
The Annals of Applied Probability
2016, Vol. 26, No. 6, 3699–3726
DOI: 10.1214/16-AAP1189
© Institute of Mathematical Statistics, 2016

LARGE-TIME OPTION PRICING USING THE
DONSKER–VARADHAN LDP—CORRELATED STOCHASTIC

VOLATILITY WITH STOCHASTIC INTEREST RATES AND JUMPS

BY MARTIN FORDE AND ROHINI KUMAR1

King’s College London and Wayne State University

We establish a large-time large deviation principle (LDP) for a gen-
eral mean-reverting stochastic volatility model with nonzero correlation and
sublinear growth for the volatility coefficient, using the Donsker–Varadhan
[Comm. Pure Appl. Math. 36 (1983) 183–212] LDP for the occupation mea-
sure of a Feller process under mild ergodicity conditions. We verify that these
conditions are satisfied when the process driving the volatility is an Ornstein–
Uhlenbeck (OU) process with a perturbed (sublinear) drift. We then translate
these results into large-time asymptotics for call options and implied volatility
and we verify our results numerically using Monte Carlo simulation. Finally,
we extend our analysis to include a CIR short rate process and an independent
driving Lévy process.

1. Introduction. The last few years has seen the emergence of a number
of articles on large-time asymptotics for stochastic volatility models, with and
without jumps. Using the Gärtner–Ellis theorem from large deviations theory, [13]
compute the asymptotic (i.e., leading order) implied volatility smile for the well-
known Heston model in the so-called large-time, large log-moneyness regime, un-
der a mild restriction on the model parameters, and the rate function is computed
numerically as a Fenchel–Legendre transform which is just a one-dimensional
root-finding exercise. [17] show that the asymptotic smile can actually be com-
puted in closed-form via the SVI parameterization and [14] compute the correction
term to this smile using saddlepoint methods; [12] derives a similar result for the
Stein–Stein model and [19] derive a similar result for a displaced Heston model
(and relax the aforementioned condition on the parameters). [18] extended the re-
sults in [13] to a general class of affine stochastic volatility models (with jumps),
which includes the Heston, Bates and the Barndorff–Nielsen–Shephard model, and
under mild assumptions, they show that the limiting smile necessarily corresponds
to the smile generated by an exponential Lévy model. More recently, [15] com-
pute large-time asymptotics for a fractional local-stochastic volatility model and
large-time asymptotics for European and barrier options under conventional and
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fractional exponential Lévy models, using the deAcosta LDP for a Lévy process
on path space.

[11] derives a large deviation principle for the log stock price under an uncorre-
lated stochastic volatility model driven by an Ornstein–Uhlenbeck process with a
bounded volatility function. For this, we use the fact that the occupation measure
for the Ornstein–Uhlenbeck process satisfies an LDP with a good, convex lower
semicontinuous rate function under the topology of weak convergence (and under
the Prokhorov metric); see Section 7 in Donsker and Varadhan [5] (see also page
178 in Stroock [25] and Proposition 1.3 in [21]), combined with the standard con-
traction principle and exponential tightness. The large-time regime is also closely
related to the small-time, fast mean reverting regime considered in Feng, Fouque
and Kumar [8] for a more general stochastic volatility model. The problem then
falls into the class of homogenization and averaging problems for nonlinear HJB
type equations, where the fast volatility variable lives on a noncompact set.

1.1. Outline of article. In this article, we consider a stochastic volatility
model for a log stock price process Xt of the form

⎧⎨
⎩

dXt = −1

2
σ(Yt )

2 dt + σ(Yt )
(√

1 − ρ2 dW 1
t + ρ dW 2

t

)
,

dYt = (−αYt + g(Yt )
)
dt + dW 2

t ,
(1.1)

where W 1,W 2 are independent Brownian motions. We first relax the assumptions
that σ is bounded and ρ and g are zero that are imposed in [11]. This requires an
auxiliary result, namely that the variance of a probability measure on the real line
can be bounded in terms of the Donsker–Varadhan rate function of the measure.
Using this property, we then establish an LDP for (Xt/t) using the trivial joint LDP
for the two independent variables (W 1

t /t,μt ) (where μt is the occupation measure
of Y ), combined with the extended contraction principle for noncontinuous func-
tionals given in Theorem 4.2.23 in [3]. This is the same theorem which can be used
to prove the Freidlin–Wentzell small-noise LDP from Schilder’s theorem, despite
the lack of continuity of the Itô map in the sup norm topology (see, e.g., proof of
Theorem 5.6.7 in [3]), and is also used in rough paths theory to prove the small-
noise LDP for a rough differential equation driven by fractional Brownian motion
(cf. Section 15.7 and Proposition 19.14 in [16]). The rate function for Xt/t in this

article has the variational representation I (x) = infμ∈P(R)[ (x−M(μ))2

2ν(μ)
+ IY (μ)], for

some linear functionals M(μ), ν(μ) which depend on the correlation ρ between
the log stock price process and the Y process. For the at-the-money case x = 0
with ρ = 0, we find that the rate function reduces to the classical Rayleigh–Ritz
formula for the principal eigenvalue λ1 of an associated Sturm–Liouville equation.

In Section 5, we translate these results into large-time asymptotics for call op-
tions and implied volatility; this requires computing the corresponding LDP for
the log stock price under the so-called Share measure P∗ associated with using
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the stock price process as the numéraire, and in Section 6, we compute I (x) nu-
merically, using the Ritz method from the theory of calculus of variations. The
Ritz method is described at length in Gelfand and Fomin [10]—we choose an n-
dimensional subspace of the space of admissible functions, in this case the Hilbert

space L2(μ∞), and we then minimize the objective function (x−M(μ))2

2ν(μ)
+ IY (μ)

by minimizing over the subspace for the n Fourier coefficients.
In Section 7, we enrich the general model with an additional independent CIR

short rate process rt and an independent driving Lévy process Zt . It is well known
that stochastic interest rates make a significant difference to the price of European
options at large maturities, but to our knowledge this effect has never been properly
quantified using asymptotics; specifically, we show that the log stock price now
satisfies the LDP with rate function Ir(x) = infa,y,z:a+y+z=x[I (y) + ICIR(a) +
V ∗

J (z)] where ICIR(a) = κ2
r (a − θr)

2/(2aσ 2
r ) is the rate function for 1

t

∫ t
0 rs ds, and

V ∗
J (x) is the rate function for Zt/t .

2. The Donsker–Varadhan large deviation principle. Let 	 denote the
space of real-valued functions ω(·) on −∞ < t < ∞ with discontinuities of the
first kind, normalized to be right continuous, and with convergence induced by the
Skorokhod topology on bounded intervals. Let (Y,Py) be a Markov process on
	 with invariant distribution μ∞(dy) such that the mapping y → Py is weakly
continuous (which implies the Feller property for the process Y ). Let p(t, x, dy)

denote the transition probability for Y , Pt denote the semigroup associated with
Y , and let L denote the infinitesimal generator of Pt and D = D(L) ⊂ Cb(R) its
domain. For each t > 0 and A ∈ B(R), let

μt(A) = 1

t

∫ t

0
1A(Ys) ds

denote the occupation time distribution of Y , that is, the proportion of time that Y

spends in the set A. For each t > 0 and ω, μt(·) is a probability measure on R. Let
P(R) denote the space of probability measures on (R,B(R)). Then from [5] (or
page 178 in Stroock [25] or Pinsky [23]), under suitable recurrence and transitivity
conditions (see the next subsection for details), μt(·) satisfies the LDP as t → ∞
in the topology of weak convergence, with a convex, lower semicontinuous rate
function IY : P(R) �→ [0,∞] given by

IY (μ) = − inf
u∈D+

∫ ∞
−∞

Lu

u
dμ(2.1)

for each μ ∈ P(R), where D+ is the set of u in the domain D of L with u ≥ ε > 0
for some ε > 0. More precisely, if we define a probability measure Qt,y on P(R)

by Qt,y = Py ◦ μ−1
t , then for any closed set C ⊂ P(R) (weak topology) and for
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any open set on G ⊂ P(R) we have

lim sup
t→∞

1

t
logQt,y(C) ≤ − inf

μ∈C
IY (μ),

(2.2)

lim inf
t→∞

1

t
logQt,y(G) ≥ − inf

μ∈G
IY (μ).

IY (·) is know as the I -function for the process Y .

REMARK 2.1. By the ergodic theorem, Qt,y
w→ δμ∞ as t → ∞, and it is well

known that IY (μ) = 0 if and only if μ = μ∞ (see, e.g., the proof of Corollary 1.5
in [23]).

