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ACHIEVING NONZERO INFORMATION VELOCITY IN WIRELESS
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In wireless networks, where each node transmits independently of other
nodes in the network (the ALOHA protocol), the expected delay experienced
by a packet until it is successfully received at any other node is known
to be infinite for the signal-to-interference-plus-noise-ratio (SINR) model
with node locations distributed according to a Poisson point process. Con-
sequently, the information velocity, defined as the limit of the ratio of the
distance to the destination and the time taken for a packet to successfully
reach the destination over multiple hops, is zero, as the distance tends to in-
finity. A nearest neighbor distance based power control policy is proposed to
show that the expected delay required for a packet to be successfully received
at the nearest neighbor can be made finite. Moreover, the information veloc-
ity is also shown to be nonzero with the proposed power control policy. The
condition under which these results hold does not depend on the intensity of
the underlying Poisson point process.

1. Introduction. Typically, nodes in a wireless network are separated by large
distances and packets are routed from source to their destination via many other
nodes or over multiple hops. Therefore, to understand the connectivity or informa-
tion flow in a wireless network, a space–time SINR graph is considered. Such a
graph models the evolution of the spatial as well as the temporal connections in the
network. The space–time SINR graph is a directed and weighted multigraph that
represents the most complete random graph model for wireless networks [9]. The
SINR (signal-to-interference-plus-noise-ratio) is a ratio of the relative strength of
the intended signal and the undesirable interference from simultaneously active un-
intended nodes of the wireless network. The SINR between any two nodes evolves
with time and depends not only on the distance between the two nodes but also
on the location of the other nodes in the network. At any time, a directional con-
nection is established from a node at x to another node at y if the SINR from x to
y is larger than a threshold. Such a connection represents the ability of node x to
deliver meaningful information to y.

Let � ⊂ R
2 be a point process that specifies the location of the nodes of the

network. For any t ∈ Z+, let �T (t) ⊂ � be the set of nodes that are transmitting
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at time t and �R(t) = � \ �T (t) be the set of nodes in receiving mode at time t .
Formally, the SINR from a node x ∈ �T (t) to a node y ∈ �R(t) is given by

(1) SINRxy(t) := Px(t)ht (x, y)�(x, y)

γ
∑

z∈�T (t)\{x,y} Pz(t)ht (z, y)�(z, y) + N
,

where �(·, ·) is the distance based signal attenuation or path-loss function, Px(t) is
the transmitted power from x at time t , γ is the interference suppression constant,
ht (u, v), u, v ∈ �, are the space–time fading coefficients that model the loss (or
gain) from node u to v at time t due to signal propagation via a wireless medium
and N is the variance of the so-called additive white Gaussian noise. By an abuse of
notation, we will often use �(|x −y|) for �(x, y), since the path loss is a function of
the distance between x and y. The term

∑
z∈�T (t)\{x,y} Pt(z)ht (z, y)�(z, y) in the

denominator of (1) is referred to as the interference. Note that we do not include
the nodes at x, y in the interference term since transmission from node x is the
signal of interest and node y is in receiving mode. SINRxy(t) is set to be zero at
time t if either node x ∈ �R(t) or if node y ∈ �T (t). Define the indicator random
variables

(2) exy(t) :=
⎧⎨
⎩1, if SINRxy(t) > β,

0, otherwise,

where β > 0 is arbitrary. The space–time SINR graph is defined to be the graph
(� × Z+,E), where a directed edge exists from (x, t) to (y, t + 1) if exy(t) = 1.
Given �, the location of the nodes is static, and the time evolution of the graph is
entirely due to changes in the fading variables ht (u, v) and the set �T .

In this paper, we consider a space–time SINR graph in which the location of the
nodes is modeled as a homogeneous Poisson point process (PPP). Modeling loca-
tion of nodes in a wireless networks as a PPP is quite attractive from an analytical
point of view and has paid rich dividends in terms of finding exact expressions for
several performance indicators such as maximum rate of transmission (capacity),
connection probability, etc. [2, 4, 8, 18] that are hard to derive otherwise. A PPP
node location model is well suited for modeling both the ad hoc networks, where
large number of nodes are located in a large area without any coordination, as well
as the modern paradigm of cellular networks [2], where multiple different layers
of base-stations (BSs) (macro, femto, pico) are overlaid on top of each other, and
the union of all BSs appears to be uniformly distributed.

