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POLYNOMIAL CONVERGENCE TO EQUILIBRIUM FOR
A SYSTEM OF INTERACTING PARTICLES

BY YAO LI∗,† AND LAI-SANG YOUNG†,1

University of Massachusetts Amherst∗ and New York University†

We consider a stochastic particle system in which a finite number of par-
ticles interact with one another via a common energy tank. Interaction rate
for each particle is proportional to the square root of its kinetic energy, as is
consistent with analogous mechanical models. Our main result is that the rate
of convergence to equilibrium for such a system is ∼t−2, more precisely it is
faster than a constant times t−2+ε for any ε > 0. A discussion of exponential
vs. polynomial convergence for similar particle systems is included.

This paper is about dynamical models of (large numbers of) interacting parti-
cles, a topic of fundamental importance in both dynamical systems and statistical
mechanics. Our focus is on the speed of convergence to equilibrium, equivalently
the rate of decay of time correlations. On a fixed energy surface, Liouville mea-
sure, which describes the states of a system in equilibrium, does not depend on
the dynamics generated by the Hamiltonian, but once the system is taken out of
equilibrium, the speed with which it returns to equilibrium can be affected by dy-
namical details. One of the purposes of this paper is to call attention to the fact that
for particle systems, this convergence can be fast or slow depending on how the
particles interact.

While Hamiltonian models are considered to be physically more realistic than
stochastic ones, questions of ergodicity and mixing for general Hamiltonian sys-
tems are out of reach at the present time, let alone the rate of mixing. Simplifi-
cations on the level of modeling are necessary if one is to gain insight into the
problem. Since chaotic dynamics are known to produce statistics very similar to
those of genuinely random stochastic processes [2, 7, 38, 40, 47], it seems logical
to first tackle stochastic models designed to capture similar underlying phenom-
ena.

The following model of binary collisions introduced by Kac [24] half a cen-
tury ago as an idealization of Boltzmann dynamics was in this spirit. In Kac’s
model, the velocities of N particles are described (abstractly) by N real numbers
v1, v2, . . . , vN , so that the system has total energy

∑N
i=1 v2

i = E. An exponential
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clock rings with rate N . When it rings, a pair of particles, i and j , is randomly
chosen and assumed to interact, resulting in new velocities, v′

i and v′
j , given by

v′
i = (cos θ)vi − (sin θ)vj ,

v′
j = (sin θ)vi + (cos θ)vj ,

where θ ∈ [0,2π) is uniformly distributed. This model has been much studied.
Among other things, it has been shown that its infinitesimal generator has a spectral
gap uniformly bounded away from zero in size for all N [4, 21, 33]. Models with
energy-dependent interactions, which are more realistic than the constant rate of
interaction in the original model, have also been studied [5], as have other variants
of this model; see, for example, [19, 39] for binary collision processes on lattices
and [18] for extensions to quantum N -body problems.

In general, for systems with direct particle-particle interactions and an interac-
tion potential that falls off with distance, it is very difficult to identify a simple
stochastic rule that captures faithfully the deterministic dynamics. In this paper,
we consider a class of particle systems for which such modeling is more straight-
forward, namely when the particles do not interact with one another directly but
only via their “environment,” or a “hub.” Concrete examples of mechanical mod-
els of this type were introduced in [34, 37] and studied later in [10–13, 25, 30,
31, 44]. In these models, the “environment” is symbolized by the kinetic energy
stored in rotating disks placed at various locations in the physical domain. When a
particle collides with a disk, energy is exchanged in accordance with a rule consis-
tent with energy and angular momentum conservation; point particles do not “see”
each other otherwise. See Figure 2. The models considered in the present paper are
a stochastic version of these mechanical models; details are given in Sections 1.1
and 1.2.

An example of the type of stochastic modification we make is that we “for-
get” the precise location of a particle, and replace the time to its next collision
by an exponential random variable with mean ∝ 1√

e
where e is the kinetic energy

of the particle. This idea was also used in [13], and is consistent with the statis-
tics produced by chaotic dynamical systems. More detailed justification is given in
Section 1.1.

We prove for our models that the speed of convergence to equilibrium is not
exponential but polynomial. More precisely, we show that for any γ > 0, this rate
is faster than ∼tγ−2. Because the rate of interaction is ∝√

e, it is not hard to see
that convergence rate cannot be faster than ∼t−2. Thus, our results are sharp, and
to our knowledge they are new; a literature search has not turned up comparable
results involving polynomial rates of convergence. The closest that we are aware
of are [45, 46], which showed slower than exponential convergence for certain
mechanical models with special properties (e.g., particles interacting only with
heat baths, or particle systems on physical domains with special geometry).
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The speed of convergence to equilibrium, equivalently the rate of decay of time
correlations, impacts the type of probabilistic limit laws obeyed by the system. We
do not pursue that here as these questions will take us too far afield, but remark
only on some immediate consequences: To have a strictly convex rate function
of the large deviation principle, a spectral gap is usually necessary [1, 26, 42, 43].
With polynomial rates of convergence, the large deviation rate function, if it exists,
can have a flat section [27]. Also due to the polynomial ergodicity, one can only
expect the Markov chains central limit theorem to hold for bounded observables;
see Theorem 1.6 for the detail.

The main ideas of our proof are as follows: since low-energy particles are the
source of slow convergence, we call a state of the system, equivalently an energy
configuration, “active” if every particle carries an energy above a certain mini-
mum. Starting from the set of active states we prove a Doeblin-type condition,
suggesting exponential correlation decay for an induced process. We then return
to the full system, and propose to view the dynamics as having been refreshed, or
renewed, each time a trajectory returns to the set of active states. This puts us in a
framework bearing some resemblance to renewal processes, for which it has been
shown that the speed of convergence to equilibrium is determined by the moments
of renewal times. Following ideas from renewal theory, we seek to control first
passage times to the set of active states. This is done by constructing a suitable
Lyapunov function; see Section 2.

Polynomial vs. exponential convergence: further examples. The root cause of
the slow convergence in our model is that once a particle acquires a low energy
in an interaction, it simply stays “frozen” until its clock rings again; there is no
way to activate it sooner. This need not be the case in models with direct particle-
particle interactions, if another particle can pass by and activate a slow particle. The
question of exponential vs. polynomial rates of convergence to equilibrium is most
transparent in the setting of one particle per site, nearest-neighbor interactions, an
example of which is the locally confined disk models introduced in [3] and studied
in [15, 16]: A linear chain of cells is connected by openings. Inside each cell is a
single finite-size convex body (hard disk), the diameter of which exceeds that of
the opening so it is trapped, but adjacent disks can meet and exchange energy; see
Figure 1. For these models, the rate of convergence hinges on whether a disk can
be completely out of reach of its neighbors. When the openings are large enough,
heuristic argument and numerical simulations both give exponential convergence.
On the other hand, if the openings between cells are small enough that a disk can
get entirely out of reach of its neighbors, then a phenomenon similar to that in the
present paper can occur: it is easy to prove that the rate of mixing cannot be faster
than t−2; see [28], which contains also a numerical study confirming that the rate
of mixing is ∼t−2, and the rate of interaction between disks with kinetic energies
ei and ei+1 can be approximated by ∼√

min{ei, ei+1}.
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FIG. 1. Locally confined hard disks model. Whether the system converges to equilibrium at ex-
ponential or polynomial speeds depends on its geometric configuration, specifically whether or not
there are positions where a disk (black) can be out of reach of its neighbors.