2.1. Sufficient conditions for the LDP upper and lower bounds. In [26]
(page 34) and [5, 6], it is shown that the following five conditions imply the LDP
upper bound in (2.2).

There exists a sequence un of functions in D(L) with the five properties:

1. un(y) ≥ c > 0 for y and n.
2. For all compact sets K ⊂ R, there exists a constant CK such that

supy∈K supn un(y) ≤ CK .
3. Vn(y) := −(Lun/un)(y) ≥ −C for all n and y.
4. There exists a function V (y) such that for all y ∈ R, limn→∞ Vn(y) = V (y).
5. The set {y : V (y) ≤ 
} is compact for all 
 < ∞.

Moreover, the following two conditions imply the LDP lower bound:
There exists a density function for p(1, x, dy) with respect to a reference mea-

sure α on R such that:

I. p(1, x, dy) = p(1, x, y)α(dy).
II. p(1, x, ·) as a mapping from R→ L1(α) is continuous.

These two conditions are given in [6, 26], where the LDP is proved as a corol-
lary of a more general LDP on path space in terms of the entropy function (see
Theorem 13.1.31 in [26]). These two conditions simplify the more cumbersome
conditions for the LDP lower bound given on page 393 in [5].

2.2. Examples: The OU process and the perturbed OU process.

• For the Ornstein–Uhlenbeck process,

dYt = −αYt dt + dWt

conditions 1–5 in Section 2.1 are satisfied with un(y) = cosh(nθ(y/n)), if
θ(y) = y for 0 ≤ y ≤ 1 and θ, θ ′, θ ′′ are uniformly bounded on R and θ

is odd (see Sections 7 in [5] and [6]), and in this case V (y) = −Lu
u

(y) =
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−1
2 + yα tanhy, which tends to |y| as y → ±∞. In the next bullet point, we

will show that the two lower bounds are also satisfied, as a special case of a
more general perturbed OU process. Thus, μt satisfies the LDP with rate IY (μ)

as in (2.1) as t → ∞. The OU process has a unique invariant distribution given

by μ∞(y) = ( α
π
)

1
2 e−αy2

, that is, N(0, 1
2α

). If μ is absolutely continuous with
respect to μ∞, then [because the OU process is symmetric, that is, its generator
is self-adjoint with respect to μ∞(y)] we can simplify the rate function IY to

IY (μ) = 1

2

∫ ∞
−∞

ψ ′(y)2μ∞(dy)(2.3)

if ψ ′ ∈ L2(μ∞), where φ = dμ
dμ∞ is the Radon–Nikodým derivative and ψ =√

φ (see page 179 under exercise (8.28) in Stroock [25]). If μ is not absolutely
continuous with respect to μ∞, then IY (μ) = ∞. The representation in (2.3)
will be used for the numerics in Section 6 using the Ritz method.

• For a perturbed OU process of the form

dYt = (−αYt + g(Yt )
)
dt + dWt,(2.4)

where g is C3 with sublinear growth at ±∞ and continuous bounded derivatives
of all orders up and including 3, the −αy drift term swamps the g(y) term as
|y| → ∞ and the five conditions 1–5 for the LDP upper bound are still satisfied
with the same un(y) as above. This includes the case when, for example, g(y) =
αθ for a constant θ which is the mean-reversion level for Y .

LEMMA 2.1. The perturbed OU process in (2.4) satisfies the two lower bound
conditions I and II above.

PROOF. See Appendix B. �

We also note that the process Y in (2.4) has a unique invariant distribution given
by

μ∞(y) = e−αy2
e

2
∫ y
y0

g(u)du

∫ ∞
−∞ e−αu2

e
2

∫ u
y0

g(v) dv du
du

.(2.5)

2.3. The Prokhorov metric on P(R) and goodness of the rate function IY (μ).
We can also topologize P(R) with the Prokhorov metric, defined as

d(μ,μ1) = inf
{
δ > 0 : μ(C) ≤ μ1

(
Cδ) + δ for all closed C ∈ B(R)

}
for μ,μ1 ∈ P(R), where Cδ is the δ-neighbourhood of C2 (see page 96 in
Ethier and Kurtz [7]). Under this metric, P(R) is a metric space [note also that

2The set of all points which are of distance ≤ δ from C.
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d(μ,μ1) ≤ 1 for all μ,μ1]. Moreover, R is separable, so convergence of measures
in the Prokhorov metric is equivalent to weak convergence of measures (see The-
orem 3.1 part (a) and part (b) in [7] for details), so the Donsker–Varadhan LDP for
μt also holds in the topology induced by the metric d .

REMARK 2.2. By Lemma 7.1 (see also page 461) in [5] μt is exponentially
tight in the weak topology (and thus also in the Prokhorov topology), and thus (by
Lemma 1.2.18 in [3]) IY (·) is a good rate function.

2.4. The tail behaviour of probability measures inside the level sets of IY . The
following lemma is the main observation on which the article is based, which char-
acterizes the tail behaviour of the measures inside a level set of IY .

LEMMA 2.2. Consider the perturbed OU process in (2.4). Then for μ ∈ P(R)

we have the following bound for the second moment of μ in terms of IY (μ):∫ ∞
−∞

y2μ(dy) ≤ K2(α)IY (μ) + K3(α)

for some constants K2(α) > 0 and K3(α).

PROOF. The infinitesimal generator L of Y coincides with the differential op-
erator L = (−αy + g(y))∂y + 1

2∂2
yy on C2

b(R). Define a function ψ such that

ψ(y) :=

⎧⎪⎪⎨
⎪⎪⎩

y, (0 ≤ y ≤ 1),

2, (y ≥ 2),

smoothly increasing, (1 ≤ y ≤ 2)

and ψ is an odd function. Consequently, ψ,ψ ′,ψ ′′ are uniformly bounded, ψ ′ ≥ 0
and ψ(u)/u > 0 and is uniformly bounded when u 
= 0. Let un(y) = e

c
2 [nψ(

y
n
)]2

with c ∈ (0, α ∧ ( α

supu
=0
ψ(u)

u
ψ ′(u)

)). Then

−Lun(y) = −
[(−αy + g(y)

)(
cnψ

(
y

n

)
ψ ′

(
y

n

))

+ 1

2

(
c2n2ψ2

(
y

n

)(
ψ ′

(
y

n

))2
+ c

(
ψ ′

(
y

n

))2

+ cψ

(
y

n

)
ψ ′′

(
y

n

))]
1{| y

n
|≤2}un(y)

= −
[(−αy2 + yg(y)

)(
c
n

y
ψ

(
y

n

)
ψ ′

(
y

n

))

+ 1

2

(
c2y2 n2

y2 ψ2
(

y

n

)(
ψ ′

(
y

n

))2
+ c

(
ψ ′

(
y

n

))2
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+ cψ

(
y

n

)
ψ ′′

(
y

n

))]
un(y)

−Lun

un

(y) = c
ψ(y/n)

y/n
ψ ′(y/n)

[
αy2 − yg(y) − cy2

2

ψ(y/n)

y/n
ψ ′(y/n)

]

− 1

2

[
c

(
ψ ′

(
y

n

))2
+ cψ

(
y

n

)
ψ ′′

(
y

n

)]

= I + II.

Observe that the second term II is uniformly bounded as ψ,ψ ′,ψ ′′ are uniformly
bounded. As for the first term I , note that ψ(u)

u
ψ ′(u) > 0 and is uniformly bounded

for u 
= 0, hence − cy2

2
ψ(u)

u
ψ ′(u) > −α

2 y2 if c
ψ(u)ψ ′(u)

u
< α. Moreover, since g(y)

has sublinear growth, there exists a constant c1 > 0 such that α
2 y2 − yg(y) > −c1

for all y. Hence, −Lun

un
(y) is uniformly bounded from below. Since ψ(y/n) =

y/n and ψ ′(y/n) = 1 for |y| ≤ n, it is trivial to check that −Lun

un
(y) → (cα −

c2

2 )y2 − cyg(y) − c
2 pointwise as n → ∞ and Lun ∈ Cb because Lun(y) = 0 for

y sufficiently large, so un ∈ D+. From this, we obtain

IY (μ) = sup
u∈D+

−
∫ ∞
−∞

Lu

u
dμ ≥ −

∫ ∞
−∞

Lun

un

dμ.

