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EDGEWORTH EXPANSION FOR FUNCTIONALS OF CONTINUOUS
DIFFUSION PROCESSES

BY MARK PODOLSKIJ∗,1 AND NAKAHIRO YOSHIDA†,‡,§,2

Aarhus University∗, CREST Japan Science and Technology Agency†, The Institute
of Statistical Mathematics‡ and Graduate School of Mathematical Science§

This paper presents new results on the Edgeworth expansion for high fre-
quency functionals of continuous diffusion processes. We derive asymptotic
expansions for weighted functionals of the Brownian motion and apply them
to provide the Edgeworth expansion for power variation of diffusion pro-
cesses. Our methodology relies on martingale embedding, Malliavin calculus
and stable central limit theorems for semimartingales. Finally, we demon-
strate the density expansion for Studentized statistics of power variations.

1. Introduction. Edgeworth expansions have been widely investigated by
probabilists and statisticians in various settings. Nowadays, there exists a vast
amount of literature on Edgeworth expansions in the case of independent random
variables (cf. [4]), weakly dependent variables (cf. [7]) or in the framework of
martingales [19, 22]. We refer to classical books [4, 8] and [17] for a comprehen-
sive theory of asymptotic expansions and their applications. We remark that those
authors mainly deal with Edgeworth expansions associated with a normal limit.

In the framework of high frequency data (or infill asymptotics), which refers to
the sampling scheme in which the time step between two consecutive observations
converges to zero while the time span remains fixed, a mixed normal limit appears
as a typical asymptotic distribution. In the last years, a lot of research has been
devoted to limit theorems for high frequency observations of diffusion processes
or Itô semimartingales; see, for example, [2, 10, 11, 14] among many others. Such
limit theorems find manifold applications in parametric and semiparametric infer-
ence for diffusion models, estimation of quadratic variation and related objects
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(see, e.g., [3, 18]), testing approaches for semimartingales (see, e.g., [1, 6]) or
numerical analysis (see, e.g., [12]). While asymptotic mixed normality of high fre-
quency functionals has been proved in various settings, the Edgeworth expansions
associated with mixed normal limits have not been considered.

In this paper, we present the asymptotic expansion for high frequency statistics
of continuous diffusion processes. More precisely, we study the Edgeworth expan-
sion of weighted functionals of Brownian motion, where the weight arises from a
continuous SDE, and apply the asymptotic results to power variations of continu-
ous SDEs. Finally, we will obtain the density expansion for a Studentized version
of the power variation.

Our approach is based on the recent work of Yoshida [25], who uses a martin-
gale embedding method to obtain the asymptotic expansion of the characteristic
function associated with a mixed normal limit. In a second step, the asymptotic
density expansion is achieved via the Fourier inversion. Let us briefly sketch the
main concepts of [25]. We are given a functional Zn, which admits the decompo-
sition

Zn = Mn + rnNn,

where Mn is a leading term, rn is a deterministic sequence with rn → 0 and Nn

is some tight sequence of random variables. Here, Mn is a terminal value of a
continuous martingale (Mn

t )t∈[0,1], which converges to a mixed normal limit in
the functional sense. Under various technical conditions, including Malliavin dif-
ferentiability of the involved objects, joint stable convergence of (Mn,Nn) and
estimates of the tail behavior of the characteristic function, the paper [25] demon-
strated the Edgeworth expansion for the density of Zn [and, more generally, for
the density of the pair (Zn,Fn), where Fn is another functional usually used for
studentization]. The asymptotic theory has been applied to quadratic functionals
Mn in [24]. We would also like to refer to a related work of [22], where a martin-
gale expansion in the case of normal limits has been presented. It was applied to
the Edgeworth expansion for an ergodic diffusion process and an estimator of the
volatility parameter (cf. [5]).

Although the paper [25] presents a general theory, its particular application to
typical functionals of continuous diffusion processes is by far not straightforward.
When dealing with commonly used high frequency statistics such as, for example,
power variations, we are confronted with several levels of complications, which
we list below:

(i) The computation of the second-order term Nn in the decomposition of Zn

appears to be rather involved (cf. Theorem 4.2). This stochastic second-order ex-
pansion requires a very precise treatment of the functional Zn.

(ii) The joint asymptotic mixed normality of the vector (Mn,Nn,Fn,C
n),

where Cn is the quadratic variation process associated with the martingale Mn

and Fn is an external functional mentioned above, is required for the Edgeworth
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expansion (cf. Theorem 5.1). The proof of such results relies on stable limit theo-
rems for semimartingales (cf. Theorems A.1, A.2 and 4.4).