We comment on related works: In a nonrigorous derivation, Gaspard and Gilbert
[17] argued for the same model that under certain assumptions, the rate of interac-
tion between the ith and (i + 1)st disks is ∼√

ei + ei+1. Assuming this interaction
rate, [19, 29, 39] proved exponential rates of convergence for stochastic versions
of these models. To our knowledge, this interaction rate appears in a certain rare
interaction limit (when the openings between cells tend to zero), and involves a
rescaling of time. Without taking any limits or rescaling time, it is a simple math-
ematical fact that correlations in the mechanical models above cannot decay faster
than t−2 when the disks can “hide” from their neighbors.

Organization of this paper. Section 1 contains a precise model description and
statement of results. The bulk of the technical work goes into the construction of
a Lyapunov function; this is carried out in Section 2. In Section 3, we use this
Lyapunov function to deduce the desired results on polynomial convergence to
equilibrium.

1. Model and results. As explained in the Introduction, the models consid-
ered in this paper are stochastic versions of some known mechanical models. We
begin with a review of these mechanical models, followed by a discussion of the
rationale for replacing the deterministic dynamics by Markovian dynamics. Sec-
tion 1.2 contains the precise definitions of the models studied in the rest of this
paper, and the statement of results are announced in Section 1.3.

1.1. Mechanical models with particle-disk interactions. We review here a
class of models consisting of a rotating disk and a finite number of particles in
a closed domain, energy being exchanged when a particle collides with the disk.
The rules of energy exchange are borrowed from [34]; see also [37]. These models,
both in and out of equilibrium, were studied in [13].

A precise model description is as follows: Let � ⊂ R
2 be a bounded domain

with concave piecewise C3 boundary; see Figure 2 for an example. In the interior
of � is a rotating disk D, nailed down at its center and rotating freely, carrying with
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FIG. 2. Example of a mechanical system that motivated the present study: Particles in a domain �

(white) are scattered as they are reflected off ∂�, and energy is exchanged when a particle collides
with the rotating disk (blue) nailed down at the center of the domain.

it a finite amount of kinetic energy. In the region � \ D are m point particles, each
moving with uniform motion until it collides with ∂� or D. Upon collision with
∂�, a particle is reflected elastically. Upon collision with D, energy is exchanged
according to the following rule: Let v be the velocity of the particle just prior
to collision, v = vn + vt its decomposition into components that are normal and
tangential to the disk, and let ω denote the angular velocity of the disk. If ′ denotes
the corresponding velocities following the collision, then from the conservation of
energy and angular momentum, one obtains, following [34],

v′
n = −vn,

v′
t = vt − 2η

1 + η
(vt − Rω),

Rω′ = Rω + 2

1 + η
(vt − Rω).

In these formulas, m̄ is the mass of the particle, R is the radius of the disk, θ is the
moment of inertia of the disk and η = θ/(m̄R2). This is a complete description of
the model.

Choosing R = η = 1 leads to the especially simple equations

(1.1) v′
n = −vn, v′

t = ω, ω′ = vt .

For simplicity, we will work with these special parameters, though conceptually it
makes no difference in the present study.

Connection to stochastic model. Though easy to describe, an analysis of the
mechanical model above is considerably outside of the reach of current dynam-
ical systems techniques. Thus, we seek to simplify the model while retaining its
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essential characteristics, including the way in which energy is transferred among
particles. By “forgetting” the precise locations of particles in the cell and their
directions of travel, as well as the direction of rotation of the disk, we turn the de-
terministic dynamical system above into a Markov process. Specifically, the times
to energy exchange for a particle are determined by exponential distributions with
mean x−1/2 where x is the instantaneous kinetic energy of the particle, and the
repartitioning of energy at exchanges are as in (1.1) assuming random angles of
incidence. Details are given in Section 1.2.

We provide below some heuristic justification for the memory loss and interac-
tion proposed in the last paragraph.

First, we explain the rationale behind neglecting precise locations within a
cell. Billiard systems on domains with concave boundaries (or scatterers) are well
known to exhibit chaotic or hyperbolic behavior [6, 40]. Hyperbolicity here refers
to exponential divergence of nearby orbits, a property that leads to rapid loss of
memory of trajectory history. By taking the rotating disk in our model to be rel-
atively small, between energy exchanges a typical particle trajectory is reflected
many times as it bounces off the walls of the domain. (Adding more scatterers in
� \ D as was done in [30] will further enhance mixing.) As our system is a hyper-
bolic billiard between collisions with the rotating disk, the rapid loss of memory
gives justification for neglecting precise locations within a cell.

Next we explain the use of exponential random variables to describe the times
between collisions. Another well-known fact for strongly hyperbolic systems in-
cluding billiards is that for points randomly distributed in a specific region, return
times to this region have exponentially small tails [47]. Thus, for particles that
emerge from an energy exchange with a fixed energy but randomly distributed
otherwise in terms of location and angle, we can expect the times to their next
collision with the disk to have an exponentially small tail.

Finally, fixing initial location and direction of travel, the time for a particle to
reach a pre-specified region is proportional to its speed; that is, the rationale for
assuming mean collision time is proportional to x−1/2.

For another confirmation of the close connection between the stochastic model
in Section 1.2 and the mechanical model above, notice that modulo constants their
invariant measures coincide; see the remark following Proposition 1.1.

1.2. Precise description of stochastic model. The stochastic model considered
in the rest of this paper is a time-homogeneous Markov jump process xt , t ≥ 0,
with

xt = (
x1
t , . . . , xm

t , yt

)
.

Here, m is a fixed positive integer, x1
t , . . . , xm

t are the energies of the m particles
at time t , and yt is the energy of the disk, which we regard from here on as an
abstract “energy tank.” As the domain is assumed to be closed, total energy remains
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constant in time, that is, there exists a constant Ē > 0 such that
∑

i x
i
t + yt = Ē for

all t ≥ 0. Thus, the state space of xt is the open (m + 1)-dimensional simplex

� = �m+1(Ē) =
{(

x1, . . . , xm, y
) ∈ R

m+1+
∣∣∣y +

m∑
i=1

xi = Ē

}
.