Taking the liminf of both sides as n → ∞ and using Fatou’s lemma, we obtain

IY (μ) ≥ lim inf
n→∞

∫ ∞
−∞

−Lun

un

dμ ≥
∫ ∞
−∞

((
cα − c2

2

)
y2 − cyg(y) − c

2

)
μ(dy).

Since yg(y) is subquadratic, we can find a positive constant K1(α) such that (cα−
c2/2)y2 − cyg(y) = (cα−c2/2)

2 y2 + (cα−c2/2)
2 y2 − cyg(y) ≥ (cα−c2/2)

2 y2 − K1(α).

Thus, we have that IY (μ) ≥ (cα−c2/2)
2

∫ ∞
−∞ y2μ(dy) − K1(α) − 1

2c, and the result
follows by re-arranging. �

3. The stochastic volatility model. We work on a probability space (	,F,P)

unless otherwise stated, with a filtration (Ft )t≥0 and satisfying the usual condi-
tions. We consider the following stochastic volatility model for a log stock price
process Xt = logSt driven by a perturbed Ornstein–Uhlenbeck process Y :

⎧⎨
⎩

dXt = −1

2
σ(Yt )

2 dt + σ(Yt )
(
ρ dW 2

t + ρ̄ dW 1
t

)
,

dYt = (−αYt + g(Yt )
)
dt + dW 2

t ,
(3.1)

where α > 0,X0 = x0, Y0 = y0, W 1,W 2 are two independent standard Brownian

motions, ρ ∈ (−1,1), ρ̄ =
√

1 − ρ2 and we make the following assumptions on σ

and g throughout.
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ASSUMPTION 3.1. σ : R �→ (0,∞) and g : R �→ R are both continuous and
satisfy the sublinear growth conditions3

σ(y) ∨ g(y) ≤ K1
(
1 + |y|p)

(3.2)

for some K1 > 0,p ∈ (0,1).

ASSUMPTION 3.2. g has continuous bounded derivatives of all orders order
up and including 3, and if ρ 
= 0 then σ is differentiable and |σ ′(y)| is bounded.

REMARK 3.3. Note that for the seemingly more general model:
⎧⎨
⎩

dXt = −1

2
f (Vt )

2 dt + f (Vt )
(
ρ dW 2

t + ρ̄ dW 1
t

)
,

dVt = [
α(m − Vt) + h̃(Vt )

]
dt + β dW 2

t

(3.3)

for α,β > 0 and f , h̃ satisfying the same conditions as σ and g above, if we set
Yt = 1

β
(Vt − m) and σ(y) = f (βy + m), g(y) = h̃(βy + m), then we are trans-

formed back to a model of the model in (3.1), so there is no loss of generality in our
assumption of zero mean reversion level and vol-of-vol (i.e., diffusion coefficient)
equal to 1 in the Y process in (3.1).

We also set S0 = 1 throughout (i.e., x0 = 0) without loss of generality, because
Xt − x0 is independent of x0 as the SDEs have no dependence on x.

3.1. The integrated variance. Now let F :P(R) �→R+ denote the linear func-
tional defined by

F(μ) =
∫ ∞
−∞

σ 2(y)μ(dy).(3.4)

Note that F may not be continuous in the weak topology because σ 2 may not be
bounded. Define

F(μt) =
∫ ∞
−∞

σ 2(y)μt (dy) = 1

t

∫ t

0
σ 2(Ys) ds,

where μt(dy) is the occupation measure of Y ; then we see that F(μt) is the time-
average of the instantaneous variance for Y . We also define

σ̄ 2 =
∫ ∞
−∞

σ 2(y)μ∞(y) dy,(3.5)

where μ∞ is defined in (2.5).

3The same condition appears in Feng, Fouque and Kumar [8].
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4. Large-time asymptotics for the stochastic volatility model.

4.1. The main result: The LDP for the log stock price as t → ∞. We now state
the first main result, which is a large deviation principle for the re-scaled log stock
price (Xt/t) as t → ∞.

THEOREM 4.1. Consider the process X defined in (3.1) and let b(y) =
σ(y)(αy −g(y))− 1

2σ ′(y),G(μ) = ∫ ∞
−∞ b(y)μ(dy). Then under Assumptions 3.1

and 3.2, Xt/t satisfies the LDP as t → ∞ with a good rate function given by

I (x) = inf
μ∈P(R)

[
(x − M(μ))2

2ν(μ)
+ IY (μ)

]
,(4.1)

where M(μ) = −1
2F(μ)+ρG(μ), ν(μ) = ρ̄2F(μ) and IY (μ) is the rate function

for the occupation measure of Y defined in (2.1).

PROOF. Integrating (3.1), we see that

Xt = −1

2

∫ t

0
σ(Ys)

2 ds +
∫ t

0
σ(Ys)

(
ρ dW 2

s + ρ̄ dW 1
s

)
.

If we let χ(y) = ∫ y
y0

σ(u)du, then

dχ(Yt ) = σ(Yt ) dYt + 1

2
σ ′(Yt ) d〈Y 〉t

= σ(Yt )
((−αYt + g(Yt )

)
dt + dW 2

t

) + 1

2
σ ′(Yt ) dt

which we can integrate and re-arrange as follows:∫ t

0
σ(Ys) dW 2

s = χ(Yt ) +
∫ t

0

[
σ(Ys)

(
αYs − g(Ys)

) − 1

2
σ ′(Ys)

]
ds

= χ(Yt ) +
∫ t

0
b(Ys) ds.

Now let Zt = W 1
t /t and X̂t = Xt/t . Conditioning on (Ys;0 ≤ s ≤ t), we obtain

X̂t
d= −1

2
F(μt) + ρ

[
G(μt) + 1

t
χ(Yt )

]
+ ρ̄

t
W 1

tF (μt )

d= −1

2
F(μt) + ρ

[
G(μt) + 1

t
χ(Yt )

]
+ ρ̄

√
F(μt)

t
W 1

t(4.2)

= M(μt) + √
ν(μt)Zt + ρ

t
χ(Yt ),

where M(μ) = −1
2F(μ) + ρG(μ) and ν(μ) = ρ̄2F(μ). From the Gärtner–Ellis

theorem, we know that Zt satisfies a large time LDP with good rate function rate
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1
2z2, we also know that μt satisfies a large time LDP with good rate function IY (μ).
Moreover, Zt and μt are independent, so we have

I(z,μ) = − lim
δ→0

lim
t→∞

1

t
logP

(
Zt ∈ Bδ(z),μt ∈ Bδ(μ)

)

= − lim
δ→0

lim
t→∞

1

t

[
logP

(
Zt ∈ Bδ(z)

) + logP
(
μt ∈ Bδ(μ)

)]
(4.3)

= 1

2
z2 + IY (μ).

Thus, (Zt ,μt) satisfies the weak LDP with rate I(z,μ) = 1
2z2 + IY (μ). Since μt

is exponentially tight (by Remark 2.2), for any c > 0, there exists a compact set
Kc ⊂ P(R) such that lim supt→∞ 1

t
logP(μt /∈ Kc) ≤ −c. Thus, for any c > 0,

there exists a compact set [−√
2c,

√
2c] × Kc ⊂ R×P(R) such that

lim sup
t→∞

1

t
logP

(
(Zt ,μt ) /∈ [−√

2c,
√

2c] × Kc

)

≤ lim sup
t→∞

1

t
log

[
P

(|Zt | >
√

2c
) + P(μt /∈ Kc)

]

≤ max
{

lim sup
t→∞

1

t
logP

(|Zt | >
√

2c
)
, lim sup

t→∞
1

t
logP(μt /∈ Kc)

}

≤ −c.