(iii) Other ingredients of Edgeworth expansion are the adaptive random symbol
σ and the anticipative random symbol σ (see [25] or Section 2 for the definition of
random symbols). While the adaptive random symbol σ is given explicitly using
the results of (ii), the anticipative random symbol σ is defined in an implicit way.
We will show how this symbol can be determined in Sections 3.3 and 3.4. For this
purpose, we will apply the Wiener chaos expansion and the duality between the
kth Malliavin derivative Dk and its adjoint δk .

(iv) Checking the technical conditions presented in Section 2.3 is another dif-
ficult task. In particular, we need to show the existence of densities and to analyze
the tail behavior of the characteristic function. This part involves many elements
of Malliavin calculus (cf. Sections 3.5 and 3.6).

We see that the derivation of the Edgeworth expansion relies on a combination
of various fields of stochastic calculus, such as limit theorems for semimartingales,
Malliavin calculus and martingale methods. These steps require a completely new
treatment in the power variation case, compared with those in simple quadratic
functionals.

The paper is organized as follows. In Section 2, we review the main results
of [25], which are crucial for this work. Section 3 is devoted to functionals of
Brownian motion with random weights. We will deal with the treatment of the
steps (i)–(iv), although the second-order term Nn remains absent. In Section 4,
we show the asymptotic theory for the class of generalized power variations of
continuous SDEs. In particular, we will determine the asymptotic behavior of the
second-order term Nn. Section 5 combines the results of Sections 3 and 4, and
we obtain an Edgeworth expansion for the power variation case. In Section 6, we
deduce the formula for the asymptotic density associated with a Studentized ver-
sion of power variation, which is probably most useful for applications. Section 7
is devoted to the derivation of the second-order term Nn. Finally, the Appendix
collects the proofs of limit theorems for semimartingales, which are suitable for
functionals considered in this paper.

2. Asymptotic expansion associated with mixed normal limit. As we are
applying various techniques from Malliavin calculus and stable central limit theo-
rems for semimartingales, we start by introducing some notation.

(a) Throughout the paper, �n denotes a sequence of positive real numbers with
�n → 0 and such that 1/�n is an integer. For the observation times i�n, i ∈ N,
we use a shorthand notation ti := i�n. For any function f : R → R, we denote
by f (k) its kth derivative; for a function f : R2 → R and α = (α1, α2) ∈ N

2
0 the

operator dα is defined via dα = d
α1
x1 d

α2
x2 , where dk

xi
f , i = 1,2, denotes the kth

partial derivative of f . The set Ck
p(R) [resp., Ck

b(R)] denotes the space of k times
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differentiable functions f : R → R such that all derivatives up to order k have
polynomial growth (resp., are bounded). Finally, i := √−1.

(b) The set Lq denotes the space of random variables with finite qth moment;

the corresponding L
q -norms are denoted by ‖ · ‖Lq . The notation Yn

dst−→ Y (resp.,

Yn
P−→ Y , Yn

d−→ Y ) stands for stable convergence (resp., convergence in proba-
bility, convergence in law).

(c) We now introduce some notions of Malliavin calculus (we refer to the books
of Ikeda and Watanabe [9] and Nualart [20] for a detailed exposition of Malliavin
calculus). Set H = L

2([0,1], dx) and let 〈·, ·〉H denote the usual scalar product
on H. We denote by Dk the kth Malliavin derivative operator and by δk its un-
bounded adjoint (also called Skrokhod integral of order k). The space Dk,q is the
completion of the set of smooth random variables with respect to the norm

‖Y‖k,q :=
(
E

[|Y |q] +
k∑

m=1

E
[∥∥DmY

∥∥q

H⊗m

])1/q

.

For any smooth d-dimensional random variable Y , the Malliavin matrix is defined
via σY := (〈DYi,DYj 〉H)1≤i,j≤d . We sometimes write �Y := detσY for the deter-
minant of the Malliavin matrix. Finally, we set Dk,∞ = ⋂

q≥2 Dk,q .

We start this section by reviewing the theoretical results from [25], which con-
cern the Edgeworth expansion associated with a mixed normal limit. On a filtered
Wiener space (�,F, (Ft )t∈[0,1],P), we consider a one-dimensional functional Zn,
which admits the decomposition

(2.1) Zn = Mn + rnNn,

where rn is a deterministic sequence with rn → 0 and Nn is some tight sequence of
random variables (in this paper we will have rn = �

1/2
n ). We assume that the lead-

ing term Mn is a terminal value of some continuous (Ft )-martingale (Mn
t )t∈[0,1],

that is, Mn = Mn
1 . In this paper, we are interested in cases where Mn (and so Zn)

converges stably in law to a mixed normal variable M (stable convergence has
been originally introduced in [21]). This means

(2.2) Mn
dst−→ M,

where the random variable M is defined on an extension (�,F,P) of the original
probability space (�,F,P) and, conditionally on F , M has a normal law with
mean 0 and conditional variance C. In this case, we use the notation

M ∼ MN(0,C).

