that has a Gpuz-neighbor in a cluster Wt

j , j �= i, check
the status of the Gppl-edges between z and points z′ ∈ Wt

j in some order; stop when
an open edge is encountered or when all points in Wt

j are exhausted. In the former
case say that z communicates with z′.

(2) Repeatedly merge any two sets in the partition if a point in one commu-
nicates with a point in another, until no more merges are possible. The resulting
partition is P t+1.

Whenever a status of Gppl-edge in step (1) is checked, we say that an oriented
pair z → z′ is examined at time t . Observe that z → z′ and z′ → z may be ex-
amined at the same time t . Observe also that if a pair z → z′ is examined at time
t − 1, and z → z′ or z′ → z is again examined at time t , then {z, z′} is necessarily
a closed edge in Gppl. One may arrange the algorithm so that no edge is examined
twice. However, in a practical implementation, it is easiest to store the set of edges
(z, z′) of Gppl, such that either z → z′ or z′ → z, in a convenient data structure
(say, a binary search tree or a hash table [18]). These are the edges whose status
has been decided.

THEOREM 10.1. Fix any sequence of probabilities p. With probability con-
verging to 1 as n → ∞, for every vertex z ∈ V , at most 1000(logn)2 oriented
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pairs z → z′ are ever examined. Consequently, the space and time requirements
for deciding whether the puzzle is solved are both a.a.s. bounded by Cn2(logn)2,
for some absolute constant C.

PROOF. We may assume that p ≥ 0.038/ logn, as otherwise the result follows
from Lemma 7.1 and Theorem 6 [in fact, with logn instead of (logn)2].

Fix an edge {z1, z2} ∈ Epuz. Call this edge active at time t if z1 and z2 belong
to different clusters at time t . Observe that no pair z → z′ is checked at any time
t ′ ≥ t if none of the for Gpuz-edges incident to z are active at time t . Furthermore,
if Wt

1,W
t
2 ∈ P t are the clusters that contain z1, z2, respectively, then for t ≥ 0,{{z1, z2} active at time t + 1

}
⊂ {{

z1, z
′
2
}

/∈ Eppl,
{
z2, z

′
1
}

/∈ Eppl, for all z′
1 ∈ Wt

1, z
′
2 ∈ Wt

2
}
,

as the status of Gppl-edges {z1, z
′
2} is checked when z′

2 joins the cluster containing
z2. It follows that

Pp

({z1, z2} is active at time t + 1,
∣∣Wt

1 ∪ Wt
2

∣∣ ≥ k
) ≤ (1 − p)k,

and then

Pp

({z1, z2} is active at time t + 1,
∣∣Wt

2

∣∣ ≥ 240(logn)2) = o
(
n−4)

.

Let

Gz1,z2 =
{

more than 240(logn)2 pairs z1 → z′
2, z′

2 ∈ ⋃
s≥0

Ws
2 are examined

}
.

Then, for any fixed time t ,

Pp

(
Gz1,z2 ∩ {∣∣Wt

2

∣∣ ≥ 240(logn)2}) = o
(
n−4)

,

and then by monotonicity of |Wt
2|,

Pp(Gz1,z2) = Pp

(
Gz1,z2 ∩

(⋃
t≥0

{∣∣Wt
2

∣∣ ≥ 240(logn)2}))
= o

(
n−4)

.

Thus for any fixed z ∈ V ,

Pp

(
more than 1000(logn)2 pairs z → z′ are examined

)
≤ Pp

(⋃
z2

Gz,z2

)
= o

(
n−4)

,

where the union is over four z2 that are Gpuz-neighbors of z. This proves the first
claim of the theorem with C = 1000. The spatial and temporal complexity bounds
are then easy to deduce. �
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Open problems. We conclude with a list of open problems, some of which
were mentioned in passing in the text, but most are introduced here.

(i) Denote by pbasic
c and pAE

c the respective critical probabilities for basic
and AE jigsaw percolation. Does there exist a sequence of vertex-transitive graphs
Gpuz with N vertices so that

pbasic
c � pAE

c

as N → ∞? This is a more precise version of Open Problem 3 in [6], and is
arguably the fundamental unresolved question in jigsaw percolation.

(ii) For the AE dynamics (τ = 1, θ = ∞) on Z
2
n, can sharp transition be

proved? Can one devise a sequence of approximations (in principle computable
in finite time) that provably converges to pc?

(iii) For the dynamics with τ = 1 and θ = ∞ on Z
2
n, can one find a lower and

an upper bound for pc of the form, respectively, c�
σ / logn and cu

σ / logn, such that
c�
σ ∼ cu

σ as σ → ∞?
(iv) When Gpuz is a regular tree with AE dynamics, can one show that

limp→0 p logPp(Grow) exists and compute it?
(v) To which precision can one estimate pc for AE dynamics on the hyper-

cube or Hamming torus? (See Theorems 1 and 2, and Section 4 for the scaling
results.)

(vi) How fast is the convergence to λc in Theorems 4 and 7? (Bootstrap per-
colation is analyzed from this perspective in [12].)

(vii) Can the bounds in (1.1) be improved for σ = 1?
(viii) What is the scaling on three-dimensional torus with arbitrary σ , θ = 2

or θ = 3, and τ ≤ θ? Or on the d-dimensional torus, for general d? (Again, the
answers are known for bootstrap percolation [2].)

Acknowledgments. Thank you to Charlie Brummitt for his helpful comments
on an earlier draft.
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