As in the mechanical model in Section 1.1, the particles in this system do not
interact directly with one another. Instead, they interact via the energy tank, which
symbolizes the “environment” within the domain, and it is these particle-tank in-
teractions that give rise to the jumps in the process. The rules of interaction are as

follows: Particle i carries a clock that rings at an exponential rate equal to
√

xi
t ; no-

tice that this rate changes each time the particle acquires a new energy. The clocks
carried by different particles are independent of one another and of history. When
its clock rings, a particle exchanges energy with the tank according to the same
rule used in the mechanical model: Suppose the clock of particle i rings at time t ,
and let xt+ = (x1

t+, x2
t+, . . . , xm

t+, yt+) denote the state immediately following the
interaction at time t . We assume that the directions of motion of the particles in
the mechanical model are uniformly distributed as given by Liouville measure, so
that the cosines of their angles of incidence with the rotating disk are uniformly
distributed. The rules for updating, that is, (1.1), then translate into

(1.2) xi
t+ = yt + (

1 − u2)xi
t , yt+ = u2xi

t and x
j

t+ = x
j
t for j 
= i,

where u ∈ (0,1) is a uniform random variable. For a detailed calculation, see [30].
The transition probabilities above together with an initial condition x0 defines

the Markov process xt . The notation xt = (x1
t , . . . , xm

t , yt ) is used throughout; in
particular, xi is used exclusively to denote the energy of the ith particle, not the
ith power of x.

We fix also the following notation: For t ≥ 0 and x ∈ �, let P t(x, ·) be the tran-
sition probabilities of the process xt . That is to say, P t(x, ·) is the Borel probability
distribution on � describing the possible states of the system t units of time later
given that its initial condition is x. To simplify notation, we use the same notation
for the left and right operators generated by P t :

(
P tξ

)
(x) =

∫
�

P t(x,dy)ξ(y)

for a measurable function ξ on �, and

(
μP t )(A) =

∫
�

P t(x,A)μ(dx)

for a probability measure μ on �. Finally we say μ is an invariant measure for the
process xt if μP t = μ for all t > 0.
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1.3. Statement of results.

PROPOSITION 1.1. The probability measure π with density

ρ
(
x1, . . . , xm, y

)= 1

Z
y−1/2,

where Z is a normalizing constant is an invariant measure for the process xt .

By the change of variables x = |vi |2 and y = ω̃2, one sees that π coincides
with Liouville measure on a fixed energy shell for a Hamiltonian system with
H = |vi |2 + ω̃2. Here, vi is the velocity of the ith particle, and ω̃ is the angular
velocity of the rotating disk.

THEOREM 1.2 (Uniqueness of invariant measure). The measure π in Propo-
sition 1.1 is the unique invariant probability for xt ; hence it is ergodic.

THEOREM 1.3 (Speed of convergence to equilibrium). For every x ∈ � and
γ > 0,

lim
t→∞ t2−γ

∥∥P t(x, ·) − π
∥∥

TV = 0,

where ‖ · ‖TV is the total variational norm.

Theorem 1.3 is in fact deduced from Theorem 1.4 below. For δ > 0, let Mδ be
the collection of probability measures μ on � such that∫

�

(
m∑

k=1

(
xk)2δ−1 + yδ− 1

2

)
μ(dx) < ∞.

THEOREM 1.4 (Polynomial contraction of Markov operator). For any γ > 0
and μ,ν ∈ Mγ /8,

lim
t→∞ t2−γ

∥∥μP t − νP t
∥∥

TV = 0.

The following simple argument shows that the bound in Theorem 1.4 is tight:
Consider, for example, two initial distributions μ and ν that differ by a positive
amount when restricted to the set Bε := {xi < ε} for some fixed i. For definiteness,
let us assume that for all small enough ε, μ|Bε ≤ cπ |Bε and ν|Bε ≥ c′π |Bε for some
c < 1 < c′. Since π(Bε) ∝ ε, xi < 1

t2 implies that the probability with respect to π

of the ith clock ringing before time t is <1 − e−1. It follows that

∥∥μP t − νP t
∥∥

TV ≥ ∥∥(μP t − νP t )|{xi< 1
t2

}
∥∥

TV ≥ constant · 1

t2 .

Another corollary of Theorem 1.4 is the rate of decay of time correlations.
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THEOREM 1.5 (Polynomial correlation decay). For any γ > 0 and μ ∈ Mγ /8,
let ξ and ζ ∈ L∞(�). Then∣∣∣∣

∫
�

(
P tζ

)
(x)ξ(x)μ(dx) −

∫
�

(
P tζ

)
(x)μ(dx)

∫
�

ξ(x)μ(dx)

∣∣∣∣= o

(
1

t2−γ

)

as t → ∞.

The Markov chain central limit theorem can also be implied by the t−(2−γ ) rate
of convergence.

THEOREM 1.6 (Markov chain central limit theorem). Let f : � → R be
a π -almost surely uniformly bounded Borel function. Let {f δ

n }∞n=1 = {f (x0),

f (xδ), . . . , f (xnδ), . . . } be a sequence of observables, where δ > 0 is a constant.
Let

f̄ = 1

n

n∑
i=0

f δ
n .

Then for any initial distribution x0, as n → ∞,
√

n(f̄ −Eπf )
d−→ N

(
0, σ 2

f

)
,

where

σ 2
f := varπ

{
f (x0)

}+ 2
∞∑
i=1

cov
{
f (x0), f (xiδ)

}
< ∞.

2. Construction of Lyapunov function. Let � be as in Section 1.2. For α <
1
2 , we define V = Vα : � →R

+ by

V (x) = Vα(x) =
m∑

i=1

(
xi)−2α + y−α.

Our main technical result is the following.

THEOREM 2.1. For α < 1
2 close enough to 1

2 and h > 0 small enough, there
exist c0,M > 0 depending on α and h such that for V = Vα and β = 1 − (4α)−1,(

P hV
)
(x) − V (x) ≤ −c0V (x)β

for every x ∈ {V > M}.

The motivation for this choice of Lyapunov function is as follows. As noted
in the Introduction, low energy particles are our main concern, for they are not
expected to interact for a long time, and that slows down the mixing process.
For this reason, a desirable Lyapunov function should satisfy V (x) → ∞ as
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x → ∂�. We explain heuristically why one may expect something along the lines
of P hV − V ∼ −hV 1/2, corresponding to α,β ≈ 2: Assume x1 � 1 is the small-
est particle energy. Then V (x) ∼ (x1)−1. If the clock of particle 1 rings on the
time interval [0, h) and y is “large,” then the expected drop of V (x) following an
interaction is ∼(x1)−1 ∼ V (x). But the probability that the clock of particle 1 will
ring exactly once before time h is ∼h

√
x1. This means the expected drop of V (x)

is ∼h(x1)−1/2 ∼ hV 1/2.
It is convenient to use the following equivalent description of �t : Starting from

t = 0, a clock rings at time τ1 where τ1 is an exponential random variable with

mean (
∑m

i=1

√
xi

0)
−1. When this clock rings, energy exchange takes place between

exactly one particle and the tank, and the probability that particle i is chosen is√
xi

0∑m
i=1

√
xi

0

.

The rule of energy redistribution is determined by equation (1.2) as before, and
this process is repeated, that is, at time τ2, an exponential random variable with

mean (
∑m

i=1

√
xi

τ+
1
)−1, the clock rings again, and so on.

We begin with the following technical estimate.

