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MAXIMA OF A RANDOMIZED RIEMANN ZETA FUNCTION,
AND BRANCHING RANDOM WALKS

BY LOUIS-PIERRE ARGUIN∗,†,1, DAVID BELIUS‡,2 AND ADAM J. HARPER§,3

Université de Montréal∗, City University of New York†, New York University‡

and Jesus College§

A recent conjecture of Fyodorov–Hiary–Keating states that the maxi-
mum of the absolute value of the Riemann zeta function on a typical bounded
interval of the critical line is exp{log logT − 3

4 log log logT + O(1)}, for an
interval at (large) height T . In this paper, we verify the first two terms in the
exponential for a model of the zeta function, which is essentially a random-
ized Euler product. The critical element of the proof is the identification of
an approximate tree structure, present also in the actual zeta function, which
allows us to relate the maximum to that of a branching random walk.

1. Introduction. The Riemann zeta function is defined for Re(s) > 1 by a
sum over integers, or equivalently by an Euler product over primes, as

(1) ζ(s) =
∞∑

n=1

1

ns
= ∏

p primes

(
1 − p−s)−1

,

and by analytic continuation for other complex s. The behavior of the function on
the critical line Re(s) = 1/2 is a major theme in number theory, the most important
questions of course concerning the zeroes (e.g., the Riemann hypothesis).

This paper is motivated by the study of the large values of |ζ(s)| on the crit-
ical line s = 1/2 + it . Little is known about the behavior on long intervals, say
0 ≤ t ≤ T for T large. The Lindelöf hypothesis, which is implied by the Riemann
hypothesis, states that max0≤t≤T |ζ(1/2 + it)| grows slower than any small power
of T . See the paper by Farmer, Gonek and Hughes [13] for more precise conjec-
tures about this maximum size, and the paper of Soundararajan [26] and the recent
work of Bondarenko and Seip [8] for rigorous lower bounds. More recently, Fy-
odorov, Hiary and Keating considered the maximum on bounded intervals of the
critical line. They made the following conjecture:
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CONJECTURE 1 (Fyodorov–Hiary–Keating [15, 16]). For τ sampled uniformly
from [0, T ],
(2) max

h∈[0,1] log
∣∣ζ (1/2 + i(τ + h)

)∣∣= log logT − 3

4
log log logT + OP (1),

where OP (1) is a term that is stochastically bounded as T → ∞.

The main result of this paper is a proof of the validity of the first two terms in (2)
for a random model of ζ defined in (5) below, which is essentially a randomized
Euler product. Until now, such precise estimates were not known rigorously even
for models of zeta.

The conjecture is intriguing for many reasons. From a number theory point of
view, the precision of the prediction is striking. From a probability point of view,
the leading and subleading order of the maximum correspond exactly to those of
the maximum of a branching random walk (which is a collection of correlated
random walks indexed by the leaves of a tree), as will be explained below. In fact,
the key element of the proof for the random model will be the identification of an
approximate tree structure for the zeta function.

1.1. Modeling the zeta function. If we take logarithms and Taylor expand the
Euler product formula for the zeta function, we find for Re(s) > 1,

(3) log ζ(s) = −∑
p

log
(
1 − p−s)=

∞∑
k=1

1

k

∑
p

1

pks
=∑

p

1

ps
+ O(1),

since the total contribution from all proper prime powers (pks with k ≥ 2) is uni-
formly bounded. One of the great challenges of analytic number theory is to un-
derstand how the influence of the Euler product may persist for general s ∈ C. The
definition of our random model is based on a rigorous result in that direction, as-
suming the truth of the Riemann hypothesis, proved by Harper [20] by adapting
a method of Soundararajan [27] (which itself builds heavily on classical work of
Selberg [25]).

PROPOSITION 1.1 (See Proposition 1 of Harper [20]). Assume the Riemann
hypothesis. For T large enough, there exists a set H ⊆ [T ,T + 1], of measure at
least 0.99, such that

(4) log
∣∣ζ(1/2 + it)

∣∣= Re
(∑

p≤T

1

p1/2+it

log(T /p)

logT

)
+ O(1) ∀t ∈ H.

The set H produced in Proposition 1.1 consists of values t that are not ab-
normally close, in a certain averaged sense, to many zeros of the zeta func-
tion. It seems reasonable to think that one should not typically find max-
ima very close to zeros. Moreover, if one only wants an upper bound then
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the restriction to the set H can in fact be removed, at the cost of a slightly
more complicated right-hand side. Therefore, to understand the typical size of
max0≤h≤1 log |ζ(1/2 + i(τ +h))| as τ varies we should try to understand the typi-
cal size of max0≤h≤1

∑
p≤T Re( 1

p1/2+i(τ+h)

log(T /p)
logT

). The factor log(T /p)/ logT is
a smoothing introduced for technical reasons. For simplicity, we shall ignore it in
our model.

Since the values of logp are linearly independent for distinct primes, it is easy
to check by computing moments that the finite-dimensional distributions of the
process (p−iτ , p primes), where τ is sampled uniformly from [0, T ], converge as
T → ∞ to those of a sequence of independent random variables distributed uni-
formly on the unit circle. Following [20], this observation suggests to build a model
from a probability space (�,F,P) with random variables (Up,p primes) which
are uniform on the unit circle, and independent. For T > 0 and h ∈ R, we consider
the random variables

∑
p≤T p−1/2 Re(Upp−ih). In view of Proposition 1.1, the

process

(5)
(∑

p≤T

Re(Upp−ih)

p1/2 , h ∈ [0,1]
)

seems like a reasonable model for the large values of (log |ζ(1/2 + i(τ + h))|, h ∈
[0,1]).

1.2. Main result. In this paper, we provide evidence in favor of Conjecture 1
by proving a similar statement for the random model (5). At the same time, we
hope to outline a possible approach to tackle the conjecture for the Riemann zeta
function itself.

THEOREM 1.2. Let (Up,p primes) be independent random variables on
(�,F,P), distributed uniformly on the unit circle. Then

(6) max
h∈[0,1]

∑
p≤T

Re(Upp−ih)

p1/2 = log logT − 3

4
log log logT + oP (log log logT ),

where the sum is over the primes less than or equal to T and the error term con-
verges to 0 in probability when divided by log log logT .

An outline of the proof of the theorem is given in Section 1.4 below. The tech-
nical tools needed are developed in Section 2, and finally the proof is given in
Section 3.

1.3. Relations to previous results. The leading order term log logT in (6) was
proved in [20], where it was also shown that the second-order term must lie be-
tween −2 log log logT and −(1/4) log log logT . As well as giving a stronger re-
sult, our analysis here is ultimately based on a control of the joint distribution of
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only two points h1 and h2 of the random process at a time, which could feasibly be
achieved for the zeta function itself. In contrast, the lower bound analysis in [20]
depends on a Gaussian comparison inequality that requires control of logT points.

Fyodorov, Hiary and Keating motivated Conjecture 1 in [15, 16] using a con-
nection to random matrices. There is convincing evidence (see, e.g., [21]) that the
values of the zeta function in an interval of the critical line are well modeled by
the characteristic polynomial PN(x) of an N × N matrix sampled uniformly from
the unitary group, for x = eiθ on the unit circle. In this spirit, they compute in [16]
the moments of the partition function ZN(β) = ∫ 2π

0 |PN(eiθ )|β dθ . They argue
that these coincide with those previously obtained for a logarithmically correlated
Gaussian field [14]. For large β , this leads to the conjecture that the maximum of
the characteristic polynomial behaves like the maximum of the Gaussian model.
Unfortunately, the analogue of Conjecture 1 for this random matrix model is not
known rigorously even to leading order (see [29] for recent developments at low β

and its relation to Gaussian multiplicative chaos). The conjecture is also expected
to hold for other random matrix models such as the Gaussian Unitary Ensembles;
see [17]. One advantage of the model (5) is that it can be analysed rigorously to a
high level of precision with current probabilistic techniques.

As explained in Section 1.4, the proof of Theorem 1.2 uses in a crucial way
an approximate tree structure present in our model and also in the actual zeta
function. This structure explains the observed agreement between the high values
of the zeta function and those of log-correlated random fields. The approach to
control subleading orders of log-correlated Gaussian fields and branching random
walks was first developed by Bramson [10] in his seminal work on the maximum
of branching Brownian motion. It has since been extended to more general branch-
ing random walks by several authors, for example, [1, 2, 11], and to log-correlated
Gaussian fields see, for example, [12, 23]. This type of argument can also be ap-
plied to obtain the joint distribution of the near-maxima; see, for example, [3, 4, 7].
Recently, Kistler introduced a multiscale refinement of the second moment method
to control the maximum of processes with neither a priori Gaussianity nor exact
tree structure, to leading and subleading order. It was successfully implemented
in [5] to obtain the subleading order of cover times on the two-dimensional torus.
The proof of Theorem 1.2 follows the same approach.

It is instructive to consider the conjecture in the light of the statistics of typical
values of the zeta function. One beautiful result is the Selberg central limit theo-
rem [25], which asserts that if τ is sampled uniformly from the interval [0, T ] then
(1

2 log logT )−1/2 log |ζ(1/2 + iτ )| converges in law to a standard Gaussian vari-
able. Thus, to obtain a rough prediction for the order of the maximum on [0,1],
one may compare it to the maximum of independent Gaussian variables of mean
0 and variance 1

2 log logT . For logT such variables, it is not hard to show that
the order of the maximum is log logT − 1

4 log log logT + O(1). The leading order
agrees with Conjecture 1, but the constant in the subleading correction is different.
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Our proof shows how to modify this “independent” heuristic to account for the
“extra” −1

2 log log logT present in Conjecture 1. Bourgade showed a multivariate
version of Selberg’s theorem where the correlations are logarithmic in the limit [9].
However, the convergence is too weak to describe the maximum on an interval.

1.4. Outline of the proof. The proof of Theorem 1.2 is based on an analogy
between the process (5) and a branching random walk (also known as hierarchical
random field). We make this connection precise here, and indicate for an unfamiliar
reader how to analyse the maximum of a branching random walk.