Thus, (Zt ,μt) is exponentially tight, so (Zt ,μt ) satisfies the full LDP and (by
Lemma 1.2.18b in [3]) the rate function I(z,μ) is good. From (4.2), we have

X̂t
d= X̃t := ϕ(Zt ,μt) + ρ

t
χ(Yt ),

where ϕ :R×P(R) �→R is given by ϕ(z,μ) = M(μ)+√
ν(μ)z. Similarly, define

X̃m
t = ϕm(Zt ,μt ),

where ϕm(z) = Mm(μ) + √
νm(μ)z, where we have truncated the integrands in

M(μ) and ν(μ) to get

Mm(μ) =
∫ [(

−1

2
σ 2(y) + ρb(y)

)
1{|y|≤m} +

(
−1

2
σ 2(m) + ρb(m)

)
1{y>m}

+
(
−1

2
σ 2(−m) + ρb(−m)

)
1{y<−m}

]
μ(dy)

and

νm(μ) = ρ̄2
∫ [

σ 2(y)1|y|≤m + σ 2(m)1y>m + σ 2(−m)1y<−m

]
μ(dy).
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Since the integrands are bounded and continuous functions of R, Mm(μ) and
νm(μ) are continuous functionals of μ under the weak topology. Using the Hölder
continuity of the square root function: |√x − √

y| ≤ √|x − y|, we have

∣∣X̃t − X̃m
t

∣∣ ≤ ∣∣M(μt) − Mm(μt)
∣∣ +

√∣∣ν(μt ) − νm(μt)
∣∣|Zt | +

∣∣∣∣ρt χ(Yt )

∣∣∣∣.
Then

P
(∣∣X̃t − X̃m

t

∣∣ > δ
)

≤ P

(∣∣M(μt) − Mm(μt)
∣∣ +

√∣∣ν(μt ) − νm(μt)
∣∣|Zt | +

∣∣∣∣ρt χ(Yt )

∣∣∣∣ > δ

)

≤ P

(∣∣M(μt) − Mm(μt)
∣∣ +

√∣∣ν(μt ) − νm(μt)
∣∣|Zt | > 1

2
δ

)

(4.4)

+ P

(∣∣∣∣ρt χ(Yt )

∣∣∣∣ >
1

2
δ

)

≤ E(1|M(μt )−Mm(μt )|+√|ν(μt )−νm(μt )||Zt |> 1
2 δ

1IY (μt )≤c) + P
(
IY (μt ) > c

)

+ P

(∣∣∣∣ρt χ(Yt )

∣∣∣∣ >
1

2
δ

)
.

We will use the following lemma in the subsequent proof.

LEMMA 4.1. Consider the Y process defined in (3.1). Then for v > 0 we have
lim supt→∞ 1

t
logP(|1

t
χ(Yt )| > v) = −∞, where χ(·) is defined as in the proof of

Theorem 4.1.

PROOF. See Appendix C. �

Recall that M(μ) = −1
2F(μ)+ρG(μ) and ν(μ) = ρ̄2F(μ). Then if IY (μ) ≤ c,

from Lemmas A.1 to A.4 in Appendix A we obtain∣∣M(μ) − Mm(μ)
∣∣ ∨ ∣∣ν(μ) − νm(μ)

∣∣ ≤ γm(c),(4.5)

where γm(c) = 2A( 1
m2 + 1

m2−q )(K2(α)c + K3(α)) for some A > 0 and q = 1 + p,

and γm(c) → 0 as m → ∞. Now let ζ = P(IY (μt ) > c)+P(|ρ
t
χ(Yt )| > 1

2δ). Then
using (4.5), we can now further bound the right-hand side of (4.4) as follows:

P
(∣∣X̃t − X̃m

t

∣∣ > δ
) ≤ E(1

γm+√
γm|Zt |> 1

2 δ
1IY (μt )≤c) + ζ

≤ P

(
γm(c) +

√
γm(c)|Zt | > 1

2
δ

)
+ ζ

≤ P

(
|Zt | >

1
2δ − γm(c)√

γm(c)

)
+ ζ.
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Letting t → ∞ and using the LDP for μt and the LDP for Zt and Lemma 4.1
we obtain

lim sup
t→∞

1

t
logP

(∣∣X̃t − X̃m
t

∣∣ > δ
) ≤ −(1

2δ − γm(c))2

2γm(c)
∧ c.

Now set c = c(m) = mβ where β ∈ (0,2−q). Then γ ∗
m = γm(c(m)) = 2A( 1

m2 +
1

m2−q )(K2(α)mβ + K3(α)) → 0 as m → ∞ and

lim
m→∞ lim sup

t→∞
1

t
logP

(∣∣X̃t − X̃m
t

∣∣ > δ
) ≤ −∞.

Thus, Xm
t is an exponentially good approximation to Xt in the sense of Defini-

tion 4.2.14 in [3]. From the analysis above, we have

lim sup
m→∞

sup
(z,μ):I(z,μ)≤R

∣∣ϕ(z,μ) − ϕm(z,μ)
∣∣

≤ lim sup
m→∞

sup
(z,μ): 1

2 z2+IY (μ)≤R

∣∣∣∣M(μ) − Mm(μ)
∣∣ + √

ν(μ) − νm(μ)|z|∣∣

≤ lim sup
m→∞

sup
(z,μ): 1

2 z2+IY (μ)≤R

∣∣γm(R) + √
γm(R)

√
2R

∣∣

= 0.

Thus, by Theorem 4.2.23 in [3], X̂t satisfies the LDP with good rate function

I (x) = inf
(z,μ):M(μ)+√

ν(μ)z=x

[
1

2
z2 + IY (μ)

]
.(4.6)

But ν(μ) = ρ̄2 ∫ ∞
−∞ σ 2(y)μ(dy) > 0 because σ 2 is strictly positive. Thus, we

can re-write the right-hand side of (4.6) as infμ∈P(R)[ (x−M(μ))2

2ν(μ)
+ IY (μ)]. �

4.2. Properties of the rate function I (x). The following two corollaries estab-
lish some basic properties of I (x).

COROLLARY 4.2. The infimum of I (x) in (4.1) is attained uniquely at

xmin = M(μ∞) = −1

2
σ̄ 2,(4.7)

where M(·) is defined as in Theorem 4.1 and σ̄ is defined in (3.5).

PROOF. Let I (x,μ) = (x−M(μ))2

2ν(μ)
+ IY (μ). Then, by (4.1), I (x) =

infμ∈P(R) I (x,μ). Setting μ = μ∞ we have I (xmin,μ∞) = (xmin−M(μ∞))2

2ν(μ∞)2 +
IY (μ∞) = 0. Therefore,

0 ≤ I (xmin) = inf
μ∈P(R)

I (xmin,μ) ≤ I (xmin,μ∞) = 0

so I (xmin) = 0.
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We show that xmin is the unique minimum by contradiction. Suppose there exists
an x 
= xmin such that limn→∞ I (x,μn) = 0 for some sequence (μn) with μn ∈
P(R). If I (x,μn) → 0 as n → ∞ then IY (μn) → 0 and M(μn) → x as n → ∞.
We first show that (μn) is a tight sequence. For any k > 0,

k2μn[−k, k]c ≤
∫
[−k,k]c

y2μn(dy) ≤ K2(α)IY (μn) + K3(α),

where we have used Lemma 2.2 for the last inequality. Since IY (μn) → 0 as n →
∞, we can find a C < ∞ such that supn IY (μn) ≤ C. Hence, k2μn[−k, k]c ≤
K2(α)C + K3(α) for all n. Thus, given ε > 0, we can choose k large enough such
that

sup
n

μn[−k, k]c ≤ K2(α)C + K3(α)

k2 < ε,

so (μn) is tight as required.
Hence, (μn) has a convergent subsequence. Without loss of generality, we de-

note the convergent subsequence by (μn) and let μ denote the limit point. Then
IY (μ) = 0 by lower semicontinuity of IY [i.e., IY (μ) ≤ lim infμn→μ IY (μn) = 0]
and by uniqueness of minimizer of IY we obtain μ = μ∞. We will next show that
M(μn) → M(μ∞) = xmin which gives the contradiction.

Let m > 0. Then
∣∣M(μn) − M(μ∞)

∣∣ ≤ ∣∣Mm(μn) − Mm(μ∞)
∣∣ + ∣∣M(μn) − Mm(μn)

∣∣
+ ∣∣M(μ∞) − Mm(μ∞)

∣∣
≤ ∣∣Mm(μn) − Mm(μ∞)

∣∣ + c(m)
(
C1IY (μn) + C2

)
+ c(m)

(
C1IY (μ∞) + C2

)

[where we have applied Lemma A.1, and C1,C2 are constants and c(m) = 1/m2 +
1/m2−q for some q ∈ (0,2)]

= ∣∣Mm(μn) − Mm(μ∞)
∣∣ + c(m)

(
C1IY (μn) + C2

) + c(m)C2.

Taking n → ∞, we see that

lim
n→∞

∣∣M(μn) − M(μ∞)
∣∣ ≤ 0 + 2c(m)C2(4.8)

because Mm is a continuous functional. Since this holds for any arbitrary m > 0,
taking m → ∞ and noting that c(m) → 0 as m → ∞, we get M(μn) → M(μ∞) =
xmin.