LEMMA 2.2. There exist constants ε0 > 0 and c∗ > 0 such that

E
[
V (xτ+

1
)|x0

]≤ V (x0) − c∗
∑m

i=1

√
xi

0

V (x0)
β

for every x0 ∈ B , where

B = {
x ∈ �|y < ε0, or xi < 4− 1

2α ε0 for some i ∈ {1, . . . ,m}}.
PROOF. By definition,

E
[
V (xτ+

1
)|x0

]= V (x0) + 1∑m
i=1

√
xi

0

m∑
i=1

Qi,

where

Qi =
√

xi
0

{∫ 1

0

[(
xi

0
(
1 − u2)+ y0

)−2α + (
xi

0u
2)−α]du − [(

xi
0
)−2α + y−α

0

]}
,

that is, we need to show
∑

Qi ≤ −c∗V (x0)
β for some c∗ > 0. In the rest of the

proof, we will omit the subscript 0 in x0, x
i
0 and y0, and write

C1 =
∫ 1

0

(
1 − u2)−2α du and C2 =

∫ 1

0
u−2α du,
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FIG. 3. Decomposition of neighborhood of ∂�.

noting that C1,C2 < ∞ for α < 1
2 . We will use many times the bound

(2.1) Qi ≤
√

xi
{
min

{
C1
(
xi)−2α

, y−2α}+ C2
(
xi)−α − (

xi)−2α − y−α}.
Without loss of generality, assume

x1 = min
1≤i≤m

xi.

Let 0 < ε0 � ε1 � Ē be two small numbers to be determined. We decompose B ,
the neighborhood of ∂� in the statement of the lemma, into three regions (see
Figure 3) and analyze each one as follows:

REGION I. 4
1

2α x1 < ε0, y ≥ ε1.

With regard to lowering V , we clearly have the most to gain if particle 1 interacts
with the tank: Applying (2.1) to x1 and substituting in y ≥ ε1, we obtain

Q1 ≤
√

x1 · {(ε1)
−2α + C2

(
x1)−α − (

x1)−2α}
.

Using 4
1

2α x1 < ε0 � ε1, we see that the third term dominates. Hence,

Q1 ≤ −1

2

(
x1)−2α+ 1

2 .

For i 
= 1, we consider separately the following two cases: For xi < 1
2ε1 < 1

2y,
we have

(2.2) Qi ≤
√

xi
{(

2xi)−2α + C2
(
xi)−α − (

xi)−2α}
,

which is <0 since the last term dominates. If xi ≥ 1
2ε1, then from (2.1) we obtain

Qi ≤
√

xi
{
C1
(
xi)−2α + C2

(
xi)−α}≤ C′(ε1)

−2α+ 1
2

for some C′ independent of ε0 or ε1. Notice that we have used 1
2 − 2α < 0, or

α > 1
4 .
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Altogether, we have shown, using ε0 � ε1 � 1, that

m∑
i=1

Qi ≤ −1

2

(
x1)−2α+ 1

2 + (m − 1)C′(ε1)
−2α+ 1

2 ≤ −1

3

(
x1)−2α+ 1

2 .

It follows from V (x) ≤ (m + 1)(x1)−2α that this is ≤− 1
3(m+1)

V (x)β .

REGION II. 4
1

2α x1 < ε0,4
1

2α x1 < y < ε1.

For i = 1, applying (2.1) and using y > 4
1

2α x1, we obtain

Q1 ≤
√

x1
{(

4
1

2α x1)−2α + C2
(
x1)−α − (

x1)−2α}≤ −1

2

(
x1)−2α+ 1

2 .

For i 
= 1, if xi < 1
2y, then the situation is as in (2.2), and Qi < 0. The case

where xi ≥ 1
2y is one of the more delicate: Applying (2.1), we obtain

Qi ≤ C′′x−2α+ 1
2 − √

xy−α ≤ C′′′y−2α+ 1
2 − √

xy−α.

Without loss of generality, assume x2, . . . , xk ≥ 1
2y, and xj < 1

2y for all j > k.

Then max{x2, . . . , xk} > Ē
2m

. Therefore,

k∑
i=2

Qi ≤ (k − 1)C′′′y−2α+ 1
2 −

(
k∑

i=2

√
xi

)
y−α

≤ y−α

[
mC′′′y−α+ 1

2 −
√

Ē

2m

]
.

As y < ε1 and α < 1
2 , the quantity in square brackets is <0 provided ε1 is suffi-

ciently small.
Thus arguing as in Region I, we have shown that

m∑
i=1

Qi ≤ −1

2

(
x1)−2α+ 1

2 < − 1

2(m + 1)
V (x)β.

REGION III. 4
1

2α x1 ≥ y, y < ε0.

Since xi ≥ x1 ≥ 4− 1
2α y for all i, a calculation analogous to that in Region II

gives

m∑
i=1

Qi ≤ y−α

[
mC′′′′y−α+ 1

2 −
√

Ē

2m

]
< −1

2

√
Ē

2m
y−α
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provided ε0 is small enough. Since V (x) ≤ m(x1)−2α + y−α ≤ (4m + 1)y−2α , it
follows that

m∑
i=1

Qi ≤ −1

2

√
Ē

2m
· 1√

4m + 1
V (x)

1
2 ≤ −1

2

√
Ē

2m
· 1√

4m + 1
V (x)β

since β < 1
2 .

The assertion is proved since it holds for x0 in all three regions of B . �

PROOF OF THEOREM 2.1. Let τ1 < τ2 < · · · be the times of clock rings as
defined in the paragraph preceding the statement of Lemma 2.2, and let B be the
neighborhood of ∂� in Lemma 2.2. Letting τ0 = 0, we have shown that for any
n ≥ 0, if xτ+

n
∈ B , then

(2.3) E
[
V (xτ+

n+1
)|xτ+

n

]≤ V (xτ+
n
) − c∗∑m

i=1

√
xi

τ+
n

V (xτ+
n
)β.

For xτ+
n

/∈ B , we will use the bound

(2.4) E
[
V (xτ+

n+1
)|xτ+

n

]≤ M0 + M1,

where

M0 = sup
x∈�\B

V (x) and M1 = sup
x∈�\B

1∑m
i=1

√
xi

m∑
i=1

Qi(x).

It is easy to check that M0,M1 < ∞.
We now use these estimates to deduce a bound for P hV for fixed h > 0. Let

S = inf{n, τn > h}, and define τ̂n = min{τn, τS−1}. Then

P hV (x) = lim
n→∞E

[
V (xτ̂+

n
)1S≤n+1|x0 = x

]≤ lim
n→∞E

[
V (xτ̂+

n
)|x0 = x

]
.

We will prove a uniform bound for E[V (xτ̂+
n
)|x0 = x] for all n ≥ 1.

