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GAUSSIAN PHASE TRANSITIONS AND CONIC INTRINSIC
VOLUMES: STEINING THE STEINER FORMULA

BY LARRY GOLDSTEIN∗,1, IVAN NOURDIN†,2 AND GIOVANNI PECCATI†,3

University of Southern California∗ and University of Luxembourg†

Intrinsic volumes of convex sets are natural geometric quantities that also
play important roles in applications, such as linear inverse problems with con-
vex constraints, and constrained statistical inference. It is a well-known fact
that, given a closed convex cone C ⊂ Rd , its conic intrinsic volumes deter-
mine a probability measure on the finite set {0,1, . . . , d}, customarily de-
noted by L(VC). The aim of the present paper is to provide a Berry–Esseen
bound for the normal approximation of L(VC), implying a general quanti-
tative central limit theorem (CLT) for sequences of (correctly normalised)
discrete probability measures of the type L(VCn

), n ≥ 1. This bound shows
that, in the high-dimensional limit, most conic intrinsic volumes encountered
in applications can be approximated by a suitable Gaussian distribution. Our
approach is based on a variety of techniques, namely: (1) Steiner formulae
for closed convex cones, (2) Stein’s method and second-order Poincaré in-
equality, (3) concentration estimates and (4) Fourier analysis. Our results
explicitly connect the sharp phase transitions, observed in many regularised
linear inverse problems with convex constraints, with the asymptotic Gaus-
sian fluctuations of the intrinsic volumes of the associated descent cones.
In particular, our findings complete and further illuminate the recent break-
through discoveries by Amelunxen, Lotz, McCoy and Tropp [Inf. Inference 3
(2014) 224–294] and McCoy and Tropp [Discrete Comput. Geom. 51 (2014)
926–963] about the concentration of conic intrinsic volumes and its connec-
tion with threshold phenomena. As an additional outgrowth of our work we
develop total variation bounds for normal approximations of the lengths of
projections of Gaussian vectors on closed convex sets.

1. Introduction.

1.1. Overview. Every closed convex cone C ⊂ Rd can be associated with a
random variable VC , with support on {0, . . . , d} whose distribution L(VC) coin-
cides with the so-called conic intrinsic volumes of C. Though the cone C is de-
terministic, the associated probabilistic distribution L(VC) can be seen to arise by
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probing the faces of the cone through projections of standard Gaussian variables
onto C; see (9). The distribution L(VC) is a natural object that summarises key
information about the geometry of C, and is important in applications, ranging
from compressed sensing to constrained statistical inference. In particular, for a
closed convex cone C the mean δC = EVC (which is customarily called the sta-
tistical dimension of C) measures in some sense the “effective” dimension of C,
and generalises the classical notion of dimension for linear subspaces. As proved
in the ground-breaking papers by Amelunxen, Lotz, McCoy and Tropp [3] and by
McCoy and Tropp [34] (see also Section 1.4 below for a more detailed discussion
of this point), in the case of the so-called descent cones arising in convex optimi-
sation, the concentration of the distribution of VC around δC explains with striking
precision threshold phenomena exhibited by the probability of success in linear
inverse problems with convex constraints.

Our principal aim in this paper is to produce a Berry–Esseen bound for L(VC)

leading to minimal conditions on a sequence of closed convex cones {Cn}n≥1,
ensuring that the sequence

VCn − EVCn√
Var(VCn)

, n ≥ 1,

converges in distribution toward a standard Gaussian N (0,1) random variable.
The bounds in our main findings depend only on the mean and the variance of the
random variables VCn , and are summarised in Part 2 of Theorem 1.1 below.

As explained in the sections to follow, the strategy for achieving our goals con-
sists in using the elegant Master Steiner formula from McCoy and Tropp [34],
in order to connect random variables of the type VC to objects with the form
‖�C(g)‖2, where g is a standard Gaussian vector, �C is the metric projection
onto C, and ‖ · ‖ stands for the Euclidean norm. Shifting from VC to ‖�C(g)‖2 al-
lows one to unleash the full power of some recently developed techniques for nor-
mal approximations, based on the interaction between Stein’s method (see [18])
and variational analysis on a Gaussian space (see [36]). In particular, our main
tool will be the so-called second-order Poincaré inequality developed in [15, 37].
In Section 4, we will also use techniques from Fourier analysis in order to compute
explicit Berry–Esseen bounds.

As discussed below, our findings represent a significant extension of the results
of [3, 34], where the concentration of L(VC) around δC was first studied by means
of tools from Gaussian analysis, as well as by exploiting the connection between
intrinsic volumes and metric projections. Explicit applications to regularised linear
inverse problems are described in detail in Section 1.4 below.

We will now quickly present some basic facts of conic geometry that are relevant
for our analysis. Our main theoretical contributions are discussed in Section 1.3,
whereas connections with applications are described in Sections 1.4 and 1.5.
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1.2. Elements of conic geometry. The reader is referred to the classical refer-
ences [38, 39], as well as to [3, 34], for any unexplained notion or result related to
convex analysis.

Distance from a convex set and metric projections. Fix an integer d ≥ 1.
Throughout the paper, we shall denote by 〈x,y〉 and ‖x‖2 = 〈x,x〉, respectively,
the standard inner product and squared Euclidean norm in Rd . Given a closed con-
vex set C ⊂Rd , we define the distance between a point x and C as

d(x,C) := inf
y∈C

‖x − y‖.(1)

By the strict convexity of the mapping x 	→ ‖x‖2, the infimum is attained at a
unique vector, called the metric projection of x onto C, which we denote by �C(x).

Convex cones and polar cones. A set C ⊂ Rd is a convex cone if ax + by ∈ C

whenever x and y are in C and a and b are positive reals. The polar cone C0 of a
cone C is given by

C0 = {y ∈ Rd : 〈y,x〉 ≤ 0,∀x ∈ C
}
.(2)

It is easy to verify that the polar cone of a closed convex cone is again a closed
convex cone. By virtue, for example, of [34], formula (7.2), any vector x ∈ Rd may
be written as

x = �C(x) + �C0(x) with �C(x) ⊥ �C0(x),(3)

where the orthogonality relation is in the sense of the inner product 〈·, ·〉 on Rd .
A quick computation shows also that, for every closed convex cone C and every
x ∈ Rd , ∥∥�C(x)

∥∥= sup
y∈C:‖y‖≤1

〈x,y〉.(4)

Steiner formulae and intrinsic volumes. Letting Bd and Sd−1 denote, respec-
tively, the unit ball and unit sphere in Rd , the classical Steiner formula for the
Euclidean expansion of a compact convex set K states that

Vol(K + λBd) =
d∑

j=0

λd−j Vol
(
Bd−j )Vj for all λ ≥ 0,

where addition on the left-hand side indicates the Minkowski sum of sets, and the
numbers Vj , j = 0, . . . , d on the right, called Euclidean intrinsic volumes, depend
only on K . The Euclidean intrinsic volumes numerically encode key geometric
properties of K , for instance, Vd is the volume, 2Vd−1 the surface area, and V0
the Euler characteristic of K . See, for example, [1], page 142, [31], Chapter 7, and
[42], page 600, for standard proofs.
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An “angular” Steiner formula was developed in [2, 28, 41], and expresses the
size of an angular expansion of a closed convex cone C as follows:

P
{
d2(θ ,C) ≤ λ

}= d∑
j=0

βj,d(λ)vj ,(5)

where θ is a random variable uniformly distributed on Sd−1, the coefficients

βj,d(λ) = P
[
B(d − j, j) ≤ λ

]
[where each B(d − j, j) has the Beta distribution with parameters (d − j)/2 and
j/2] do not depend on C, and the conic intrinsic volumes v0, . . . , vd are determined
by C only, and can be shown to be nonnegative and sum to one. As a consequence,
we may associate to the conic intrinsic volumes of C an integer-valued random
variable V , whose probability distribution L(V ) is given by

(6) P(V = j) = vj , for j = 0, . . . , d .

When the dependence of any quantities on the cone needs to be emphasised, we
will write VC for V and vj (C) for vj , j = 0, . . . , d . As shown in [34], relation
(5) can be seen as a consequence of a general result, known as Master Steiner for-
mula and stated formally in Theorem 3.2 below. Such a result implies that, writing
g ∼ N (0, Id) for a standard d-dimensional Gaussian vector, the squared norms
‖�C(g)‖2 and ‖�C0(g)‖2 behave like two independent chi-squared random vari-
ables with a random number VC and d − VC , respectively, of degrees of freedom:
in symbols, (∥∥�C(g)

∥∥2,∥∥�C0(g)
∥∥2)∼ (χ2

VC
,χ2

d−VC

)
.(7)

In particular, equation (7) is consistent with the well-known relation vj (C) =
vd−j (C

0) (j = 0, . . . , d), that is: the distribution of the random variable VC0 , as-
sociated with the polar cone C0 via its intrinsic volumes, satisfies the relation

VC0
Law= d − VC,(8)

where, here and in what follows, Law= indicates equality in distribution. To con-
clude, we notice that partial versions of (7) [only involving ‖�C(g)‖2] were
already known in the literature prior to [34], in particular in the context of
constrained statistical inference; see, for example, [20, 43, 44], as well as [45],
Chapter 3.

Statistical dimensions. As for Euclidean intrinsic volumes, the distribution of
VC encodes key geometric properties of C. For instance, the mean δC := E[VC] =
E‖�C(g)‖2, generalises the notion of dimension. In particular, if Lk is a linear
subspace of Rd of dimension k, and hence a closed convex cone, then vj (Lk)

is one when j = k and zero otherwise and, therefore, δ(Lk) = k. The parameter
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δC is often called the statistical dimension of C. We observe that, in view of (4),
the statistical dimension δC is tightly related to the so-called Gaussian width of a
convex cone

wC := E
(

sup
y∈C:‖y‖≤1

〈g,y〉
)
,

where g ∼ N (0, Id). The notion of Gaussian width plays an important role in many
key results of compressed sensing (see, e.g., [40]). Standard arguments yield that
w2

C ≤ δC ≤ w2
C + 1 (see [3], Proposition 10.2). One situation where the statistical

dimension is particularly simple to calculate is when C is self dual, that is, when
C = −C0. In this case, δC = d/2 by (8). The nonnegative orthant, the second-order
cone, and the cone of positive-semidefinite matrices are all self-dual; see [34] for
definitions and further explanations.

Polyhedral cones. We recall that a polyhedral cone C is one that can be ex-
pressed as the intersection of a finite number of half-spaces, that is, one for which
there exists an integer N and vectors u1, . . . ,uN in Rd such that

C =
N⋂

i=1

{
x ∈ Rd : 〈ui ,x〉 ≥ 0

}
.

For polyhedral cones, the probabilities vj , j = 0, . . . , d can be connected to the
behavior of the projection �C(g) of a standard Gaussian variable g ∼ N (0, Id)

onto C. Indeed, in this case we have the representation

vj = P
(
�C(g) lies in the relative interior of a j -dimensional face of C

)
(9)

(see, e.g., [3, 34]).

1.3. Main theoretical contributions. The main result of the present paper is
the following general central limit theorem (CLT), involving the intrinsic volume
distributions of a sequence of closed convex cones with increasing statistical di-
mensions.

THEOREM 1.1. Let {dn : n ≥ 1} be a sequence of nonnegative integers and
let {Cn ⊂ Rdn : n ≥ 1} be a collection of nonempty closed convex cones such that
δCn → ∞, and write τ 2

Cn
= Var(VCn), n ≥ 1. For every n, let gn ∼ N (0, Idn) and

write σ 2
Cn

= Var(‖�Cn(gn)‖2), n ≥ 1. Then the following holds:

1. One has that 2δCn ≤ σ 2
Cn

≤ 4δCn for every n and, as n → ∞, the sequence

‖�Cn(gn)‖2 − δCn

σCn

, n ≥ 1,

converges in distribution to a standard Gaussian random variable N ∼
N (0,1).
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2. If, in addition, lim infn→∞ τ 2
Cn

/δCn > 0, then, as n → ∞, the sequence

VCn − δCn

τCn

, n ≥ 1,

also converges in distribution to N ∼ N (0,1), and moreover one has the
Berry–Esseen estimate

(10) sup
u∈R

∣∣∣∣P [VCn − δCn

τCn

≤ u

]
− P [N ≤ u]

∣∣∣∣= O

(
1√

log δCn

)
.

Part 1 follows from Corollary 3.1. Part 2 is a consequence of Theorem 5.1 below
that provides a Berry–Esseen bound, with small explicit constants, for the normal
approximation of VC and for any closed convex cone C, in terms of δC,σ 2

C and τ 2
C .

In particular, if C is a closed convex cone such that τC > 0, then we will prove in
Theorem 5.1 and Remark 5.1 that, writing α := τ 2

C/δC , for δC ≥ 8,

(11) sup
u∈R

∣∣∣∣P [VC − δC

τC

≤ u

]
− P [N ≤ u]

∣∣∣∣≤ h(δC) + 48√
α log+(α

√
2δC)

,

where

(12) h(δ) = 1

72

(
log δ

δ3/16

)5/2
.

REMARK 1.1. Observe that, if one considers the sequence {Cd}d≥1 consisting
of the non-negative orthants of Rd , then VCd

follows a binomial distribution with
parameters (1/2, d) (in particular, δCd

= d/2). It follows that, in this case, the
supremum on the left-hand side of (10) converges to zero at a speed of the order
O(d−1/2), from which we conclude that the rate supplied by (10) is, in general,
not optimal.