Finally, using the definition of M(·) in Theorem 4.1, we find that M(μ∞) =
−1

2 σ̄ 2 + ρb̄ where b̄ = ∫ ∞
−∞ b(y)μ∞(y) dy. Recall that b(y) is defined in Theo-
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rem 4.1 as b(y) = (αy − g(y))σ (y) − 1
2σ ′(y). Then we have

∫
b(y)μ∞(dy)

= const. ×
[∫ ∞

−∞
[
σ(y)

(
αy − g(y)

)]
e

2
∫ y
y0

g(u)du
e−αy2

dy

−
∫ ∞
−∞

1

2
σ ′(y)e−αy2

e
2

∫ y
y0

g(u)du
dy

]

= const. ×
[∫ ∞

−∞
[
σ(y)

(
αy − g(y)

)]
e

2
∫ y
y0

g(u)du
e−αy2

dy

+
∫ ∞
−∞

1

2
σ(y)e−αy2

e
2

∫ y
y0

g(u)du(−2αy + 2g(y)
)
dy

]

= 0,

where we have integrated by parts in the second expression of the last line. Thus,
we see that xmin = −1

2 σ̄ 2. �

COROLLARY 4.3. I (x) in (4.1) is continuous.

PROOF. Let I (x,μ) be as defined in Corollary 4.2. Then I (x,μ) is upper
semicontinuous in x for μ fixed, and I (x) = infμ I (x,μ). The pointwise supre-
mum of a family of LSC functions is LSC (see, e.g., Lemma 2.41 on page 43 in
[1]), hence the pointwise infimum of a family of USC functions is USC, so I (x) is
USC. But I (x) is also a rate function, hence I is also LSC. �

4.3. The case x = 0 with ρ = 0—the Rayleigh–Ritz formula.

COROLLARY 4.4. For x = 0, ρ = 0, I (0) reduces to

I (0) = λ1 = inf
μ∈P(R)

[
1

8
F(μ) + IY (μ)

]

(4.9)

= inf
ψ∈L2(μ∞):‖ψ‖2=1

∫ ∞
−∞

[
1

8
σ 2(y)ψ(y)2 + 1

2
ψ ′(y)2

]
μ∞(y) dy.

PROOF. The first equality in (4.9) just follows by setting x = 0 in (4.1) and
simplifying. The second equality just follows by re-writing μ in terms of ψ . �

REMARK 4.5. (4.9) is the classical Rayleigh–Ritz formula for the low-
est eigenvalue λ1 for the Sturm–Liouville problem (−αy + g(y))u′ + 1

2u′′ −
1
8σ 2(y)u = −λ1u (see page 2 in [4] for more details).
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4.4. A general vol-of-vol coefficient. For a more general model of the form,⎧⎨
⎩

dXt = −1

2
σ(Vt )

2 dt + σ(Vt )
(
ρ dW 2

t + ρ̄ dW 1
t

)
,

dVt = (−αVt + g(Vt )
)
dt + β(Vt ) dW 2

t

for g,σ satisfying the same conditions as before, β ∈ C4 with bounded first deriva-
tive (so β is Lipschitz), 0 < β ≤ β(v) ≤ β̄ < ∞, β(v) → β∞ as |v| → ∞ and

1
β(v)

− 1
β∞ = O(1/1 + |v|γ ) for some γ > 0, then making the transformation

Yt = U(Vt), where U(v) = ∫ v
0

dz
β(z)

, we find that

dYt = U ′(Vt ) dVt + 1

2
U ′′(Vt ) d〈V 〉t

= U ′(Vt )
[(−αVt + g(Vt )

)
dt + β(Vt ) dW 2

t

] + 1

2
U ′′(Vt )β(Vt )

2 dt

= 1

β(Vt )

[(−αVt + g(Vt )
)
dt

] + dW 2
t − 1

2
β ′(Vt ) dt

=
[
− α

β(Vt )
Vt + g(Vt )

β(Vt )
− 1

2
β ′(Vt )

]
dt + dW 2

t(4.10)

=
[
−αYt +

(
αYt − α

β(Vt )
Vt

)
+

(
g(Vt )

β(Vt )
− 1

2
β ′(Vt )

)]
dt + dW 2

t

=
[
−αYt +

(
αYt − α

β(U−1(Yt ))
U−1(Yt )

)

+
(

g(U−1(Yt ))

β(U−1(Yt ))
− 1

2
β ′(U−1(Yt )

))]
dt + dW 2

t .

We need to show that the terms αYt − α
β(U−1(Yt ))

U−1(Yt ) and g(U−1(Yt ))

β(U−1(Yt ))
−

1
2β ′(U−1(Yt )) satisfy the sublinear growth condition in Assumption 3.1. Hence-
forth, “sublinear growth” will mean that equation (3.2) is satisfied.

We first look at the term g(U−1(Yt ))

β(U−1(Yt ))
− 1

2β ′(U−1(Yt )). Since 1/β(·) and β ′(·) are

bounded functions, it is sufficient to show that g(U−1(Yt )) has sublinear growth in
Yt . By the definition of Y and bounds on β(·), we get Vt/β̄ ≤ Yt ≤ Vt/β which then
gives us the inequality βYt ≤ Vt = U−1(Yt ) ≤ β̄Yt . Since g has sublinear growth
and Vt grows linearly with Yt , we get that g(U−1(Yt )) is a sub linear function
of Yt .

We next show that |y − U−1(y)

β(U−1(y))
| ≤ constant × (1 + |y|)δ for some δ ∈ (0,1).

By definition of Y and properties of β(·), we get

y = U(v) =
∫ v

0

1

β(z)
dz = v

β∞
+

∫ v

0

(
1

β(z)
− 1

β∞

)
dz = v

β∞
+ O

(
1 + |v|1−γ )
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and
v

β(v)
= v

β∞
+ O

(
1 + |v|1−γ )

.

Putting this together, we get

y − U−1(y)

β(U−1(y))
= U(v) − v

β(v)
= O

(
1 + |v|1−γ )

.

Since Vt grows linearly with Yt , we get |y − U−1(y)

β(U−1(y))
| = O(1 + |y|1−γ ). So |y −

U−1(y)

β(U−1(y))
| ≤ constant if γ > 1 and |y − U−1(y)

β(U−1(y))
| ≤ constant × (1 + |y|1−γ ) if

γ ∈ (0,1). Thus,⎧⎨
⎩

dXt = −1

2
σ̃ (Yt )

2 dt + σ̃ (Yt )
(
ρ dW 2

t + ρ̄ dW 1
t

)
,

dYt = (−αYt + g̃(Yt )
)
dt + dW 2

t

for some σ̃ , g̃ which satisfy Assumptions 3.1 and 3.2, so we are back to a model of
the form in (3.1), and thus the main result in Theorem 4.1 still holds. If we want to
impose less stringent conditions on β , we would have to manually verify the upper
bound conditions 1–5 and the lower bound conditions A, B in Section 2.1.

5. Call options and implied volatility. We now verify the martingale prop-
erty for St = eXt . This will be used to define the Share measure P∗ below.

PROPOSITION 5.1. (St )0≤t<∞ defined in (3.1) is a martingale.

PROOF. See Appendix D. �

We consider the family of probability measures PS
T (A) := 1

S0
E(ST 1A) defined

for each T > 0, for A ∈Ft and t ≤ T [PS
T is a probability measure on FT because

(St )0≤t≤T is a martingale by Proposition 5.1]. From Girsanov’s theorem, we have
that ⎧⎨

⎩
dXt = 1

2
σ(Yt )

2 dt + σ(Yt )
(
ρ dW ∗2

t + ρ̄ dW ∗1
t

)
,

dYt = (−αYt + g(Yt ) + ρσ(Yt )
)
dt + dW ∗2

t ,
(5.1)

where W ∗1
t ,W ∗2

t are independent PS -Brownian motions. Let P∗ be a probability
measure under which (X,Y ) satisfies (5.1) for all t > 0 with X0 = 0 and Y0 = y0.

PROPOSITION 5.2. Xt/t satisfies the LDP under P∗ as t → ∞ with a good
rate function given by

I ∗(x) = inf
μ∈P(R)

[
(x − M∗(μ))2

2ν(μ)
+ IY (μ)

]
,
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where M∗(μ) = 1
2F(μ) + ρG∗(μ), where G∗(μ) = ∫ ∞

−∞[(αy − g(y) −
ρσ(y))σ (y) − 1

2σ ′(y)]μ(dy), and the minimum of I ∗(x) is attained uniquely at
x∗

min = M∗(μ∗∞); where μ∗∞ is the invariant distribution of the Y process under P∗.