First, assuming the worse of (2.3) and (2.4), we have

(2.5) E
[
V (xτ+

n+1
)|τn+1 ≤ h

]≤ E
[
V (xτ+

n
)|τn+1 ≤ h

]+ M0 + M1

for every n ≥ 0. Notice that conditioning on τn+1 ≤ h does not affect the bounds
in (2.3) and (2.4) because given xτ+

n
, xτ+

n+1
is independent of τn+1 − τn. Second, as∑m

i=1

√
xi ≤

√
mĒ for all x ∈ �, we have, for every xτ+

n
∈ �,

P[τn+1 ≤ h|xτ+
n
, τn ≤ h] ≤ (

1 − e−h
√

mĒ)
P[τn ≤ h],

so that inductively,

(2.6) P[τn+1 ≤ h|x0] ≤ (
1 − e−h

√
mĒ)n+1 for n ≥ 0.
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The estimates (2.5) and (2.6) together imply the following: Given x0 = x,

E
[
V (xτ̂+

n+1
)
]= E

[
V (xτ̂+

n+1
)|τn+1 > h

] · P[τn+1 > h]
+E

[
V (xτ̂+

n+1
)|τn+1 ≤ h

] · P[τn+1 ≤ h]
≤ E

[
V (xτ̂+

n
)|τn+1 > h

] · P[τn+1 > h]
+ (

E
[
V (xτ̂+

n
)|τn+1 ≤ h

]+ M0 + M1
) · P[τn+1 ≤ h]

≤ E
[
V (xτ̂+

n
)
]+ (M0 + M1)

(
1 − e−h

√
mĒ)n+1

.

Summing over n, this gives

P hV (x) ≤ E
[
V (xτ̂+

1
)|x0 = x

]+ M0 + M1

e−h
√

mĒ
.

Let h > 0 be small enough so that for all x ∈ �,

P[τ1 ≤ h|x0 = x] = 1 − e−h
∑m

i=1

√
xi

>
h

2

m∑
i=1

√
xi.

This is the only condition we impose on h.
We choose M ′ large enough so that {V > M ′} ⊂ B , and consider x0 ∈ {V >

M ′}. Noting again that E[V (xτ+
1
)] is independent of τ1, we have, by Lemma 2.2,

E
[
V (xτ̂+

1
)
]= E

[
V (xτ+

1
)|τ1 ≤ h

] · P[τ1 ≤ h] + V (x0) · P[τ1 > h]

≤
(
V (x0) − c∗∑√

xi
V (x0)

β

)
· P[τ1 ≤ h] + V (x0) · P[τ1 > h]

≤ V (x0) − c∗ h

2
V (x0)

β.

This gives

P hV (x) ≤ V (x) − c∗ h

2
V (x)β + (M0 + M1)e

h
√

mĒ.

To complete the proof of Theorem 2.1, it suffices to replace M ′ by a large enough

number M so that for x ∈ {V > M}, the constant (M0 + M1)e
h
√

mĒ is absorbed
into c0V (x)β for c0 = c∗ h

4 . �

We record for later use the following fact that follows from the proof above.

COROLLARY 2.3.

sup
x/∈B

P hV (x) < ∞.
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3. Completing the proofs. After some preliminaries in Section 3.1, we pro-
ceed to the main task of this section, the deduction of Theorem 1.4 from the Lya-
punov function introduced. Two proofs are given, one in Sections 3.2 and 3.3 and
the other in Section 3.4. The proofs of Theorems 1.3 and 1.5 follow quickly once
Theorem 1.4 is proved.

3.1. Existence and uniqueness of invariant measure.

PROOF OF PROPOSITION 1.1. Let π be the probability measure with density
ρ(x1, . . . , xm, y) = 1

Z
y−1/2. To prove π = πP ξ for ξ � 1, it suffices to fix an

arbitrary state x̄ = (x̄1, . . . , x̄m, ȳ) ∈ �, let

D = D(x̄, ε) = {
x ∈ �||xi − x̄i |, |y − ȳ| < ε ∀i

}
for ε > 0 arbitrarily small, and show that

Pπ [x0 ∈ D,E] = Pπ [xξ ∈ D,E] + O
(
ξ2),

where E is the event that exactly one interaction takes place on the interval (0, ξ).
Clearly,

Pπ [x0 ∈ D,E] = ξ(2ε)m

(
m∑

i=1

√
x̄i

)
· Z−1ȳ−1/2 + O

(
ξ2εm + ξεm+1).

The estimation of Pπ [xξ ∈ D,E] requires a straightforward computation iden-
tical to that in Lemma 6.6 of [30]. �

To prove uniqueness, we prove Doeblin’s condition on a subset of �, which for
convenience we take to be a set of “active states” of the form

Aε := {
x ∈ �|xi, y ≥ ε

}
for some ε > 0. For S ⊂ �, let US denote the uniform probability measure on S.

PROPOSITION 3.1. For any t > 0 and ε > 0, there exists a constant η =
η(ε, t) such that for every x ∈ A = Aε ,

P t(x, ·) ≥ ηUA(·).

PROOF. We cover A with finitely many sets of the form D = D(x̄, ξ) where
D(x̄, ξ) is as defined in the proof of Proposition 1.1 with the property that
dist(D, ∂�) > 4ε

5 . It suffices to show that given any t > 0, there exists η > 0 such
that for every x ∈ A, P t(x, ·) ≥ ηUD(·) for all the D in this cover. There are many
ways to arrive at this outcome; below we describe one possible scenario.

Let x and D be fixed. There will be two rounds of interactions. The first round,
which takes place on the time interval (0, t

2), will result in most of the energy
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collecting in the tank; and in the second round, which takes place on ( t
2 , t), energy

is redistributed according to D. In more detail, starting from x, the first round
consists of particle 1 interacting twice with the tank in quick succession, followed
by particle 2, and so on through particle m, with no other interactions besides these.
For each i, the goal of the second interaction is to result in xi

t
2

∈ (2ε
5 , 3ε

5 ). This

requires two interactions to achieve because after the first interaction, xi
s+ ≥ ys

[see (1.2)], and tank energy prior to interaction with each particle is ≥ε. In the
second round, each particle interacts twice with the tank as before, resulting in xi

t ∈
[x̄i −ξ, x̄i +ξ ] uniformly distributed and independent of x

j
t for j = 1,2, . . . , i−1.

We leave it to the reader to check that the scenario above occurs with probability
η > 0 independent of x provided x ∈ A. �

PROOF OF THEOREM 1.2. Let A = Aε and t be as above. It is obvious that
for any x ∈ �, P t/2(x,A) > 0. Together with Proposition 3.1, this implies that
P t(x, ·) has a strictly positive density on all of A, and that in turn implies that all
x ∈ � belong in the same ergodic component, equivalently, xt admits at most one
invariant probability measure, which must therefore be π . �

3.2. Review of tools from probability. We recall here some tools that we will
use to prove polynomial convergence. As these are very general ideas, we will
present them in the context of general Markov chains. Let �n be a (discrete-time)
Markov chain on a measurable space (X,B) with transition kernels P(x, ·).

(A) Atoms of Markov chains. A set α ∈ B is called an atom if there is a prob-
ability measure θ on (X,B) such that for all x ∈ α, P(x, ·) = θ(·). Most Markov
chains on continuous or uncountable spaces do not possess atoms. We review here
a technique introduced in [35] which shows that under quite general conditions for
�n, one can construct explicitly another chain, �̃n, defined on an enlarged state
space (X̃, B̃), such that �̃n is an extension of �n and it has an atom.