We recall that a sequence of random variables (Yn)n∈N defined on (�,F,P)

with values in a metric space E is said to converge stably with limit Y , written
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Yn
dst−→ Y , where Y is defined on an extension (�,F,P) of the original probabil-

ity space (�,F,P), iff for any bounded, continuous function g and any bounded
F -measurable random variable X it holds that

(2.3) E
[
g(Yn)X

] → E
[
g(Y )X

]
, n → ∞.

For statistical applications, it is not sufficient to consider the Edgeworth expansion
of the law of Zn. It is much more adequate to study the asymptotic expansion for
the pair (Zn,Fn), where Fn is another functional which converges in probability:

Fn
P−→ F.

When Fn is a consistent estimator of the conditional variance C (i.e., F = C),
which is the most important application, we would obtain by the properties of
stable convergence:

Zn√
Fn

d−→N (0,1).

In this case, the asymptotic expansion of the law of (Zn,Fn) would imply the
Edgeworth expansion for the Studentized statistic Zn/

√
Fn.

We consider the stochastic processes (Mt)t∈[0,1] and (Cn
t )t∈[0,1] with

(2.4) M = M1, Ct = 〈M〉t , Cn
t = 〈

Mn〉
t , Cn = 〈

Mn〉
1.

Here, the process (Mt)t∈[0,1], defined on (�,F,P), represents the stable limit of
the continuous (Ft )-martingale (Mn

t )t∈[0,1], while Cn denotes the quadratic varia-
tion process associated with Mn. Now, let us set

Ĉn = r−1
n (Cn − C), F̂n = r−1

n (Fn − F).(2.5)

Apart from various technical conditions, presented in the Section 2.3, our main
assumption will be the following:

(A1) (i) (Mn· ,Nn, Ĉn, F̂n)
dst−→ (M·,N, Ĉ, F̂ ).

(ii) Mt ∼ MN(0,Ct ).

In order to present an Edgeworth expansion for the pair (Zn,Fn), we need to define
two random symbols σ and σ , which play a crucial role in what follows. We call σ

the adaptive (or classical) random symbol and σ the anticipative random symbol.

2.1. The classical random symbol σ . Let F̃ = F ∨ σ(M). We take a random
function C̃(z) such that

(2.6) C̃(M) = E[Ĉ|F̃].
In the same way we define the variables F̃ (z) and Ñ(z) such that

F̃ (M) = E[F̂ |F̃], Ñ(M) = E[N |F̃].
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REMARK 2.1. Due to Assumption (A1)(i), we have the pointwise stable con-

vergence (Mn,Nn, Ĉn, F̂n)
dst−→ (M,N, Ĉ, F̂ ). Usually, the limit (M,N, Ĉ, F̂ ) is

jointly mixed normal with expectation μ ∈ R
4 (and μ1 = 0) and conditional co-

variance matrix � ∈ R
4×4. We deduce, for instance, that

Ñ(M) = μ2 + �12

�11
M.

Consequently, we have Ñ(z) = μ2 + �12
�11

z. The quantities C̃(z) and F̃ (z) are com-
puted similarly.

Now, the adaptive random symbol σ is defined by

(2.7) σ(z,iu,iv) = (iu)2

2
C̃(z) + iuÑ(z) + ivF̃ (z).

Notice that σ is a second-order polynomial in (iu,iv). The random symbol
σ(z,iu,iv) is called classical, because it appears already in the martingale ex-
pansion in the central limit theorem [22, 23], that is, in the case where C is a
deterministic constant. In contrast, the anticipative random symbol σ , which will
be defined in the next subsection, is due to the mixed normality of the limit. In fact,
it disappears if C is nonrandom.

2.2. The anticipative random symbol σ . The second random symbol σ is
given in an implicit way. Let α = (α1, α2) ∈ N

2
0 with |α| = α1 + α2. Set

∂α = i−|α|dα.

We define the quantity 	n by

	n(u, v) = E

[
exp

(
−u2

2
C + ivF

)(
E

(
iuMn)

1 − 1
)
ψn

]
,

where E(H)t denotes the exponential martingale associated with a continuous
martingale H , that is,

E(H)t = exp
(
Ht − 1

2
〈H 〉t

)
= 1 +

∫ t

0
E(H)s dHs,

and the random variable ψn plays a role of a threshold that ensures the integrability
of the above expression, whose precise definition is given in Section 2.3 below. In
particular, ψn converges to 1 in probability.