We will work in the case where T = e2n
for some large natural number n. In

this setup, the process of interest in Theorem 1.2 is

(7)
(
Xn(h),h ∈ [0,1]) where Xn(h) = ∑

p≤e2n

Re(Upp−ih)

p1/2

is a continuous function of h. Since log logT = n log 2 and log log logT = logn+
O(1), Theorem 1.2 can be restated as

lim
n→∞P

[
mn(−ε) ≤ max

h∈[0,1]Xn(h) ≤ mn(ε)
]
= 1 for all ε > 0,(8)

where mn(ε) = n log 2 − 3

4
logn + ε logn.(9)

In other words, with large probability, the maximum of the process lies in an arbi-
trarily small window (of order logn) around n log 2 − 3

4 logn.
By symmetry of Up we have E[Xn(h)] = 0 for any h ∈ [0,1]. Also a simple

computation shows that E[Re(Upp−ih)Re(Upp−ih′
)] = (1/2) cos(|h − h′| logp),

so the covariance E[Xn(h)Xn(h
′)] equals 1

2
∑

logp≤2n p−1 cos(|h − h′| logp). Us-
ing well-known results on primes (cf. Lemma 2.1), it is possible to estimate this
as

(10) E
[
Xn(h)Xn

(
h′)]≈ 1

2
log

∣∣h − h′∣∣−1
,

for any h,h′ ∈ [0,1] provided |h − h′| ≥ 2−n. If instead |h − h′| < 2−n, then the
covariance is almost n(log 2)/2, that is, Xn(h) and Xn(h

′) are almost perfectly
correlated. Therefore, one can think of the maximum over h ∈ [0,1] as a maximum
over 2n equally spaced points.

The key point of the proof is that the logarithmic nature of the correlations can
be understood in a more structural way using a multiscale decomposition. Pre-
cisely, we rewrite the process as

(11) Xn(h) =
n∑

k=0

Yk(h) where Yk(h) = ∑
2k−1<logp≤2k

Re(Upp−ih)

p1/2
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is the increment at “scale” k of Xn(h). It is not hard to show (see Section 2.1) that
for k large,

(12)

E
[
Yk(h)2]≈ log 2

2
and

E
[
Yk(h)Yk

(
h′)]≈

⎧⎨⎩
log 2

2
if
∣∣h − h′∣∣≤ 2−k,

0 if
∣∣h − h′∣∣> 2−k .

In view of (12), for given h,h′, one can think of the partial sums Xk(h) =∑k
j=1 Yj (h) and Xk(h

′) = ∑k
j=1 Yj (h

′) as random walks, where the increments
Yj (h), Yj (h

′) are almost perfectly correlated (so roughly the same) for those j

such that 2j ≤ |h−h′|−1, and where they are almost perfectly decorrelated (so es-
sentially independent) when 2j > |h − h′|−1. A similar, but exact, behavior would
be obtained as follows: Consider 2n equally spaced points in [0,1], thought of as
leaves of a binary tree of depth n. Place on each edge of the binary tree an inde-
pendent Gaussian with mean zero and variance (log 2)/2, and associate to a leaf
the random walk given by the partial sums of the Gaussians on the path from root
to leaf; see Figure 1. With this construction, the first k increments of the random
walks of two leaves will be exactly the same, where k is the level of the most
recent common ancestor, and the rest of the increments will be perfectly inde-
pendent. This tree construction is an example of branching random walk. For the
model (7) of zeta, the branching point k where the paths Xk(h) and Xk(h

′) roughly
decorrelate is

(13) h ∧ h′ := ⌊
log2

∣∣h − h′∣∣−1⌋
.

FIG. 1. (Left) An illustration of the correlation structure of a branching random walk. (Right)
A realization of two paths of an approximate branching random walk with increments almost equal
before the branching point h ∧ h′ and almost decoupled after. The barrier below which the paths
must stay is also shown.
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So h and h′ correspond to leaves whose most recent common ancestor is in level
k = h∧h′. We note that the different nature of the correlations for different ranges
of p was already exploited in early work of Halász [19], although without drawing
any connection to branching. Conversely, in Bourgade’s work on the multivariate
central limit theorem for zeta, the branching nature of the correlations was ob-
served in the limit T → ∞ but without the connection to different ranges of p.

A compelling method to analyse the maximum of a branching random walk,
and of log-correlated processes in general, is a multiscale refinement of the second
moment method as proposed in [22], which we shall implement in the approximate
branching setting described above. First, proceeding naïvely, one could consider
the number of variables whose value exceeds a given value m, that is, the number
of exceedances,

(14) Z(m) = #
{
j ≤ 2n : Xn

(
j/2n)≥ m

}
.

Clearly, maxj≤2n Xn(j/2n) ≥ m if and only if Z(m) ≥ 1. Thus, an upper bound
for the maximum can be obtained by the union bound

(15) P
(
Z(m) ≥ 1

)≤ E
[
Z(m)

]= 2nP
(
Xn(0) ≥ m

)
.

On the other hand, a lower bound can be obtained by the Paley–Zygmund inequal-
ity,

(16) P
(
Z(m) ≥ 1

)≥ E[Z(m)]2

E[Z(m)2] .
More precisely, one would choose m = m(n) large enough in (15) so that
E[Z(m)] = o(1), and m small enough in (16) so that E[Z]2 = (1 + o(1))E[Z2],
and thus P(Z(m) ≥ 1) = 1 + o(1). For this, one needs large deviation estimates:
if we think of Xn(h) as Gaussian with variance n log 2/2, then a standard Gaus-

sian estimate yields that P(Xn(h) ≥ m) is approximately
√

n
m

e−m2/((log 2)n). Thus,
2nP (Xn(0) ≥ m) = o(1) when m = (log 2)n − 1

4 logn + ε logn. This would in
fact be the correct answer (the union bound would be sharp) if the random vari-
ables Xn(j/2n) were independent. However, if m = (log 2)n − 3

4 logn + ε logn,
then 2nP(Xn(0) ≥ m) ≥ cn1−ε → ∞, so (15) cannot prove the upper bound we
seek in Theorem 1.2. Similarly, the right-hand side of (16) will tend to zero unless
m ≤ log 2

2 n, since strong correlation between exceedance events for nearby h,h′
inflates the second moment. Thus, the lower bound obtained is not close to what
we seek even to leading order.

To get good bounds, one needs to modify the definition of the number of ex-
ceedances using an insight from the underlying approximate tree structure. For
branching random walk there are exactly 2k distinct partial sums up to the k-level,
one for each vertex at that level. By analogy one expects that the “variation” in
Xk(h) (i.e., in the partial sums up to the kth level) for different h ∈ [0,1] should
be captured by just 2k equally spaced points in [0,1]. Even if they were indepen-
dent, it would be very unlikely that one of these 2k values exceeded k log 2 + B ,
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for B > 0 growing slowly with n, and it turns out that positive correlations only
make it less likely. In other words, with high probability, all random walks Xk(h)

must lie below the barrier k �→ k log 2 + B . This suggests to look at the modified
number of exceedances

(17) Z̃(m) = #
{
j ≤ 2n : Xn

(
j/2n)≥ m,Xk

(
j/2n)< k log 2 + B,∀k ≤ n

}
.

It turns out that replacing Z by Z̃ in the first moment bound (15) and (with slight
modifications) in the second moment bound (16) will yield the correct answer. To
see this in the former case, we write the first moment by conditioning on the end
point:

(18)
E
[
Z̃(m)

]= 2nP
(
Xn(0) > m

)
× P

(
Xk(0) < k log 2 + B,∀k ≤ n | Xn(0) > m

)
.

By the earlier naïve discussion, the first two terms amount to O(n1−ε) when we set
m = n log 2− 3

4 logn+ε logn. The third term is the probability that a random walk
bridge starting at 0 and ending at m = n log 2 − 3

4 logn + ε logn avoids the barrier
k log 2 + B . This probability turns out to be n−1, as shown by the ballot theo-
rem; cf. Lemma 2.12. Therefore, E[Z̃(m)] = O(n−ε) → 0, for all ε > 0. A similar
analysis can be done for the lower bound, where we have the obvious inequal-
ity P(Z(m) ≥ 1) ≥ P(Z̃(m) ≥ 1). The extra barrier condition turns out to reduce
correlations between exceedance events sufficiently so that the second moment is
now essentially the first moment squared when m ≤ n log 2 − 3

4 logn − ε logn.
[This analysis also indicates why the second moment of Z(m) is too large: in the
exponentially unlikely event that a path manages to go far above the barrier, it
has exponentially many “offspring” that end up far above the typical level of the
maximum.]

The form of the subleading correction is thus explained by the extra “cost”
n−1 of satisfying the barrier condition. And the barrier condition arises because of
“tree-like” correlations present in the values of (the model of) the zeta function.
This suggests the possibility that the partial sums of the Euler product (3) of the
actual zeta function behave similarly where the zeta function is large.

To prove Theorem 1.2, we must address the imprecisions in the above discus-
sion. The necessary large deviation estimates are derived in Section 2.1. The claim
that Xk(h) does not vary much below scale 2−k is proved in Section 2.2 using a
chaining argument. Another issue is that our process is not exactly a branching ran-
dom walk because increments are never perfectly independent (for different h,h′)
nor exactly identical. To deal with this, we use a Berry–Esseen approximation in
Section 2.3 to show that the random walks are very close to being Gaussian. This
then allows for an explicit comparison with Gaussian random walks with i.i.d. in-
crements. Moreover, to get a sharp lower bound with the second moment method,
it is necessary to “cut off the first r scales” and consider

(19) Xr,k(h) = Xk(h) − Xr(h) for h ∈R,
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for an appropriately chosen r growing slowly with n. We note that in order to
improve the error term in (6) to order one, it would also be necessary to take r of
order one relative to n, which would complicate the analysis.

Finally, it should be stressed that the approach relies only on controlling first and
second moments, which means that the estimates we need only involve at most two
random walks simultaneously.

2. Preliminaries. Throughout the paper, we will write c for absolute con-
stants whose value may change at different occurrences. A sum over the variable
p always denotes a sum over primes.

2.1. Large deviation estimates. In this section, we derive the large deviation
properties of the increments (Yk(h), h ∈ [0,1]) and their sum. We first derive basic
facts on their distribution and in particular on their correlations.

Recall that the random variables (Up,p primes) are i.i.d. and uniform on the
unit circle. For simplicity, we denote the pth term of the sum over primes in (6) by

(20) Wp(h) = Re(Upp−ih)

p1/2 , h ∈ R.

Note that the law of the process (Wp(h),h ∈ R) is translation-invariant on the real
line and also invariant under the reflection h �→ −h. A straightforward computa-
tion using the law of the Up’s and translation invariance gives

(21) E
[
Wp(h)Wp

(
h′)]= 1

2p
cos

(∣∣h − h′∣∣ logp
)

for all h,h′.

In this notation, the increments defined in (11) are

(22) Yk(h) = ∑
2k−1<logp≤2k

Wp(h), h ∈ R.

Using (21) and the independence of the Up’s, the variance of Yk(h) becomes

(23) σ 2
k = Var

(
Yk(h)

)= ∑
2k−1<logp≤2k

1

2p
,

and the covariance of Yk(h) and Yk(h
′) is

(24) ρk

(
h,h′)= E

[
Yk(h)Yk

(
h′)]= ∑

2k−1<logp≤2k

1

2p
cos

(∣∣h − h′∣∣ logp
)
.