As anticipated, our strategy for proving Theorem 1.1 [exception made for the
Berry–Esseen bound (10)] is to connect the distributions of ‖�Cn(gn)‖2 and VCn

via the Master Steiner formula (7), and then to study the normal approximation of
the squared norm of �Cn(gn) by means of Stein’s method, as well as of general
variational techniques on a Gaussian space (see [18, 36]). As illustrated in the
Appendix contained in Section 5 below, Stein’s method proceeds by manipulating
a characterizing equation for a target distribution (in this case the normal), typically
through couplings or integration by parts. Hence, we justify the title of this work
by the heavy use that our application of Stein’s method makes of relation (7),
generalizing the angular Steiner formula (5). As mentioned above, our main tool
will be a form of the second-order Poincaré inequalities studied in [15, 37].
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REMARK 1.2. A crucial point one needs to address when applying Part 2 of
Theorem 1.1 is that, in order to check the assumption lim infn→∞ τ 2

Cn
/δCn > 0, one

has to produce an effective lower bound on the sequence of conic variances τ 2
Cn

,
n ≥ 1. This issue is dealt with in Section 4, where we will prove new upper and
lower bounds for conic variances, by using an improved version of the Poincaré in-
equality (see Theorem A.2), as well as a representation of the covariance of smooth
functionals of Gaussian fields in terms of the Ornstein–Uhlenbeck semigroup, as
stated in formula (97) below. In particular, our main findings of Section 4 (see
Theorem 4.1) will indicate that, in many crucial examples, the sequence n 	→ τ 2

Cn

eventually satisfies a relation of the type

c
∥∥E[�Cn(g)

]∥∥2 ≤ τ 2
Cn

≤ 2
∥∥E[�Cn(g)

]∥∥2,
where c ∈ (0,2) does not depend on n. In view of Jensen’s inequality, this conclu-
sion strictly improves the estimate τ 2

Cn
≤ 2δCn that one can derive, for example,

from [34], Theorem 4.5.

We obtain normal approximation results for random variables that are more
general than ‖�C(g)‖2. To this end, fix a closed convex cone C ⊂ Rd and μ ∈ Rd ,
and introduce the shorthand notation

F = ∥∥μ − �C(g + μ)
∥∥2 − m,

(13)
with m = E

[∥∥μ − �C(g + μ)
∥∥2] and σ 2 = Var(F ).

Then we prove in Theorem 3.1 that

dTV(F,N) ≤ 16

σ 2

{√
m
(
1 + 2‖μ‖)+ 3‖μ‖2 + ‖μ‖},(14)

where N ∼N (0, σ 2) and dTV stand for the total variation distance, defined in (28),
between the distribution of two random variables. In the fundamental case μ = 0,
Proposition 3.1 shows that the previous estimate implies the simple relation

dTV
(∥∥�C(g)

∥∥2 − δC,N
)≤ 8√

δC

,(15)

where N ∼ N (0, σ 2
C). Relation (15) reinforces our intuition that the statistical di-

mension δC encodes a crucial amount of information about the distributions of
‖�C(g)‖2 and, therefore, about VC , via (7).

It does not seem possible to directly combine the powerful inequality (15) with
(7) in order to deduce an explicit Berry–Esseen bound such as (10). This estimate
is obtained in Section 5, by means of Fourier theoretical arguments of a completely
different nature.



8 L. GOLDSTEIN, I. NOURDIN AND G. PECCATI

REMARK 1.3. We stress that the crucial idea that one can study a random
variable of the type VC , by applying techniques of Gaussian analysis to the asso-
ciated squared norm ‖�C(g)‖2, originates from the path-breaking references [3,
34], where this connection is exploited in order to obtain explicit concentration
estimates via the entropy method; see [8] and [32].

As stated in the Introduction, we will now show that our results can be used to
exactly characterise phase transitions in regularised inverse problems with convex
constraints.

1.4. Applications to exact recovery of structured unknowns.

1.4.1. General framework. In what follows, we give a summary of how the
conic intrinsic volume distribution plays a role in convex optimization for the re-
covery of structured unknowns and refer the reader, for example, to the excellent
discussions in [3, 11, 14, 34] for more detailed information.

In certain high dimension recovery problems, some small number of observa-
tions may be taken on an unknown high dimensional vector or matrix x0, thus
determining that the unknown lies in the feasible set F of all elements consistent
with what has been observed. As F may be large, the recovery of x0 is not possible
without additional assumptions, such as that the unknown possesses some addi-
tional structure such as being sparse, or of low rank. As searching F for elements
possessing the given structure can be computationally expensive, one instead may
consider a convex optimization problem of finding x ∈ F that minimises f (x) for
some proper convex function (recall that a proper convex function is a mapping
having at least one finite value and never taking the value −∞) that promotes the
structure desired.

The analysis of such an optimization procedure leads one naturally to the study
of the descent cone D(f,x) of f at the point x, given by

D(f,x) = {y : ∃τ > 0 such that f (x + τy) ≤ f (x)
}
.

That is, D(f,x) is the conic hull of all directions that do not increase f near x. The
proof of Part 1 of Theorem 1.2 below—included here for completeness—reflects
the general result, that in the case where F is a subspace, the convex optimization
just described successfully recovers the unknown x0 if and only if

F ∩ (x0 +D(f,x0)
)= {x0}(16)

(see Section 4 of [40] and Proposition 2.1 [14], and Fact 2.8 of [3]).
The work [14] provides a systematic way according to which an appropriate

convex function f may be chosen to promote a given structure. When an unknown
vector, or matrix, is expressed as a linear combination

x0 = c1a1 + · · · + ckak(17)
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for ci ≥ 0, ai ∈ A a set of building blocks or atoms of vectors or matrices, and k

small, then one minimises

f (x) = inf
{
t > 0 : x ∈ t conv(A)

}
,(18)

over the feasible set, where conv(A) is the convex hull of A.

1.4.2. Recovery of sparse vectors via 
1 norm minimization. We now consider
the underdetermined linear inverse problem of recovering a sparse vector x0 ∈ Rd

from the observation of z = Ax0, where for m < d the known matrix A ∈ Rm×d

has independent entries each with the standard normal N (0,1) distribution. We say
the vector x0 is s-sparse if it has exactly s nonzero components; the value of s is
typically much smaller than d . As a sparse vector is a linear combination of a small
number of standard basis vectors, the prescription (18) leads us to find a feasible
vector that minimises the 
1 norm, denoted by ‖ · ‖1. It is a well-known fact that
such a linear inverse problem displays a sharp phase transition (sometimes called
a threshold phenomenon): heuristically, this means that, for every value of d , there
exists a very narrow band [m1,m2] (that depends on d and on the sparsity level
of x0) such that the probability of recovering x0 exactly is negligible for m < m1,
and overwhelming for m > m2. Understanding such a phase transition (and, more
generally, threshold phenomena in randomised linear inverse problems) has been
the object of formidable efforts by many researchers during the last decade, rang-
ing from the seminal contributions by Candès, Romberg and Tao [12, 13], Donoho
[21, 22] and Donoho and Tanner [23], to the works of Rudelson and Vershynin
[40] and Ameluxen et al. [3] (see [11], Section 3, and the references therein, for a
vivid description of the dense history of the subject). In particular, [3] contains the
first proof of the fundamental fact that the above described threshold phenomenon
can be explained by the Gaussian concentration of the intrinsic volumes of the de-
scent cone of the 
1 norm at x0 around its statistical dimension. In what follows,
we shall further refine such a finding by showing that, for large values of d , the
phase transition for the exact recovery of x0 has an almost exact Gaussian nature,
following from the general quantitative CLTs for conic intrinsic volumes stated at
Point 2 of Theorem 1.1.

The next statement provides finite sample estimates, valid in any dimension.
Note that we use the symbol �a� to indicate the integer part of a real number a.

THEOREM 1.2 (Finite sample). Let x0 ∈ Rd and let C be the descent cone of
the 
1 norm ‖ · ‖1 at x0. Further, let V be the random variable defined by (6), set
δ = E[V ] to be the statistical dimension of C, and τ 2 = Var(V ). Let Tδ,τ be the
set of real numbers t such that the number of observations

mt := �δ + tτ�
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lies between 1 and d . Fix t ∈ Tδ,τ . Let At ∈ Rmt×d have independent entries, each
with the standard normal N (0,1) distribution and let Ft = {x ∈ Rd : Atx = Atx0}.
Consider the convex program

(CPt ) : min‖x‖1 subject to x ∈ Ft .

Then, for δ ≥ 8 one has the estimate

sup
t∈Tδ,τ

∣∣∣∣P {x0 is the unique solution of (CPt )
}− 1√

2π

∫ t

−∞
e−u2/2 du

∣∣∣∣
(19)

≤ h(δ) + 48√
α log+(α

√
2δ)

+ 1√
2πτ 2

,

where α := τ 2/δ, and h(δ) given by (12).

REMARK 1.4. 1. The estimate (19) implies that, for a fixed d and up to a
uniform explicit error, the mapping

t 	→ P
{
x0 is the unique solution of (CPt )

}
,

(expressing the probability of recovery as a function of mt ) can be approximated by
the standard Gaussian distribution function t 	→ �(t) := 1√

2π

∫ t
−∞ e−u2/2 du, thus

demonstrating the Gaussian nature of the threshold phenomena described above.
To better understand this point, fix a small α ∈ (0,1), and let yα be such that
�(yα) = 1 − α. Then, standard computations imply that [up to the uniform error
appearing in (19)] the probability

P
{
x0 is the unique solution of (CPyα )

}
is bounded from below by 1−α, whereas P {x0 is the unique solution of (CP−yα )}
is bounded from above by α. Using the explicit expressions m−yα = �δ − yατ�
and myα = �δ + yατ�, one therefore sees that the transition from a negligible to
an overwhelming probability of exact reconstruction takes place within a band of
approximate length 2yατ ≤ 2yα

√
2δ, centered at δ. In particular, if δ → ∞, then

the length of such a band becomes negligible with respect to δ, thus accounting for
the sharpness of the phase transition. Sufficient conditions, ensuring that α = τ 2/δ

is bounded away from zero when δ → ∞, are given in Theorem 1.3.
2. Define the mapping ψ : [0,1] → [0,1] as

(20) ψ(ρ) := inf
γ≥0

{
ρ
(
1 + γ 2)+ (1 − ρ)E

[(|N | − γ
)2
+
]}

,

where N ∼ N (0,1). The following estimate is taken from [3], Proposition 4.5:
under the notation and assumptions of Theorem 1.2, if x0 is s-sparse, then

(21) ψ(s/d) − 2√
sd

≤ δ

d
≤ ψ(s/d).
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Moreover, as shown in [14], Proposition 3.10, one has the upper bound δ ≤
2s log(d/s) + 5s/4, an estimate which is consistent with the classical computa-
tions contained in [22].

PROOF OF THEOREM 1.2. We divide the proof into three steps.

Step 1. We first show that x0 is the unique solution of (CPt ) if and only if
C ∩ Null(At ) = {0}. Indeed, assume that x0 is the unique solution of (CPt ) and let
y ∈ C ∩ Null(At ). Since y ∈ C, there exists τ > 0 such that x := x0 + τy satisfies
‖x‖1 ≤ ‖x0‖1. Since y ∈ Null(A) one has x ∈ Ft . As x is feasible the inequality
‖x‖1 < ‖x0‖1 would contradict the assumption that x0 solves (CPt ). On the other
hand, the equality ‖x‖1 = ‖x0‖1 would contradict the assumption that x0 solves
(CPt ) uniquely if x �= x0. Hence, y = 0, so C ∩ Null(At ) = {0}. Now assume
that C ∩ Null(At ) = {0} and let x denote any solution of (CPt ) (note that such
an x necessarily exists). Set y = x − x0. Of course, y ∈ Null(At ). Moreover, by
definition of x and that x0 ∈ Ft one has ‖x‖1 = ‖x0 + y‖1 ≤ ‖x0‖1, implying in
turn that y ∈ C. Hence, y = 0 and x = x0, showing that x0 is the unique solution
to (CPt ).

Step 2. We show that Null(At )
Law= Q(Rd−mt × {0}) for Q a uniformly random

d × d orthogonal matrix. (This result is well known; we provide a proof for the
sake of completeness.) Both Null(At ) and Q(Rd−mt × {0}) belong almost surely
to the Grassmannian Gd−mt (R

d), the set of all (d − mt)-dimensional subspaces
of Rd . Defining the distance between two subspaces as the Hausdorff distance
between the unit balls of those subspaces makes Gd−mt (R

d) into a compact met-
ric space. The metric is invariant under the action of the orthogonal group O(d),
and the action is transitive on Gd−mt (R

d). Therefore, there exists a unique prob-
ability measure on Gd−mt (R

d) that is invariant under the action of the orthogonal
group. The law of the matrix A, having independent standard Gaussian entries,
is orthogonally invariant. Therefore, P(Null(At ) ∈ X) = P(Null(At ) ∈ R(X)) for
any R ∈ O(d) and any measurable subset X ⊂ Gd−mt (R

d). On the other hand, it is
clear that one also has P(Q(Rd−mt ×{0}) ∈ X) = P(Q(Rd−mt ×{0}) ∈ R(X)) for
any R ∈ O(d) and any measurable subset X ⊂ Gd−mt (R

d). Therefore, the claim
follows by uniqueness of the probability measure on Gd−mt (R

d) invariant under
the action of O(d).