Given �, the stochastic nature of the fading coefficients ht (·, ·) and the set
�T (·) implies that exy(t) is a random variable, and hence potentially, multiple
transmissions are required for successfully transmitting a packet from node x to y.
Repeated transmissions entail delay in packet transmission, and it is of interest to
make the expected delay as small as possible. Another related quantity of interest
is the information velocity that is defined as the limit of the ratio of the distance be-
tween the source and the destination of any packet, to the total delay experienced
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by the packet to reach its destination successfully over multihops, as distance goes
to infinity.

Expected delay and the information velocity are closely connected to the various
notions of capacities in wireless networks, for example, throughput capacity [8],
transport capacity [8], delay-normalized transmission capacity [1, 17], etc., since
all of them are measures based on the successful rate of departure of packets toward
their destination. Finding the speed of information propagation is also related to
first passage percolation [10, 12], and dynamic epidemic processes [6, 14, 15];
however, the analysis in the space–time SINR graph gets complicated due to the
presence of interference.

In the seminal paper [8], it was shown that with PPP distributed node locations
(albeit for a somewhat simpler model), the per-node throughput (rate of transmis-
sion between any two randomly selected nodes) or information velocity tends to
zero as the size of the network grows. The most general analysis on the expected
delay and the information velocity has been carried out in [3] for a PPP-driven
space–time SINR network. It is shown that with an ALOHA protocol, where nodes
transmit independently of all other nodes with fixed power, the expected delay
required for a packet to leave a given node and be successfully received at any
other node in the network is infinite. Remarkably, this result is shown to hold even
in the absence of interference and requires only the additive noise to be present.
Moreover, the information velocity is also shown to be zero. These results have
tremendous “negative” impact on network design, since it shows that essentially
any packet cannot exit its source with finite expected delay.

Both the results from [3], namely, the infinite expected delay and zero infor-
mation velocity, are attributed to the fact that with PPP distributed node locations,
a typical node can have large voids around itself, that is, regions that contain no
other nodes with high probability. In such a circumstance, a large number of re-
transmission attempts will be required to overcome the effect of additive noise and
support a minimum SNR at any of the other receiving nodes. Consequently, the
mean exit delay is infinite (when averaged over the realizations of the PPP) and
the information velocity tends to zero.

One solution prescribed in [3] to make the information velocity nonzero is to
add another regular square grid of nodes with a fixed density, in which case the
nearest neighbor distance is bounded, and the information velocity can be shown
to be nonzero. From a practical point of view, it is rather limiting to assume the
presence of such a regular grid.

Some work has been reported on finite expected delay together with a finite
bound on the information velocity [7, 9, 11], under restrictive assumptions such
as assuming temporal independence with the SINR model, that is, interference is
independent between any two nodes over time, no power constraint and temporal
interference independence and no additive white Gaussian noise, respectively.

In this paper, we propose a power control mechanism to show that the informa-
tion velocity can be made nonzero for the space–time SINR graph with PPP node
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locations without any additional restrictive assumptions on the network. In [3], the
information velocity is defined as the limit of the ratio of the distance between two
points x and y to the time it takes for the packet to go from x to y as the distance
tends to infinity. The packet simultaneously traverses multiple paths and the time
taken is the first time the packet is received at y. This makes the set-up somewhat
complicated to work with and so the results in [3] are proved for delays averaged
over the fading variables. In order to overcome this problem, we modify the defi-
nition of information velocity by specifying a random path along which a tagged
packet will traverse the network. Allowing for a larger set of paths and picking the
one that is optimal as done in [3] will only increase the velocity. Thus, our result
provides a lower bound on the information velocity. We describe our idea in brief
here and the precise definition will appear later.

We track a tagged packet as it traverses the network via a conic forwarding strat-
egy along a prescribed path that depends only on the realization of the underlying
distribution of the nodes. Briefly stated, conic forwarding works as follows. At
each node, the R

2 plane is partitioned into multiple cones, and each node trans-
mits the packet at the head of its queue to its nearest neighbor in the cone that
contains the packet’s destination until it is successfully received. We refer to such
a cone as the destination cone. This conic forwarding idea circumvents the prob-
lem of forming nearest neighbor loops, since the packet always progresses toward
its destination. This also allows us to exploit the various independences that ex-
ist across space and time. The speed of this tagged particle along the prescribed
path is what we will refer to as the information velocity (the direction of motion
being contained in the choice of the transmission cones). If d(t) is the distance
that the tagged packet travels in time t , then v = lim inft→∞ d(t)

t
is the information

velocity. The aim of this paper is to devise a power-control strategy under which
v > 0.