The next lemma formalizes (12), giving bounds on how close the variance of
the increments is to

(25) σ 2 = (log 2)/2,

and (for h �= h′) giving bounds on how close the covariance is to the variance be-
fore the “branching point” h ∧ h′ [defined in (13)], and on how fast the covariance
decays after.
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LEMMA 2.1. For h,h′ ∈ R and k ≥ 1,

σ 2
k = E

[
Yk(h)2]= σ 2 + O

(
e−c

√
2k )

,(26)

ρk

(
h,h′)= E

[
Yk(h)Yk

(
h′)]

=
⎧⎨⎩σ 2 + O

(
2−2(h∧h′−k))+ O

(
e−c

√
2k )

if k ≤ h ∧ h′,
O
(
2−(k−h∧h′)) if k > h ∧ h′.

(27)

Note that in both cases the error term decays exponentially in k.

PROOF. We use a strong form of the prime number theorem (see Theorem 6.9
of [24]) which states that

(28) #{p ≤ x : p prime} =
∫ x

2

1

logu
du + O

(
xe−c

√
logx).

By replacing the sum
∑

P<p≤Q
1
p

with the integral
∫Q
P

1
u logu

du using (28) and
integration by parts, one obtains∑

P<p≤Q

1

p
= log logQ − log logP + O

(
e−c

√
logP ) for all 2 ≤ P ≤ Q.

This together with (23) yields (26). Similarly, (28) implies that

ρk

(
h,h′)= 1

2

∫ e2k

e2k−1

cos(|h − h′| logu)

u logu
du + O

((
1 + ∣∣h − h′∣∣)e−c

√
2k−1)

.

When 2k|h − h′| = 2k−h∧h′ ≤ 1, the claim (27) follows by using that cos(|h −
h′| logu) = 1+O(|h−h′|2(logu)2). When 2−k|h−h′|−1 = 2−k+h∧h′

< 1, we use
integration by parts. After the change of variable v = logu, the integral becomes

sin(|h − h′|v)

|h − h′|v
∣∣∣2k

2k−1
+
∫ 2k

2k−1

sin(|h − h′|v)

|h − h′|v2 du.

Both terms are O(2−k|h − h′|−1). �

REMARK 1. A similar but easier argument using (28) shows that

(29)
∑

P<p≤Q

(logp)m

p
= O

(
(logQ)m

)
for all 1 ≤ P ≤ Q.

The main results of this section are explicit expressions for the cumulant gen-
erating functions of the increments, from which we will deduce large deviation
estimates. For fixed h,h′ ∈ R, we will often drop the dependence on h and h′
when it is clear from context and define

Y k = (
Yk(h), Yk

(
h′)).
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The covariance matrix of Y k is then denoted by

�k = Cov(Y k) =
(
σ 2

k ρk

ρk σ 2
k

)
.

The eigenvalues of �k are σ 2
k ± ρk .

The cumulant generating functions are

(30) ψ
(1)
k (λ) = logE

[
exp(λYk)

]
, ψ

(2)
k (λ) = logE

[
exp(λ · Y k)

]
,

where λ ∈ R, λ ∈ R2 and “·” is the inner product in R2. The following change of
measure will also be needed in the proof of Theorem 1.2:

(31)

dQλ

dP
=

n∏
k=1

eλYk

eψ
(1)
k (λ)

for λ ∈ R,

dQλ

dP
=

n∏
k=1

eλ·Y k

eψ
(2)
k (λ)

for λ ∈ R2.

Recall that in the univariate case,

(32) Qλ[Yk] = d

dλ
ψ

(1)
k (λ), VarQλ

(Yk) = d2

dλ2 ψ
(1)
k (λ),

and in the multivariate case,

(33) Qλ[Y k] = ∇ψ
(2)
k (λ), CovQλ(Y k) = Hessψ

(2)
k (λ).

The results also provide bounds on these quantities. We first state the result for the
univariate case. The proof is omitted since it is a special case of the multivariate
bound in Proposition 2.4.

PROPOSITION 2.2. Let C > 0. For all 0 < λ < C and k large enough (de-
pending on C), the cumulant generating function ψ

(1)
k (λ) satisfies

(34) ψ
(1)
k (λ) = λ2σ 2

k

2
+ O

(
e−2k−1)

.

Moreover, for such k, the measure Qλ in (31) satisfies

(35) Qλ[Yk] = λσ 2
k + O

(
e−2k−1)

, VarQλ
[Yk] = σ 2

k + O
(
e−2k−1)

.

One useful consequence of the proposition is the following one-point large devi-
ation estimate, which (after being strengthened to a bound for the maximum over a
small interval, in Corollary 2.6) will be crucial to impose the barrier in Lemma 3.4.
Recall from (19) that Xr,k(h) = Xk(h) − Xr(h) =∑k

l=r+1 Yl(h).



MAXIMA OF A RANDOMIZED RIEMANN ZETA FUNCTION 189

COROLLARY 2.3. Let C > 0. For any 0 ≤ r ≤ k − 1, 0 < x < C(k − r) and
h ∈ R,

(36) P
[
Xr,k(h) > x

]≤ c exp
(
− x2

2(k − r)σ 2

)
,

where the constant c depends on C.

PROOF. Using the exponential Chebyshev’s inequality, the probability in (36)
is bounded above by exp(

∑k
l=r+1 ψ

(1)
l (λ) − λx), for all λ > 0. By Proposition 2.2

(with, say, 10C in place of C), we get that if λ ≤ 10C,

P
[
Xr,k(h) > x

]≤ exp

(
c + λ2

2

k∑
l=r+1

σ 2
l − λx + O

(
e−c2r ))

≤ c exp

(
λ2

2

k∑
l=r+1

σ 2
l − λx

)
≤ c exp

(
λ2

2
(k − r)σ 2 − λx

)
,

where (26) is used in the last inequality. If l is too small for (34) to be applied,
we simply use that ψl(λ) is bounded. Setting λ = x((k − r)σ 2)−1 ≤ 10C gives the
result. �

We now prove the bounds in the multivariate case.

PROPOSITION 2.4. Let C > 0. For all λ = (λ,λ′), where 0 < λ,λ′ < C, and k

large enough (depending on C), the cumulant generating function ψ
(2)
k (λ) satisfies

(37) ψ
(2)
k (λ) = 1

2
λ · �kλ + O

(
e−2k−1)

.

Moreover, for such k, the measure Qλ in (31) satisfies

(38) Qλ[Y k] = �kλ + O
(
e−2k−1)

and CovQλ
[Y k] = �k + O

(
e−2k−1)

.

PROOF. We first compute

(39)

ψW
p (λ) = logE

[
exp

(
λWp(0) + λ′Wp

(∣∣h − h′∣∣))]
= log

1

2π

∫ 2π

0
exp

(
λ

p1/2 cos(θ)

+ λ′

p1/2 cos
(
θ + ∣∣h − h′∣∣ logp

))
dθ.

Recall that for any a, b ∈ R,

(40)
1

2π

∫ 2π

0
exp

(
a cos(θ) + b sin(θ)

)
dθ = I0

(√
a2 + b2

)
,
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where I0 denotes the Bessel function of the first kind. The identity cos(θ + η) =
cos(θ) cos(η) − sin(θ) sin(η) can be used together with (40) to write the integral
in the bottom line of (39) as

(41)

I0

(√
1

p

(
λ + cos

(∣∣h − h′∣∣ logp
)
λ′)2 + 1

p

(
sin

(∣∣h − h′∣∣ logp
)
λ′)2)

= I0

(√
1

p

(
λ2 + 2λλ′ cos

(∣∣h − h′∣∣ logp
)+ λ′2))

= I0(
√

2λ · Mpλ),

where

Mp = 1

2p

(
1 cos

(∣∣h − h′∣∣ logp
)

cos
(∣∣h − h′∣∣ logp

)
1

)
,

is the covariance matrix of (Wp(h),Wp(h′)), see (21). Thus, writing

(42) f (x) = log I0(
√

2x),

we have ψW
p (λ) = f (λ · Mpλ). Recall that I0(x) has Taylor expansion I0(x) =

1 + x2

4 + x4

64 + O(x6) [which can be verified by expanding in (40)], so that f has
Taylor expansion

(43) f (x) = x

2
− x2

16
+ O

(
x3).

Now since the random variables Up are independent,

ψ
(2)
k (λ) = ∑

2k−1<logp≤2k

ψW
p (λ) = ∑

2k−1<logp≤2k

f (λ · Mpλ).

The bound (43) implies that for k large enough (depending on C),

ψ
(2)
k (λ) = ∑

2k−1<logp≤2k

(
1

2
λ · Mpλ + O

(
p−2))= 1

2
λ · �kλ + O

(
e−2k−1)

.

This proves (37).
The first claim of (38) follows similarly after noting that the gradient of the map

λ → f (λ · Mpλ) is Mpλf ′(λ · Mpλ), and using the bound f ′(x) = 1
2 + O(x),

valid for x ∈ [0,1]. Finally, the second claim of (38) follows by noting that the
Hessian of the aforementioned map is

Mpf ′(λ · Mp) + (Mpλ)(Mpλ)T f ′′(λ · Mpλ),

and using the previous bound for f ′(x), and that f ′′(x) is bounded in [0,1]. �
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2.2. Continuity estimates. The main result of this section is a maximal in-
equality which shows that the maximum over an interval of length 2−k of the field
Xr,k(h) is close to the value of the field at the mid-point of the interval, where
Xr,k(h) is defined in (19). One of the upshots is to reduce the proof of the upper
bound of the maximum of the process on [0,1] to an upper bound on the maximum
over a discrete set of points in Section 3.1.

PROPOSITION 2.5. Let C > 0. For any 0 ≤ r ≤ k − 1, 0 ≤ x ≤ C(k − r),
2 ≤ a ≤ 22k − x and h ∈R,

(44)

P
[

max
h′:|h′−h|≤2−k−1

Xr,k

(
h′)> x + a,Xr,k(h) ≤ x

]

≤ c exp
(
− x2

2(k − r)σ 2 − ca3/2
)
,

where the constants c depend on C.

The proof of the proposition is postponed until the end of the section. It is based
on a chaining argument and an estimate on joint large deviations of Xr,k(h) and
of the difference Xr,k(h

′) − Xr,k(h) for |h′ − h| ≤ 2−k−1, see Lemma 2.7 below.
The exponent of the a term is probably not optimal. A direct consequence of the
proposition is the following large deviation bound of the maximum of Xk(h) over
an interval of length 2−k .

COROLLARY 2.6. Let C > 0. For any 0 ≤ r ≤ k − 1, h ∈ R and 0 ≤ x ≤
C(k − r),

(45) P
[

max
h′:|h′−h|≤2−k−1

Xr,k

(
h′)> x

]
≤ c exp

(
− x2

2(k − r)σ 2

)
,

where the constant c depends on C.