Step 3. Combining Steps 1 and 2, we find

P
(
x0 is the unique solution of (CPt )

)= P
(
C ∩ Q

(
Rd−mt × {0})= {0}),

where Q is a uniformly random orthogonal matrix. On the other hand, with C

denoting the closure of C,

P
(
C ∩ Q

(
Rd−mt × {0})= {0})= P

(
C ∩ Q

(
Rd−mt × {0})= {0}).

As a result of this subtle point, that follows from the discussion of touching prob-
abilities located in [42], pages 258–259, we may and will assume in the rest of the
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proof that C is closed. By the Crofton formula (see [3], formula (5.10))

P
(
C ∩ Q

(
Rd−mt × {0})= {0})= 1 − 2hmt+1(C)

(22)

where hk(C) =
d∑

j=k,j−k even

vj (C).

Combining (22) with the interlacing relation stated in [3], Proposition 5.9, that
states

P(V ≤ mt − 1) ≤ 1 − 2hmt+1(C) ≤ P(V ≤ mt)(23)

yields

P(V ≤ mt − 1) ≤ P
{
x0 is the unique minimiser of (CPt )

}≤ P(V ≤ mt).

But

P(V ≤ mt − 1) = P
(
V ≤ �δ + tτ� − 1

)
≥ P(V ≤ δ + tτ − 1) = P

(
V − δ

τ
≤ t − 1

τ

)
and

P(V ≤ mt) = P
(
V ≤ �δ + t

√
τ�)

≤ P(V ≤ δ + tτ + 1) = P

(
V − δ

τ
≤ t + 1

τ

)
.

The conclusion now follows from (11), as well as from the fact that the standard
Gaussian density on R is bounded by (2π)−1/2. �

The next result provides natural sufficient conditions, in order for a sequence
of linear inverse problems to display exact Gaussian fluctuations in the high-
dimensional limit.

THEOREM 1.3 (Asymptotic Gaussian phase transitions). Let sn, dn, n ≥ 1 be
integer-valued sequences diverging to infinity, and assume that sn ≤ dn. For ev-
ery n, let xn,0 ∈ Rdn be sn-sparse, denote by Cn the descent cone of the 
1 norm
at xn,0 and write δn = δCn = E[VCn] and τ 2

n = τ 2
Cn

= Var(VCn). For every real
number t , write

mn,t :=

⎧⎪⎪⎨⎪⎪⎩
1, if �δn + tτn� < 1,

�δn + tτn�, if �δn + tτn� ∈ [1, dn],
dn, if �δn + tτn� > dn.

For every n, let An,t ∈ Rmn,t×dn be a random matrix with i.i.d. N (0,1) entries, let
Fn,t = {x ∈Rdn : An,tx = An,txn,0}, and consider the convex program

(CPn,t ) : min‖x‖1 subject to x ∈ Fn,t .
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Assume that there exists ρ ∈ (0,1) (independent of n) such that sn = �ρdn�. Then,
as n → ∞, lim infn τ 2

n/δn > 0, and

P
{
x0 is the unique solution of (CPn,t )

}= 1√
2π

∫ t

−∞
e−u2/2 du + O

(
1√

log δn

)
,

where the implicit constant in the term O( 1√
log δn

) depends uniquely on ρ.

PROOF. In view of the estimate (19), the conclusion will follow if we can
prove the existence of a finite constant α(ρ) > 0, uniquely depending on ρ, such
that τ 2

n/δn ≥ α(ρ) for n sufficiently large. The existence of such a α(ρ) is a direct
consequence of the results stated in the forthcoming Proposition 4.1. �

1.4.3. Second example: Low-rank matrices. Let the inner product of two m ×
n matrices U and V be given by

〈U,V〉 = tr
(
UT V
)
,

and recall that, for X ∈ Rm×n, the Schatten 1 (or nuclear) norm is given by

(24) ‖X‖S1 =
min(m,n)∑

i=1

σi(X),

where σ1(X) ≥ · · · ≥ σmin(m,n)(X) are the singular values of X. Given a matrix
A ∈ Rm×np , partition A as (A1, . . . ,Ap) into blocks of sizes m × n, and let A be
the linear map from Rm×n to Rp given by

A(X) = (〈X,A1〉, . . . , 〈X,Ap〉).
Now let X0 ∈Rm×n be a low rank matrix, and suppose that one observes

z = A(X0),

where the components of A are independent with distribution N (0,1). To recover
X0 we consider the convex program

min‖X‖S1 subject to X ∈F, where F = {X : A(X) = z
}
.

As F is the affine space X0 + Null(A), arguing as in the previous section one
can show that X0 is recovered exactly if and only if C ∩ Null(A) = {0} where
C = D(‖ · ‖S1,X0), the descent cone of the Schatten 1-norm at X0.

Furthermore, Null(A) is a subspace of Rm×n of dimension nm − p, and is ro-
tation invariant in the sense that for any P ⊂ {(i, j) : 1 ≤ i ≤ m,1 ≤ j ≤ n} of
size p,

Null(A) =Q(SP ),

where Q is a uniformly random orthogonal transformation on Rm×n, and

SP = {X ∈ Rm×n : Xij = 0 for all (i, j) ∈ P
}
.
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Now considering the natural linear mapping between Rm×n and Rnm that preserves
inner product, one may apply the Crofton formula (5.10) and proceed as for the 
1

descent cone as above in Section 1.4.3 to deduce low rank analogues of Theorems
1.2 and 1.3. In particular, for the latter we have the following result. As the Schat-
ten 1-norm of a matrix and its transpose are equal, without loss of generality we
assume that all matrices below have at least as many columns as rows.

THEOREM 1.4. For every k ∈ N, let (nk,mk, rk) be a triple of nonnegative
integers depending on k. We assume that nk → ∞, mk/nk → ν ∈ (0,1] and
rk/mk → ρ ∈ (0,1) as k → ∞, and that for every k the matrix X(k) ∈ Rmk×nk

has rank rk . Let

Ck = D
(‖ · ‖S1,X(k)

)
, δk = δ(Ck) and τ 2

k = Var(VCk
)

denote the descent cone of the Schatten 1-norm of X(k), its statistical dimension,
and the variance of its conic intrinsic volume distribution, respectively. For every
real number t , write

pk,t :=

⎧⎪⎪⎨⎪⎪⎩
1, if �δk + tτk� < 1,

�δk + tτk�, if �δk + tτk� ∈ [1,mknk],
mknk, if �δk + tτk� > mknk.

For every k, let Ak,t ∈ Rmk×nkpk,t be a random matrix with i.i.d. N (0,1) entries,
let Fk,t = {X : Ak,t (X) = Ak,t (X(k))} and consider the convex program

(CPk,t ) : min‖X‖S1 subject to X ∈ Fk,t .

Then, as k → ∞, lim inf τ 2
k /δk > 0, and

P
{
X(k) is the unique solution of (CPk,t )

}
= 1√

2π

∫ t

−∞
e−u2/2 du + O

(
1√

log δk

)
,

where the implicit constant in the term O( 1√
log δk

) depends uniquely on ν and ρ.

It is a natural to ask what can be said when the “sensing matrix” A appearing in
Sections 1.4.2 and 1.4.3 do not have standard normal entries. A recent result in this
direction is the work [5]. Therein, they prove in a restricted sub-Gaussian model
that a phase transition occurs. But the existence of a CLT in this more general
setting is, for the time being, still largely out of reach.

1.5. Connections with constrained statistical inference. Let C ⊂ Rd be a non-
trivial closed convex cone, let g ∼ N (0, Id) and fix a vector μ ∈Rd . When μ is an
element of C and y = g+μ is regarded as a d-dimensional sample of observations,
then the projection �C(g + μ) is the least square estimator of μ under the convex
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constraint C, and the norm ‖μ − �C(g + μ)‖ measures the distance between this
estimator and the true value of the parameter μ; the expectation E‖μ − �C(g +
μ)‖2 is often referred to as the L2-risk of the least squares estimator.

Properties of least square estimators and associated risks have been the object
of vigorous study for several decades; see, for example, [6, 10, 16, 17, 46–49] for
a small sample. Although several results are known about the norm ‖μ − �C(g +
μ)‖2 (for instance, concerning concentration and moment estimates—see [16,
17] for recent developments), to our knowledge no normal approximation result
is available for such a random variable, yet. We conjecture that our estimate (14)
might represent a significant step in this direction. Note that, in order to make (14)
suitable for applications, one would need explicit lower bounds on the variance of
‖μ−�C(g +μ)‖2 for a general μ, and for the moment such estimates seem to be
outside the scope of any available technique: we prefer to think of this problem as
a separate issue, and leave it open for future research.

We conclude by observing that, as explained, for example, in [20, 44] and in
[45], Chapter 3, the likelihood ratio test (LRT) for the hypotheses H0 : μ = 0 ver-
sus H1 : μ ∈ C \ {0} rejects H0 when the projection ‖�C(y)‖2 of the data y on C

is large. In this case, our results, together with the concentration estimates from [3,
34], provide information on the distribution of the test statistic under the null hy-
pothesis. Similarly, the squared projection length ‖�C0(y)‖2 onto the polar cone
C0 is the LRT statistic for the hypotheses H0 : μ ∈ C versus H1 : μ ∈ Rd \ C.

1.6. Plan. The paper is organised as follows. Section 2 deals with normal ap-
proximation results for the squared distance between a Gaussian vector and a gen-
eral closed convex set. Section 3 contains total variation bounds to the normal,
and our main CLTs for squared norms of projections onto closed convex cones, as
well as for conic intrinsic volumes. In Section 4, we derive new upper and lower
bounds on the variance of conic intrinsic volumes. Section 5 is devoted to explicit
Berry–Esseen bounds for intrinsic volumes distributions, whereas the Appendix
provides a self-contained discussion of Stein’s method, Poincaré inequalities and
associated estimates on a Gaussian space.

2. Gaussian projections on closed convex sets: Normal approximations and
concentration bounds. Let C ⊂ Rd be a closed convex set, let μ ∈ Rd and let
g ∼ N (0, Id) be a normal vector. In this section, we obtain a total variation bound
to the normal, and a concentration inequality, for the centered squared distance
between g + μ and C, that is, for

F = d2(g + μ,C) − E
[
d2(g + μ,C)

]
,(25)

where d(x,C) is given by (1). We also set σ 2 = Var(d2(g + μ,C)) = Var(F ). It is
easy to verify that σ 2 is finite for any nonempty closed convex set C, and equals
zero if and only if C = Rd . To exclude trivialities, we call a set C nontrivial if
∅� C �Rd .
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The following two lemmas are the key to our main result Theorem 2.1: their
proofs are standard, and are provided for the sake of completeness. For a more
general statement concerning proximal mappings and containing Lemma 2.2 as a
special case see, for example, [39], Theorem 2.26.

LEMMA 2.1. Let C be a nonempty closed convex subset of Rd , and let �C(x)

the metric projection onto C. Then �C and Id − �C are 1-Lipschitz continuous,
and the Jacobian Jac(�C)(x) ∈ Rd×d exists a.e. and satisfies∥∥(Id − Jac(�C)(x)

)T y
∥∥≤ ‖y‖ for all y ∈Rd .(26)

PROOF. Since �C is a projection onto a nonempty closed convex set, by [38],
page 340 (see also B.3 of [3]), we have that∥∥�C(v) − �C(u)

∥∥≤ ‖v − u‖ for all u,v ∈ Rd ,

that is, �C , and hence Id − �C , are 1-Lipschitz. Bound (26) now follows by
Rademacher’s theorem and the fact that, on a Hilbert space, the operator norms
of a matrix and that of its transpose are the same. �

LEMMA 2.2. Let C be a nonempty closed convex set C ⊂ Rd , and let �C(x)

be the metric projection onto C. Then

∇d2(x,C) = 2
(
x − �C(x)

)
, x ∈ Rd .(27)

PROOF. Fix an arbitrary x0 ∈ Rd , and use the shorthand notation v0 := x0 −
�C(x0). Writing ϕ(u) := d2(x0 + u,C) − d2(x0,C) − 2〈v0,u〉, relation (27) is
equivalent to the statement that the mapping u 	→ ϕ(u) is differentiable at u = 0,
and ∇ϕ(0) = 0. To prove this statement, we show the following stronger relation:
for every u ∈ Rd , one has that |ϕ(u)| ≤ ‖u‖2. Indeed, the inequality ϕ(u) ≤ ‖u‖2

follows from the fact that d2(x0 + u,C) ≤ ‖u + v0‖2 and d2(x0,C) = ‖v0‖2. To
obtain the relation ϕ(u) ≥ −‖u‖2, just observe that u 	→ ϕ(u) is a convex map-
ping vanishing at the origin, implying that ϕ(u) ≥ −ϕ(−u) ≥ −‖− u‖2 = −‖u‖2,
where the second inequality is a consequence of the estimates deduced in the first
part of the proof. This yields the desired conclusion. �

We recall that the total variation distance between the laws of two random
variables F and G is defined as

dTV(F,G) = sup
A

∣∣P(F ∈ A) − P(G ∈ A)
∣∣,(28)

where the supremum runs over all the Borel sets A ⊂ R. It is clear from the def-
inition that dTV(F,G) is invariant under affine transformations, in the following
sense: for any a, b ∈ R with a �= 0, one has dTV(aF + b, aG + b) = dTV(F,G).