The power control strategy works by nullifying the path-loss from a node toward
its nearest neighbor in the destination cone. In particular, since the path-loss be-
tween node x and its nearest neighbor n(x) in the destination cone is �(|x −n(x)|),
the transmitted power P is taken to be c�(|x − n(x)|)−1, where c is a constant.
Since the nearest neighbor in a PPP can be at arbitrarily large distances, we need
�(·) > 0. To compensate for the nonhomogeneity in power used at each node, we
modulate the transmission probability p, such that pP equals the average power
constraint at each node.

We wish to note that per se, power control is not a new concept in wireless
communication. For instance, in CDMA type wireless network [16], power control
is mandatory to overcome the near–far effect, where mobiles that are nearer to
the base station have to continuously update their transmitted power so as not to
severely limit the transmission from mobiles that are farther away. However, the
specific strategy that we use in this paper has not been considered in the literature.
Further, the use and advantages of power control in large wireless networks with
randomly located nodes have not been fully explored.



52 S. IYER AND R. VAZE

In terms of implementation, the conic forwarding needs no special effort, since
the transmitter only adjusts the power according to the nearest neighbor distance in
the destination cone, and the transmission is isotropic, that is, does not require any
information about the direction, circumventing the need for any special hardware,
for example, directional antennas, etc. For power control, the transmitter needs to
learn the distance to its nearest neighbor in the destination cone. Nearest neighbor
routing [5, 19] is standard in wireless communication networks, where packets are
forwarded to the nearest neighbors, which requires discovery of nearest neighbors
as well as their distances, and hence our power control policy does not entail any
new overhead.

Using conic forwarding strategy together with power control, we show that the
expected delay to the nearest neighbor in the destination cone is finite provided
βγ < 1. In addition, as the tagged packet traverses the network from one node
to another along the path specified by the conic forwarding strategy, the sequence
of time delays turns out to be a nonstationary sequence. In order to overcome this
problem, we add additional (virtual) nodes to the network as the packet moves from
one node to another. The nodes are added in such a way that the path along which
the packet traverses in not affected. The interference experienced by the particle
increases (and consequently reduces its speed) but the technique delivers for us a
stationary sequence of delay times. This enables us to apply the ergodic theorem
and infer with probability one that the information velocity is strictly positive for
the stationary sequence, and hence for the original sequence. It is important to
note that these virtual nodes are not really required in practice to achieve nonzero
information velocity, but are only used as an analytical tool to upper bound the
per-hop delays (via increasing the interference) and making them stationary across
different hops.

2. System model. Let � be a homogenous PPP with intensity λ in R
2 mod-

eling the location of the nodes of the network. The time parameter is assumed to
be discrete (slotted). Let {ht (x, y), x, y ∈ �, t = 0,1, . . .} be a collection of inde-
pendent exponentially distributed random variables with parameter μ. ht (x, y) is
the fading power from node x to node y in the time slot t . The path loss between
x, y ∈ � denoted by �(x, y) = �(|x − y|) is given by

�(r) = r−α ∧ 1, r > 0,

where a ∧ b = min(a, b) and α > 2 is arbitrary.
We assume that each node can only operate in a half-duplex mode, that is, in the

time slot t , a node x ∈ � is on (transmitter) or off (receiver) following a Bernoulli
random variable 1x(t), with P(1x(t) = 1) = px(t). Let qx(t) = 1 − px(t). The set
of on (off ) nodes in the time slot t is denoted by �T (t) (�R(t)).

Let C1, . . . ,Cm be cones with angle 2φ < π
2 in R

2 with vertex at the origin,
satisfying

⋃m
i=1 Ci =R

2 and Ci ∩Cj = ∅ for i �= j , as shown in Figure 1. Without
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FIG. 1. Definition of cones with angle 2φ.

loss of generality, suppose that C1 is symmetric about the x-axis and opens to the
right. Let x + Ci be translation of cone Ci by x. In the time slot t , for a node x,
let x + Cd(x, t) be the cone that contains the final destination of the packet that it
wishes to transmit. We call this cone as the destination cone. Denote the nearest
neighbor of x in the destination cone x + Cd(x, t) by nt(x). If the node at x is on
in time slot t , then it transmits with power Px(t). The key idea in this paper is to
employ a decentralized power control scheme, that is, the functions px(t),Px(t)

depend locally on �. The particular forms that these functions take are given by

(3) Px(t) = c�
(
x,nt (x)

)−1
, px(t) = MPx(t)

−1,

where c = M(1−ε)−1, 0 < ε < 1 is a constant, and M = Px(t)px(t) is the average
power constraint. Note that px(t) ≤ 1 − ε, since �(·) ≤ 1. Thus, in each time slot,
each node makes transmission attempts with transmission power proportional to
the distance to its nearest neighbor in the destination cone to compensate for the
path-loss to the nearest neighbor. The transmission probability is chosen so as to
satisfy an average power constraint.