PROOF. The left-hand side of (45) is at most

P
[

max
h′:|h′−h|≤2−k−1

Xr,k

(
h′)> (x − 2) + 2,Xr,k(h) ≤ x − 2

]
+ P

[
Xr,k(h) > x − 2

]
.

The bound follows by (44) with x − 2 in place of x and a = 2, and the bound (36).
�

REMARK 2. A union bound over 2n intervals of length 2−n yields

(46) P
[

max
h∈[0,1]Xn(h) ≥ (1 + δ)n log 2

]
≤ c2−nδ for all δ > 0,
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where (45) is used with r = 0 and k = n [note that Xn(h) = Y0(h)+X0,n(h) and Y0

is bounded]. This proves that maxh∈[0,1] Xn(h) is at most (1 + o(1))n log 2, which
is tight to leading order, but does not include the subleading correction present in
(8) and (9).

To prove Proposition 2.5 we will use the following large deviation estimate for
Xr,k(0) and the difference Xr,k(h2)−Xr,k(h1) (jointly), where |h2 −h1| ≤ 2−k . It
shows that on a large deviation scale the two quantities are essentially independent,
and that the difference decays rapidly with |h2 −h1|. The latter is a consequence of
the covariance of the field Xr,k(h) losing its log-correlation structure below scale
2−k , and instead decaying linearly with distance.

LEMMA 2.7. Let C > 0. For any 0 ≤ r ≤ k−1, 0 ≤ x ≤ C(k−r), 0 ≤ y ≤ 22k

and any distinct −2−k−1 ≤ h1, h2 ≤ 2−k−1,

(47)

P
[
Xr,k(0) ≥ x,Xr,k(h2) − Xr,k(h1) ≥ y

]
≤ c exp

(
− x2

2(k − r)σ 2 − cy3/2

2k|h2 − h1|
)
,

where the constants c depend on C.

PROOF. Observe first that we may assume y is bigger than a large constant
depending on C times 2k|h2 − h1| (and therefore also bigger than a large constant
times 22k|h2 − h1|2), because otherwise the required bound follows from (36).

For any λ1, λ2 > 0, the left-hand side of (47) is bounded above by

(48) E
[
exp

(
λ1Xr,k(0) + λ2

(
Xr,k(h2) − Xr,k(h1)

))]
exp(−λ1x − λ2y).

We will show that if λ1 ≤ 10C and 1 ≤ λ2 ≤ |h2 − h1|−1,

(49)

E
[
exp

(
λ1Xr,k(0) + λ2

(
Xr,k(h2) − Xr,k(h1)

))]
≤ c exp

(
λ2

1σ
2

2
(k − r) + cλ22k|h2 − h1| + c

(
λ22k|h2 − h1|)2).

The result then follows by choosing λ1 = x((k − r)σ 2)−1 and λ2 = cy1/22−k|h2 −
h1|−1 in (48) and (49), for a suitable small c, and using our assumption that y

is bigger than a large constant times 2k|h2 − h1|. Note that the assumptions on
x, y,h1 and h2 ensure that λ1 ≤ 10C and 1 ≤ λ2 ≤ |h2 − h1|−1.

We now prove (49). First, we note that similarly to the argument from (39)
to (41),

(50) E
[
exp

(
λ1Wp(0) + λ2

(
Wp(h2) − Wp(h1)

))]
,
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can be written explicitly as

(51)

I0

((
1

p

(
λ1 + (

cos(h2 logp) − cos(h1 logp)
)
λ2
)2

+ 1

p

((
sin(h2 logp) − sin(h1 logp)

)
λ2
)2)1/2)

.

Recall from (43) that log I0(
√

x) = 1
4x + O(x2), and that cos(h2 logp) −

cos(h1 logp) = O(|h2 − h1| logp) and sin(h2 logp) − sin(h1 logp) = O(|h2 −
h1| logp). Thus, provided λ1 ≤ 10C, 1 ≤ λ2 ≤ |h2 − h1|−1 and p is large enough,
the logarithm of the quantity in (50) is at most

(52)

1

4p

(
λ1 + cλ2|h2 − h1| logp

)2 + c

p

(
λ2|h2 − h1| logp

)2 + cp−2

≤ λ2
1

4p
+ c

p
λ2|h2 − h1| logp + c

p

(
λ2|h2 − h1| logp

)2 + cp−2.

Here, we used the fact that λ1 ≤ 10C. After summing over 2r < logp ≤ 2k , we get
that

logE
[
exp

(
λ1Xr,k(0) + λ2

(
Xr,k(h2) − Xr,k(h1)

))]
≤ c + ∑

2r<logp≤2k

λ2
1

4p
+ c

∑
2r<logp≤2k

logp

p
λ2|h2 − h1|

+ c
∑

2r<logp≤2k

(logp)2

p

(
λ2|h2 − h1|)2.

In the above, if p is too small for (52) to be an upper bound, we simply use that
(50) is bounded. The claim (49) now follows from the bounds (26) and (29). �

We are now ready to prove Proposition 2.5. We will use the following notation:
for k ∈ N, let

(53)
Hk be the set 1

2k Z of dyadic rationals, so that
H0 ⊂ H1 ⊂ · · · ⊂ Hk ⊂ · · · ⊂R is a nested sequence
of sets of equally spaced points and |Hk ∩ [0,1)| = 2k.

PROOF OF PROPOSITION 2.5. Without loss of generality, we may assume
h = 0. We can also round x up and decrease a so that we may assume that x is an
integer and a ≥ 1. Define the events

Bq = {
Xr,k(0) ∈ [x − q − 1, x − q]}, q = 0,1, . . . , x − 1

and

Bx = {
Xr,k(0) ≤ 0

}
.
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Note that the left-hand side of (44) is at most

(54)
x∑

q=0

P
[
Bq ∩

{
max
h′∈A

{
Xr,k

(
h′)− Xr,k(0)

}≥ a + q
}]

,

where A = [−2−k−1,2−k−1]. Let (hi, i ≥ 0) be a dyadic sequence such that h0 =
0, hi ∈ Hk+i ∩ A and limi→∞ hi = h′, so that |hi+1 − hi | ∈ {0,2−k−i−1} for all i.
Because the map h �→ Xr,k(h) is almost surely continuous,

Xr,k

(
h′)− Xr,k(0) =

∞∑
i=0

(
Xr,k(hi+1) − Xr,k(hi)

)
.

The right-hand side converges almost surely, since
∑l

i=0(Xr,k(hi+1)−Xr,k(hi)) =
Xr,k(hl+1) − Xr,k(0) → Xr,k(h

′) − Xr,k(0), because Xr,k(h) is continuous almost
surely. Since

∑∞
i=0

1
2(i+1)2 ≤ 1, we have the inclusion of events,

{
Xr,k

(
h′)− Xr,k(0) ≥ a + q

}⊂
∞⋃
i=0

{
Xr,k(hi+1) − Xr,k(hi) ≥ a + q

2(i + 1)2

}
.

This implies that {maxh′∈A(Xr,k(h
′) − Xr,k(0)) ≥ a + q} is included in

∞⋃
i=0

⋃
h1∈Hk+i∩A,

h2=h1±2−k−i−1

{
Xr,k(h2) − Xr,k(h1) ≥ a + q

2(i + 1)2

}
,

where we have ignored the case h1 = h2 since then event {Xr,k(h2) − Xr,k(h1) ≥
a+q

2(i+1)2 } is the empty set. Because |Hk+i ∩A| ≤ c2i , the qth summand in (54) is at
most,

∞∑
i=0

c2i sup
h1∈Hk+i∩A,

h2=h1±2−k−i−1

P

[
Bq ∩

{
Xr,k(h2) − Xr,k(h1) ≥ a + q

2(i + 1)2

}]
.

Note that a + q ≤ a + x ≤ 22k by assumption. Inequality (47) can thus be applied
to get that the above is at most

c

∞∑
i=0

2i exp
(
−(x − q − 1)2

2(k − r)σ 2 − c2i (a + q)3/2

(i + 1)3

)
≤ ce

− (x−q−1)2

2(k−r)σ2 −c(a+q)3/2

.

Since e−c(a+q)3/2 ≤ e−ca3/2−cq3/2
, (54) is thus at most

ce−ca3/2
x∑

q=0

e−(x−q−1)2/(2(k−r)σ 2)−cq3/2 ≤ ce−x2/(2(k−r)σ 2)−ca3/2
x∑

q=0

ec(q+1)−cq3/2

≤ ce−x2/(2(k−r)σ 2)−ca3/2
,

where we used the assumption x ≤ C(k − r). This proves (44). �
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2.3. Gaussian approximation. The purpose of this section is to compare the
increments Yk(h) to Gaussian random variables with mean and variance indepen-
dent of k, both for a single h ∈ R and for vectors (Yk(h1), Yk(h2)) for h1 �= h2 ∈ R.
This will be used in the subsequent sections to apply the ballot theorem and de-
rive bounds on the probability that Xr,k(h1) and Xr,k(h2) satisfy a barrier condi-
tion. One reason to pass to Gaussian random variables is that the standard ballot
theorem provides such bounds for random walks with i.i.d. increments. It does
not immediately apply to the process k �→ Xr,k(h), whose increments Yk(h) have
slightly different distributions for different k. Moreover, we need to show that the
increments Yk(h1) and Yk(h2) for two points h1 �= h2 become roughly indepen-
dent when k is beyond the branching point h1 ∧ h2; cf. (13). To quantify this, we
introduce a parameter � and refer to the scale h1 ∧ h2 + � as the decoupling
point. Passing to Gaussian variables facilitates the proof of the decoupling, since
in the Gaussian case we can investigate independence solely by controlling the
covariance and the mean.

Our main tool is the following multivariate Berry–Esseen approximation for
independent random vectors. For the remainder of the paper, ημ,� will denote the
Gaussian measure with mean vector μ and covariance matrix �.

LEMMA 2.8 (Corollary 17.2 in [6], see also Theorem 1.3 in [18]). Let
(W j , j ≥ 1) be a sequence of independent random vectors on (Rd,B(Rd),P )

with mean E[W j ] and covariance matrix Cov(W j ). Define

μm =
m∑

j=1

E[W j ] and �m =
m∑

j=1

Cov(W j ).

Let λm be the smallest eigenvalue of �m and Qm be the law of W 1 + · · · + Wm.
There exists an absolute constant c depending only on the dimension d such

that

sup
A∈A

∣∣Qm(A) − ημm,�m(A)
∣∣≤ cλ−3/2

m

m∑
j=1

E
[∥∥W j − E[W j ]

∥∥3]
,

where A is the collection of Borel measurable convex subsets of Rd .

Before stating the results, we recall the notation from Section 2.1: for fixed
h1, h2 ∈ R, we write Y k = (Yk(h1), Yk(h2)), Xr,n = (Xr,n(h1),Xr,n(h2)). Further-
more, Qλ is the product measure from (31), where in this section we apply the same
tilt to both components by setting

λ = (λ,λ), λ ∈ R.