We say that Fn converges to F in total variation (in symbols, Fn
TV→ F ) if
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dTV(Fn,F ) → 0 as n → ∞. Note that, if Fn
TV−→ F , then Fn

Law−→ F , where
Law−→

denotes convergence in distribution.
The following statement provides a total variation bound for the normal approx-

imation of the squared distance between a Gaussian vector with arbitrary mean and
a closed convex set.

THEOREM 2.1. Let C ⊂ Rd be a nontrivial closed convex set, F and σ 2 as
in (25), and N ∼ N (0, σ 2). Then for g ∼ N (0, Id) and μ ∈ Rd ,

dTV(F,N) ≤ 16
√

Ed2(g,C − μ)

σ 2 .

PROOF. As the translation of a closed convex set is closed and convex, and

d2(g + μ,C) = d2(g,C − μ)

we may replace C by C − μ and assume (without loss of generality) that μ = 0.
Using Lemma A.2 and Theorem A.1 in the Appendix, we deduce that

(29) dTV(F,N) ≤ 2

σ 2

√
Var
(∫ ∞

0
e−t
〈∇F(g), Ê

(∇F (̂gt )
)〉

dt

)
,

where

ĝt = e−tg +
√

1 − e−2t ĝ,

with ĝ an independent copy of g, and the symbols E and Ê denote, respectively,
expectation with respect to g and ĝ. Set also E = E ⊗ Ê. Letting H(g) denote the
integral inside the variance in (29), by (27) we have

H(g) = 4
∫ ∞

0
e−t 〈g − �C(g), Ê

[̂
gt − �C(̂gt )

]〉
dt.(30)

We bound the variance of H(g) by the Poincaré inequality (see Theorem A.2 in
the Appendix), which states that

(31) Var
(
H(g)
)≤ E

∥∥∇H(g)
∥∥2.

Applying the product rule and differentiating under the integral (justified, e.g., by
a dominated convergence argument), using (30), (27) and Lemma 2.1 we obtain

∇H(g) = 4
∫ ∞

0
e−t (Id − Jac(�C)(g)

)T
Ê
[̂
gt − �C(̂gt )

]
dt

(32)
+ 4
∫ ∞

0
e−t Ê
[(

Id − Jac(�C)(̂gt )
)T ](g − �C(g)

)
dt.
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The expectation of the squared norm of the first term on the right-hand side of (32)
is given by a factor of 16 multiplying

E

∥∥∥∥∫ ∞
0

e−t (Id − Jac(�C)(g)
)T

Ê
[̂
gt − �C(̂gt )

]
dt

∥∥∥∥2
≤ E

∫ ∞
0

e−t
∥∥(Id − Jac(�C)(g)

)T
Ê
[̂
gt − �C(̂gt )

]∥∥2 dt

≤ E

∫ ∞
0

e−t
∥∥Ê[̂gt − �C(̂gt )

]∥∥2 dt ≤ E
∫ ∞

0
e−t
∥∥̂gt − �C(̂gt )

∥∥2 dt

= E

∫ ∞
0

e−t
∥∥g − �C(g)

∥∥2 dt = E
∥∥g − �C(g)

∥∥2 = Ed2(g,C),

where we have used Jensen’s inequality (valid due to the fact that e−t is a den-
sity on [0,∞)) Lemma 2.1, Jensen’s inequality again, and the fact that ĝt has
the same distribution as g for all t . Applying a similar chain of inequalities, it
is immediate to bound the expectation of the squared norm of the second sum-
mand in (32) by the same quantity. Applying (31) together with the inequality
‖x + y‖2 ≤ 2‖x‖2 + 2‖y‖2, we therefore deduce that Var(H(g)) is bounded by
64Ed2(g,C). Substituting this bound into (29) yields the desired result. �

To conclude the section, we present a concentration bound for random variables
of the type (25).

THEOREM 2.2. Let C be a closed convex set, and F given in (25). Then

EeξF ≤ exp
(

2ξ2Ed2(g,C − μ)

1 − 2ξ

)
, for all ξ < 1/2,(33)

and

(34) P(F > t) ≤ exp
(
−Ed2(g,C−μ)h

(
t

2Ed2(g,C − μ)

))
for all t > 0,

where

h(u) = 1 + u − √
1 + 2u.

PROOF. We reduce to the case μ = 0 as in the proof of Theorem 3.1. The ar-
guments used in the proof of Lemma 4.9 of [34] for convex cones work essentially
in the same way for projections on closed convex sets: we shall therefore provide
only a quick sketch of the proof, and leave the details to the reader. Similarly to
[34], for g ∼ N (0, Id) we set

H(g) = ξZ for Z = d2(g,C) − Ed2(g,C),

and, using (27), we deduce that∥∥∇H(g)
∥∥2 = 4ξ2∥∥g − �C(g)

∥∥2 = 4ξ2d2(g,C) = 4ξ2(Z + Ed2(g,C)
)
.
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Proceeding as in the proof of Lemma 4.9 in [34], with Ed2(g,C) here replacing δC

there, yields the bound (33) on the Laplace transform of F . Using the terminology
defined in Section 2.4 of [9], we have therefore shown that F is sub-gamma on the
right tail, with variance factor 4Ed2(g,C) and scale parameter 2. The conclusion
now follows by the computations in that same section of [9]. �

Note that the estimate (34) is equivalent to the following bound: for every t > 0

P
(
F >

√
8Ed2(g,C − μ)t + 2t

)≤ e−t .

REMARK 2.1. Let C be a closed convex cone. In [34], Lemma 4.9, it is proved
that, for every ξ < 1

2 ,

(35) Eeξ(‖�C(g)‖2−δC) ≤ exp
(

2ξ2δC

1 − 2ξ

)
,

where g ∼ N (0, Id) and (as before) δC = E[‖�C(g)‖2]. This estimate can be de-
duced by applying the general relation (33) to the polar cone C0 in the case where
μ = 0: indeed, by virtue of (3) one has that∥∥�C(x)

∥∥2 = d2(x,C0),(36)

so that (35) follows immediately.

3. Steining the Steiner formula: CLTs for conic intrinsic volumes.

3.1. Metric projections on cones. The goal of our analysis in this subsection
is to demonstrate the following variation of Theorem 2.1.

THEOREM 3.1. Let C ⊂Rd be a nontrivial closed convex cone and let

F = ∥∥μ − �C(g + μ)
∥∥2 − m,

with

m = E
[∥∥μ − �C(g + μ)

∥∥2] and σ 2 = Var(F ).

Then for every μ ∈ Rd ,

dTV(F,N) ≤ 16

σ 2

{√
E
∥∥�C(g + μ)

∥∥2 + 2
√

m‖μ‖ + 3‖μ‖2}
≤ 16

σ 2

{√
m
(
1 + 2‖μ‖)+ 3‖μ‖2 + ‖μ‖}.
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PROOF. Expanding F , we obtain

F = ‖μ‖2 + ∥∥�C(g + μ)
∥∥2 − 2

〈
μ,�C(g + μ)

〉− m.

The gradient of the first and last terms above are zero, while

∇∥∥�C(x + μ)
∥∥2 = 2�C(x + μ) and ∇〈μ,�C(x + μ)

〉= Jact (�C(x + μ)
)
μ,

the first equality following from (36) and (27), the second from the definition of the
Jacobian, and Lemma 2.1, showing existence. We apply (95), and hence consider

G =
∫ ∞

0
e−t 〈∇F(g), Ê

(∇F (̂gt )
)〉

dt where ĝt = e−tg +
√

1 − e−2t ĝ,

with ĝ an independent copy of g. As before, we let E and Ê be expectation with
respect to g and ĝ, respectively, and write E = E ⊗ Ê.

Expanding out the inner product, we obtain

G =
∫ ∞

0
e−t 〈2�C(g + μ) − 2 Jact (�C(g + μ)

)
μ,

Ê
(
2�C(̂gt + μ) − 2 Jact (�C(̂gt + μ)

)
μ
)〉

dt

= 4(A1 − A2 − A3 + A4),

where

A1 =
∫ ∞

0
e−t 〈�C(g + μ), Ê

(
�C(̂gt + μ)

)〉
dt,

A2 =
∫ ∞

0
e−t 〈�C(g + μ), Ê

(
Jact (�C(̂gt + μ)

)
μ
)〉

dt,

A3 =
∫ ∞

0
e−t 〈Jact (�C(g + μ)

)
μ, Ê
(
�C(̂gt + μ)

)〉
dt and

A4 =
∫ ∞

0
e−t 〈Jact (�C(g + μ)

)
μ, Ê
(
Jact (�C(̂gt + μ)

)
μ
)〉

dt.

Exploiting (95), as well as the fact that σ 2 = E[G] = 4E[A1 − A2 − A3 + A4],
we deduce that

dTV(F,N) ≤ 2

σ 2 E
∣∣σ 2 − 4(A1 − A2 − A3 + A4)

∣∣
(37)

≤ 8

σ 2

4∑
i=1

E|Ai − EAi | ≤ 8

σ 2 (B1 + B2 + B3 + B4),

where

B1 =√Var(A1) and Bj = 2E|Aj | for j = 2,3,4.
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One has that

Bj ≤ 2E
(∥∥�C(g + μ)

∥∥2)1/2‖μ‖
≤ 2
(√

m + ‖μ‖)‖μ‖ for j = 2,3 and B4 ≤ 2‖μ‖2,

where we have applied the Cauchy–Schwarz and triangle inequality, as well as
Lemma 2.1. On the other hand, one can write

A1 =
∫ ∞

0
e−t 〈g + μ − �C0(g + μ), Ê

(̂
gt + μ − �C0 (̂gt + μ)

)〉
dt,

and exploit exactly the same arguments used after formula (30) (with g + μ and
ĝt + μ replacing, respectively, g and ĝt ) to deduce

B2
1 = Var(A1) ≤ 4E

[∥∥g + μ − �C0(g + μ)
∥∥2]= 4E

[∥∥�C(g + μ)
∥∥2],

thus yielding the first claim of the theorem. The second follows from observing
that √

E
[∥∥�C(g + μ)

∥∥2]≤ √
m + ‖μ‖,

where we have applied the triangle inequality with respect to the norm on

Rd -valued random vectors defined by the mapping X 	→
√

E‖X‖2. �

3.2. Master Steiner formula and main CLTs. As anticipated in the Introduc-
tion, the aim of this section is to obtain CLTs involving the conic intrinsic volume
distributions {L(VCn)}n≥1 (see Section 1.2) associated with a sequence {Cn}n≥1 of
closed convex cones. The strategy for achieving this goal will consist in connecting
the intrinsic volume distribution of a closed convex cone C ⊂ Rd to the squared
norm of the metric projection of g ∼ N (0, Id) onto C.

Our main tool will be the powerful “Master Steiner formula” of [34], Theo-
rem 3.1 and Corollary 3.2, which can be expressed as in (7), and is stated formally
below in Theorem 3.2. As shown in [34], the angular Steiner formula (5) is a con-
sequence of Theorem 3.2. In particular, one can regard Theorem 3.2 and (7) as
a probabilistic counterpart to the Steiner formulae of spherical integral geometry;
see [27] or [42].

Throughout the following, we use the symbol χ2
j to indicate the chi-squared

distribution with j degrees of freedom, j = 0,1,2, . . . .

THEOREM 3.2 (Master Steiner formula, see [34]). Let C ⊂ Rd be a nontrivial
closed convex cone, denote by C0 its polar cone, and write {vj : j = 0, . . . , d} to
indicate the conic intrinsic volumes of C. Then, for every measurable mapping
f :R2+ →R,

Ef
(∥∥�C(g)

∥∥2,∥∥�C0(g)
∥∥2)= d∑

j=0

E
[
f
(
Yj ,Y

′
d−j

)]
vj ,(38)
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where {Yj ,Y
′
j , j = 0, . . . , d} stands for a collection of independent random vari-

ables such that Yj ,Y
′
j ∼ χ2

j , j = 0,1 . . . , d .

Observe that, somewhat more compactly, we may also express (38) as the mix-
ture relation (∥∥�C(g)

∥∥2,∥∥�C0(g)
∥∥2) Law= (YVC

,Y ′
V

C0

)
,(39)

where the integer-valued random variable VC is independent of {Yj ,Y
′
j , j =

0, . . . , d}, and VC0 = d − VC . Once combined with (3) and (9), in the case of a
polyhedral cone C ⊂ Rd , relation (39) reinforces the intuition that, given the di-
mension j of the face of C in which lies the projection �C(g), the Gaussian vector
g can be written as the sum of two independent Gaussian elements, with dimension
j and d −j respectively, whose squared lengths follow the chi-squared distribution
with the same respective degrees of freedom.

Fix a nontrivial closed convex cone C ⊂ Rd . In order to connect the standard-
ised limiting distributions of ‖�C(g)‖2 and VC , we use (39) to deduce that

∥∥�C(g)
∥∥2 Law=

VC∑
i=1

Xi = WC + VC, where WC =
VC∑
i=1

(Xi − 1),(40)

and {Xi}i≥1 denotes a collection of i.i.d. χ2
1 random variables, independent of VC .