In Figure 2, we illustrate the transmission strategy, where each node transmits
to its nearest neighbor in the destination cone (shaded cone) with line thickness
proportional to the transmit power, farther the nearest neighbor, larger the power.
In prior work [3], with the ALOHA protocol, the functions P and p were assumed
to be constants that were independent of the system parameters.

Thus, the SINR from node x to node y in time slot t is given by

(4) SINRxy(t) = Px(t)ht (x, y)�(x, y)1x(t)(1 − 1y(t))

γ
∑

z∈�T (t)\{x,y} Pz(t)ht (z, y)�(z, y) + N
,

where 0 < γ < 1 is the processing gain of the system (interference suppression
parameter) which depends on the transmission/detection strategy, for example, on
the orthogonality between codes used by different legitimate nodes during simul-
taneous transmissions. The transmission from node x to y is deemed successful
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FIG. 2. Each node transmits to its nearest neighbor in the destination (shaded) cone.

at time t , if SINRxy(t) > β , where β > 0 is a fixed threshold. Let exy(t) = 1 if
SINRxy(t) > β , and zero otherwise. The sum in the denominator of the right-hand
expression in the above equation is referred to as the interference and α > 2 en-
sures that the interference term in the denominator is finite almost surely. Since
ht (x, y) is exponentially distributed, multiple transmissions may be required for a
packet to be successfully received at any node.

3. Main results and proofs. Our first objective is to show that with the power
control policy described above; the expected time for a packet to be successfully
received at the nearest neighbor in the destination cone is finite.

DEFINITION 3.1. Let the minimum time (exit time) taken by any packet to be
successfully transmitted from node x to its nearest neighbor n(x) in the destination
cone of the packet be

T (x) = min
{
t > 0 : ex,nt (x)(t) = 1

}
.

Let Px denote the Palm distribution of �, conditioned to have a point at x and
let Ex denote expectation with respect to P

x . By an abuse of notation, we will use
P and E to denote Po and E

o. This will cause no confusion since these are the only
probabilities and expectations that are of interest.

THEOREM 3.2 (Finite expected exit time). Suppose βγ < 1. Then for
the space–time SINR graph with the power control policy as described above
E

x{T (x)} < ∞.
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REMARK 3.3. The parameter β controls per link data rate, larger the value of
β , larger is the per link data rate. The condition βγ < 1 indicates that to support
larger per-link data rate, one has to invest in getting a better (lower) interference
suppression parameter, for example, by lowering the chip rate in a wireless CDMA
system. The condition βγ < 1 also indicates that there is no free lunch, that is, if
one wants larger data rate and finite expected exit time, one has to have better
interference suppression capability. An interesting upshot of the proposed power
control policy is that the condition required for the theorem to hold is independent
of the intensity λ of the PPP.

PROOF OF THEOREM 3.2. Without loss of generality, suppose that the origin
o ∈ �, that is we will consider the point process under P

o which, as we noted
above will be denoted by P. We tag a particular packet to be transmitted out of the
node at o, and suppose that the destination cone of this packet when it is at o is
Cd . Denote the nearest neighbor of o in Cd by n(o). We have dropped the time
subscript from n(o), since as long as the packet is not successfully transmitted out
of o the destination cone remains the same. Let

(5) SINRo,n(o)(t) = Po(t)ht (o, n(o))�(o, n(o))1o(t)(1 − 1n(o)(t))

γ I (t) + N
,

where

(6) I (t) = ∑
z∈�\{o,n(o)}

1z(t)Pz(t)ht

(
z, n(o)

)
�
(
z, n(o)

)
.

Let eo,n(o)(t) = 1 if SINRo,n(o)(t) > β , and 0 otherwise. Due to interference and
the nature of the traffic arriving at the nodes, the choice of the destination cones are
not independent across time slots at the same node as well as at different nodes.
Hence, to evaluate E{T (o)} we need to condition appropriately. Let Gk be the
sigma field generated by the point process � and the choice of cones made at all
nodes of � at times t = 1,2, . . . , k. Note that as long as the packet is not success-
fully transmitted out of o, the transmission probability po(t) does not change. Let
F := ⋂k

j=2{po(j) = po(1)}. Now

(7) P
[
T (o) > k|�] = E

{
P

[
ed
o,n(o)(t) = 0,∀t = 1, . . . , k|Gk

]
1F |�}

.