REMARK 2.2. Recalling the definition of the exponential martingale
E(iuMn), we observe that 	n(u, v) is closely related to the joint characteristic
function of (Mn,F ). Condition (A5) of Section 2.3 specifies the tail behavior of
	n(u, v). When C = F is deterministic, that is, we are in the framework of a stan-
dard central limit theorem, the truncation ψn can be dropped and we obtain that
	n(u, v) = 0, since (E(iuMn)t − 1)t∈[0,1] is a martingale with mean 0.
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Now, we assume that the limit 	α(u, v) := limn→∞ r−1
n ∂α	n(u, v) (if it exists)

admits the representation

	α(u, v) = ∂α
E

[
exp

(
−u2

2
C + ivF

)
σ(iu,iv)

]
,

(2.8)
(u, v) ∈ R

2, α ∈ Z
2+,

where the random symbol σ(iu,iv) has the form

(2.9) σ(iu,iv) = ∑
j

cj (iu)mj (iv)nj (finite sum)

with cj ∈Dl,∞ for a certain l ∈ N [cf. assumption (A4) in Section 2.3]. We remark
that σ(iu,iv) is a polynomial with random coefficients.

2.3. Assumptions and truncation functionals. In this subsection, we state the
conditions (A2)�, (A3), (A4)�,n, (A5) and (A6)� required in Theorem 2.3 below.
Localization techniques will be essential to carry out the computations rigorously.
For this purpose, we need two auxiliary functionals sn and ξ̃n, which will be intro-
duced in details later.

(A2)� (i) F ∈ D�+1,∞ and C ∈D�,∞.
(ii) Mn ∈ D�+1,∞, Fn ∈D�+1,∞, Cn ∈ D�,∞, Nn ∈ D�+1,∞ and sn ∈ D�,∞.

Moreover,

sup
{‖Mn‖�+1,p + ‖Ĉn‖�,p + ‖F̂n‖�+1,p + ‖Nn‖�+1,p + ‖sn‖�,p

}
< ∞

for every p ≥ 2.

(A3) (i) P[�(Mn,F ) < sn] = O(r1+κ
n ) for some positive constant κ . Recall that

�(Mn,F ) denotes the determinant of the Malliavin matrix of (Mn,F ).
(ii) For every p ≥ 2,

lim sup
n→∞

E
[
s−p
n

]
< ∞,

and moreover C−1 ∈ L
∞.

(A4)�,n (i) C̃(z), Ñ(z) and F̃ (z) are random polynomials with coefficients in
D4,∞.

(ii) The random symbol σ , which satisfies (2.8), admits a representation

σ(iu,iv) = ∑
j

cj (iu)mj (iv)nj (finite sum),

where the numbers nj ∈ N satisfy nj ≤ n and c̄j ∈ D�,∞.

Let 	α
n = ∂α	n. We remark that the functional 	α

n depends on a truncation
functional ψn we will specify later.
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(A5) For some q ∈ (1/3,1/2),

sup
n

sup
(u,v)∈�0

n(2,q)

∣∣(u, v)
∣∣3r−1

n

∣∣	α
n(u, v)

∣∣ < ∞

for every α ∈ Z
2+, where �0

n(2, q) = {(u, v) ∈ R
2; |(u, v)| ≤ r

−q
n }.

(A6)� ξ̃n ∈ D�,∞, supn ‖ξ̃n‖�,p < ∞ for every p > 1, and P [|ξ̃n| > 1/2] =
O(r1+κ

n ) as n → ∞ for some positive constant κ .

Truncation techniques will play an essential role in derivation of the asymptotic
expansion. We shall construct a truncation functional ψn below, which has been
introduced in the definition of 	n(u, v). Let ψ ∈ C∞([0,1]) be a real-valued func-
tion with ψ(x) = 1 for |x| ≤ 1/2 and ψ(x) = 0 for |x| ≥ 1. Recalling that C1 = C,
we define a random variable ξn by

ξn = 10−1r−2c
n

(
Cn

1 − C
)2 + 2

[
1 + 4�(Mn

1 ,C)s
−1
n

]−1 + r2c1
n C2,(2.10)

where c1 > 0, c satisfies 2q < c < 1 and the constant q is given in (A5). Define
the 2 × 2 random matrix R′

n by

R′
n = σ−1

Qn

(
rn〈DQn,DRn〉H + rn〈DRn,DQn〉H + r2

n〈DRn,DRn〉H)
,

where Qn = (Mn,F ) and Rn = (Nn, F̂n). Obviously,

σ(Zn,Fn) = σQn

(
I2 + R′

n

)
,(2.11)

where I2 is the 2 × 2 identity matrix. Let ξ ′
n = r−1

n |R′
n|2. We define ψn by

ψn = ψ(ξn)ψ
(
ξ ′
n

)
ψ(ξ̃n).(2.12)

We remark that the random variables appearing in the definition of ξn and ξ ′
n are

bounded under truncation. Since we later deal with exponentials of these variables,
we need to exclude their large values to obtain finite expectations. This is exactly
the intuition behind the definition of the truncation functional ψn. A priori the
meaning of the random variables sn and ξ̃n, which enter the formulas (2.10) and
(2.12), respectively, is not clear at this stage. The variable ξ̃n will play again a role
of truncation, which is proof specific. The term sn will be set up in Section 3.2.