Since EXi = 1, we find E‖�C(g)‖2 = E[VC], and letting GC denote the squared
projection length, we have

GC = ∥∥�C(g)
∥∥2 and δC = E[GC].(41)

Similarly, applying the conditional (on VC) variance formula in (40) yields, with
τ 2
C := Var(VC) and σ 2

C := Var(GC), that

Var(WC) = 2δC and σ 2
C = τ 2

C + 2δC,(42)

the latter formula recovering Proposition 4.4 of [34]. Standardizing both sides of
the first equality in (40) we therefore obtain that

(43)
GC − δC

σC

Law=
√

2δC

σC

WC√
2δC

+ τC

σC

VC − δC

τC

.

The following statement, that is partially a consequence of Theorem 3.1, shows
that a total variation bound to the normal for the standardised projection can be ex-
pressed in terms of the mean δC only. We recall that C is self dual when C0 = −C,
and that in this case δC = d/2 by (8).

PROPOSITION 3.1. We have that

τ 2
C ≤ 2δC and 2δC ≤ σ 2

C ≤ 4δC.(44)
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In addition, with GC and δC as in (41) and N ∼N (0, σ 2
C), one has that

dTV(GC − δC,N) ≤ 16
√

δC

σ 2
C

≤ 8√
δC

and, if C is self dual, then

(45)

dTV(F,N) ≤ 8
√

2√
d

.

PROOF. Theorem 4.5 of [34] yields the first bound in (44). The second bound
in (44) now follows from the second relation stated in (42). The first inequality
in (45) follows from the first inequality of Theorem 3.1 by setting μ = 0, and the
remaining claims by the lower bound on σ 2

C in (44). �

REMARK 3.1. The first estimate in (45) can also be directly obtained from
Theorem 2.1 by specializing it to the case μ = 0. Indeed, writing C0 for the dual
cone of C, one has that ‖�C(g)‖2 = d2(g,C0): the conclusion then follows by
applying Theorem 2.1 to the random variable F = d2(g,C0) − Ed2(g,C0).

We now consider normal limits for the conic intrinsic volumes. Explicit Berry–
Esseen bounds will be presented in Theorem 5.1.

THEOREM 3.3. Let {dn : n ≥ 1} be a sequence of nonnegative integers and
let {Cn ⊂ Rdn : n ≥ 1} be a collection of nontrivial closed convex cones such that
δCn → ∞. For notational simplicity, write δn, σn, τn, etc., instead of δCn , σCn , τCn ,
etc., respectively. Then:

1.

dTV

(
Wn√
2δn

,N

)
≤ 2σn

δn

, for all n ≥ 1,(46)

where N ∼ N (0,1), and

Wn√
2δn

TV−→N (0,1), as n → ∞.

2. The two random variables Wn√
2δn

and Vn−δn

τn
are asymptotically independent in

the following sense: if {nk : k ≥ 1} is a subsequence diverging to infinity and

Vnk
− δnk

τnk

, k ≥ 1,(47)

converges in distribution to some random variable Z, then(
Wnk√
2δnk

,
Vnk

− δnk

τnk

)
Law−→ (N,Z),

where N has the N (0,1) distribution and is stochastically independent of Z.
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3. If

Vn − δn

τn

Law−→N (0,1), as n → ∞,(48)

then
Gn − δn

σn

Law−→ N (0,1), as n → ∞,(49)

and the converse implication holds if lim infn→∞ τ 2
n/δn > 0.

REMARK 3.2. Proposition 3.1 shows that, if δn → ∞, then (49) holds and,
provided

lim inf τ 2
n/δn > 0,

relation (48) also takes place by virtue of Part 3 of Theorem 3.3. This chain of
implications, which is one of the main achievements of the present paper, corre-
sponds to the statement of Theorem 1.1 in the Introduction (exception made for the
Berry–Esseen bound). Results analogous to Part 3 of Theorem 3.3 (involving gen-
eral mixtures of independent χ2 random variables) can be found in Dykstra [26].

PROOF OF THEOREM 3.3. Throughout the proof, and when there is no risk of
confusion, we drop the subscript n for readability.

(Point 1) By [33], a variable X with a �(α,λ) distribution satisfies

E
[
Xf ′(X) + (α − λX)f (X)

]= 0(50)

for all locally absolutely continuous functions f for which these expectations exist.

By (40), we have (W + V )/
√

2δ
(d)= �(V/2,

√
δ/2) conditionally on V . It fol-

lows from the characterization (50) that, for every Lipschitz mapping φ : R → R,
we have, by first conditioning on V and then taking expectation,

E

[
W + V√

2δ
φ′
(

W + V√
2δ

)]
= E

[
W

2
φ

(
W + V√

2δ

)]
.

Since when conditioning, one may as well consider the mapping x 	→ φ(x −
V/

√
2δ), by the same reasoning we obtain

E

[
W + V√

2δ
φ′
(

W√
2δ

)]
= E

[
W

2
φ

(
W√
2δ

)]
,

which upon rearrangement can be written as

1

δ
E

[
(W + V )φ′

(
W√
2δ

)]
= E

[
W√
2δ

φ

(
W√
2δ

)]
.

Stein’s inequality (90) in the Appendix therefore yields that

dTV

(
W√
2δ

,N

)
≤ 2

δ
E|W + V − δ| ≤ 2

δ

√
2δ + τ 2 = 2σ

δ
≤ 4√

δ
→ 0

using (44) together with the fact that δ → ∞ by assumption.
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(Point 2) Let η, ξ be arbitrary real numbers. Using that the conditional distri-
bution L(W |V ) corresponds to a centered chi-squared distribution with V degrees
of freedom, we have

E
[
eiηW |V ]= e−iηV

(1 − 2iη)V/2 = exp
(−V
(
iη + (1/2) log(1 − 2iη)

))
.

Conditioning on V , we obtain the following expression for the joint characteristic
function of W/

√
2δ and (V − δ)/τ :

ψ(η, ξ) := E
[
e
iη W√

2δ
+iξ V −δ

τ
]= E

[
e−V (iη/

√
2δ+(1/2) log(1−2iη/

√
2δ))+iξ V −δ

τ
]

= eδ[−iη/
√

2δ− 1
2 log(1−2iη/

√
2δ)](51)

× E
[
e

V −δ
τ

(iξ−iητ/
√

2δ− τ
2 log(1−2iη/

√
2δ))].

As δ → ∞, one has clearly that

δ

[
−iη/

√
2δ − 1

2
log(1 − 2iη/

√
2δ)

]
→ −η2/2.

Moreover, since τ/δ ≤ √
2/δ → 0 by (44), we obtain as well that

iξ − iητ/
√

2δ − τ/2 log(1 − 2iη/
√

2δ) → iξ.

Hence, letting ψZ be the characteristic function of the limiting distribution Z of
the sequence in (47), we infer that

ψ(η, ξ) → e−η2/2ψZ(ξ),

thus yielding the desired conclusion.
(Point 3) For both implications, it is sufficient to show that, for every subse-

quence nk , k ≥ 1, of 1,2,3, . . . , there exists a further subsequence nkl
, l ≥ 1, along

which the claimed distributional convergence holds. By (44), 0 ≤ lim inf τ 2/δ ≤
lim sup τ 2/δ ≤ 2, so for every nk, k ≥ 0 there exists a further subsequence nkl

, l ≥
1, along which τ 2/δ converges to a limit, say r , in [0,2]. Hence, along nkl

, l ≥ 1,
we obtain

√
2δ/σ =

√
2δ/
(
2δ + τ 2

)→
√

2

2 + r
and τ/σ →

√
r

2 + r
.

Assume first that (48) is satisfied. Then, according to (43) and Point 2 in the

statement, one has that G−δ
σ

converges in distribution along nkl
, l ≥ 1, to

√
2

2+r
N +√

r
2+r

Z, where N and Z are two independent N (0,1) random variables, and we
conclude that (49) holds along nkl

, l ≥ 1. Now assume that (49) is satisfied and
that lim infn→∞ τ 2

n/δn > 0; in this case, we may assume that τ 2/δ converges to r ∈
(0,2] along nkl

. Observe that, by virtue of boundedness in L2, the family {V −δ
τ

}
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TABLE 1
Some common cones

Cone Ambient δ τ2

Orthant Rd 1
2d 1

4d

Real Positive Semi-Definite Cone Rn2 1
4n(n + 1) � ( 4

π2 − 1
4 )n2

Circα Rd d sin2 α 1
2 (d − 2) sin2(2α)

CA Rd ∑d
k=1 k−1 ∑d

k=1 k−1(1 − k−1)

CBC Rd ∑d
k=1

1
2k−1 ∑d

k=1
1
2k−1(1 − 1

2k−1)

is tight. Consider now a further subsequence of nkl
along which V −δ

τ
converges

in distribution to, say, Z. According to Point 2, we know that the elements of

the limiting pair (N,Z) are independent, and by (49) the sum
√

2
2+r

N +
√

r
2+r

Z

is normal. By Cramér’s theorem, we conclude that both N and Z are normally
distributed, yielding the desired conclusion. �

As Table 1 shows, Theorem 1.1 yields a central limit theorem for Gn and Vn

for the most common examples of convex cones that appear in practice. The last
two rows refer to CA and CBC , chambers of finite reflection groups acting on Rd ,
which are the normal cones to the permutahedon, and signed permutahedron, re-
spectively. For further definitions and properties see, for example, [3, 34] and the
references therein.

REMARK 3.3. The first three lines of Table 1 are taken from Table 6.1 of
[34]. The means for the permutathedron and signed permutahedron are from Sec-
tion D.4. of [3]. The expressions for the variances τ 2 associated with the permu-
tathedron and signed permutahedron can be deduced as follows. Let

q(s) =
d∑

k=0

vks
k,

be the probability generating function of the distribution of V = VCd
. We have

q ′(1) = EV and q ′′(1) = EV (V − 1)

so in particular,

Var(V ) = q ′(1) + q ′′(1) − q ′(1)2 = q ′(1) + logq(s)′′|s=1.

For the permutahedron, one can use Theorem 3 of [24], Theorem 3 (see also the
first line of Table 10 of [19]) to deduce that

q(s) = 1

d!
d∏

k=1

(s + k − 1) so that logq(s) = − logd! +
d∑

k=1

log(s + k − 1).
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Hence,

EV = q ′(1) = logq(s)′ |s=1=
(

d∑
k=1

1

s + k − 1

)
s=1

=
d∑

k=1

1

k
,

and

Var(V ) = q ′(1) + logq(s)′′ |s=1= q ′(1) −
(

d∑
k=1

1

(s + k − 1)2

)
s=1

=
d∑

k=1

(
1

k
− 1

k2

)
.

The calculation for the signed permutahedron is the analogous, but now one has
to use [7], formula (3); see also the second line of Table 10 of [19].

We conclude the section with a statement showing that the rate of convergence
appearing in (46) is often optimal. Also, by suitably adapting the techniques in-
troduced in [35], one can deduce precise information about the local asymptotic
behaviour of the difference P [Wn/

√
2δn ≤ x] − P [N ≤ x], where x ∈ R and

N ∼ N (0,1).

PROPOSITION 3.2. Let the notation and assumptions of Theorem 3.3 prevail,
and assume further that τ 2

n/δn → r for some r ≥ 0, as n → ∞. Then, for every
x ∈ R one has that, as n → ∞,

(52)
δn

σn

(
P

[
Wn√
2δn

≤ x

]
− P [N ≤ x]

)
−→ −

√
2

18 + 9r

(
x2 − 1

)e−x2/2
√

2π
.

As a consequence, there exists a constant c ∈ (0,1) (independent of n) such that,
for all n sufficiently large,

(53) c
σn

δn

≤ dKol

(
Wn√
2δn

,N

)
≤ dTV

(
Wn√
2δn

,N

)
.

PROOF. Fix x ∈ R. It suffices to show that, for every sequence nk, k ≥ 1 di-
verging to infinity, there exists a subsequence nkl

, l ≥ 1 along which the conver-
gence (52) takes place. Let then nk → ∞ be an arbitrary divergent sequence. By

L2-boundedness, the collection of the laws of the random variables
Vnk

−δnk

τnk
, k ≥ 1

is tight and, therefore, there exists a subsequence nkl
such that

Vnkl
−δnkl

τnkl

converges

in distribution to some random variable Z. Exploiting again L2-boundedness,
which additionally implies uniform integrability, one sees immediately that Z is
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necessarily centered. Now let φx = φh denote the solution (91) to the Stein equa-
tion (89) for the indicator test function h = 1(−∞,x]. By (2.8) of [18], φx is Lips-
chitz, so as in part 1 of the proof of Theorem (3.3), we have

E

[
Wn√
2δn

φ

(
Wn√
2δn

)]
= 1

δn

E

[
(Wn + Vn)φ

′
(

Wn√
2δn

)]
.

Hence, by (89), we obtain

P

[
Wn√
2δn

≤ x

]
− P [N ≤ x] = E

[
φ′

x

(
Wn√
2δn

)
− Wn√

2δn

φx

(
Wn√
2δn

)]

= 1

δn

E

[
φ′

x

(
Wn√
2δn

)
(δn − Wn − Vn)

]
.

Dividing both sides by σn/δn, one obtains

δn

σn

(
P

[
Wn√
2δn

≤ x

]
− P [N ≤ x]

)

= E

[
φ′

x

(
Wn√
2δn

)(
− τn

σn

Vn − δn

τn

−
√

2δn

σn

Wn√
2δn

)]
.