Let A(t) be the event that the origin o ∈ �R(t), and B(t) be the event that o ∈
�T (t), n(o) ∈ �R(t) but SINRo,n(o)(t) ≤ β . Writing the right-hand side of (7) in
terms of A(t),B(t), and then using the independence of the fading powers and the
conditional independence of the transmission events, we get

(8) P
[
T (o) > k|�] = E

{
k∏

t=1

P
[
A(t) ∪ B(t)|Gk

]
1F

∣∣∣�
}
.
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On the event F , we have P(A(t)|Gk) = 1 − po(1) and

(9) P
(
B(t)|Gk

) = po(1)qn(o)(t)

(
1 −E

{
exp

(
−μβ

c

(
N + γ I (t)

))∣∣∣Gk

})
,

for t = 1,2, . . . , k. (9) follows from (5) by using the fact that Po(t)�(o, n(o)) = c

and taking expectation with respect to ht (o, n(o)) ∼ exp(μ). This yields

P
[
A(t) ∪ B(t)|Gk

]
≤ 1 − po(1) + po(1)qn(o)(t)

(
1 −E

{
e−μβ

c
(N+γ I (t))|Gk

})
(10)

= 1 − po(1)pn(o)(1) − po(1)qn(o)(t)e
−μβN

c E
{
e−μβγ

c
I (t)|Gk

}
≤ 1 − po(1)εe−μβN

c E
{
e−μβγ

c
I (t)|Gk

}
,

where we have used the fact that q·(·) ≥ ε. Let a = μβγ
c

. We now find a lower
bound for the expectation on the right-hand side above that is independent of the
choice of the cone. To this end, observe that

(11) E
{
e−μβ

c
I (t)|Gk

} = ∏
z∈�\{o,n(o)}

E
{
e−a1z(t)P

(i)
z (t)ht (z,n(o))�(z,n(o))|Gk

}
.

Suppose node z ∈ �\{o,n(o)} transmits using cone z+Ci in time slot t . This fixes
the transmission probability p

(i)
z (t) and power P

(i)
z (t) (where we have included the

index i to make the dependence on the cone explicit). Then

E
{
e−μβγ

c
1z(t)P

(i)
z (t)ht (z,n(o))�(z,n(o))|Gk

}
= (

1 − p(i)
z (t)

) + p(i)
z (t)E

{
e−aP

(i)
z (t)ht (z,n(o))�(z,n(o))|�}

(12)

= (
1 − p(i)

z (t)
) + p(i)

z (t)
c

c + βγ �(z, n(o))P
(i)
z (t)

.

Let C∗
z = C∗

z (�) be the cone for which the right-hand expression in (12) is min-
imized, that is, node z causes maximum interference at n(o) when its destination
cone choice is C∗

z . Let p∗
z , P ∗

z denote the corresponding transmission probability
and power, respectively. Denote by 1∗

z an independent Bernoulli random variable
with P[1∗

z = 1] = p∗
z . The cone C∗

z maximizes the interference contribution at n(o)

due to transmission at z. Define

(13) I ∗(t) = I ∗(t,�) = ∑
z∈�\{o,n(o)}

1∗
zP

∗
z ht

(
z, n(o)

)
�
(
z, n(o)

)
.

Substituting I ∗(t) for I in (10) along with the observation that given �, I ∗(t) d=
I ∗(1) we get

(14) P
[
A(t) ∪ B(t)|Gk

] ≤ 1 − po(1)εe−μβN
c E

{
e−aI∗(1)|�}

.
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Substituting from (14) in (8), we get

(15) P
[
T (o) > k|�] ≤ (1 − J )k,

where

J = po(1)εe−μβN
c E

{
exp

(−aI ∗(1)
)|�}

.

The expected delay can then be written as

E
{
T (o)

} = ∑
k≥0

P
[
T (o) > k

]

= E

{∑
k≥0

P
[
T (o) > k|�]}

≤ E
{
J−1}

.

By the Cauchy–Schwarz inequality, we get

(16) E
{
T (o)

} ≤ e
μβN

c

ε

(
E

{
1

(E{e−aI∗(1)|�})2

}
E

{
po(1)−2}) 1

2
.

From the definition of the transmission probability po(t), we get

(17) E
[
po(1)−2] ≤ E

{(
c

M

)2(∣∣n(o)
∣∣2α ∨ 1

)}
< ∞,

since the nearest neighbor distance in a cone has density

(18) f (r) = 2λπr

m
e− λπ

m
r2

, r > 0.