We show that beyond the decoupling point h1 ∧ h2 + �, the increments under
Qλ are close (in terms of �) to being independent Gaussians with mean λσ 2 and
variance σ 2 = (log 2)/2.
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PROPOSITION 2.9. Let λ ∈ R and � > 0. Let h1, h2 ∈ R, m ≥ h1 ∧ h2 + �

and μ = λσ 2. For any convex subsets Ak ⊆ R2, k = m + 1, . . . , n, we have

(55)

Qλ[Xm,k ∈ Ak ∀m < k ≤ n]

= (
1 + O

(
e−c�))η×2(n−m)

μ,σ 2

{
y ∈ R2×(n−m) :

k∑
j=1

yj ∈ Ak+m

∀k = 1, . . . , n − m

}
+ O

(
e−ec�)

,

where η
×2(n−m)

μ,σ 2 denotes the product measure on 2(n − m) independent Gaussians

each with mean μ and variance σ 2.

PROOF. Recall that Y k = ∑
2k−1<logp≤2k Wp where Wp = (Wp(h1),

Wp(h2)). The proof has two steps. First, Lemma 2.8 is applied successively for
each k from k = n down to k = m + 1 to pass to a Gaussian measure. The
resulting measure is the product of (n − m) bivariate Gaussian measures with
mean μ̃k = μ̃k(1,1) for μ̃k = Qλ[Yk(h1)] = Qλ[Yk(h2)] and covariance matrix
�̃k = CovQλ[Y k]. This measure is denoted by

⊗n
k=m+1 ημ̃k,�̃k

. Second, we explic-

itly compare the resulting Gaussian measure to the decoupled measure η
×2(n−m)

μ,σ 2 .
Conditioning on the values of Y j for all m + 1 ≤ j ≤ n − 1, then applying

Lemma 2.8 to the Wp with 2n−1 < logp ≤ 2n, and finally integrating over Y j we
obtain

(56)

∣∣∣∣∣Qλ[Xm,k ∈ Ak ∀m < k ≤ n]

−Qλ × ημ̃n,�̃n

[
k∑

j=m+1

Y j ∈ Ak ∀m < k ≤ n − 1,

yn ∈
(
An −

n−1∑
j=m+1

Y j

)]∣∣∣∣∣
≤ cλ−3/2

n

∑
2n−1<logp≤2n

Qλ
[∥∥Wp −Qλ[Wp]∥∥3]

,

where yn is sampled from ημ̃n,�̃n
, λn is the smallest eigenvalue of �̃n, and An −

y denotes the set An translated by y. Lemma 2.8 can be applied the same way
to the Wp’s contributing to Y n−1, Y n−2, and so on. In each case, the relevant
target subset for the sum is convex as an intersection of convex sets is convex.
For example, the subset for

∑n−1
j=m+1 Y n−1 from (56) is An−1 ∩ (An − yn). The
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resulting estimate is

(57)

∣∣∣∣∣Qλ[Xm,k ∈ Ak ∀m < k ≤ n]

−
n⊗

k=m+1

ημ̃k,�̃k

{
y ∈ R2×(n−m) :

k∑
j=m+1

yj ∈ Ak ∀k = m + 1, . . . , n

}∣∣∣∣∣
≤ c

n∑
k=m+1

∑
2k−1<logp≤2k

λ
−3/2
k Qλ

[∥∥Wp −Qλ[Wp]∥∥3]
.

For k > h1 ∧ h2 + �, the eigenvalues λk are uniformly bounded away from 0.
Indeed, observe that by (38), and the discussion preceding (30), and Lemma 2.1,

λk = σ 2
k − ρk + O

(
e−2k−1)= σ 2 + O

(
e−c

√
2k + e−c�)≥ c > 0,

for � large enough but fixed. Also by construction, the norm of the vector Wp is
bounded by cp−1/2. Hence, the error term in (57) is bounded by

(58) c
∑

2m<logp≤2n

p−3/2 ≤ ce−2m−1 ≤ e−ec�

.

It remains to compare the measure
⊗n

k=m+1 ημ̃k,�̃k
with the measure η

×2(n−m)

μ,σ 2 .
The specifics of the considered event play no role at this point, so we write B for
a generic measurable subset of R2. We show

(59)
ημ̃k,�̃k

[B] = (
1 + O

(
e−c(k−h1∧h2)

))
η

μ,σ 2[B]
+ O

(
e−ec(k−h1∧h2)) ∀k > m.

Together with (58) and (57), this implies the proposition since the estimate (59) can
be applied successively integrating in each coordinate to get for any A ⊆R2(n−m)

n⊗
k=m+1

ημ̃k,�̃k
[A] =

n∏
k=m+1

(
1 + O

(
e−c(k−h1∧h2)

))
η

×2(n−m)

μ,σ 2 [A]

+
n∑

k=m+1

O
(
e−ec(k−h1∧h2))

= (
1 + O

(
e−c�))η×2(n−m)

μ,σ 2 [A] + O
(
e−ec�)

.

To prove (59), we compare densities. Proposition 2.4 and Lemma 2.1 give

(60)
μ̃k = μ + O

(
2−(k−h1∧h2)

)
,

�̃k = σ 21 + O
(
2−(k−h1∧h2)

)
,
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where 1 is the 2 × 2 identity matrix, using that k > m > h1 ∧h2 +�. Consider the
set,

Ek = {
y ∈ R2 : ‖y − μ̃k‖ ≤ 2(k−h1∧h2)/4}.

A straightforward Gaussian estimate yields

ημ̃k,�̃k

[
Ec

k

]≤ exp
(
−c

2(k−h1∧h2)/2

σ 2

)
≤ e−ec(k−h1∧h2)

,

and similarly for η×2
μ,σ 2[Ec

k]. Therefore, it suffices to prove (59) for B ⊂ Ek . The
density of ημ̃k,�̃k

with respect to Lebesgue measure is

(61)
1

2π(det �̃k)1/2
e−(y−μ̃k)·�̃−1

k (y−μ̃k)/2.

By (60),

(det �̃k)
−1/2 = σ−2(1 + O

(
2−(k−h1∧h2)

))
.

Furthermore, for all y ∈ R2,

(y − μ̃k) · �̃−1
k (y − μ̃k)

= σ−2‖y − μ̃k‖2 + (y − μ̃k) · (�̃−1
k − σ−21

)
(y − μ̃k).

By (60) and the definition of Ek , the error term is

(y − μ̃k) · (�̃−1
k − σ−21

)
(y − μ̃k) = O

(
2−(k−h1∧h2)/4).

Thus, on Ek , the density (61) equals (1 + O(e−c(k−h1∧h2))) 1
2πσ 2 e−‖y−μ̃k‖2/2σ 2

. In
particular,

ημ̃k,�̃k
[B] = (

1 + O
(
e−c(k−h1∧h2)

))
η×2

μ̃k,σ
2[B] for any B ⊂ Ek.

It remains to compare the densities of ημ̃k,σ
2 and ημ,σ 2 . We have that

(y − μ̃k)
2 = (y − μ)2 + (μ̃k − μ)2 − 2(y − μ)(μ̃k − μ).

The second term is O(2−(k−h1∧h2)) by (60). The third term can be estimated using
the fact that |y − μ̃k| = O(2(k−h1∧h2)/4):∣∣(y − μ)(μ̃k − μ)

∣∣≤ (|y − μ̃k| + |μ̃k − μ|)|μ̃k − μ|
= O

(
2−3(k−h1∧h2)/4).

This implies that on B ⊂ Ek

η×2
μ̃k,σ

2[B] = (
1 + O

(
e−c(k−h1∧h2)

))
η×2

μ,σ 2[B].
This completes the proof of the claim (59). �
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The next proposition provides a Gaussian comparison before the branching
point. Before this point the increments are highly correlated, so the walks behave
essentially as one. When we apply this proposition in Lemma 3.9 we will there-
fore drop the condition on the second walk at negligible cost. This is the reason
the event involves only the walk Xm,k(h1), even though Qλ tilts both Xm,k(h1)

and Xm,k(h2). The proof of the proposition is omitted, as it follows the previous
one closely, with μ replaced by 2λσ 2 in (60).

PROPOSITION 2.10. Let λ ∈ R, � > 0 and μ = 2λσ 2. Let h1, h2 ∈ R with
l = h1 ∧h2 and m ≤ l −�. For any convex subsets Ak ⊆ R, k = m+ 1, . . . , l −�,
we have

(62)

Qλ
[
Xm,k(h1) ∈ Ak ∀m < k ≤ l − �

]
= (

1 + O
(
e−c�))η×(l−�−m)

μ,σ 2

{
y ∈R×(l−�−m) :

k∑
j=1

yj ∈ Ak+m

∀k = 1, . . . , l − � − m

}
+ O

(
e−ec�)

.

A one-point Gaussian approximation for the measure Qλ from (31) will also be
needed. The proof is again similar to the proof of Proposition 2.9 and is omitted.
One noticeable difference is in (60) where the covariance estimate is replaced by
σ 2

k = σ 2 + O(e−eck
) because of (26). The additive error e−ec�

is then replaced by
e−ecm

. The multiplicative error 1 + O(e−c�) becomes 1 + O(e−ecm
), and can thus

be “absorbed” in the additive error.

PROPOSITION 2.11. Let λ ∈ R, h ∈ R, 0 ≤ m < n and μ = λσ 2. For any
convex subsets Ak ⊆ R, k = m + 1, . . . , n, we have

(63)

Qλ

[
Xm,k(h) ∈ Ak ∀m < k ≤ n

]
= η

×(n−m)

μ,σ 2

{
y ∈ R×(n−m) :

k∑
j=1

yj ∈ Ak+m ∀k = 1, . . . , n − m

}

+ O
(
e−ecm)

.

2.4. Ballot theorem. The ballot theorem provides an estimate for the probabil-
ity that a random walk stays below a certain value and ends up in an interval. We
state the case we need, which is that of Gaussian random walk with increments of
mean 0 and variance σ 2.

LEMMA 2.12. Let (Xn)n≥0 be a Gaussian random walk with increments of
mean 0 and variance σ 2 > 0, with X0 = 0. Let δ > 0. There is a constant c =
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c(σ, δ) such that for all a > 0, b ≤ a − δ and n ≥ 1

(64) P
[
Xn ∈ (b, b + δ) and Xk ≤ a for 0 < k < n

]≤ c
(1 + a)(1 + a − b)

n3/2 .

Also provided δ < 1,

(65)
1

cn3/2 ≤ P
[
Xn ∈ (0, δ) and Xk ≤ 1 for 0 < k < n

]
.