PROOF. If we let g̃(y) = g(y) + ρσ(y), then g̃ also has sublinear growth,
and the proof then just follows by an almost identical argument to the proofs of
Theorem 4.1 and Corollary 4.2. �

COROLLARY 5.3. The unique minimizers xmin and x∗
min of the rate functions

I and I ∗, respectively (defined in Corollary 4.2 and Proposition 5.2, resp.), satisfy
the inequality x∗

min > xmin.

PROOF. Recall the formula of the invariant density for the perturbed OU pro-

cess given in (2.5). Then μ∗∞(y) = e−αy2
e

2
∫ y
y0

g̃(u) du

∫ ∞
−∞ e−αu2

e
2

∫ u
y0

g̃(v) dv du
du

, where g̃(y) = g(y) +

ρσ(y) and μ∞(y) = e−αy2
e

2
∫ y
y0

g(u)du

∫ ∞
−∞ e−αu2

e
2

∫ u
y0

g(v) dv du
du

. Observe that

G∗(
μ∗∞

) = const ·
∫ ∞
−∞

[(
αy − g̃(y)

)
σ(y) − 1

2
σ ′(y)

]
e−αy2

e
2

∫ y
y0

g̃(u) du
dy

= const ·
∫ ∞
−∞

−1

2

[
d

dy

(
σ(y)e−αy2

e
2

∫ y
y0

g̃(u) du)]
dy = 0.

Similarly, G(μ∞) = 0. Thus,

xmin = −1

2
F(μ∞) + ρG(μ∞) = −1

2
F(μ∞) < F

(
μ∗∞

)

= 1

2
F

(
μ∗∞

) + ρG∗(
μ∗∞

) = x∗
min. �

By Proposition 5.2, that is, the LDP for (Xt/t) under P∗, and the continuity
of the rate function I ∗, we obtain the following corollary, which will be used to
characterize the large-time behaviour of call option prices.

COROLLARY 5.4. For the model in (3.1), we have the following large-time
behaviour for digital call options:

lim
t→∞

1

t
logP∗(Xt > xt) = −�∗(x)

(
x > x∗

min
)
,

lim
t→∞

1

t
logP∗(Xt < xt) = −�∗(x)

(
x < x∗

min
)
,

where

�∗(x) =
⎧⎨
⎩

inf
y>x

I ∗(y), if x ≥ x∗
min,

inf
y<x

I ∗(y), if x ≤ x∗
min.
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REMARK 5.5. From the definition of �∗, we see that �∗ is nonincreasing for
x < x∗

min and nondecreasing for x > x∗
min, and [by the continuity of I ∗(x), which

can be proved by a similar argument to Corollary 4.3] �∗ is continuous.

Recall that the payoff of a European call option of strike K is E(St − K)+, and
the payoff of a European put option with strike K is E(K − St )

+.

COROLLARY 5.6. For the model in (3.1), we have the following large-time
asymptotic behaviour for put/call options in the large-time, large log-moneyness
regime:

− lim
t→∞

1

t
logE

(
St − S0e

xt )+ = �∗(x)
(
x ≥ x∗

min
)
,

− lim
t→∞

1

t
log

[
S0 −E

(
St − S0e

xt )+] = �∗(x)
(
xmin ≤ x ≤ x∗

min
)
,(5.2)

− lim
t→∞

1

t
log

(
E

(
S0e

xt − St

)+) = �∗(x) (x ≤ xmin),

PROOF. This is now a standard result; see, for example, Corollary 2.4 in [13].
�

5.1. Implied volatility. Using the same proofs as in Corollary 1.7 and Corol-
lary 2.17 in [13] for the Heston model (see also Theorem 14 in [18] for a general
affine model), we have the following asymptotic behaviour in the large-time, large
log-moneyness regime, where σ̂t (xt) is the implied volatility of a put/call option
with strike S0e

xt for model in (3.1):

σ̂∞(x)2 = lim
t→∞ σ̂ 2

t (xt)

=
⎧⎨
⎩

2
(
2�∗(x) + x − 2

√
�∗(x)2 + �∗(x)x

) (
x /∈ (

xmin, x
∗
min

))
,

2
(
2�∗(x) + x + 2

√
�∗(x)2 + �∗(x)x

) (
x ∈ (

xmin, x
∗
min

))
and we see that σ̂∞(0)2 = 8�∗(0). We omit the details for the sake of brevity.

6. Numerical implementation and results. Recall that the rate function I (x)

for Xt/t under the model in (3.1) is given by I (x) = infμ∈P(R)[ (x−M(μ))2

2ν(μ)
+

IY (μ)]. If g(y) ≡ 0, then using the simpler representation for the rate function
in (2.3), we can re-write I (x) as

I (x) = inf
ψ∈L2(μ∞):‖ψ‖2=1

[
(x − M)2

2ν
+ 1

2

∫ ∞
−∞

ψ ′(y)2μ∞(y) dy

]

where now M = M(ψ) = ∫ ∞
−∞ m(y)ψ(y)2μ∞(y) dy, m(y) = −1

2σ 2(y) + ρb(y)

and ν = ν(ψ) = ρ̄2 ∫ ∞
−∞ σ(y)2ψ(y)2μ∞(y) dy [the constraint under the inf is just

shorthand for
∫ ∞
−∞ ψ(y)2μ∞(y) dy = 1].
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FIG. 1. Here, we have plotted the right half of the (symmetric) asymptotic implied volatility σ̂∞(x)

for the Ornstein–Uhlenbeck model with ρ = 0, α = 1 and σ(y) = √
log(1 + ey) (solid blue line)

using the Ritz method with the NMinimize command in Mathematica and n = 7, and the values
obtained using Monte Carlo simulation for t = 75 years (grey diagonal crosses) and t = 30 years
(black crosses). For the Monte Carlo, we use 1,000,000 simulations and 1000 time steps and we use
the usual conditioning trick for ρ = 0 by simulating the integrated variance

∫ t
0 σ(Ys)

2 ds and then
plugging this into the Black–Scholes formula. In this case, x∗

min = 0.376131 and xmin = −x∗
min. Note

that σ(y) ∼ √
y as y → ∞, and thus satisfies the sublinear growth condition.

6.1. The Ritz method. We can use the Ritz method described in Gelfand and
Fomin [10] to provide an approximate numerical solution to this problem in terms
of ψ , by considering a ψ = α0ϕ0 + · · · + αnϕn, where ϕ0, ϕ2, . . . , ϕn are the
first n + 1 eigenfunctions for the Hilbert space H = L2(R,μ∞) of square inte-
grable functions with respect to μ∞(y), which can be computed in closed form as
ϕn(y) = Hn(

√
αy) (see Section 6.2.1 in Linetsky [22]). We then optimize for the

Fourier coefficients (α0, . . . , αn) (see Table 1 and Figure 1).

6.2. Numerical results.

TABLE 1
Here we have computed the large-time asymptotic implied volatility σ̂∞(x) using the Ritz method,

and compared to the answers obtained using Monte Carlo for t = 75 yrs and t = 30 yrs

x σ̂∞(x) Monte Carlo t = 75 Monte Carlo t = 30

0.0 0.858305 0.857258 0.856479
0.2 0.860926 0.859900 0.859147
0.4 0.868463 0.867634 0.866509
0.6 0.880036 0.879524 0.877567
0.8 0.894606 0.894606 0.891904
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7. Stochastic interest rates and jumps. We now consider the following
three-factor model for the log stock price Xt under P, which incorporates stochas-
tic volatility and a stochastic short rate driven by a CIR square root process:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

dXt =
(
rt − 1

2
σ(Yt )

2
)

dt + σ(Yt )
(
ρ dW 2

t + ρ̄ dW 1
t

) + dZt ,

dYt = (−αYt + g(Yt )
)
dt + dW 2

t ,

drt = κr(θr − rt ) dt + σr

√
rt dW 3

t ,

(7.1)

where W 1,W 2,W 3 are independent Brownian motions, x0, κr , θr , σr > 0, |ρ| < 1
and 2κrθr > σ 2

r ,4 and Zt is a Lévy process independent of W 1, W 2, W 3 such
that eZt is a martingale, with cumulant generating function (cgf) VJ (p) so that
E(epZt ) = eVJ (p)t , and g,σ satisfy Assumptions 3.1 and 3.2.

Assume that V ′′
J (p) > 0 and VJ (p) is essentially smooth on some interval

(p−,p+) [i.e., |V ′
J (p)| → ∞ as p ↗ p+ and p ↘ p−] with p− < 0 < 1 < p+.