It remains to show that

E

{
1

(E{e−aI∗(1)|�})2

}
< ∞,(19)

E
{
e−aI∗(1)|�} = ∏

z∈�\{o,n(o)}
E

{
e−a1∗

zP
∗
z h1(z,n(o))�(z,n(o))|�}

.(20)

Taking expectations, first with respect to 1∗
z and then with respect to h1(z, n(o)),

we get

E
{
e−a1∗

zP
∗
z h1(z,n(o))�(z,n(o))|�}

= (
1 − p∗

z

) + p∗
zE

{
e−aP ∗

z h1(z,n(o))�(z,n(o))|�}
= 1 − p∗

z

(
1 − μ

μ + aP ∗
z �(z, n(o))

)

(a)= 1 − βγp∗
zP

∗
z �(z, n(o))

c + βγP ∗
z �(z, n(o))

(b)≥ 1 − βγM�(z,n(o))

c
= 1 − βγ (1 − ε)�

(
z, n(o)

)
,
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where (a) follows by substituting μβγ
c

for a, and to obtain (b) we have used the
fact that the average power pzPz equals M for all z and in particular p∗

zP
∗
z = M

and c = M(1 − ε)−1. Let c1 = βγ (1 − ε). Substituting the above bound in (20),
we get

(21) E
{
e−aI∗(1)|�} ≥ ∏

z∈�\{o,n(o)}

(
1 − c1�

(
z, n(o)

))
.

Note that c1�(z, n(o)) < 1 since βγ < 1. Let B(x, r) denote a ball of radius r

centered at x. Substituting from (21) in (19), we get

(22) E

{
1

(E{e−aI∗(1)|�})2

}
≤ E

{ ∏
z∈(�\{o,n(o)})∪�0

e−2 log(1−c1�(|z|))
}
,

where the last inequality follows by shifting the origin to n(o) and including points
from an independent Poisson process �0 of intensity λ1{(o+Cd)∩B(o,|n(o)|)}, that
is, a PPP of intensity λ restricted to the set (o + Cd) ∩ B(o, |n(o)|). Clearly,
(� \ {o,n(o)}) ∪ �0 is a PPP of intensity λ with the origin at n(o). Hence, by
an application of the Campbell’s theorem in (22) and the fact that �(|z|) ≤ 1, we
get

E

{
1

(E{e−aI∗(1)|�})2

}
≤ exp

(
λ

∫
R2

(
e−2 log(1−c1�(|z|)) − 1

)
dz

)
(23)

≤ exp
(

2λc1

(1 − c1)2

∫
R2

�
(|z|) dz

)
< ∞,

since α > 2. This completes the proof of Theorem 3.2. �

Next, we build upon Theorem 3.2, to show that the information velocity, that is,
the rate at which packets flow toward their destination, is positive under the pro-
posed power control mechanism. Information velocity is a key quantity in multi-
hop routing. Larger the velocity, higher is the capacity of the network. The neg-
ative results in [3] on the infinite expected delay and zero information velocity
are proved for delays that are averaged over the fading variables. In order to work
with the delay variables directly and also to be able to use the ergodic theorem, we
introduce several additional structures as we go along.

As a first step, we track the movement of a tagged packet that starts at the ori-
gin X0 = o ∈ � and traverses the network as follows. Let T0 be the time taken
by this tagged packet starting at the origin to successfully reach its nearest neigh-
bor X1 = n(o) in the destination cone C1. The packet is transmitted with power
P1 = c�(|n(o)|)−1 and the probability that it is transmitted in a time slot is MP −1

1 .
Going forward, if the packet is at node Xi−1, i ≥ 2, let Ti−1 be the time taken
for the packet to successfully reach the nearest neighbor Xi of Xi−1 in the desti-
nation cone Xi−1 + C1. From the time the packet reaches Xi−1 to the time it is
successfully delivered at Xi , it is transmitted with power Pi = c�(|Xi − Xi−1|)−1

and transmission probability MP −1
i . One can think of the destination of the packet
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being located at (∞,0), and thus the destination cone for this packet is always a
translation of the cone C1. We ignore the queuing and other delays at each node
as is the standard practice. Note that the delays Ti , i ≥ 0, are not identically dis-
tributed. For instance, the point process as seen from the origin and from n(o) do
not have the same distribution, since the region of the destination cone between o

and n(o) contains no other point of �. In particular, {Ti, i ≥ 0} is not a stationary
sequence.