PROOF. Note that (Xk)0≤k≤n has the law of (σBk)0≤k≤n, where (Bt )t≥0 is
standard Brownian motion. Thus, we see that the probability in (64) conditioned on
Xn = y can be written as the probability that a Brownian bridge avoids a barrier at
integer times. The bound (6.4) of [28] shows, after shifting by a/σ and reflecting,
that this conditional probability is at most c(1+a/σ)(1+(a−b−δ)/σ )/n. Noting
that P [Xn ∈ (b, b + δ)] ≤ cn−1/2 then yields (64). In a similar fashion, the display
below (6.4) in [28] gives (65). �

3. Proof of Theorem 1.2. In this section, we prove (8), that is,

(66) lim
n→∞P

[
mn(−ε) ≤ max

h∈[0,1]Xn(h) ≤ mn(ε)
]
= 1 for all ε > 0.

This proves Theorem 1.2 for the subsequence T = e2n
, n ∈ N. The extension of

the argument to general sequences T follows by trivial adjustments. We will need
to consider the process Xr,n(h) with the first r scales cutoff; see (19). Throughout
this section, we use

(67) r = ⌊
(log logn)2⌋.

First, we show that the difference between maxh∈[0,1] Xr,n(h) and
maxh∈[0,1] Xn(h) is negligible compared to the subleading correction term.

LEMMA 3.1. For all ε > 0,

lim
n→∞P

[
max

h∈[0,1]Xn(h) ≥ mn(2ε), max
h∈[0,1]Xr,n(h) ≤ mn−r (ε)

]
= 0,(68)

lim
n→∞P

[
max

h∈[0,1]Xn(h) ≤ mn(−2ε), max
h∈[0,1]Xr,n(h) ≥ mn−r (−ε)

]
= 0.(69)

PROOF. The event in the probability in (68) implies maxh∈[0,1] Xr(h) ≥
(log 2)r + ε log(n − r) ≥ 100(log 2)r , where the last inequality holds for n large
enough. But (46), with n = r , gives

P
[

max
h∈[0,1]Xr(h) ≥ 100(log 2)r

]
≤ 2−99r → 0 as r → ∞.

Since the laws of maxh∈[0,1] Xr(h) and −minh∈[0,1] Xr(h), coincide we also have
that the probability P[minh∈[0,1] Xr(h) ≤ −100(log 2)r] tends to 0 as r → ∞,
which similarly implies (69). �
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In the proof of (66), we will use a change of measure under which the process
Xr,n has an upward drift of

(70) μ(ε) = mn−r (ε)

n − r
= (n − r) log 2 − 3

4 log(n − r) + ε log(n − r)

n − r
.

We use the following consequence of (9) and (25) several times:

(71)
μ(ε)2

2σ 2 = log 2 −
(

3

2
− 2ε

)
log(n − r)

n − r
+ o

(
n−1).

3.1. Proof of the upper bound. In this section we prove the upper bound
part of (66). By Lemma 3.1, it suffices to prove the following upper bound for
maxh∈[0,1] Xr,n(h).

PROPOSITION 3.2. For all ε > 0,

(72) lim
n→∞P

[
max

h∈[0,1]Xr,n(h) ≥ mn−r (ε)
]
= 0.

The first step is to reduce the proof to a bound on the maximum over the discrete
set Hn ∩[0,1] [as defined in (53)] using the continuity estimates from Section 2.2.

LEMMA 3.3. For all ε > 0,

(73) lim
n→∞P

[
max

h∈[0,1]Xr,n(h) ≥ mn−r (2ε), max
h∈Hn∩[0,1]Xr,n(h) ≤ mn−r (ε)

]
= 0.

PROOF. Using translation invariance and a union bound on 2n intervals, the
probability in (73) is at most

2nP
[

max
h:|h|≤2−n−1

Xr,n(h) ≥ mn−r (2ε),Xr,n(0) ≤ mn−r (ε)
]
.

Proposition 2.5 can be applied with k = n, x = mn−r (ε) = (n − r)μ(ε) and a =
mn−r (2ε) − mn−r (ε) = ε log (n − r) < 22n − x. This gives the upper bound

(74) c2n exp
(
−(n − r)

μ(ε)2

2σ 2 − cε3/2(log(n − r)
)3/2

)
.

Using (71) and (67), we get that (74) is at most

c2n(2r−n(n − r)
3
2 −2εe−cε3/2(log(n−r))3/2)= o(1). �

The second step is to show that for each h ∈ [0,1] the process k → Xr,k(h)

satisfies a barrier condition with very high probability. This simply requires a union
bound together with continuity estimates.
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LEMMA 3.4. For all ε > 0,

(75)
lim

n→∞P
[∃h ∈ [0,1], k ∈ {�logn�2, . . . , n

}
s.t.

Xr,k(h) > (k − r)μ(ε) + (logn)2]= 0.

PROOF. By two successive union bounds, first over the scales k = �logn�2,

. . . , n, and then, for each of those scales, over 2k intervals (together with translation
invariance), the probability in (75) is at most

n∑
k=�logn�2

2kP
[

max
h:|h|≤2−k−1

Xr,k(h) ≥ (k − r)μ(ε) + (logn)2
]
.

The maximal inequality (45) can be applied since the right-hand side of the in-
equality in the probability is less than a constant times (k − r). Thus, the sum is
bounded above by

c

n∑
k=�logn�2

2k exp
(
−((k − r)μ(ε) + (logn)2)2

2(k − r)σ 2

)
.

Using (71), the argument in the exponential is at least

(k − r) log 2 − 3

2
log(n − r) + c(logn)2.

We conclude that the probability in (75) is at most

c

n∑
k=�logn�2

2k(2r−kn3/2e−c(logn)2)= c2rn5/2e−c(logn)2 = o(1).
�

Lemma 3.3 and Lemma 3.4 show that maxh∈[0,1] Xr,n(h) exceeds mn−r (2ε)

only if, for some h ∈ Hn ∩ [0,1], Xr,n(h) exceeds mn−r (ε) and the process
(Xr,k(h), �logn�2 ≤ k ≤ n) stays below a linear barrier. The number of h ∈ Hn

that manage this feat is

(76)

Z+ = ∑
h∈Hn∩[0,1]

1J+(h), where

J+(h) = {
Xr,n(h) ≥ mn−r (ε),

Xr,k(h) ≤ (k − r)μ(ε) + (logn)2 ∀k ≥ �logn�2}.
We show P[Z+ > 0] ≤ c2r (logn)6(n − r)−2ε , thereby proving Proposition 3.2
since the right-hand side is o(1) by the definition (67) of r . Here, we shall use the
previous Gaussian approximation results and the ballot theorem.
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PROPOSITION 3.5. For all ε > 0,

(77) P
[
Z+ > 0

]≤ E
[
Z+]≤ c2r (logn)6(n − r)−2ε.

PROOF. By translation invariance and linearity of expectation, we have
E[Z+] = 2nP[J+(0)]. We show that

(78) P
[
J+(0)

]≤ c2r−n(logn)6(n − r)−2ε,

thus yielding (77). To prove (78), let λ = μ(ε)/σ 2, and recall the definition of Qλ

from (31). We have that

(79) P
[
J+(0)

]≤Qλ

[
J+(0)

]
e
∑n

k=r+1 ψ
(1)
k (λ)−λ(n−r)μ(ε),

because Xr,n(0) ≥ (n − r)μ(ε) on the event J+(0). Using the estimates (34) and
(26), we get that

(80)
n∑

k=r+1

ψ
(1)
k (λ) − λ(n − r)μ(ε) = −(n − r)

μ(ε)2

2σ 2 + O
(
e−c

√
2r )

.

By (71), the exponential in (79) is thus at most c2r−n(n − r)
3
2 −2ε . It remains to

show

(81) Qλ

[
J+(0)

]≤ c(logn)6(n − r)−3/2.

The event J+(0) takes the form in Proposition 2.11 with m = r . Thus, Qλ[J+(0)]
is at most η

×(n−r)

μ(ε),σ 2(E1) + O(e−ecr
), where

E1 =
{
y ∈ Rn−r :

k∑
l=1

(
yl − μ(ε)

)≤ (logn)2

∀k ≥ �logn�2 − r,

n−r∑
l=1

(
yl − μ(ε)

)≥ 0

}
.

After recentering, the probability of E1 is simply

(82) η
×(n−r)

0,σ 2

{
y ∈ Rn−r :

k∑
l=1

yl ≤ (logn)2 ∀k ≥ �logn�2 − r,

n−r∑
l=1

yl ≥ 0

}
.

By conditioning on
∑�logn�2−r

l=1 yl = q , we may bound the above by the supremum

over q ∈ [−(logn)2, (logn)2] of η
×(n−(logn)2)

0,σ 2 (E2) + O(ce−(logn)2
), where

(83) E2 =
{
y ∈ Rn−(logn)2 :

k∑
l=1

yl ≤ (logn)2 − q ∀k ≥ 0,

n−�logn�2∑
l=1

yl ≥ −q

}
.
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This is because of the standard Gaussian bound

η
×((logn)2−r)

0,σ 2

{
y ∈ R(logn)2−r :

(logn)2−r∑
l=1

yl ≤ −(logn)2

}

≤ c exp
(
−c

(logn)4

(logn)2 − r

)
.

For a given q , the probability of the event in (83) may be bounded above by a
union bound over a partition of [−q, (logn)2 − q] into intervals of length 1, and
the ballot theorem (Lemma 2.12). This gives an upper bound for (82) of

sup
−(logn)2≤q≤(logn)2

(logn)2 × c
(1 + (logn)2 − q)(2(logn)2)

(n − r)3/2

≤ c(logn)6(n − r)−3/2.

This proves (81), and thus also (78) and (77). �

3.2. Proof of the lower bound. In this section, we prove the lower bound
part of (66). The proof is reduced to a lower bound on maxh∈[0,1] Xr,n(h) by
Lemma 3.1. We show the following.

PROPOSITION 3.6. For all ε > 0,

(84) lim
n→∞P

[
max

h∈[0,1]Xr,n(h) ≥ mn−r (−ε)
]
= 1.

As for the upper bound, we consider a modified number of exceedances with a
barrier. For δ > 0, let

J−(h) = {
Xr,n(h) ∈ [

mn−r (−ε),mn−r (−ε) + δ
]
,

Xr,k(h) ≤ (k − r)μ(−ε) + 1 ∀k = r + 1, . . . , n
}
.

We omit the dependence on the parameter δ in the notation for simplicity. Consider
the random variable

Z− = ∑
h∈Hn∩[0,1)

1J−(h).

Clearly, maxh∈[0,1] Xr,n(h) ≥ mn−r (−ε) if and only if Z− ≥ 1. The Paley–
Zygmund inequality implies that

P
(
Z− ≥ 1

)≥ E[Z−]2

E[(Z−)2] .
We will prove the following estimates for the first and second moments of Z−. Let

(85) A =
{
y ∈ Rn−r :

n−r∑
k=1

yk ∈ [0, δ],
l−r∑
k=1

yk ≤ 1 ∀l = r + 1, . . . , n

}
.
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LEMMA 3.7. For δ > 0,

(86) E
[
Z−]≥ (

1 + o(1)
)
e−cδ2r (n − r)

3
2 +2εη

×(n−r)

0,σ 2 [A].