If we let x− = V ′
J (0) and V ∗

J (x) = supp[px − VJ (p)] denote the Legendre trans-
form of VJ , then by the Gärtner–Ellis theorem, Zt/t satisfies the LDP with rate
function V ∗

J (x), and x− is the unique minimum of V ∗
J (x) where V ∗

J (x−) = 0 (see
[9] for details).

We will need the following result.

LEMMA 7.1. For the model in (7.1), �t = 1
t

∫ t
0 rs ds satisfies the LDP as t →

∞ with good rate function given by the Fenchel–Legendre transform of VCIR:

ICIR(a) = sup
a>0

{
pa − VCIR(p)

} = κ2
r (a − θr)

2

2aσ 2
r

,

where

VCIR(p) = lim
t→∞

1

t
logE

(
ep

∫ t
0 rs ds)

(7.2)

=
⎧⎪⎨
⎪⎩

κrθr

σ 2
r

[
κr −

√
κ2
r − 2σ 2

r p
]
, for p ∈ (−∞,p+],

∞, for p /∈ (−∞,p+],
and p+ = κ2

r

2σ 2
r

. ICIR clearly attains its minimum value of zero at a = θr .

PROOF. Just follows from the known closed-form expression for the moment
generating function of �t given in, for example, Section 3 in [2] and the Gärtner–
Ellis theorem from large deviations theory, using a similar argument to Theo-
rem 2.1 in Forde and Jacquier [13]. �

From the contraction principle, we now have the following.

4Which ensures that r = 0 is an unattainable boundary.
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COROLLARY 7.1. Xt/t satisfies the LDP as t → ∞ with rate function
Ir(x) = infa,y,z:a+y+z=x[I (y) + ICIR(a) + V ∗

J (z)] = infa,y[I (y) + ICIR(a) +
V ∗

J (x − a − y)], where I (x) is defined as in Theorem 4.1.

REMARK 7.2. For the model in (7.1), if there is no Lévy process component,
by conditioning on �t = 1

t

∫ t
0 rs ds, we can prove the following asymptotic be-

haviour for the price of a digital call option in the large-time, large log-moneyness
regime:

lim
t→∞

1

t
logE

(
e− ∫ t

0 rs ds1Xt>xt

) = − inf
y>x

Ir(y),

where Ir(x) = infa∈R+[a + I (x − a) + ICIR(a)].
REMARK 7.3. We can adapt this result to compute, for example, large-time

asymptotics for European call options.

APPENDIX A: LINEAR FUNCTIONALS OF THE OCCUPATION MEASURE

LEMMA A.1. Consider a linear functional � : P(R) �→R defined by �(μ) =∫ ∞
−∞ λ(y)μ(dy), where λ satisfies the growth condition:∣∣λ(y)

∣∣ ≤ A
(
1 + |y|q)

(A.1)

for q ∈ (0,2), A > 0. Then
∣∣�(μ) − �m(μ)

∣∣ ≤ 2A

(
1

m2 + 1

m2−q

)(
K2(α)IY (μ) + K3(α)

)
,

where �m(μ) = ∫ [λ(y)1{|y|≤m} + λ(m)1{y>m} + λ(−m)1{y<−m}]μ(dy) and
K2(α) > 0 and K3(α) are the constants introduced in Lemma 2.2.

PROOF. For IY (μ) ≤ c, using the growth condition on λ we obtain∣∣�(μ) − �m(μ)
∣∣

=
∫
|y|>m

[(
λ(y) − λ(m)

)
1{y>m} + (

λ(y) − λ(−m)
)
1{y<−m}

]
μ(dy)

≤
∫
|y|>m

[(∣∣λ(y)
∣∣ + ∣∣λ(m)

∣∣)1{y>m} + (∣∣λ(y)
∣∣ + ∣∣λ(−m)

∣∣)1{y<−m}
]
μ(dy)

≤ 4
∫
|y|>m

A
(
1 + |y|q)

μ(dy)

≤ 4A

(
1

m2 + 1

m2−q

)∫ ∞
−∞

y2μ(dy)

≤ 4A

(
1

m2 + 1

m2−q

)(
K2(α)IY (μ) + K3(α)

)
,

where we have used Lemma 2.2 in the final line. �
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LEMMA A.2. σ 2(y) satisfies the sub-quadratic growth condition

σ 2(y) ≤ A1
(
1 + |y|2p)

,(A.2)

where A1 = 3K2
1 ; thus F [as defined in (3.5)] satisfies the conditions of Lemma A.1

with λ(y) = σ 2(y), A = A1 and q = 2p ∈ (0,2).

PROOF. From the sublinear growth condition σ(y) ≤ K1(1 + |y|p), we see
that

σ(y)2 ≤ A2(
1 + |y|p)2 = A2(

1 + 2|y|p + |y|2p) ≤ 3A2(
1 + |y|2p)

,

where the final inequality just comes from the inequality |y|p ≤ 1 + |y|2p . �

LEMMA A.3. b satisfies the growth condition∣∣b(y)
∣∣ ≤ A2

(
1 + |y|1+p)

(A.3)

for some A2 > 0; hence the functional G defined in Theorem 4.1 satisfies the con-
ditions in Lemma A.1 with λ(y) = b(y),A = A2 and q = 1 + p ∈ (0,2).

PROOF. Using the sublinear growth condition (3.2) and the boundedness
of σ ′, we see that

∣∣b(y)
∣∣ ≤ α|y|K1

(
1 + |y|p) + 1

2

∥∥σ ′∥∥ = αK1|y| + αK1|y|1+p + 1

2

∥∥σ ′∥∥

≤ αK1
(
1 + |y|1+p) + αK1|y|1+p + 1

2

∥∥σ ′∥∥
≤ A2

(
1 + |y|1+p)

for some A2 > 0. �

LEMMA A.4. Let m(y) = −1
2σ 2(y)+ρb(y). Then m satisfies the growth con-

dition ∣∣m(y)
∣∣ ≤ A3

(
1 + |y|1+p)

for some A3 > 0; thus M satisfies the conditions in Lemma A.1 with λ(y) =
m(y),A = A3 and q = 1 + p ∈ (0,2).

PROOF. Using (A.2) and (A.3),

m(y) =
∣∣∣∣−1

2
σ 2(y) + ρb(y)

∣∣∣∣ ≤ 1

2
A1

(
1 + |y|2p) + ρA2

(
1 + |y|1+p)

≤ A3
(
1 + |y|1+p)

for some A3 > 0. �



LARGE-TIME OPTION PRICING USING THE DONSKER–VARADHAN LDP 3721

APPENDIX B: PROOF OF LEMMA 2.1

To verify the lower bound conditions I and II, we have to show that p(1, x, dy)

admits a density p(1, x, y) and that

lim
x2→x1

∫ ∞
−∞

∣∣p(1, x2, y) − p(1, x1, y)
∣∣dy = 0.(B.1)

For the rest of the proof, we assume that Y0 = x. Let Ḡ(y) = ∫ y
x g(u)du; then

Ḡ has sub-quadratic growth and recall that |g′| is bounded by assumption. Let
h(y) := −α

2 y2 + Ḡ(y). Then the perturbed OU process Y in (2.4) satisfies dYt =
h′(Yt ) dt + dWt and

dh(Yt ) = h′(Yt )
(
h′(Yt ) dt + dWt

) + 1

2
h′′(Yt ) dt.(B.2)

We now define a measure Q such that

dQ

dP

∣∣∣∣
Ft

:= e− 1
2

∫ t
0 h′(Ys)

2 ds−∫ t
0 h′(Ys) dWs = eh(x)−h(Yt )+ 1

2

∫ t
0 g̃(Ys) ds,(B.3)

where g̃(y) = h′′(y) + (h′(y))2 = (−α + g′(y)) + (−αy + g(y))2 and we have
used (B.2) to remove the stochastic integral term in (B.3). To check that the right-
hand side in (B.3) is a P-martingale, we first define an intermediate change of
measure dPOU

dP
|Ft := M1(t), where

M1(t) = e− 1
2

∫ t
0 g2(Ys) ds−∫ t

0 g(Ys) dWs .(B.4)

Then M1 is a P-martingale since the Novikov condition is satisfied following the
same argument as Appendix D, and

dYt = −αYt dt + dW̃t ,

where W̃t = Wt − ∫ t
0 g(Ys) ds is a Brownian motion under POU, that is, Y is an

(unperturbed) OU process under POU. Now define dQ

dPOU |Ft := M2(t), where

M2(t) = e− 1
2

∫ t
0 (α2Y 2

s ) ds−∫ t
0 αYs dW̃s .