2.4. The asymptotic expansion of the density of (Zn,Fn). We set

(2.13) σ = σ + σ .

We remark that due to the definition of σ and σ the random symbol σ admits the
representation

(2.14) σ(z,iu,iv) = ∑
j

cj (z)(iu)mj (iv)nj (finite sum)



EDGEWORTH EXPANSION FOR FUNCTIONALS 3423

for some cj (z) ∈ ⋂
p>1 L

p . The approximative density of (Zn,Fn) is defined as

pn(z, x) = E
[
φ(z;0,C)|F = x

]
pF (x)

(2.15)
+ rn

∑
j

(−dz)
mj (−dx)

nj
(
E

[
cj (z)φ(z;0,C)|F = x

]
pF (x)

)
,

where pF denotes the density of F and φ(·;a, b2) is the density of N (a, b2)-
distribution. Obviously, we will require certain regularity conditions in terms of
Malliavin calculus in order to validate the existence of the density pF and the
derivatives in (2.15) as well as to validate the estimate of the approximation error.

For any integrable function h :R2 →R, we set

(2.16) �n(h) =
∣∣∣∣E[

h(Zn,Fn)
] −

∫
h(z, x)pn(z, x) dz dx

∣∣∣∣.
The following theorem is Theorem 2 of [25] (see also [24]).

THEOREM 2.3. Let � = 5∨2[(n+3)/2] with n = maxj nj , where the integers
nj are defined at (2.14). Define the set E(K,γ ) = {h : R2 → R|h is measurable
and |h(z, x)| ≤ K(|z| + |x|)γ } for K,γ > 0. Then under the assumptions (A1),
(A2)�, (A3), (A4)�,n, (A5) and (A6)�,

(2.17) sup
h∈E(K,γ )

�n(h) = o(rn).

3. Functionals of Brownian motion with random weights. In this section,
we consider general weighted functionals of a Brownian motion with weights de-
pending on a given stochastic differential equation, and we shall derive an expan-
sion formula. Here, the stochastic second-order term Nn is still absent. In later
sections, we will meet an expansion with nonvanishing Nn when considering the
power variations of diffusion processes. However, we will solve two essential prob-
lems in this general but concrete situation, that is, identification of the anticipative
random symbol in this model, and proof of the nondegeneracy of the functionals.

On a given Wiener space (�,F, (Ft )t∈[0,1],P) we consider a 1-dimensional
stochastic differential equation of the form

(3.1) dXt = b[1](Xt) dWt + b[2](Xt) dt,

where X0 is a bounded random variable, b[1], b[2] : R → R are two determinis-
tic functions and W is a standard Brownian motion. Sometimes we will use the
notation

b
[1]
t = b[1](Xt), b

[2]
t = b[2](Xt).

The somewhat unusual notation b[1], b[2] refers to the fact that the diffusion term
b[1] dominates the drift term b[2] in all asymptotic expansions (so b[1] is the first-
order term and b[2] is the second-order term). Under standard smoothness con-
ditions, the processes b

[k]
t , k = 1,2, also satisfy a SDE of the type (3.1) by Itô’s
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formula; in this case we denote by b
[k.1]
t (resp., b

[k.2]
t ) the diffusion term (resp.,

the drift term) of b
[k]
t . In the same manner, we introduce the processes b

[k1···kd ]
t ,

k1, . . . , kd = 1,2, recursively. We will assume that b[1] and b[2] are in C∞
b,1(R) (the

set of smooth functions such that each derivative of positive order is bounded).
In this section, we consider weighted functionals of the Brownian motion of the

type

(3.2) Mn = �1/2
n

1/�n∑
i=1

a(Xti−1)f

(
�n

i W√
�n

)
, �n

i W = Wi�n − W(i−1)�n,

where a ∈ C∞
p (R) and f ∈ C11

p (R). Since f has polynomial growth, it holds that
E[f 2(Z)] < ∞ with Z ∼ N (0,1). Consequently, the function f exhibits a Her-
mite expansion. We assume that the function f has the form

(3.3) f (x) =
∞∑

k=2

λkHk(x) in L
2(
R;φ(x;0,1) dx

)
with λk = E[f (Z)Hk(Z)]/k! and Z ∼ N (0,1), where Hk is the kth Hermite poly-
nomial, that is, H0(x) = 1 and

Hk(x) = (−1)ke
x2
2

dk

dxk

(
e− x2

2
)
, k ≥ 1.

In particular, the Hermite rank of the function f is at least 2 and E[f (Z)] = 0
for Z ∼ N (0,1). We will see later that the Hermite rank 1 would not lead to the
asymptotic mixed normal distribution with conditional mean 0. In this section, we
will consider

Fn = �n Var
[
f (Z)

] 1/�n∑
i=1

a2(Xti−1),(3.4)

which is a Riemann sum approximation of C = 〈M〉1, as the reference variable.
The second convergence of the following proposition is a straightforward conse-
quence of [2], Section 8.