In view of Parts 1 and 2 of Theorem 3.3, of formula (42), and of the fact that Z

is centered, one has, along the subsequence nkl
, that

δn

σn

(
P

[
Wn√
2δn

≤ x

]
− P [N ≤ x]

)
→ −
√

2

2 + r
E
[
φ′

x(N)N
]
,

where N ∼ N (0,1). We can now use, for example, [35], formula (2.20), to deduce
that, for every real x,

E
[
φ′

x(N)N
]= (x2 − 1)

3
× e−x2/2

√
2π

,

from which the desired conclusion follows at once. �

In the next section, we shall prove general upper and lower bounds for the vari-
ance of conic intrinsic volumes. In particular, these results will apply to two fun-
damental examples that are not covered by the estimates contained in Table 1,
and that are key in convex recovery of sparse vectors and low rank matrices: the
descent cone of the 
1 norm, and of the Schatten 1-norm.

4. Bounds on the variance of conic intrinsic volumes.

4.1. Upper and lower bounds. Fix d ≥ 1, let C ⊂ Rd be a closed convex cone,
and let V = VC be the integer-valued random variable associated with C via re-
lation (6). As before, we will denote by g ∼ N (0, Id) a d-dimensional standard
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Gaussian random vector. The following statement provides useful new upper and
lower bounds on the variance of VC .

THEOREM 4.1. Define

v := ∥∥E[�C(g)
]∥∥2 and b :=

√
dδC/2,(54)

where δC is the statistical dimension of C. Then one has the following estimates:

(55)
v2

b
≤ Var(VC) ≤ 2v.

REMARK 4.1. (a) In view of the orthogonal decomposition (3) and of the fact
that g is a centered Gaussian vector, one has that

(56) v = −〈E[�C(g)
]
,E
[
�C0(g)

]〉= ∥∥E[�C0(g)
]∥∥2,

where C0 is the polar of C. Moreover, since the mapping x 	→ min(x2,4b2) is in-
creasing on R+, one has also that Var(VC) ≥ min(x2,4b2)/b, for every 0 ≤ x < v.

(b) An elementary consequence of (55) is the intuitive fact that a closed convex
cone C is a subspace if and only if v = 0, that is, if and only if �C(g) is a centered
random vector.

In order to prove Theorem 4.1, we need the following auxiliary result.

LEMMA 4.1 (Steiner form of the conic variance). For any closed convex
cone C,

Var(VC) = −Cov
(∥∥�C(g)

∥∥2,∥∥�C0(g)
∥∥2).

PROOF. From the Master Steiner formula (38), we deduce that

Cov
(∥∥�C(g)

∥∥2,∥∥�C0(g)
∥∥2)= d∑

j=0

E
[
YjY

′
d−j

]
vj − δC(d − δC)

=
d∑

j=0

j (d − j)vj − δC(d − δC),

and the conclusion follows from straightforward simplifications. �

PROOF OF THEOREM 4.1. (Upper bound) Using (42), one has that Var(VC) =
Var(‖�C(g)‖2) − 2δC . Now we apply Lemma A.2 and Theorem A.2 in the Ap-
pendix to the mapping F(g) = ‖�C(g)‖2 = d2(g,C0), to obtain that

Var
(∥∥�C(g)

∥∥2)≤ 1

2
E
[∥∥∇F(g)

∥∥2]+ 1

2

∥∥E[∇F(g)
]∥∥2 = 2δC + 2v,
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where we have used the fact that ∇‖�C(g)‖2 = 2�C(g), following from (36)
and (27).

(Lower bound) For every t > 0, define ĝt = e−tg + √
1 − e−2t ĝ, where ĝ is an

independent copy of g. The crucial step is to apply relation (97) in the Appendix
to the random variables F(g) = ‖�C(g)‖2 and G(g) = ‖�C0(g)‖2, obtaining that,
for any a ≥ 0,

Cov
(∥∥�C(g)

∥∥2,∥∥�C0(g)
∥∥2)= 4E

∫ ∞
0

e−t 〈�C(g),�C0 (̂gt )
〉
dt

≤ 4E
∫ ∞
a

e−t 〈�C(g),�C0 (̂gt )
〉
dt,

where we have used the definition of the polar cone C0 as that set that has nonpos-
itive inner product with all elements of C, and E indicates expectation over g and
ĝ. Now write〈

�C(g),�C0 (̂gt )
〉= 〈�C(g),�C0 (̂g)

〉+ 〈�C(g),�C0 (̂gt ) − �C0 (̂g)
〉
.(57)

For the second term, using the fact that the projection �C0(x) is 1-Lipschitz,∣∣E〈�C(g),�C0 (̂gt ) − �C0 (̂g)
〉∣∣

≤ E
(∥∥�C(g)

∥∥∥∥�C0 (̂gt ) − �C0 (̂g)
∥∥)

≤ E
(∥∥�C(g)

∥∥‖̂gt − ĝ‖)≤√δ(C)E‖̂gt − ĝ‖2 ≤√2dδ(C)e−t = 2be−t ,

as

E‖̂gt − ĝ‖2 = E
∥∥e−tg + (√1 − e−2t − 1

)̂
g
∥∥2 = 2

(
1 −
√

1 − e−2t
)
d ≤ 2e−2t d.

Now use Lemma 4.1: multiplying (57) by e−t , integrating over [a,∞) and taking
expectation yields

−Var(VC) ≤ 4E
∫ ∞
a

e−t 〈�C(g),�C0 (̂gt )
〉
dt ≤ 4e−a(−v + be−a),

showing that, for every y ∈ [0,1],
Var(VC) ≥ 4y(v − by).

As δC = E[‖�C(g)‖2] ≤ E‖g‖2 = d , applying Jensen’s inequality we obtain

v = ∥∥E�C(g)
∥∥2 ≤ E

∥∥�C(g)
∥∥2 = δC ≤√dδC ≤√2dδC = 2b.

The claim now follows by maximizing the mapping y 	→ 4y(v−by) at y = v/2b ∈
[0,1]. �

In the next two sections, we shall apply the variance bounds of Theorem (4.1)
to the descent cones of the 
1 and Schatten-1 norms.
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4.2. The descent cone of the 
1 norm at a sparse vector. The next result pro-
vides the key for completing the proof of Theorem 1.3. In the body of the proofs in
this subsection and the next, given two positive sequences an, bn, n ≥ 1, we shall
use the notation an ≈ bn to indicate that an/bn → 1, as n → ∞.

PROPOSITION 4.1. Let the assumptions and notation of Theorem 1.3 prevail
(in particular, sn = �ρdn� for a fixed ρ ∈ (0,1)). Then

(58) lim inf
n

τ 2
n

δn

≥ √
2 min
{

2

√
1

ψ(ρ)
; ρ2γ (ρ)4

ψ(ρ)3/2

}
> 0,

where ψ(ρ) is defined in (20) and γ = γ (ρ) > 0 is the unique solution to the
stationary equation √

2

π

∫ ∞
γ

(
u

γ
− 1
)
e−u2/2 du = ρ

1 − ρ
.

PROOF. Since the 
1 norm is invariant with respect to signed permutations,
we can assume—without loss of generality—that the sparse vector xn,0 has the
form (xn,1, . . . , xn,sn,0, . . . ,0), xn,j > 0. Also, by virtue of the estimate (21), one
has that δn ≈ snψ(ρ)/ρ. Now write

vn := ∥∥E[�Cn(gn)
]∥∥2 = ∥∥E[�C0

n
(gn)
]∥∥2, n ≥ 1,

where we have used (56), and: (i) Cn is the descent cone of the 
1 norm at xn,0, (ii)
C0

n is the polar cone of Cn and (iii) gn = (g1, . . . , gdn) stands for a dn-dimensional
standard centered Gaussian vector.

Using the lower bound in (55) together with some routine simplifications, it is
easily seen that relation (58) is established if one can show that

(59) lim inf
n

vn

sn
≥ γ (ρ)2.

To accomplish this task, we first reason as in [3], Section B.1, to deduce that,
for every n, the polar cone C0

n has the form
⋃

γ≥0 γ · ∂‖xn,0‖1, where ∂‖xn,0‖1

denotes the sub-differential of the 
1 norm at xn,0, that collection of vectors z =
(z1, . . . , zdn) ∈ Rdn such that z1 = · · · = zsn = 1 and |zj | ≤ 1, for every j = sn +
1, . . . , dn. As a consequence, for every n, the projection �C0

n
(gn) has the form

�C0
n
(g) = (γρ,n, . . . , γρ,n, �, . . . , �),

where the symbol “�” stands for entries whose exact values are immaterial for our
discussion, and γρ,n > 0 is defined as the unique random point minimising the
mapping γ 	→ Fn,ρ(γ ) :=∑sn

i=1(gi − γ )2 +∑dn

i=sn+1(|gi | − γ )2+ over R+. This

shows that vn ≥ snE[γρ,n]2: as a consequence, in order to prove that (59) holds it
suffices to check that

(60) lim inf
n

E[γρ,n] ≥ γ (ρ).
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The key point is now that γρ,n is (trivially) the unique minimiser of the normalised
mapping γ 	→ 1

dn
Fn,ρ(γ ), and also that, in view of the strong law of large numbers,

for every γ ≥ 0,

1

dn

Fn,ρ(γ ) −→ Hρ(γ ) := {ρ(1 + γ 2)+ (1 − ρ)E
[(|N | − γ

)2
+
]}

,

(61)
as n → ∞,

with probability 1.
The function γ 	→ Hρ(γ ) is minimised at the unique point γ = γ (ρ) > 0 given

in the statement, and Fn,ρ(γ ) is convex by (1) of Lemma C.1 of [3]. Fix ω ∈ �

and 0 < ε < γ (ρ), and set

Dε = min
u∈{±1}

[
Hρ

(
γ (ρ) + εu

)− Hρ

(
γ (ρ)
)]

.

Since γ (ρ) is the unique minimiser of Hρ , one has Dε > 0. From (61), we deduce
the existence of n0(ω) large enough such that n ≥ n0(ω) implies

2 max
v∈{0,±1}

∣∣∣∣ 1

dn

Fn,ρ

(
γ (ρ) + εu

)− Hρ

(
γ (ρ) + εu

)∣∣∣∣< Dε,

implying in turn, by Lemma A.3, that∣∣γρ,n − γ (ρ)
∣∣≤ ε.

That is, with probability 1,

γρ,n −→ γ (ρ) as n → ∞.

Relation (60) now follows from a standard application of Fatou’s lemma, and
the proof of (58) is therefore achieved. �

4.3. The descent cone of the Schatten 1-norm at a low rank matrix. In this
section, we provide lower bounds on the conic variances of the descent cones of
the Schatten 1-norm [see Definition (24)] for a sequence of low rank matrices.

For every k ∈ N, let (n,m, r) be a triple of nonnegative integers depending on k.
We drop explicit dependence of n,m and r on k for notational ease, and continue to
take m ≤ n without loss of generality. We assume that n → ∞,m/n → ν ∈ (0,1]
and r/m → ρ ∈ (0,1) as k → ∞, and that for every k the matrix X(k) ∈Rm×n has
rank r . Let

Ck = D
(‖ · ‖S1,X(k)

)
, δk = δ(Ck) and τ 2

k = Var(VCk
)

denote the descent cone of the Schatten 1-norm of X(k), its statistical dimension,
and the variance of its conic intrinsic volume distribution, respectively. Proposi-
tion 4.7 of [3] provides that

lim
k→∞

δk

nm
= ψ(ρ, ν),(62)
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where ψ : [0,1]2 → [0,1] is given by

ψ(ρ, ν) = inf
γ≥0

η(γ )

(63)

with η(γ ) =
{
ρν + (1 − ρν)

[
ρ
(
1 + γ 2)+ (1 − ρ)

∫ a+

a−
(u − γ )2+φy(u)du

]}
,

and y = (ν − ρν)/(1 − ρν), a± = 1 ± √
y, and

φy(u) = 1

πyu

√(
u2 − a2−

)(
a2+ − u2

)
for u ∈ [a−, a+].

The infimum of η(γ ) over [0,∞) is attained at the solution γ (ν,ρ) to∫ a+

a−∨γ

(
u

γ
− 1
)
φy(u)du = ρ

1 − ρ
.

It is not difficult to verify that γ (ν,ρ) > 0 for all ν ∈ (0,1], ρ ∈ (0,1).