The relevant condition for �n is that for some set A0 ∈ B, there exists a proba-
bility measure θ and a number η > 0 such that for every x ∈ A0, P(x, ·) ≥ ηθ(·).
Let us call a set A0 with this property a special reference set. Assuming the exis-
tence of such an A0, the splitting technique of [35] is as follows: Let X̃ = X ∪ A1
(disjoint union) where A1 is an identical copy of A0, with the obvious extension B̃
of B to X̃. First, we define the “lift” of a measure μ on (X,B) to a measure μ∗ on
(X̃, B̃):{

μ∗|X = (1 − η)μ|A0 + μ|X\A0,

μ∗|A1 = ημ|A0, A0 ∼= A1 via the natural identification.

The transition kernels P̃(x, ·) are then given by⎧⎪⎪⎨
⎪⎪⎩
P̃(x, ·) = (

P(x, ·))∗, x ∈ X \ A0,

P̃(x, ·) = [(
P(x, ·))∗ − ηθ∗(·)]/(1 − η), x ∈ A0,

P̃(x, ·) = θ∗(·), x ∈ A1.
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It is straightforward to check that the chain �̃n projects to �n, meaning (μP)∗ =
μ∗P̃ , so that ‖μPn − νPn‖TV ≤ ‖μ∗P̃n − ν∗P̃n‖TV. Finally, A1 is an atom for
the chain �̃n—this is the whole point of the construction.

(B) Connection to renewal processes. For E ∈ B, we let τE denote the first pas-
sage time to E, that is,

τE = inf{n > 0|�n ∈ E}.
Suppose the chain �n has an atom α, and that α is accessible, that is, Px[τα <

∞] = 1 for every x ∈ X. Given two initial distributions μ and ν on X, we wish to
bound the rate at which ‖μPn − λPn‖TV tends to 0 as n → ∞ where ‖ · ‖TV is
the total variational norm. One way to proceed is to run two independent copies of
the chain with initial distributions μ and ν respectively, and perform a coupling at
simultaneous returns to the atom α. It is well known that if T is the coupling time,
then

(3.1)
∥∥μPn − νPn

∥∥
TV ≤ 2P[T > n].

The quantities P[T > n], on the other hand, can be studied via two associated
renewal processes as follows.

Let Y0 and Y ′
0 be independent N-valued random variables having the distribu-

tions of τα , the first passage time to α, starting from μ and ν, respectively, and
let Y1, Y2, . . . and Y ′

1, Y
′
2, . . . be i.i.d. random variables the distributions of which

are equal to that of τα starting from α. In addition, we assume the return times
to α are aperiodic, that is, gcd{n ≥ 1|P[Yi = n] > 0} = 1. Then Sn := ∑n

i=0 Yi

and S′
n :=∑n

i=0 Y ′
i , n = 0,1,2, . . . , are renewal processes, and T above is the first

simultaneous renewal time, that is,

T = inf
n≥0

{
Sk1 = S′

k2
= n for some k1, k2

}
.

The following known result relates the finiteness of the moments of T to the cor-
responding moments for the distributions of Y0, Y

′
0 and Y1.

THEOREM 3.2 (Theorem 4.2 of [32]). Let Yi and Y ′
i be as above. Suppose

that for some β ≥ 1, we have

(3.2) E
[
Y

β
0

]
, E

[
Y

′β
0

]
and E

[
Y

β
1

]
< ∞.

Then E[T β] is also finite.

The discussion above implies the following.

COROLLARY 3.3. Let �n be a Markov chain on (X,B) with transition ker-
nel P . Suppose �n has an atom α that is accessible and whose return times are
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aperiodic. Let μ and ν be two probability distributions on X, and assume that for
some β > 1,

Eμ

[
τβ
α

]
, Eν

[
τβ
α

]
and Eα

[
τβ
α

]
< ∞.

Then

lim
n→∞nβ

∥∥μPn − νPn
∥∥

TV = 0.

The proof is as discussed, together with the following general relation: Let Z be
a random variable taking values in N, and let β > 1. Then

(3.3) E
[
Zβ]< ∞ =⇒ lim

n→∞nβ
P[Z > n] = 0.

(C) Lyapunov function and moments of first passage times. The following re-
sult, which is sufficient for our purposes, is a simple version of Theorem 3.6
of [22].

THEOREM 3.4 (Theorem 3.6 of [22]). Let �n be a Markov chain on (X,B)

with transition kernel P . We assume that there exist a function W : X → [1,∞),
a set A ∈ B, constants b, c > 0 and 0 ≤ β < 1 such that

(3.4) PW − W ≤ −cWβ + b1A.

Then there is a constant ĉ such that for all x ∈ X,

Ex

[
τA−1∑
k=0

(k + 1)β̂−1

]
≤ ĉW(x), β̂ = (1 − β)−1.

Clearly, Ex[τ β̂
A] is bounded above by a constant times the expectation above.

The reader may notice that we have omitted some of the hypotheses in Theo-
rem 3.6 of [22] in the statement of Theorem 3.4 above. This is because they are not
needed: here we consider only the first passage time to A, which can be thought
of as a set of the form {W ≤ constant}, while [22] considers first passage times
to arbitrary sets. We remark also that [22] does not give the rate of convergence
to equilibrium we claim; it shows that in general, convergence rate is bounded by
∼t β̂−1, but as we will see, additional information for our systems enables us to
prove a faster convergence rate ∼t β̂−2.

REMARKS. In (A), (B) and (C) above, we have outlined a general strategy
for deducing polynomial rates of convergence or of correlation decay for Markov
chains. While we have cited specific references, they are not the only ones that
contributed to this general body of ideas [8, 9, 14, 20, 36, 41]. We acknowledge
in particular [36], which was proved earlier and which used similar ideas as above
though some of the arguments were carried out a little differently. We mention
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also [48], which models deterministic dynamical systems with chaotic behavior as
objects that are slight generalizations of countable state Markov chains. This paper
focuses on tails of return times, that is, P[τα > n], rather than on moments of τα ,
to a set α that is effectively a special reference set as defined in (A); tails of first
passage times and moments are, as we have noted, essentially equivalent.

3.3. Proofs of theorems. We first prove Theorem 1.4. Theorems 1.3 and 1.5
follow easily; their proofs are given at the end of the subsection.

Let h > 0 be small enough for Theorem 2.1 to apply, and let

x̂n = (
x̂1
n, . . . , x̂m

n , ŷn

)= (
x1
nh, . . . , x

m
nh, ynh

)
, n = 0,1,2, . . . ,

be the time-h sampling chain of xt . Letting � t
h
� denote the largest integer ≤ t

h
, we

observe that ∥∥μP t − νP t
∥∥

TV = ∥∥(μP � t
h
�h − νP � t

h
�h)P (t−� t

h
�)h∥∥

TV

≤ ∥∥μP � t
h
�h − νP � t

h
�h∥∥

TV,

so it suffices to prove the theorem for x̂n corresponding to a fixed h. From here on,
h is fixed, and since we will be working exclusively with the discrete-time chain
x̂n, the ˆ in x̂n is dropped for notational simplicity.

Let γ > 0 be small enough that Theorem 2.1 applies with α = 1
2 − γ

8 . We define

A =Aγ,h = {
x ∈ �|V 1

2 − γ
8
(x) ≤ M

}
,

where M = M(1
2 − γ

8 , h), and let

τA = inf
n>0

{xn ∈A}
be the first passage time to A. We plan to proceed as follows:

(1) First we estimate the moments of τA.
(2) Using A as a special reference set, we split the chain, obtaining an atom α

for the split chain x̃n.
(3) We deduce from (1) the moments of τ̃α , the first passage time of x̃n to α,

and
(4) finally, we apply Corollary 3.3 to τ̃α to obtain the desired results.