PROPOSITION 3.1. It holds that

Fn
P−→ C = Var

[
f (Z)

] ∫ 1

0
a2(Xs) ds and �−1/2

n (Fn − C)
P−→ 0.

3.1. A limit theorem for (Mn, Ĉn) and the adaptive random symbol. First, we

note that for H = f (
�n

i W√
�n

) it holds

H =
∫ 1

0
E[DsH |Fs]dWs,
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which is the Clark–Ocone formula. Consequently, we deduce the identity

f

(
�n

i W√
�n

)
= �−1/2

n

∫ ti

ti−1

E

[
f ′

(
�n

i W√
�n

)∣∣∣Fs

]
dWs.

Thus, we naturally have a continuous square-integrable (Ft )-martingale Mn =
(Mn

t )t∈[0,1] given by

Mn
t =

∫ t

0
bn
s dWs,

(3.5)

bn
s = a(X�n[s/�n])E

[
f ′

(
W�n[s/�n]+�n − W�n[s/�n]√

�n

)∣∣∣Fs

]
and we deduce that

Cn
t = 〈

Mn〉
t

(3.6)

=
∫ t

0
a2(X�n[s/�n])E2

[
f ′

(
W�n[s/�n]+�n − W�n[s/�n]√

�n

)∣∣∣Fs

]
ds.

From this identity, we obtain the convergence

Cn
t

P−→ Ct = Var
[
f (Z)

] ∫ t

0
a2(Xs) ds.

The latter follows from Theorem A.1 in the Appendix applied to the function g :
R× C([0,1]) →R+ defined via

g(z,w) := z2
∫ 1

0
E

2[
f ′(Us + w(s)

)]
ds with Us ∼ N (0,1 − s).

By Theorem A.2 of the Appendix, we deduce the following result.

PROPOSITION 3.2. It holds that

(Mn, Ĉn)
dst−→ (M, Ĉ) ∼ MN(0,�) with � =

∫ 1

0
�s ds,

where the matrix �s is defined by

�11
s = Var

[
f (Z)

]
a2(Xs), �22

s = �1a
4(Xs), �12

s = �21
s = �2a

3(Xs),

with

�1 = Var
[∫ 1

0
E

2[
f ′(W1)|Fs

]
ds

]
,

�2 = Cov
[
f (W1),

∫ 1

0
E

2[
f ′(W1)|Fs

]
ds

]
.
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Notice that the stable convergence in the above proposition does not hold if f

has Hermite rank 1, since in this case the process (vs)s≥0 defined in Theorem A.2
is not identically 0. As in the previous section, we immediately obtain the adaptive
random symbol

σ(z,iu,iv) = 4z(iu)2 ∫ 1
0 a3(Xs) ds

3 Var[f (Z)] ∫ 1
0 a2(Xs) ds

=: z(iu)2C1.(3.7)

3.2. Setting sn. We need to define the functionals sn (and consequently ξn)
to go further. We set rn = �

1/2
n , β(x) = Var[(f (Z))]a(x)2 with Z ∼ N (0,1) and

at = a(Xt), βt = β(Xt). Let

σ22(t) =
∫ t

0

[∫ 1

r
β ′

sDrXs ds

]2
dr.(3.8)

Define a matrix σ̃ (n, t) by

σ̃ (n, t) =
[
σ̃11(n, t) σ̃12(n, t)

σ̃12(n, t) σ22(t)

]
with

σ̃11(n, t) = �n

∑
i:ti≤t

[
ati−1f

′(�−1/2
n �n

i W
)]2

+ ∑
i:ti≤t

∫ ti

ti−1

[
�1/2

n

n∑
k=i+1

a′
tk−1

f
(
�−1/2

n �n
kW

)
1{tk≤t}DrXtk−1

]2

dr

and

σ̃12(n, t) = ∑
i:ti≤t

∫ ti

ti−1

([
�1/2

n

n∑
k=i+1

a′
tk−1

f
(
�−1/2

n �n
kW

)
1{tk≤t}DrXtk−1

]

×
∫ 1

r
β ′

sDrXs ds

)
dr

for t ∈ �n. Define sn by

sn = 1

2
det

[
σ̃

(
n,

1

2

)
+ ψ

(
mn

2c1

)
I2

]
,(3.9)

where I2 is the 2 × 2 unit matrix, ψ : R → [0,1] is a smooth function such that
ψ(x) = 1 if |x| ≤ 1/2 and ψ(x) = 0 if |x| ≥ 1, c1 is a positive number, and

mn = �n

[1/2�n]∑
i=1

[
f ′(�−1/2

n �n
i W

)]2
.
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Let

ξ̃n = L∗
∫
[0,1]2

(
r
−2q
n |Cn

t − Ct − Cn
s + Cs |

|t − s|3/8

)8
dt ds,

where L∗ is a sufficiently large constant. We will later show that the random vari-
able sn satisfies assumption (A3). We define ξn using sn as in (2.10) of Section 2.3.