PROPOSITION 4.2. For the sequence of matrices X(k), k ∈ N,

lim inf
k→∞

τ 2
k

δk

≥ min
(√

2[ρ(1 − νρ)γ (ν, ρ)]2

ψ(ρ, ν)3/2 ,
23/2

√
ψ(ρ, ν)

)
.(64)

PROOF. By (D.8) of [3], the sub-differential of the Schatten 1-norm at X(k) is
given by

∂
∥∥X(k)

∥∥
S1

=
{[

Ir 0
0 W

]
∈ Rm×n : σ1(W) ≤ 1

}
,(65)

and it generates the polar C0 of the descent cone, see Corollary 23.7.1 of [38].
Closely following the proof of Proposition 4.7 of [3], and in particular the applica-
tion of the Hoffman–Wielandt theorem (see [30], Corollary 7.3.8, for the second
equality below), taking G to be an m×n matrix with independent N (0,1) entries,
we have

dist
(
G, γ · ∂∥∥X(k)

∥∥
S1

)2 =
∥∥∥∥[G11 − γ Ir G12

G21 0

]∥∥∥∥2
F

+ inf
σ1(W)≤1

‖G22 − γ W‖2
F

(66)

=
∥∥∥∥[G11 − γ Ir G12

G21 0

]∥∥∥∥2
F

+
m−r∑
i=1

(
σi(G22) − γ

)2
+,

with ‖ · ‖F denoting the Frobenius norm and where G is partitioned into the 2 × 2
block matrix (Gij )1≤i,j≤2 formed by grouping successive rows of sizes r and m−
r , and successive columns of sizes r and n − r . Hence, we obtain

�C0
k
(G) =

[
γkIr 0

0 γkW
∗
]

(67)
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for some matrix W ∗ with largest singular value at most 1, and γk the minimiser of
the map γ → dist(G, γ · ∂‖X(k)‖S1)

2 given by (66). As the sub-differential (65)
is a nonempty, compact, convex subset of Rm×n that does not contain the origin,
Lemma C.1 of [3] guarantees that the map is convex.

By [4], Theorem 3.6,

1

nm
dist2
(
G, γ

√
n − r · ∂‖X‖S1

)→a.s. η(γ ),

where η(γ ) is given in (63). Reasoning as in Section 4.2 (that is, using Lemma A.3
followed by Fatou’s lemma), we obtain

γk√
n − r

= argmin
(
dist2
(
G, γ

√
n − r · ∂‖X‖S1

))→a.s. γ (ν, ρ) and

(68)

lim inf
k→∞

E[γk]√
n − r

≥ γ (ν,ρ).

We now invoke Theorem 4.1, and make use of (b) of Remark 4.1, to compute a
variance lower bound in terms of

vk = ∥∥E[�C0
k
(G)
]∥∥2

F .

The two terms in the minimum in (55) give rise to the corresponding terms in (64).
By (67), ∥∥�C0(G)

∥∥
F ≥ √

rγk.

Squaring, taking expectation, and applying (68), we find

lim inf
k→∞

vk

nm
≥ lim inf

k→∞
rγ 2

k

nm
= ρ(1 − νρ)γ (ν, ρ).(69)

Letting bk = √
δknm/2, since (62) provides that δk ≈ nmψ(ρ, ν), we obtain

lim inf
k→∞

v2
k

δkbk

= lim inf
k→∞

√
2v2

k

(nm)2ψ(ρ, ν)3/2 .

Applying (69) now yields the first term in (64). Next, as

lim inf
k→∞

4bk

δk

= lim inf
k→∞ 23/2

√
nm

δk

,

applying (62) now yields the second term in (64), completing the proof. �

5. Bound to the normal for VC . Fix a nontrivial convex cone C ⊂ Rd , and
denote by δC and τC , respectively, the mean and variance of its intrinsic conic
distribution. The main result of the present section is Theorem 5.1, providing a
bound on the L∞ norm

η = ‖F − �‖∞ = sup
u∈R
∣∣F(u) − �(u)

∣∣(70)
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of the difference between the distribution function F(u) of (VC − δC)/τC and
�(u) = P [N ≤ u], where N ∼ N (0,1).

Theorem 2.1 yields a total variation bound to the normal for GC = ‖�C(g)‖2 by
Stein’s method. In particular, as GC is a function of a standard Gaussian vector g,
Theorem A.1 may be invoked. On the other hand, as VC determines the number of
degrees of freedom in the conditional chi-squared distribution of GC , no such rep-
resentation for VC is available. Moreover, coupling constructions as typically ap-
plied in Stein’s method also appear to be out of reach, making a Fourier argument
more natural. Taking this path leads to exploiting the relationship (80) between the
characteristic functions of VC and GC , and then applying the total variation bound
for GC provided by Theorem 2.1 to control the term (88).

In the following, we set log+ x = max(logx,0).

LEMMA 5.1. Let ψF (t) and ψG(t) denote the characteristic functions of
a mean-zero distribution with variance 1 and the standard normal distribution
N (0,1), respectively. If

sup
|t |≤L

∣∣ψF (t) − ψG(t)
∣∣≤ B(71)

for some positive real numbers L and B , then

η ≤ B log+(L) + 4

L
.(72)

PROOF. The result holds trivially for L < 1, so assume L ≥ 1. Let hL(x) be
the “smoothing” density function

hL(x) = 1 − cosLx

πLx2 ,

corresponding to the distribution function HL(x), let �(x) = F(x) − G(x), and
let

�L = � ∗ HL and ηL = sup
∣∣�L(x)

∣∣.
By Lemma 3.4.10 and the proof of Lemma 3.4.11 of [25], we have

η ≤ 2ηL + 24√
2π3/2L

and ηL ≤ 1

2π

∫
|t |≤L

∣∣ψF (t) − ψG(t)
∣∣dt

|t | .(73)

As ψF (t) is a characteristic function of a mean-zero distribution with variance 1,
it is straightforward to prove that

∣∣ψF (t) − 1
∣∣≤ t2

2
,

so ∣∣ψF (t) − ψG(t)
∣∣= ∣∣(ψF (t) − 1

)− (ψG(t) − 1
)∣∣≤ t2.
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Hence, for all ε ∈ (0,L]∫
|t |≤ε

∣∣ψF (t) − ψG(t)
∣∣dt

|t | ≤
∫
|t |≤ε

|t | = ε2.(74)

By (71), ∫
ε<|t |≤L

∣∣ψF (t) − ψG(t)
∣∣dt

|t | ≤ 2B log(L/ε).(75)

Hence, by (74), (75) and (73),

η ≤ 1

π

(
ε2 + 2B log(L/ε) + 24√

2πL

)
.

As L ≥ 1 we may choose ε = L−1/2. The conclusion now follows. �

LEMMA 5.2. Let τ ≥ 0 and δ > 0 satisfy τ 2 ≤ 2δ. Then the quantity

L =
√

τ 2

144δ
log+
(

τ 3

δ

)
satisfies L ≤ τ/8.(76)

PROOF. Consider the function on [0,∞) given by

f (x) = 2
√

2x − e
9x2

4 , with derivative f ′(x) = 2
√

2 − 9x

2
e

9x2
4 .

Clearly, f ′(x) is positive at zero and decreases strictly to −∞ as x → ∞. Hence,
f (x) has a global maximum value on [0,∞) achieved at the unique solution x0 to
the equation

xe
9x2

4 = 4
√

2

9
.

Note that

f (x0) = 2
√

2x0 − e
9x2

0
4 = 2

√
2

9x0

(
9x2

0 − 9

2
√

2
x0e

9x2
0

4

)
= g(x0),

where

g(x) = 2
√

2

9x

(
9x2 − 2

)
and that

f ′
(√

2

3

)
=

√
2

2
(4 − 3

√
e) < 0.

Hence, x0 ≤ √
2/3, and since g(x) is increasing in [0,∞), we have f (x0) =

g(x0) ≤ g(
√

2/3) = 0. As f (x0) is the global maximum of f (x) on [0,∞), we
conclude that

2
√

2x ≤ e
9x2

4 .(77)
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Using τ 2 ≤ 2δ and (77), we obtain

τ 3 ≤ 2
√

2δ3/2 ≤ δe
9δ
4 implying log

(
τ 3

δ

)
≤ 9δ

4
.

The final inequality holds with log replaced by log+ since the right-hand side is
always nonnegative. The inequality so obtained provides an upper bound on L in
(76) that verifies the claim. �

In the following theorem, for notational simplicity we will write δ, τ and σ

instead of δC , τC and σC respectively, and also set a ∨ b = max{a, b}.
THEOREM 5.1. The L∞ norm η given in (70) satisfies

η ≤ 1

108

(
τ

δ3 ∨ 1

δ8/3

) 3
16
(

log+
(

τ 3

δ

)) 3
2

log+
(

τ 2

144δ
log+
(

τ 3

δ

))
(78)

+ 48

√√√√ δ

τ 2 log+( τ 3

δ
)
.

REMARK 5.1. The estimate (11) follows immediately from (78) and the fol-
lowing inequalities, valid for δ ≥ 8:(

τ

δ3 ∨ 1

δ8/3

) 3
16 ≤

√
2

δ15/32 ,

(
log+
(

τ 3

δ

)) 3
2 ≤ (log 2

√
2δ)3/2 ≤ (log δ)3/2,

log+
(

τ 2

144δ
log+
(

τ 3

δ

))
≤ log(log δ) ≤ log δ.

The above relations all follow from the bound τ ≤ √
2δ stated in (44).

REMARK 5.2. When considering a sequence of cones such that lim inf τ 2/δ >

0, the right-hand side of the bound (78) behaves like O(1/
√

log δ), thus yielding
the Berry–Esseen estimate stated in Part 2 of Theorem 1.1. However, one should
note that the bound (78) covers in principle a larger spectrum of asymptotic be-
haviours in the parameters τ 2 and δ: in particular, in order for the right-hand side
of (78) to converge to zero, it is not necessary that the ratio τ 2/δ is bounded away
from zero.

PROOF OF THEOREM 5.1. We show Lemma 5.1 may be applied with L as in
(76) and

B = 32L3e
9L2δ

τ2
δ

τ 3 .(79)
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Let t ∈ R satisfy |t | ≤ L. As was done in [34] for the Laplace transform, the impli-
cation (40) of the Steiner formula (39) can be applied to show that the relationship

EeitV = EeξitG with ξt = 1

2

(
1 − e−2t )(80)

holds between the characteristic functions of V = VC and G = ‖�C(g)‖2. Replac-
ing t by t/τ and multiplying by e−itδ/τ in (80) yields the following expression for
the standardised characteristic function of V :

Eeit ( V −δ
τ

) = Eeξit/τ Ge− itδ
τ .(81)

Comparing the characteristic function of the standardised V to that of the standard
normal, identity (81) and the triangle inequality yield∣∣Eeit ( V −δ

τ
) − e−t2/2∣∣

= ∣∣Eeξit/τ Ge− itδ
τ − e−t2/2∣∣

(82)

≤ ∣∣Eeξit/τ G(e− itδ
τ − e

( t2

τ2 −ξit/τ )δ)∣∣+ e
t2δ

τ2
∣∣Eeξit/τ (G−δ) − Eeit/τ(G−δ)

∣∣
+ e

t2δ

τ2
∣∣Eeit/τ(G−δ) − e−σ 2t2/2τ 2 ∣∣.

For the final term we have used (42), which shows that 2δ − σ 2 = −τ 2. For the
first two terms, we will make use of the inequality∣∣e(a+bi)g − ecig

∣∣≤ (|b − c| + |a|)e|ga||g|,(83)

valid for all a, b, c, g ∈ R, which follows immediately by substitution from∣∣ea+bi − eci
∣∣= ∣∣ea+bi − ea+ci + ea+ci − eci

∣∣
≤ ea|b − c| + ∣∣ea − 1

∣∣
≤ ea|b − c| + e|a| − 1

≤ e|a|(|b − c| + |a|).
Now using (80), implying |Eeξit/τ G| = |Ee(it/τ )V | ≤ 1, we bound the first term

in (82) by∣∣Eeξit/τ G
∣∣∣∣e− itδ

τ − e
( t2

τ2 −ξit/τ )δ∣∣≤ ∣∣e− itδ
τ − e

( t2

τ2 −ξit/τ )δ∣∣= ∣∣eci − ea+bi
∣∣,

where we have set

a = t2δ

τ 2 − 1

2

(
1 − cos(2t/τ )

)
δ, b = −1

2
sin(2t/τ )δ, and c = − tδ

τ
,

which satisfy

|a| ≤ 2|t |3δ
3τ 3 and |b − c| ≤ 2|t |3δ

3τ 3 .
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By (44) of Corollary 3.1, we have τ 2 ≤ 2δ, and in particular we may apply
Lemma 5.2 to yield |t | ≤ L ≤ τ/8. Now (83) with g = 1 shows that the first term
is bounded by

4|t |3δ
3τ 3 e

2t2δ

τ2 .(84)

Now we write the second term as

e
t2δ

τ2 E
∣∣eξit/τ (G−δ) − eit/τ (G−δ)

∣∣= e
t2δ

τ2 E
∣∣e(a+bi)g − ecig

∣∣,(85)

where

a = 1

2

(
1 − cos(2t/τ )

)
, b = 1

2
sin(2t/τ ), c = t/τ and g = G − δ,

for which

|a| ≤ min
( |t |

τ
,

t2

τ 2

)
and |b − c| ≤ t2

τ 2 .

Applying (83) and the Cauchy–Schwarz inequality, we may bound (85) as

e
t2δ

τ2
2t2

τ 2 E
(
e

|t |
τ

|G−δ||G − δ|)≤ 2σ t2

τ 2 e
t2δ

τ2

√
Ee

2|t |
τ

|G−δ|.(86)

Recalling that ‖�C(x)‖2 = d2(x,C0), invoking Theorem 2.2 for the polar cone
C0 and μ = 0, for 0 ≤ ξ < 1/2 inequality (33) yields

Eeξ |G−δ| = Eeξ(G−δ)1(G − δ ≥ 0) + Ee−ξ(G−δ)1(G − δ < 0)

≤ Eeξ(G−δ) + Ee−ξ(G−δ)

≤ exp
(

2ξ2δ

1 − 2ξ

)
+ exp

(
2ξ2δ

1 + 2ξ

)
≤ 2 exp

(
2ξ2δ

1 − 2ξ

)
.