DEFINITION 3.4. The information velocity of space–time SINR network is
defined as

v = lim inf
t→∞

d(t)

t
,

where d(t) is the distance of the tagged packet from the origin at time t .

The following is the main result of this paper.

THEOREM 3.5. Under the conditions of Theorem 3.2 and the proposed power
control strategy, the information velocity v > 0, almost surely.

PROOF. In order to prove this result, we first dominate the delays {Ti, i ≥ 0},
by a stationary sequence {T ′

i , i ≥ 0}, and show that a positive speed can be obtained
even with these enhanced delays. This will be done by adding some additional
points that will increase the interference, and hence the delay. To this end, for
all i ≥ 0, let Ri = |Xi+1 − Xi | and θi = arcsin((Xi+1,2 − Xi,2)/Ri), where Xi =
(Xi1,Xi2). Note that the cones {(Xi +C1)∩B(Xi,Ri), i ≥ 0} are nonoverlapping
since φ < π

4 . Consequently, {(Ri, θi), i ≥ 0} is a sequence of independent and
identically distributed random vectors having the same distribution as the random
vector (R, θ), where R and θ are independent with density of R given by (18) and
θ is uniformly distributed on (−φ,φ).

To nullify the effect of moving to the nearest neighbor, we progressively fill the
voids with independent Poisson points as the packet traverses the network. This
however leaves an increasing sequence of special points, the Xi’s in the wake of
the tagged packet. The following construction is intended to take care of this issue
and deliver a stationary sequence.

Let {(R−i , θ−i), i ≥ 1} be a sequence of independent random vectors with
each vector having the same distribution as (R, θ). Define �̃ = {X−i , i ≥ 1},
recursively starting from X−1 so as to satisfy |X−i − X−i+1| = R−i and θ−i =
arcsin((X−i+1,2 − X−i,2)/R−i ). Observe that each X−i+1, i ≥ 1, lies in the cone
X−i + C1 as shown in Figure 3, and {� ∩ ((X−i + C1) ∩ B(X−i ,R−i)), i ≥ 1} is
a sequence of independent and identically distributed point processes.

Let T ′
0 be the delay experienced by the tagged packet in going from X0 to

X1 when the interference is coming from the points of (� \ {o,n(o)}) ∪ �̃. For
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FIG. 3. Illustration of addition on infinite sequence of points/interferers to make T ′
i stationary.

i ≥ 0, let �i be a PPP of intensity λ1{(Xi+C1)∩B(Xi,Ri)} independent of every-
thing else. For i ≥ 1, let T ′

i be the delay experienced by the tagged particle
in going from Xi to Xi+1 when the interference is coming from the nodes in
(� \ {Xi,Xi+1}) ∪ �̃

⋃i−1
j=0 �j . Note that for the actual delay Ti , that is, when

the packet is at Xi and trying to reach Xi+1, the interference contribution is com-
ing from the nodes in � \ {Xi,Xi+1}. To define T ′

i , we have added additional in-
terferers at �̃

⋃i−1
j=0 �j . We assume that virtual interferers placed at �̃

⋃i−1
j=0 �j

behave similar to nodes of �. Clearly, T ′
i ≥ Ti , and furthermore the sequence

{T ′
i , i ≥ 0} is a stationary sequence. To prove the later assertion, consider any finite

dimensional vector of delays (T ′
i1
, T ′

i2
, . . . , T ′

ij
). The distribution of this vector is a

function of the distribution of the special points {Xi, i ≤ ij }, the point processes

(� \ ⋃
i≤ij

Xi) and
⋃ij−1

i=0 �i , which by our construction is translation invariant.
Suppose we showed that η = E[T ′

i ] < ∞. Then by the Birkoff’s ergodic theo-
rem [13], we have

lim
n→∞

1

n

n−1∑
k=0

T ′
k = T ′,

almost surely, where T ′ is a random variable with mean η.
Let N(t) be the counting process associated with an arrival process with inter-

arrival times given by the sequence {T ′
i , i ≥ 0}. Then the information velocity sat-

isfies

v ≥ lim
t→∞

∑N(t)
k=1 Rk cos(θk)∑N(t)+1

k=1 T ′
k

= E[R cos(θ)]
T ′ .
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The result now follows since T ′ is finite almost surely.
It remains to show that E[T ′

0] < ∞. The proof of this assertion proceeds along
the same lines as the proof of Theorem 3.2 with I (t) in (6) replaced by I (t)+ Ĩ (t),
where

Ĩ (t) = ∑
z∈�̃

1z(t)Pz(t)ht

(
z, n(o)

)
�
(
z, n(o)

)
.