LEMMA 3.5. Given γ as above, there exists C = C(γ ) such that for all x ∈ �,

Ex
[
τ

2− γ
2

A
]≤ CV 1

2 − γ
8
(x).

PROOF. We apply Theorem 2.1 to V 1
2 − γ

8
. From Corollary 2.3, it follows that

if W = max{V 1
2 − γ

8
,1}, then b := supx∈A{P hW(x) − W(x)} < ∞, and we have

P hW − W ≤ −cW
1− 2

4−γ + b1A.
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Theorem 3.4 then tells us that there is a constant ĉ such that for all x,

Ex

[τA−1∑
k=0

(k + 1)1− γ
2

]
≤ ĉW(x).

As W ≤ C2V 1
2 − γ

8
for some constant C2 > 0 that depends only on Ē,m and γ , it

follows that

Ex
[
τ

2− γ
2

A
]≤ 2 ·Ex

[τA−1∑
k=0

(k + 1)1− γ
2

]
≤ 2C2 · ĉ · V 1

2 − γ
8
(x).

This completes the proof. �

Recall that for small δ > 0, Mδ is the set of Borel probability measures μ on �
such that ∫

�

(
m∑

k=1

(
xk)2δ−1 + yδ− 1

2

)
μ(dx) ≡

∫
�

V 1
2 −δ

(x)μ(dx) < ∞.

PROOF OF THEOREM 1.4. Let γ > 0 and h > 0 be as above, and let μ,ν ∈
Mγ /8 be given. It follows from Lemma 3.5 that

Eμ

[
τ

2− γ
2

A
]
,Eν

[
τ

2− γ
2

A
]
< ∞.

Observe next that A is a special reference set in the sense of Section 3.2(A);
this follows from Proposition 3.1, for A ⊂ Aε for ε > 0 small enough. We split
the chain as discussed in Section 3.2(A), denoting the split chain by x̃n, and let A0
and A1 be identical copies of A in �̃, with A1 = α being an atom.

To apply Corollary 3.3 to the chain x̃n, we first check that the atom α is ac-
cessible: It is easy to see that if τ̃ is first passage time of x̃n, then τA = τ̃A0∪A1 ,
and from Theorem 1.2, we know that A is accessible under xn. Moreover, every
time x̃n returns to A0 ∪A1, it has probability η of entering α. This guarantees the
accessibility of α. Aperiodicity of return times to α follows from the fact that for
all x̃0, P[x̃1 ∈ α] > 0.

It remains to pass the moments of τA to the moments τ̃α . For a measure λ on �,
λ̃ denotes its lift to �̃.

LEMMA 3.6. (i) Eα[τ̃ 2−γ
α ] < ∞.

(ii) Eλ̃[τ̃ 2−γ
α ] < ∞ for λ with Eλ[τ 2− γ

2
A ] < ∞.

This lemma follows from Lemma 3.1 of [36]; we provide an elementary proof
below for completeness. Assuming Lemma 3.6, we may now apply Corollary 3.3
to x̃n with β = 2 − γ , giving a convergence rate of t2−γ . To finish, recall from
Section 3.2(A) that if P and P̃ are the Markov operators for xn and x̃n, respectively,
then ‖μPn − νPn‖TV ≤ ‖μ̃P̃n − ν̃P̃n‖TV. �
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PROOF OF LEMMA 3.6. To prove (i), it suffices to show that for some γ ′ < γ ,
there exists C such that

(3.5) Pα[τ̃α > k] ≤ Ckγ ′−2 for all k.

Let τn, n = 1,2, . . . , denote the nth entrance time into A0 ∪ A1, and let N be
smallest n such that τ̃α = τn. Since at each τn, the probability of being in α is η,

we have P[N > k] = (1 − η)k . Note also that since supx∈AEx[τ 2− γ
2

A ] < ∞ by
Lemma 3.5, it follows that

P[τn+1 − τn ≥ k|N > n, x̃τn] ≤ C′k−(2− γ
2 )

for some constant C′.
For any δ > 0, we have

{
τN > k1+δ}⊂ {

N > kδ}∪
�kδ�⋃
n=0

{τn+1 − τn > k;N > n}.

Thus,

Pα

[
τ̃α > k1+δ] ≤ Pα

[
N > kδ]+ �kδ�∑

n=0

Pα[τn+1 − τn > k|N > n]

= Pα

[
N > kδ]

+
�kδ�∑
n=0

∫
Pα[τn+1 − τn > k|N > n, x̃τn = x̃]Pα[x̃τn = dx̃,N > n]

≤ (1 − η)k
δ + kδC′k−(2− γ

2 ).

Noting that the second term dominates for large k, we obtain (3.5) by choosing δ

sufficiently small.

The proof of (ii) follows similar steps and uses the finiteness of Eμ[τ 2− γ
2

A ]. �

PROOF OF THEOREM 1.3. A simple computation using the density of π

shows that π ∈ Mδ for every δ > 0. Also, for every x ∈ �, the point mass δx
clearly belongs in Mδ for all δ > 0. Thus, Theorem 1.3 is a special case of Theo-
rem 1.4, with μ = π and ν = δx. �

PROOF OF THEOREM 1.5. As a direct consequence of Theorem 1.4, we have∣∣∣∣
∫ (

P tζ
)
(x)ξ(x)μ(dx) −

∫ (
P tζ

)
(x)μ(dx)

∫
ξ(x)μ(dx)

∣∣∣∣
=
∣∣∣∣
∫

ξ(x)

((
P tζ

)
(x) −

∫ (
P tζ

)
(z)μ(dz)

)
μ(dx)

∣∣∣∣



86 Y. LI AND L.-S. YOUNG

≤ ‖ξ‖L∞‖ζ‖L∞
∫ ∥∥δxP

t − μP t
∥∥

TVμ(dx)

= o

(
1

t2−γ

)
. �

PROOF OF THEOREM 1.6. Theorem 1.6 follows straightforwardly from the
following Markov chain central limit theorem (Corollary 2 of [23]):

Suppose �n is a Harris ergodic Markov chain on (X,B) with transition ker-
nel P . Let μ be the stationary distribution of �n and let f : X → R be a Borel
function that is uniformly bounded μ-almost surely. Assume �n is polynomial er-
godic such that ∥∥Pn(x, ·) − μ

∥∥
TV ≤ M(x)n−m,

where m > 1 and Eπ(M) < ∞, then for any initial distribution, as n → ∞,
√

n(f̄ −Eμf )
d−→ N

(
0, σ 2

f

)
,

where

σ 2
f := var

{
f (�0)

}+ 2
∞∑
i=1

cov
{
f (�0), f (�i)

}
< ∞.