LEMMA 3.8. For δ > 0,

(87) E
[(

Z−)2]≤ (
1 + o(1)

)(
2r (n − r)

3
2 +2εη

×(n−r)

0,σ 2 [A])2.
The lower bound (84) follows directly from these two lemmas, even without es-

timating the probability η
×(n−r)

0,σ 2 [A] precisely. However, it is important to observe
that (65) of the ballot theorem (Lemma 2.12) ensures that

(88) η
×(n−r)

0,σ 2 [A] ≥ c(n − r)−3/2.

In particular, this implies that E[Z−] → ∞, as n goes to infinity.

PROOF OF PROPOSITION 3.6. By the Paley–Zygmund inequality, Lemma 3.7
and Lemma 3.8, we have

P
[

max
h∈[0,1]Xr,n(h) ≥ mn−r (−ε)

]
≥ P

(
Z− ≥ 1

)
≥ E[Z−]2

E[(Z−)2]
≥ (

1 + o(1)
)
e−2cδ.

The result follows by taking the limits n → ∞, then δ → 0. �

We now prove the bound on E[Z−].
PROOF OF LEMMA 3.7. Translation invariance implies E[Z−] = 2nP[J−(0)].

Consider the probability Qλ from (31), where λ = μ(−ε)/σ 2. (By (35) and (26),
this choice of λ implies that Qλ[Yk(0)] is approximately μ(−ε).) Since on the
event J−(0), we have that Xr,n ≤ (n − r)μ(−ε) + δ, the definition of Qλ implies
that

(89) P
[
J−(0)

]≥Qλ

[
J−(0)

]
e
∑n

k=r+1 ψ
(1)
k (λ)−λ(n−r)μ(−ε)−cδ.

Proceeding as in (80) to estimate
∑n

k=r+1 ψ
(1)
k (λ) − λ(n − r)μ(−ε), and using

(71), we get

P
[
J−(0)

]≥ (
1 + o(1)

)
e−cδ2−(n−r)(n − r)3/2+2εQλ

[
J−(0)

]
.

The event J−(0) is of the form appearing in the Berry–Esseen approximation of
Proposition 2.11. The result can be applied with m = r , and after recentering the
increments by their mean μ = λσ 2 = μ(−ε) we get

Qλ

[
J−(0)

]= η
×(n−r)

0,σ 2 [A] + O
(
e−ecr )

.
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By (88), η
×(n−r)

0,σ 2 [A] dominates e−ecr
, since r = �(log logn)2�. This proves the

lemma. �

REMARK 3. We note for future reference that the same reasoning [using that
Xr,n ≥ (n − r)μ(−ε) on J−(0); cf. (89)] gives the upper bound,

(90) P
[
J−(0)

]≤ (
1 + o(1)

)
2−(n−r)(n − r)3/2+2εη

×(n−r)

0,σ 2 [A].

To prove the second moment bound in Lemma 3.8, we use the identity

(91) E
[(

Z−)2]= ∑
h1,h2∈Hn∩[0,1)

P
[
J−(h1) ∩ J−(h2)

]
.

We thus seek bounds on P[J−(h1) ∩ J−(h2)] for h1 �= h2. This is the key addi-
tional difficulty in the lower bound calculation. In essence, these bounds are ob-
tained by conditioning on the values of the processes k �→ Xr,k(hi), close to the
“branching point” h1 ∧ h2 [defined in (13)], and then applying the following two
lemmas. Lemma 3.9 gives an estimate for the part of the event before the branching
point (where the processes are coupled), and Lemma 3.10 for the part after (where
they are decoupled). To get sufficiently strong coupling and decoupling, each es-
timate must be applied for scales that are respectively slightly before and slightly
after the branching point. To quantify this, we use for the decoupling parameter �

the value

(92) � = r/100.

For convenience, define the recentered process

Xr,k(h) = Xr,k(h) − (k − r)μ(−ε).

LEMMA 3.9. Let h1, h2 ∈ R and l = h1 ∧ h2. For i = 1,2 and any q ≥ 0,
define the event

(93)
Ai(q) = {

Xr,l−�(hi) ∈ [−q,−q + 1],
Xr,k(hi) ≤ 1 for k = r + 1, . . . , l − �

}
.

Then for any q1, q2 ≥ 0,

(94) P
[
A1(q1) ∩ A2(q2)

]≤ c
e
−(l−�−r)

μ(−ε)2

2σ2

(l − � − r)3/2 (1 + q1)e
1
2

μ(−ε)

σ2 (q1+q2).

PROOF. Let λ = μ(−ε)/(2σ 2) and λ = λ(1,1). We recall the definition of Qλ

from (31). The choice of λ ensures that Qλ[Y k(0)] is approximately μ(−ε)(1,1).
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By the definition of Qλ,

(95)

P
[
A1(q1) ∩ A2(q2)

]
= Qλ

[
1A1(q1)∩A2(q2)

∏
i=1,2

e−λXr,l−�(hi)

]

× exp

(
l−�∑

k=r+1

{
ψ

(2)
k (λ) − 2λμ(−ε)

})
,

where 1A1(q1)∩A2(q2) denotes the indicator function of the event. Using Proposi-
tion 2.4 as well as the covariance estimates (26) and (27), we have that

l−�∑
k=r+1

ψ
(2)
k (λ) = λ2

l−�∑
k=r+1

(
σ 2

k + ρk + O
(
e−2k−1))

≤ λ2(l − � − r)2σ 2 + O(1)

= (l − � − r)
μ(−ε)2

2σ 2 + O(1).

This proves that the second exponential in (95) is at most ce
−(l−�−r)

μ(−ε)2

2σ2 .
Also on the event A1(q1) ∩ A2(q2), the first exponential is at most ceλq1+λq2 .
Thus,

(96)
P
[
A1(q1) ∩ A2(q2)

]
≤ ce

−(l−�−r)
μ(−ε)2

2σ2 + 1
2

μ(−ε)

σ2 (q1+q2)Qλ
[
A1(q1) ∩ A2(q2)

]
.

It remains to bound Qλ[A1(q1) ∩ A2(q2)]. In fact, we drop the condition on h2
and bound Qλ[A1(q1)]. We expect not to lose much by this because the behavior
at h1 and h2 should be very similar. The event A1(q1) is of the right form to use
Proposition 2.10 with m = r and n = l − �. After recentering of the increments
by μ(−ε), we get that Qλ[A1(q1)] is

(
1 + O

(
e−cr))η×(l−�−r)

0,σ 2

{
y ∈ Rl−�−r :

k∑
l′=1

yl′ ≤ 1

for k = 1, . . . , l − � − r,

l−�−r∑
l′=1

yl′ ∈ [−q1,−q1 + 1]
}

+ O
(
e−ecr )

.

By (64) of the ballot theorem (Lemma 2.12) with b = −q1 and δ = 1, the proba-
bility on the right-hand side is at most c

1+q1
(l−�−r)3/2 . Together with (96), this proves

(94). �
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We now prove the bound for scales after the decoupling point. One notable
difference with the proof of the previous lemma is that the change of measure is
now done for a λ which is twice the one of Lemma 3.9. This reflects the fact that,
before the branching point, the two processes are essentially coupled, therefore, a
tilt for one process is also a tilt for the other.

LEMMA 3.10. Let h1, h2 ∈ R. For any h1 ∧ h2 + � ≤ j ≤ n, and δ, δ′ > 0,
define for i = 1,2 and q ≥ 0 the events

(97)

Bi(q) = {
Xj,n(hi) − q ∈ [−δ′, δ

]
,Xj,k(hi) − q ≤ 1 for k = j + 1, . . . , n

}
,

Bi(q) =
{
y ∈ (

R2)×(n−j) :
n−j∑
k=1

(yk)i − q ∈ [−δ′, δ
]
,

j ′∑
k=1

(yk)i − q ≤ 1, ∀j ′ = 1, . . . , n − j

}
,

where y = (((yk)1, (yk)2), k = 1, . . . , n − j). Then for q1, q2 ∈ R,

(98)

P
[
B1(q1) ∩ B2(q2)

]
≤ (

1 + o(1)
)

× ecδ′ ∏
i=1,2

{
e
−(n−j)

μ(−ε)2

2σ2 −μ(−ε)

σ2 qi
(
η

×(n−j)

0,σ 2

[
Bi(qi)

]+ e−ec�)}
.

PROOF. Let λ = μ(−ε)

σ 2 , λ = λ(1,1) and recall the definition of Qλ from (31).
The choice of λ ensures that Qλ[Y k] is approximately μ(−ε)(1,1). The definition
of Qλ gives

(99)

P
[
B1(q1) ∩ B2(q2)

]
= Qλ

[
1B1(q1)∩B2(q2)

∏
i=1,2

e−λXj,n(hi)

]
e
∑n

k=j+1 ψ
(2)
k (λ)−2λ(n−j)μ(−ε)

.

By Proposition 2.4, (26) and (27),

ψ
(2)
k (λ) = λ2(σ 2

k + ρk

)+ O
(
e−2k−1)

= λμ(−ε) + O
(
2−(k−h∧h2)

)
.

We deduce that
∑n

k=j+1 ψ
(2)
k (λ) is at most (n − j)λμ(−ε) + c2−�. Therefore,

the second exponential in (99) is (1 + o(1))e
−2(n−j)

μ(−ε)2

2σ2 . On the event B1(q1) ∩
B2(q2), the first exponential in (99) is at most ecδ′

e
−μ(−ε)

σ2 q1−μ(−ε)

σ2 q2 . In view of this,
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it only remains to show

(100) Qλ
[
B1(q1) ∩ B2(q2)

]≤ (
1 + o(1)

) ∏
i=1,2

η
×(n−j)

0,σ 2

[
Bi(qi)

]+ ce−ec�

.

Note that the event B1(q1) ∩ B2(q2) takes the form considered in Proposition 2.9.
Applying Proposition 2.9 with j in place of m and then recentering yields

Qλ
[
B1(q1) ∩ B2(q2)

]≤ (
1 + ce−c�)η×2(n−j)

0,σ 2

[
B1(q1) ∩ B2(q2)

]+ ce−ec�

.

By independence, it is plain that

η
×2(n−j)

0,σ 2

[
B1(q1) ∩ B2(q2)

]= ∏
i=1,2

η
×(n−j)

0,σ 2

[
Bi(qi)

]
.

This proves (100) and, therefore, also (98). �

The previous lemmas will now be used to prove bounds on P[J−(h1)∩J−(h2)]
in three cases: (i) h1 ∧h2 ≤ r −�, (ii) r −� < h1 ∧h2 ≤ r +� and (iii) r +� <

h1 ∧ h2 ≤ n − �. The case h1 ∧ h2 > n − � is easy and will be handled directly
in the proof of Lemma 3.8.