Thus, applying this bound with ξ = 2|t |/τ , where ξ < 1/2 by virtue of |t | ≤ τ/8
we obtain a bound on (86), and hence on the second term of (82), of the form

2σ t2

τ 2 e
t2δ

τ2

√
2 exp
(

8t2δ

τ 2(1 − 4|t |/τ)

)
≤ 2

√
2
σ t2

τ 2 e
9t2δ

τ2 .(87)

For the final term, as the function eit/τ has modulus 1, Theorem 2.1 yields

e
t2δ

τ2
∣∣Eeit/τ(G−δ) − e−σ 2t2/2τ 2 ∣∣≤ 16

√
δC

σ 2 e
t2δ

τ2 .(88)

Combining the three terms (84), (87) and (88), for |t | ≤ L we obtain

4|t |3δ
3τ 3 e

2t2δ

τ2 + 2
√

2
σ t2

τ 2 e
9t2δ

τ2 + 16

√
δC

σ 2 e
t2δ

τ2

≤
(

4L3δ

3τ 3 + 2
√

2
σL2

τ 2 + 16

√
δC

σ 2

)
e

9L2δ

τ2 .
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From the bounds (44) in Corollary 3.1, we have

4L3δ

3τ 3 + 2
√

2L2σ

τ 2 + 16
√

δC

σ 2 ≤
(

4L3

3
+ 8L2 + 16

√
2
)

δ

τ 3 .

As the bound (72) holds for L < 1, we may assume L ≥ 1, in which case B as in
(79) satisfies (71) when ψF and ψG are the characteristic functions of (V − δ)/τ

and the standard normal, respectively. Invoking Lemma 5.1, the proof is completed
by specializing (72) to yield (78) for the given values of L and B . �

APPENDIX

A.1. A total variation bound. Here, we prove the total variation bound (29)
used in the proof of Theorem 2.1. We begin with a standard lemma based on Stein’s
method (see [36]), involving the solution φh to the Stein equation

φ′
h(x) − xφh(x) = h(x) − E

[
h(N)
]

(89)

for N ∼ N (0,1) and a given test functions h.

LEMMA A.1. If E[F ] = 0 and E[F 2] = 1, then

(90) dTV(F,N) ≤ sup
φ

∣∣E[φ′(F )
]− E

[
Fφ(F)

]∣∣,
where N ∼ N (0,1) and the supremum runs over all C1 functions φ :R →R with
‖φ′‖∞ ≤ 2.

PROOF. For a given h ∈ C0 taking values in [0,1] by, for example, (2.5) of
[18], the unique bounded solution φh(x) to the Stein equation (89) is given by

φh(x) = ex2/2
∫ x

−∞
e−u2/2(h(u) − E

[
h(N)
])

du

(91)
= −ex2/2

∫ ∞
x

e−u2/2(h(u) − E
[
h(N)
])

du,

where the second equality holds since∫
R

e−u2/2(h(u) − E
[
h(N)
])

du = √
2πE
[
h(N) − E

[
h(N)
]]= 0.

One can easily check that φh is C1. Using the first equality in (91) for x < 0,
and the second one for x > 0 one obtains that |xφh(x)| ≤ ex2/2 ∫∞|x| ue−u2/2 = 1.
We deduce that |φ′

h|∞ ≤ 2. Recall that the total variation distance dTV(F,G) [as
defined in (28)] may also be represented as the supremum over all measurable
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functions h taking values in [0,1]. Using this fact, together with Lusin’s theorem,
relation (89) and the properties of the solution φh, we infer that

dTV(F,N) = sup
h:R→[0,1]

∣∣E[h(F )
]− E

[
h(N)
]∣∣

= sup
h:R→[0,1],h∈C0

∣∣E[h(F )
]− E

[
h(N)
]∣∣

≤ sup
φ

∣∣E[φ′(F )
]− E

[
Fφ(F)

]∣∣,
as claimed. �

To make the paper as self-contained as possible, we will also prove the total
variation bound (29) that was applied in the proof of Theorem 2.1; this result is
given, at a slightly lesser level of generality, as Lemma 5.3 in [15].

Given d ≥ 1, we use the symbol D1,2 to denote the Sobolev class of all mappings
f : Rd → R that are in the closure of the set of polynomials p : Rd → R with
respect to the norm

‖p‖1,2 =
(∫

Rd
p(x)2 dγ (x)

)1/2
+
(∫

Rd

∥∥∇p(x)
∥∥2 dγ (x)

)1/2
,

where γ stands for the standard Gaussian measure on Rd . It is not difficult to show
that a sufficient condition in order for f to be a member of D1,2 is that f is of class
C1, with f and its derivatives having sub-exponential growth at infinity. We stress
that, in general, when f is in D1,2 the symbol ∇f has to be interpreted in a weak
sense. See, for example, [36], Chapters 1 and 2, for details on these concepts.

THEOREM A.1. Let H : Rd → R be an element of D1,2. Let g ∼ N (0, Id)

be a standard Gaussian random vector in Rd . Let F = H(g) and set m = E[F ]
and σ 2 = Var(F ). Further, for t ≥ 0, set ĝt = e−tg + √

1 − e−2t ĝ, where ĝ is an
independent copy of g. Write Ê to indicate expectation with respect to ĝ. Then,
with N ∼ N(m,σ 2),

(92) dTV(F,N) ≤ 2

σ 2

√
Var
(∫ ∞

0
e−t
〈∇H(g), Ê

(∇H(̂gt )
)〉

dt

)
.

PROOF. Without loss of generality, assume that m = 0 and σ 2 = 1. The ran-
dom vector

gt =
√

1 − e−2tg − e−t ĝ is an independent copy of ĝt , and
(93)

g = e−t ĝt +
√

1 − e−2tgt .

By a standard approximation argument, it is sufficient to show the result for H ∈
C1, with H and its derivatives having sub-exponential growth at infinity. Let E =
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E ⊗ Ê. If ϕ : R → R is C1, then using the growth conditions imposed on H to
carry out the interchange of expectation and integration and the integration-by-
parts, one has

E
[
Fϕ(F )

]= E
[(

H(g) − H(̂g)
)
ϕ
(
H(g)
)]= −

∫ ∞
0

d

dt
E
[
H(̂gt )ϕ

(
H(g)
)]

dt

=
∫ ∞

0
e−tE
〈∇H(̂gt ),g

〉
ϕ
(
H(g)
)
dt

−
∫ ∞

0

e−2t

√
1 − e−2t

E
〈∇H(̂gt ), ĝ

〉
ϕ
(
H(g)
)
dt

=
∫ ∞

0

e−t

√
1 − e−2t

E
〈∇H(̂gt ),gt

〉
ϕ
(
H
(
e−t ĝt +

√
1 − e−2tgt

))
dt(94)

=
∫ ∞

0
e−tE
〈∇H(̂gt ),∇H

(
e−t ĝt +

√
1 − e−2tgt

)〉
× ϕ′(H (e−t ĝt +

√
1 − e−2tgt

))
dt

= E

∫ ∞
0

e−t 〈∇H(g), Ê
(∇H(̂gt )

)〉
ϕ′(H(g)

)
dt.

Applying identity (94) to (90) yields

(95) dTV(F,N) ≤ 2E

∣∣∣∣1 −
∫ ∞

0
e−t 〈∇H(g), Ê

(∇H(̂gt )
)〉

dt

∣∣∣∣,
and for ϕ(x) = x yields

Var(F ) = E

∫ ∞
0

e−t 〈∇H(g), Ê
(∇H(̂gt )

)〉
dt.(96)

As Var(F ) = 1, the conclusion (92), with σ 2 = 1, now follows by applying the
Cauchy–Schwarz inequality in (95). �

We now prove the following useful fact that was applied in the proofs of Theo-
rem 2.1 and Lemma 4.1.

LEMMA A.2. Let C be a closed convex subset of Rd . Then the mapping

x 	→ d2(x,C)

is an element of D1,2.

PROOF. It is sufficient to show that d2(·,C) and its derivative have sub-
exponential growth at infinity. To prove this, observe that Lemma 2.1 together
with the triangle inequality imply that d(·,C) is 1-Lipschitz, so that d2(x,C) ≤
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2d2(0,C) + 2‖x‖2. To conclude, use (27) in order to deduce that∥∥∇d2(x,C)
∥∥= 2d(x,C) ≤ 2d(0,C) + 2‖x‖. �

A variation of the arguments leading to the proof of (94) (whose details are left
to the reader) yield also the following useful result.

PROPOSITION A.1. Let F,G ∈ D1,2, and let the notation adopted in the state-
ment and proof of Theorem A.1 prevail. Then

Cov
[
F(g)G(g)

]= E
∫ ∞

0
e−t 〈∇F(g),∇G(̂gt )

〉
dt.(97)

A.2. An improved Poincaré inequality. The next result refines the classical
Poincaré inequality, and plays a pivotal role in Theorems 2.1 and 4.1.

THEOREM A.2 (Improved Poincaré inequality). Fix d ≥ 1, let F ∈ D1,2, and
g = (g1, . . . , gd) ∼ N (0, Id). Then

Var
(
F(g)
)≤ 1

2
E
[∥∥∇F(g)

∥∥2]+ 1

2

∥∥E[∇F(g)
]∥∥2 ≤ E

[∥∥∇F(g)
∥∥2].

PROOF. The quickest way to show the estimate Var(F (g)) ≤ 1
2E[‖∇F(g)‖2]+

1
2‖E[∇F(g)]‖2 is to adopt a spectral approach. To accomplish this task, we shall
use some basic results of Gaussian analysis, whose proofs can be found, for ex-
ample, in [36], Chapter 2. Recall that, for k = 0,1,2, . . . , the kth Wiener chaos
associated with g, written Ck , is the subspace spanned by all random variables of
the form

∏m
i=1 Hki

(gji
), where {Hk : k = 0,1, . . .} denotes the collection of Her-

mite polynomials on the real line, k1 +· · ·+ km = k, and the indices j1, . . . , jm are
pairwise distinct. It is easily checked that Wiener chaoses of different orders are
orthogonal in L2(�), and also that every square-integrable random variable of the
type F(g) can be decomposed as an infinite sum of the type F(g) =∑∞

k=0 Fk(g),
where the series converges in L2(�) and where, for every k, Fk(g) denotes the
projection of F(g) on Ck (in particular, F0(g) = E[F(g)]). This decomposition
yields in particular that

Var
(
F(g)
)= ∞∑

k=1

E
[
F 2

k (g)
]
.

The key point is now that, if F ∈ D1,2, then one has the additional relations

E
[∥∥∇F(g)

∥∥2]= ∞∑
k=1

kE
[
F 2

k (g)
]

(see, e.g., [36], exercise 2.7.9) and

E
[
F 2

1 (g)
]= ∥∥E[∇F(g)

]∥∥2,
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the last identity being justified as follows: if F is a smooth mapping, then the
projection of F(g) on C1 is given by

F1(g) =
d∑

i=1

E
[
F(g)gi

]
gi =

d∑
i=1

E

[
∂F

∂xi

(g)

]
gi,

and the result for a general F ∈ D1,2 is deduced by an approximation argument.
The previous relations imply therefore that

Var
(
F(g)
)= ∞∑

k=1

E
[
F 2

k (g)
]≤ E

[
F 2

1 (g)
]+ ∞∑

k=2

k

2
E
[
F 2

k (g)
]

= 1

2

∥∥E[∇F(g)
]∥∥2 + 1

2
E
[∥∥∇F(g)

∥∥2].
The proof is concluded by observing that, in view of Jensen’s inequality,
‖E[∇F(g)]‖2 ≤ E[‖∇F(g)‖2]. �

A.3. A bound on the distance to the minimiser of a convex function. Fol-
lowing an idea introduced by Hjort and Pollard [29], one has the following lemma,
providing a bound on the distance to the minimiser of a convex function in terms
of another, not necessarily convex, function.

LEMMA A.3. Suppose f : [0,∞) → R is a convex function, and let g :
[0,∞) →R be any function. If x0 is a minimiser of f , y0 ∈ (0,∞) and ε ∈ (0, y0),
then

(98) 2 max
v∈{0,±1}

∣∣g(y0 + εv) − f (y0 + εv)
∣∣< min

u∈{±1}
[
g(y0 + εu) − g(y0)

]
implies |x0 − y0| ≤ ε.

PROOF. Suppose a := |x0 − y0| > ε > 0. Set u = a−1(x0 − y0). Then u ∈
{±1}, x0 = y0 + au and the convexity of f implies

(1 − ε/a)f (y0) + (ε/a)f (x0) ≥ f (y0 + εu).

Hence,
ε

a

(
f (x0) − f (y0)

)
≥ f (y0 + εu) − f (y0)

= g(y0 + εu) − g(y0) + [f (y0 + εu) − g(y0 + εu)
]+ [g(y0) − f (y0)

]
≥ min

u∈{±1}
[
g(y0 + εu) − g(y0)

]− 2 max
v∈{0,±1}

∣∣g(y0 + εv) − f (y0 + εv)
∣∣.

If (98) is satisfied, then ε
a
(f (x0) − f (y0)) > 0. But this contradicts that x0 is a

minimiser of f . Hence, |x0 − y0| > ε is impossible. �
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