This would lead to a bound analogous to (16) with I ∗(1) replaced by I ∗(1) +
Ĩ ∗(1) and � replaced by � ∪ �̃, where Ĩ ∗(1) is defined analogous to I (1). By the
conditional independence of I ∗(1) and Ĩ ∗(1), we get

E

{
1

(E{e−a(I∗(1)+Ĩ∗(1))|� ∪ �̃})2

}

= E

{
1

(E{e−aI (1)|�}E{e−aĨ (1)|�̃ ∪ {n(o)}})2

}
.

Another application of the Cauchy–Schwarz inequality implies that the result fol-
lows if we show that

E

{
1

(E{e−aI (1)|�})4

}
E

{
1

(E{e−aĨ (1)|�̃ ∪ {n(o)}})4

}
< ∞.

Proceeding as in (22)–(23), we get

E

{
1

(E{e−aI (1)|�})4

}
≤ exp

(
λ

(1 − c1)4

∫
R2

(
1 − (

1 − c1�
(|z|))4)

dz

)
< ∞,

since α > 2. It remains to show that

(24) E

{
1

(E{e−aĨ (1)|�̃ ∪ {n(o)}})4

}
< ∞.

To compute the expression in (24), we proceed as we did in (20)–(21) and arrive
at the following bound similar to the one in (22).

E

{
1

(E{e−aĨ (1)|�̃ ∪ {n(o)}})4

}
≤ E

{ ∞∏
i=1

e−4 log(1−c1�(X−i ,n(o)))

}

≤ E

{ ∞∏
i=1

e
−4 log(1−c1�(

∑i
j=0 R−j cos(θ−j )))

}

≤ E
{
e

∑∞
n=1 g(Sn+1)

}
,

where Sn = ∑n−1
j=0 R−j cos(θ−j ) and g(x) = −4 log(1 − c1�(x)), x > 0. Let ξ =

E{R cos(θ)} and note that ξ > 0. Let δ ∈ (0, ξ) be a constant that will be chosen
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later. Define χ(ν) = E{eνR cos(θ)}, ν ∈R and let ζ(δ) = inf{νδ− log(χ(ν)), ν > 0}.
That χ(ν) < ∞ for all ν follows from (18). By the Chernoff bound, we have

P

[
Sn

n
< δ

]
≤ e−ζ(δ)n.

It follows by the Borel–Cantelli lemma that, almost surely, there exists a N =
N(ω) < ∞ such that Sn ≥ nδ for all n ≥ N(ω). Hence, for some constant c2 >

0,

P [N ≥ m] = P[Sn < nδ for some n ≥ m]
(25)

≤
∞∑

n=m

e−ζ(δ)n ≤ c2e
−ζ(δ)m.

Using the fact that the function g is nonincreasing, we get

E
{
e

∑∞
n=1 g(Sn)} = E

{
e

∑N
n=1 g(Sn)+∑∞

n=N+1 g(Sn)}
≤ e

∑∞
n=1 g(nδ)

E
{
eg(0)N}

.∑∞
n=1 g(nδ) < ∞ since α > 2 by the comparison test. Since R cos(θ) > 0,

ζ(δ) ↑ ∞ as δ ↓ 0. So, we can and do choose δ such that ζ(δ) > g(0). With
this choice of δ, it follows from (25) that E{eg(0)N } < ∞. This proves (24).

�

4. Conclusion. In this paper, we have proposed a new power control strategy
and a non-ALOHA protocol to achieve finite expected time (delay) for a packet
to successfully reach its nearest neighbor with the SINR model. In prior work, it
is known that the expected time for a packet to leave its source is infinite with an
ALOHA protocol, severely limiting the effectiveness of such wireless networks.
The power control strategy chooses power to completely overcome the path-loss
effect toward the nearest neighbor in a defined cone that contains the destination,
and attempts transmissions with appropriate probability so as to satisfy an aver-
age power constraint at each transmitter. In addition to achieving finite expected
delay, we also show that our policy achieves nonzero information velocity, that
is defined as the ratio of the successfully covered distance and the delay needed
to reach that distance, as time goes to infinity. As a result, packets can flow be-
tween any source-destination pair over multiple hops at a nonzero rate. Some out-
standing questions that remain, are: what is the optimal choice of the angle of
cone, larger the cone angle shorter is nearest neighbor distance and per-hop de-
lay but requires more hops until the destination and vice versa, what is the best
lower bound on the per-hop delay and the upper bound on the information veloc-
ity.
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