3.3. Decompositions of the torsion. In this subsection, we present some
preparatory decompositions for the computation of σ . Recall that f ∈ C11

p (R) and
it admits the Hermite expansion f (x) = ∑∞

k=2 λkHk(x). Consequently, it holds
that

∑∞
k=2 k!k11λ2

k < ∞.
The martingale Mn = (Mt)t∈[0,1] admits the local chaos expansion

Mn
t = �1/2

n

1/�n∑
i=1

ati−1

∞∑
k=2

k!λk�
−k/2
n

(3.10)

×
∫ ti∧t

ti−1∧t

∫ s1

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs2 dWs1 .

Obviously, each infinite sum in (3.10) is well defined as an L
2-limit when k → ∞.

Since

Hk

(
�−1/2

n �n
i W

) = k!�−k/2
n

∫ ti

ti−1

∫ s1

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs2 dWs1,

we find (3.2) again. Now, we set

(3.11) en
t (u) = E

(
iuMn)

t , �(u, v) = exp
((

−u2

2
+ iv

)
C

)
.

Now, we recall the integration by parts (or duality) formula (see, e.g., [20]): For
any w ∈ Dom δ and any smooth random variable Y ∈ D1,2, it holds that

E
[
δ(w)Y

] = E
[〈w,DY 〉H]

.(3.12)

For each n ∈ N, there exists a positive constant an such that an max{C,Cn
1 } < 1/2

whenever ψn > 0 [cf. (2.12)]. Thus, on the event {ψn > 0}, en
t (u) = ēn

t (u) (t ∈
[0,1], u ∈ R) and �(u, v) = �̄n(u, v) (u, v ∈ R) [�(u, v) is defined before (2.8)],
where

ēn
t (u) = en

t (u)ψ
(
anC

n
1
)

and �̄n(u, v) = �(u, v)ψ(anC).

By definition,

ēn· (u)

∫ ·
ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs2 ∈ Dom δ
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and �̄n(u, v) ∈ D1,p for p > 1. Therefore, for

Y = E

[∫ ti

ti−1

en
s1

(u)

(∫ s1

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs2

)
dWs1�(u, v)ψnati−1

]
,

we obtain

Y = E

[∫ 1

0
ēn
s1

(u)

(∫ s1

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs2

)

× 1In
i
(s1)Ds1

(
�̄n(u, v)ψnati−1

)
ds1

]
by (3.12). Moreover, since ēn

t (u) ∈ D1,p for p > 1 and Ds1(�̄n(u, v)ψnati−1) ∈
D1,p for p > 1 as well as∫ ·

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs3 ∈ Dom δ,

we also have

Y =
∫ ti

ti−1

E

[∫ s1

ti−1

∫ s2

ti−1

(∫ s3

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs4

)
dWs3

× Ds2

(
ēn
s1

(u)Ds1

(
�̄n(u, v)ψnati−1

))
ds2

]
ds1.

In what follows, we will identify en
t (u) with ēn

t (u) and �(u, v) with �̄n(u, v),
respectively, and apply such procedures for taming exponential type functionals,
without explicitly mentioned.

Since the infinite sums in k of (3.10) are also limits of L2-martingales, we can
validate the exchange of the limit and the sum, and then use the duality between
the Skorokhod integral and the derivative operator D at (3.12) to carry out

1/�n∑
i=1

E

[∫ ti

ti−1

en
t (u) dMn

t �(u, v)ψn

]

= �1/2
n

1/�n∑
i=1

∞∑
k=2

k!λk�
−k/2
n

×E

[∫ ti

ti−1

en
s1

(u)

(∫ s1

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs2

)
dWs1�(u, v)ψnati−1

]
(3.13)

= �1/2
n

1/�n∑
i=1

∞∑
k=2

k!λk�
−k/2
n

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2

×E

[∫ s2

ti−1

(∫ s3

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs4

)

× dWs3Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψnati−1

))]
.
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Applying the duality once again, we obtain the decomposition

An(u, v) := �−1/2
n

1/�n∑
i=1

E

[∫ ti

ti−1

en
t (u) dMn

t �(u, v)ψn

]

= 2
1/�n∑
i=1

λ2�
−1
n

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2E
[
Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψnati−1

))]

+
1/�n∑
i=1

∞∑
k=3

k!λk�
−k/2
n

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2

∫ s2

ti−1

ds3

×E

[∫ s3

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs4

× Ds3

{
Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψnati−1

))}]
= Än(u, v) + ...