If h1 ∧ h2 ≤ r − �, then h1 and h2 are sufficiently far apart so that the scale
r is well beyond the “branching point” of h1 and h2, and the events J−(h1) and
J−(h2) decouple:

LEMMA 3.11. Let h1, h2 ∈ R be such that 1 ≤ h1 ∧ h2 ≤ r − �. Then

(101) P
[
J−(h1) ∩ J−(h2)

]≤ (
1 + o(1)

)((n − r)
3
2 +2ε

2n−r
η

×(n−r)

0,σ 2 [A]
)2

,

where A is the event defined in (85).

PROOF. Let j = r . By assumption, we have h1 ∧h2 + � ≤ j , so Lemma 3.10
can be applied with q1 = q2 = 0 and δ′ = 0 to give

P
[
J−(h1) ∩ J−(h2)

]≤ (
1 + o(1)

)(
e
−μ(−ε)2

2σ2 (n−r)(
η

×(n−r)

0,σ 2 [A] + e−ec�))2
.

By (88) and (92), the probability η
×(n−r)

0,σ 2 [A] dominates e−ec�
, so the claim follows

by (71). �

In the case where h1 and h2 are such that their “branching point” happens after
the scale r + �, there is no hope of a decoupling of J−(h1) and J−(h2). Instead,
we need to split the probability into a coupled part and a decoupled part and use
Lemmas 3.9 and 3.10 separately.
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LEMMA 3.12. Let h1, h2 ∈ R and l = h1 ∧ h2. If r + � < l ≤ n − �, then

(102) P
[
J−(h1) ∩ J−(h2)

]≤ c2−(2n−l)219�+r (n − r)(
3
2 +2ε)(2− l+3�−r

n−r
)

(n − l − �)3(l − � − r)3/2 .

PROOF. Write Xr,n(h) = Xr,l−�(h) + Xl−�,n(h) and decompose the event
J−(h1) ∩ J−(h2) over the values of Xr,l−�(h) as follows:

∞⋃
q1,q2=0

(
J−(h1) ∩ J−(h2) ∩

2⋂
i=1

{
Xr,l−�(hi) ∈ [−qi,−qi + 1]}).

For fixed q1, q2, the event in the union is contained in
⋂

i=1,2 Ai(qi) ∩ Ci(qi),
where the events Ai(q) are defined in (93) and for i = 1,2,

Ci(q) = {
Xl−�,n(hi) ∈ [q − 1, q + δ],

Xl−�,k(hi) ≤ q + 1 for k = l − �, . . . , n
}
.

Now note that (Xr,k(hi))r≤k≤l−� are independent from (Xl−�,k(hi))l−�≤k≤n, for
i = 1,2. Altogether we get that

(103)

P
[
J−(h1) ∩ J−(h2)

]
≤

∞∑
q1,q2=0

P
[
A1(q1) ∩ A2(q2)

]
P
[
C1(q1) ∩ C2(q2)

]
.

Lemma 3.9 gives

P
[
A1(q1) ∩ A2(q2)

]≤ c
e
−(l−�−r)

μ(−ε)2

2σ2

(l − � − r)3/2 (1 + q1)e
μ(−ε)

2σ2 (q1+q2).

In order to use Lemma 3.10, we express the probability on the event Ci ’s by con-
ditioning on Xl−�,l+�(hi), which are independent of Xl+�,n(hi). We have

(104)
P
[
C1(q1) ∩ C2(q2)

]
=
∫
R2

P
[
B1(q1 − y1) ∩ B1(q2 − y2)

]
f (y1, y2) dy1 dy2,

where f (y1, y2) is the density of (Xl−�,l+�(hi), i = 1,2), and the events Bi’s are
as in (97) with δ′ = 1. Lemma 3.10 then gives

(105)

P
[
B1(q1 − y1) ∩ B2(q2 − y2)

]
≤ c

e
−2(n−l−�)

μ(−ε)2

2σ2

(n − l − �)3

∏
i=1,2

(1 + qi − yi)e
−μ(−ε)

σ2 (qi−yi),



MAXIMA OF A RANDOMIZED RIEMANN ZETA FUNCTION 211

using also that η
×(n−l)

0,σ 2 [Bi(qi −yi)] ≤ c(1 +qi −yi)/(n− l −�)3/2 by (64) of the
ballot theorem with δ′ + δ in place of δ and b = qi − yi − δ′. Thus,

P
[
J−(h1) ∩ J−(h2)

]
≤
∫
R2

∏
i=1,2

(1 + qi − yi)e
−μ(−ε)

σ2 (qi−yi)f (y1, y2) dy1 dy2.

To handle the integral, note that Proposition 2.4 implies

(106)

E
[
e

μ(−ε)

σ2 (
∑

i=1,2 Xl−�,l+�(hi))]
≤ c exp

(
l+�∑

k=l−�+1

μ(−ε)2

σ 4

(
σ 2

k + ρk

))≤ ce�16 log 2,

where the last inequality follows from (25), (26) and the inequalities ρk ≤ σ 2
k ≤

2σ 2 and μ(−ε)/σ 2 ≤ 2 [see (71)]. Using (38), the same estimate holds for

E
[
Xl−�,l+�(h1)e

μ(−ε)

σ2 (
∑

i=1,2 Xl−�,l+�(hi))]
and

E

[ ∏
i=1,2

Xl−�,l+�(hi)e
μ(−ε)

σ2 Xl−�,l+�(hi)
]
.

After expanding the product in the integral, this altogether implies

(107)

∫
R2

∏
i=1,2

(1 + qi − yi)e
μ(−ε)

σ2 (yi )f (y1, y2) dy1 dy2

≤ c(1 + q1)(1 + q2)e
�16 log 2.

Thus, equations (103) to (107) yield

P
[
J−(h1) ∩ J−(h2)

]≤ c216� e
−(2(n−l−�)+(l−�−r))

μ(−ε)2

2σ2

(l − � − r)3/2(n − l − �)3 ,

where we used the fact that
∑∞

q1,q2=0(1+q1)
2(1+q2)e

−cq1−cq2 is finite. The claim
then follows from (71). �

The case where the branching point is between r − � and r + � is handled
similarly.

LEMMA 3.13. Let h1, h2 ∈ R with l = h1 ∧h2 be such that r −� ≤ l ≤ r +�.
Then

(108) P
[
J−(h1) ∩ J−(h2)

]≤ c218�2−2(n−l−�)(n − r)4ε.
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PROOF. Since r − � < l ≤ r + �, we have the decomposition Xr,n(h) =
Xr,l+�(h) + Xl+�,n(h). We proceed as in Lemma 3.12 by conditioning on
Xr,l+�(hi), i = 1,2, and then drop the barrier condition on Xr,l+�(hi) for both
i = 1 and i = 2. Following (104) and (105), this gives

P
[
J−(h1) ∩ J−(h2)

]
≤ c

e
−2(n−l−�)

μ(−ε)2

2σ2

(n − l − �)3

∫
R2

∏
i=1,2

(1 − yi)e
μ(−ε)

σ2 yi f (y1, y2) dy1 dy2,

where f (y1, y2) is now the density of (Xr,l+�(hi), i = 1,2). The integral can be
estimated using Proposition 2.4 as in (106). It is smaller than c216�. By (71), the
fraction in front of the integral is

2−2(n−l−�)(n − r)4ε n−l−�
n−r (n − r)3 n−l−�

n−r /(n − l − �)3.

Since r − � < l < r + �, this is smaller than c2−2(n−l−�)(n − r)4ε as claimed.
�

We now have the necessary two-point estimates to prove the upper bound on
E[(Z−)2].

PROOF OF LEMMA 3.8. We split the sum in (91) into four terms depending
on the branching point h1 ∧ h2 of the pair h1, h2 ∈ Hn ∩ [0,1):∑

h1,h2:h1∧h2≤r−�

(·)
︸ ︷︷ ︸

(I )

+ ∑
h1,h2:r−�<h1∧h2≤r+�

(·)
︸ ︷︷ ︸

(II)

+ ∑
h1,h2:r+�<h1∧h2<n−�

(·)
︸ ︷︷ ︸

(III)

+ ∑
h1,h2:h1∧h2≥n−�

(·)
︸ ︷︷ ︸

(IV)

.

Using that #Hn ∩ [0,1) = 2n and the bound (101), we get

(I ) ≤ (
1 + o(1)

)(
2r (n − r)

3
2 +2εη

×(n−r)

0,σ 2 [A])2.
By (88), the right-hand side is at least c22r (n − r)4ε . We now show that (II), (III)
and (IV) are negligible compared to this, and thus (I ) is the dominant term in
the sum. Note that the number of pairs h1, h2 ∈ Hn ∩ [0,1) such that 2−l−1 ≤
|h1 − h2| ≤ 2−l is at most c22n−l . Thus, the contribution of (II), by Lemma 3.13,
is at most

(II) ≤ c

r+�∑
l=r−�+1

22n−l216�2−2(n−l−�)(n − r)4ε

≤ c219�2r (n − r)4ε,
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which is negligible compared to 22r (n − r)4ε , because of the choice � = r/100.
Similarly, the contribution of (III) can be bounded as

(III) ≤
n−�−1∑

l=r+�+1

22n−l max
h∈[2−l−1,2l ]

P
[
J−(0) ∩ J−(h)

]
.

Lemma 3.12 then yields

(III) ≤ c2r+19�(n − r)4ε
n−�−1∑

l=r+�+1

(n − r)
3
2 (2− l+3�−r

n−r
)

(n − l − �)3(l − � − r)3/2

= c2r+19�(n − r)4ε
m−2�−1∑

a=1

m
3
2 (2−(a+2�)/m)

(m − a − 2�)3a3/2 for m = n − r

≤ c2r+19�(n − r)4ε,

where the last inequality follows from the fact that the sum over a stays finite as
m → ∞. Since � = r/100, the bound on (III) is negligible relative to the bound
on (I ). Finally, for (IV), the event J−(h2) can be dropped. There are at most 2n+�

pairs h1, h2 ∈ Hn ∩ [0,1) such that |h1 − h2| ≤ 2−n+�. A union bound using the
one-point bound (90) gives

(IV) ≤ 2n+�P
[
J−(0)

]≤ (
1 + o(1)

)
2r+�(n − r)2ε.

Again, this is negligible relative to the bound on (I ). Therefore,

(I ) + (II) + (III) + (IV) ≤ (
1 + o(1)

)(
2r (n − r)

3
2 +2εη

×(n−r)

0,σ 2 [A])2,
which proves the lemma. �

This bound on the second moment of Z− concludes the proof of lower bound
Proposition 3.6 and, therefore, also for the main result Theorem 1.2
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