It is a simple exercise to check that all conditions are satisfied by the time-δ
chain {xnδ}∞n=0 for any δ > 0. �

3.4. Alternate proof of Theorem 1.4. As pointed out by one of our reviewers,
Theorem 1.4 also follows from Theorem 4.1 in [20]. We thank the reviewer for
pointing us to this result. Below we recall the statement of it, and then show how
to use it to deduce Theorem 1.4.

Let �t be a strong Markov chain on a metric space X with infinitesimal gener-
ator L and associated semigroup Pt . The following result of sub-geometric rates
of convergence holds.

THEOREM 3.7 (Theorem 4.1 of [20]). Assume �t has a cadlag modification
and Pt is Feller. Assume furthermore that there exists a continuous function V :
X �→ [1,∞) with pre-compact sublevel sets such that

LV ≤ K − φ(V )

for some constant K and for some strictly concave function φ : R+ → R
+ with

φ(0) = 0 and increasing to infinity. In addition, we assume that sublevel sets of V

are “small” in the sense that for every C > 0 there exists α > 0 and T > 0 such
that ∥∥PT (x, ·) −PT (y, ·)∥∥TV ≤ 2(1 − α)

for every (x, y) such that V (x) + V (y) ≤ C. Then:
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• There exists a unique invariant measure μ for �t and μ is such that∫
X

φ
(
V (x)

)
μ(dx) ≤ K.

• Let Hφ be the function defined by

Hφ(u) =
∫ u

1

ds

φ(s)
.

Then there exists a constant C such that for every x, y ∈ X, one has the bounds

∥∥Pt (x, ·) −Pt (y, ·)∥∥TV ≤ C
V (x) + V (y)

H−1
φ (t)

.

The proof of Theorem 4.1 uses a different coupling that bypasses the explicit
splitting of the Markov chain, and the Lyapunov function is lifted to X×X. Similar
estimates of hitting times as in Lemmas 3.5 and 3.6 are also ingredients in this
proof.

PROOF OF THEOREM 1.4 USING THEOREM 4.1. It is a simple exercise to
check that (1) xt is a strong Markov process with an infinitesimal generator G, and
(2) xt is a Feller process with cadlag sample paths.

Let V (x) = Vα(x) be the same Lyapunov function used before. (One may mul-
tiply V by a constant to make its minimum be greater than 1, if necessary.) We
have

GV (x) =
m∑

i=1

Qi,

where

Qi =
√

xi
0

{∫ 1

0

[(
xi

0
(
1 − u2)+ y0

)−2α + (
xi

0u
2)−α]du − [(

xi
0
)−2α + y−α

0

]}
.

Therefore it follows from Lemma 2.2 that there exist constants ε0 > 0 and
c∗ > 0 such that

GV (x) ≤ −c∗V β(x)

for every x ∈ B , where β = 1 − (4α)−1 and

B = {
x ∈ �|y < ε0, or xi < 4− 1

2α ε0 for some i ∈ {1, . . . ,m}}.
Let

K = sup
x∈�\B

m∑
i=1

Qi(x).
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It is easy to check that K < ∞ and

GV ≤ K − c∗V β.

It remains to check that the sublevel sets of V are “small.” Let A = AC be the
sublevel set {V ≤ C}. By the same proof as in Proposition 3.1, for any t > 0 and
C > minV (x), there exists a constant η = η(C, t) such that for every x ∈ A,

P t(x, ·) ≥ ηUA(·),
where UA is the uniform probability measure on A. This implies∥∥P t(x, ·) − P t(y, ·)∥∥TV ≤ 2(1 − η)

for each x,y such that V (x) + V (y) ≤ C.
Therefore, let φ(x) = c∗xβ , by Theorem 4.1, we have

∥∥P t(x, ·) − P t(y, ·)∥∥TV ≤ C0
V (x) + V (y)

(c∗ ∫ t
1 s(4α)−1−1 ds)−1

= C′
0
(
V (x) + V (y)

)
t−4α

for some constants C0 and C′
0. The proof of Theorem 1.4 is completed by letting

α = 1
2 − γ /4. �
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[40] SINAĬ, JA. G. (1970). Dynamical systems with elastic reflections. Ergodic properties of dis-
persing billiards. Uspekhi Mat. Nauk 25 141–192. MR0274721

[41] TUOMINEN, P. and TWEEDIE, R. L. (1994). Subgeometric rates of convergence of f -ergodic
Markov chains. Adv. in Appl. Probab. 26 775–798. MR1285459

[42] WU, L. (2000). Uniformly integrable operators and large deviations for Markov processes.
J. Funct. Anal. 172 301–376. MR1753178

[43] WU, L. (2001). Large and moderate deviations and exponential convergence for stochastic
damping Hamiltonian systems. Stochastic Process. Appl. 91 205–238. MR1807683

[44] YARMOLA, T. (2011). Ergodicity of some open systems with particle–disk interactions. Comm.
Math. Phys. 304 665–688. MR2794543

[45] YARMOLA, T. (2013). Sub-exponential mixing of random billiards driven by thermostats. Non-
linearity 26 1825–1837. MR3071443

[46] YARMOLA, T. (2014). Sub-exponential mixing of open systems with particle–disk interactions.
J. Stat. Phys. 156 473–492. MR3217533

[47] YOUNG, L.-S. (1998). Statistical properties of dynamical systems with some hyperbolicity.
Ann. of Math. (2) 147 585–650. MR1637655

[48] YOUNG, L.-S. (1999). Recurrence times and rates of mixing. Israel J. Math. 110 153–188.
MR1750438

DEPARTMENT OF MATHEMATICS AND STATISTICS

UNIVERSITY OF MASSACHUSETTS AMHERST

AMHERST, MASSACHUSETTS 01003
USA
E-MAIL: yaoli@math.umass.edu

COURANT INSTITUTE OF MATHEMATICAL SCIENCES

NEW YORK UNIVERSITY

NEW YORK, NEW YORK 10012
USA
E-MAIL: lsy@cims.nyu.edu

http://www.ams.org/mathscinet-getitem?mr=0501353
http://www.ams.org/mathscinet-getitem?mr=0711187
http://www.ams.org/mathscinet-getitem?mr=1773148
http://www.ams.org/mathscinet-getitem?mr=2408394
http://www.ams.org/mathscinet-getitem?mr=3353812
http://www.ams.org/mathscinet-getitem?mr=0274721
http://www.ams.org/mathscinet-getitem?mr=1285459
http://www.ams.org/mathscinet-getitem?mr=1753178
http://www.ams.org/mathscinet-getitem?mr=1807683
http://www.ams.org/mathscinet-getitem?mr=2794543
http://www.ams.org/mathscinet-getitem?mr=3071443
http://www.ams.org/mathscinet-getitem?mr=3217533
http://www.ams.org/mathscinet-getitem?mr=1637655
http://www.ams.org/mathscinet-getitem?mr=1750438
mailto:yaoli@math.umass.edu
mailto:lsy@cims.nyu.edu

	Model and results
	Mechanical models with particle-disk interactions
	Connection to stochastic model

	Precise description of stochastic model
	Statement of results

	Construction of Lyapunov function
	Completing the proofs
	Existence and uniqueness of invariant measure
	Review of tools from probability
	Proofs of theorems
	Alternate proof of Theorem 1.4

	References
	Author's Addresses