If M2(t) is a POU-martingale, then we can go straight from P to Q and define as in
(B.3):

dQ

dP

∣∣∣∣
Ft

:= e− 1
2

∫ t
0 h′(Ys)

2 ds−∫ t
0 h′(Ys) dW

(2)
s = M1(t)M2(t)

and M1M2 will be a P-martingale. To check that M2 is a POU martingale, we verify
the Novikov condition

EPOU[
e

1
2

∫ s+ε
s (α2Y 2

u ) du] = EPOU[
e

1
2

1
ε

∫ s+ε
s εα2Y 2

u du]

≤ 1

ε

∫ s+ε

s
EPOU[

e
1
2 εα2Y 2

u
]
du
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by Jensen’s inequality. Under POU, Yu ∼ N(y0e
−αu, 1−e−2αu

2α
), so taking ε small

enough (say ε = 1
4α

), we get EPOU[e 1
2

∫ s+ε
s (α2Y 2

u ) du] < ∞, for any s > 0. Thus, by
Corollary 5.5.14 on page 199 in [20], M2 is a POU-martingale.

By Girsanov’s theorem, Y is standard Brownian motion under Q and for any
f ∈ Cb(R),∫ ∞
−∞

f (y)p(t, x, dy) = EP(
f (Yt )

) = EQ[
f (Yt )e

h(Yt )−h(x)− 1
2

∫ t
0 g̃(Ys) ds]

=
∫ ∞
−∞

f (y)eh(y)−h(x)EQ(
e− 1

2

∫ t
0 g̃(Ys) ds |Yt = y

)
γ (t, x, y) dy

=
∫ ∞
−∞

f (y)eh(y)−h(x)φ(t, x, y)γ (t, x, y) dy

(see also equations (6)–(8) in [24]), where γ (t, x, y) = 1√
2πt

e−(y−x)2/2t , h(y) =∫ y
x (−αu + g(u)) du = −α

2 y2 + Ḡ(y) + α
2 x2 − Ḡ(x) and Ḡ(y) = ∫ y

x g(u)du and

φ(t, x, y) = EP̂x,y
(
e− 1

2

∫ t
0 g̃(Ys) ds),

where P̂x,y is a probability measure under which Y is a Brownian bridge with
Y0 = x and Yt = y. Thus, Y has a transition density given by

p(t, x, y) = γ (t, x, y)eh(y)−h(x)φ(t, x, y).

Ḡ(y) is sub-quadratic so we can choose a constant c > 0 such that Ḡ(y) ≤ c+ αy2

4 .
Then we see that

eh(Yt )−h(x) = e− αY2
t

2 +Ḡ(Yt )+ αx2
2 −Ḡ(x) ≤ e

αx2
2 −Ḡ(x)ec− αY2

t
4 ,

and

φ(t, x, y) = EP̂x,y
(
e− 1

2

∫ t
0 g̃(Ys) ds)

= EP̂x,y
(
e

∫ t
0 [− 1

2 (−αYs+g(Ys))
2− 1

2 (−α+g′(Ys))]ds)

≤ e
α+‖g′‖

2 t .

Thus, we have

p(1, x, y) ≤ 1√
2π

e
αx2

2 −Ḡ(x)ec− αy2

4 e
α+‖g′‖

2 = C1e
− α

4 y2+C2

for some constants C1,C2 which are independent of y. Thus, supx∈K p(1, x, y) ≤
c1e

−cy2
for any compact set K ⊂ R. From the main theorem in [24], we also know

that p(t, x, y) is continuous in x. Hence, we can apply the dominated convergence
theorem to establish (B.1).
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APPENDIX C: PROOF OF LEMMA 4.1

Using the sublinear growth condition on σ , we have

∣∣χ(y)
∣∣ =

∣∣∣∣∣
∫ y

y0

σ(u)du

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ y

y0

K1
(
1 + |u|p)∣∣∣∣∣du ≤ K1|y − y0| + K1

∫ y

y0

|u|p du

≤ K1|y − y0| + K1

1 + p

(|y|1+p + |y0|1+p)
.

Thus, lim sup|y|→∞
|χ(y)|
|y|1+p ≤ K1

1+p
which implies that

(C.1) lim inf|y|→∞
|χ−1(y)|

|y|r ≥ K̃

for some K̃ > 0, where r = 1
1+p

∈ (1
2 ,1) [note that χ−1(·) is well defined because

χ ′(y) = σ(y) > 0]. Then from the analysis in the previous Appendix, we have

P
(
χ(Yt ) > tv

)

= EQ[
eh(Yt )−h(y0)− 1

2

∫ t
0 (h′(Ys))

2 ds− 1
2

∫ t
0 h′′(Ys) ds1Yt>χ−1(tv))

]

= EQ[
e− αY2

t
2 +Ḡ(Yt )+ αy2

0
2 −Ḡ(y0)−∫ t

0 ( 1
2 (−αYs+g(Ys))

2+ 1
2 (−α+g′(Ys))) ds1Yt>χ−1(tv)

]
(C.2)

≤ e
αy2

0
2 −Ḡ(y0)+ α+‖g′‖

2 t+c− α(K̃(tv)r )2
4 Q

(
Yt > K̃(tv)r

)

≤ c1e
−c2t

2r

for t sufficiently large, for some constants c1, c2 > 0, where we have used (C.1) in
the penultimate line and that Yt ∼ N(y0, t) under Q.

APPENDIX D: PROOF OF PROPOSITION 5.1

To show that St = e− 1
2

∫ t
0 σ 2(Ys) ds+∫ t

0 σ(Ys)(ρ̄ dW 1
s +ρ dW 2

s ) is a martingale, by Corol-
lary 5.13, page 199 in [20], it is sufficient to check the Novikov condition:

E
(
e

1
2

∫ t
0 σ 2(Ys) dt ) < ∞; 0 ≤ t < ∞.

Fix 0 < t < ∞. Define un as in the proof of Lemma 2.2. Then, as in the proof of
Lemma 2.2, −Lun

un
(y) → c0y

2 − c1yg(y)− c2 pointwise as n → ∞, where c0 > 0.
Thus, by Fatou’s lemma we have

∫ ∞
−∞

(
c0y

2 − c1yg(y) − c2
)
μt(dy)

≤ lim inf
n→∞

∫ ∞
−∞

−Lun

un

(y)μt (dy) a.s.
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and

E
[
et

∫ ∞
−∞(c0y

2−c1yg(y)−c2))μt (dy)] ≤ E
(
e
t lim infn→∞

∫ ∞
−∞ −Lun

un
(y)μt (dy))

= E
(
lim inf
n→∞ e

t
∫ ∞
−∞ −Lun

un
(y)μt (dy)

)

≤ lim inf
n→∞ E

[
e
t
∫ ∞
−∞ −Lun

un
(y)μt (dy)]

.

As in the proof of Lemma 2.2, using the sublinear growth of g, we can find a
constant C1 such that c0y

2 − c1yg(y) − c2) ≥ c0
2 y2 − C1. From this, we see that

E
[
e−C1t e

1
2 c0

∫ t
0 Y 2

s ds] ≤ lim inf
n→∞ E

[
e
t
∫ ∞
−∞ −Lun

un
(y)μt (dy)]

.(D.1)

The right-hand side in (D.1) can be bounded as

E
[
e
− ∫ t

0
Lun
un

(Ys) ds] ≤ elogun(Y0)E
[
e

logun(Yt )−logun(Y0)−∫ t
0

Lun
un

(Ys) ds]
(D.2)

≤ un(y0),

where the inequality follows because logun(y) = c
2 [nψ(

y
n
)]2 ≥ 0, and the last

equality follows because Mt = e
logun(Yt )−logun(Y0)

∫ t
0

Lun
un

(Ys) ds is a local martingale
with M0 = 1. Applying this to (D.1) and using the definition of un(y), we get

E
[
e−C1t e

1
2 c0

∫ t
0 Y 2

s ds] ≤ e
c
2 y2

0 < ∞.(D.3)

From Assumption 3.1, we know that σ 2(y) has sub-quadratic growth, and hence
there exists a constant C2 such that 1

2σ 2(y) ≤ c0
2 y2 + C2. Therefore,

E
[
e

1
2

∫ t
0 σ 2(Ys) ds] ≤ E

[
eC2t e

c0
2

∫ t
0 Y 2

s ds] ≤ e
c
2 y2

0+C2t+C1t < ∞
from (D.3).
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