An(u, v),

where

Än(u, v) = 2
1/�n∑
i=1

λ2�
−1
n

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2E
[
Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψnati−1

))]
,

...
An(u, v) =

1/�n∑
i=1

�−3/2
n

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2

∫ s2

ti−1

ds3

×E

[( ∞∑
k=3

k!λk�
−(k−3)/2
n

∫ s3

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs4

)

× Ds3

{
Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψnati−1

))}]
.

Here, we used three times Malliavin differentiability of the objects. We remark that
the first term Än(u, v), which is associated with the second-order Wiener chaos, is
a dominating quantity, while

...
An(u, v) will turn out to be negligible.

3.4. Identification of the anticipative random symbol. We shall specify the
limit of An(u, v). First,

∣∣...An(u, v)
∣∣ ≤

1/�n∑
i=1

�−3/2
n

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2

∫ s2

ti−1

ds3

×
∥∥∥∥∥

∞∑
k=3

k!λk�
−(k−3)/2
n

∫ s3

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs4

∥∥∥∥∥
L2
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× ∥∥Ds3

{
Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψnati−1

))}∥∥
L2

≤ �
1/2
n

6

√√√√ ∞∑
k=3

k!k3λ2
k

× sup
n∈N,s1,s2,s3∈[0,1]
ti−1<s3<s2<s1≤ti

∥∥Ds3

{
Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψnati−1

))}∥∥
L2 → 0

as n → ∞ for every (u, v), since the above supremum is bounded due to assump-
tion (A2)8, and product and chain rule for the Malliavin derivative.

Next, we will treat Än(u, v). We deform it as Än(u, v) = Ǎn(u, v) + Ân(u, v)

with

Ǎn(u, v) = 2
1/�n∑
i=1

λ2�
−1
n

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2E
[
ati−1e

n
ti−1

(u)Ds2

(
Ds1

(
�(u, v)ψn

))]
,

thanks to Dsati−1 = 0 and Dse
n
ti−1

(u) = 0 for s > ti−1, and

Ân(u, v) = 2
1/�n∑
i=1

λ2�
−1
n

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2E
[
Ds2

(
en
s1

(u) − en
ti−1

(u)
)

× Ds1

(
�(u, v)ψnati−1

)]
.

Then by continuity of en· (u) in D1,p [see again (A2)], we conclude Ân(u, v) → 0
as n → ∞ for every (u, v). Since en

s1
(u)�(u, v) is bounded under truncation by

ψn or even by its derivative, the L
p-continuity of the objects yields

Ǎn(u, v) → λ2E

[∫ 1

0
at exp

(
iuMt + 1

2
u2Ct

)
DtDt�(u, v) dt

]
,(3.14)

where DtDt�(u, v) = lims↑t DsDt�(u, v). It should be noted that the integrabil-
ity and this limiting procedure are valid because DtDt�(u, v) = �(u, v)At with
a sum At of regular variables, and

ess sup
ω

sup
t∈[0,1]

(
Cn

t − C1
)
1{|ξn|<1} ≤ �c/2

n ≤ 1 < ∞

for all n, due to Cn
t ≤ Cn

1 and the construction of the quantity ξn in (2.10) of
Section 2.3. Furthermore,

λ2E

[∫ 1

0
at exp

(
iuMt + 1

2
u2Ct

)
DtDt�(u, v) dt

]

= λ2E

[∫ 1

0
atE

[
exp(iuMt)|F]{

exp
(

1

2
u2Ct

)
× �(u, v)

}
At dt

]

= λ2E

[∫ 1

0
atDtDt�(u, v) dt

]
.
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Consequently, for

	α
n(u, v) = i−|α|dα

(u,v)E
[
Ln

1(u)�(u, v)ψn

]
= i−|α|dα

(u,v)E

[
iu

∫ 1

0
en
t (u) dMn

t �(u, v)ψn

]
,

where Ln
t (u) = en

t (u) − 1, we obtain

	̃α(u, v) = lim
n→∞�−1/2

n 	α
n(u, v)

= lim
n→∞i−|α|dα

(u,v)

(
iuAn(u, v)

)
= λ2i

−|α|dα
(u,v)E

[∫ 1

0
iuatDtDt�(u, v) dt

]

= λ2i
−|α|dα

(u,v)E

[
�(u, v) ·

∫ 1

0
iuat

((
−u2

2
+ iu

)2
(DtC)2

+
(
−u2

2
+ iu

)
DtDtC

)
dt

]
.

Therefore,

σ(iu,iv) = λ2

∫ 1

0
iuat

((
−u2

2
+ iu

)2
(DtC)2

(3.15)

+
(
−u2

2
+ iu

)
DtDtC

)
dt.

We recall that the process DXt is given as the solution of the SDE

DsXt = b[1](Xs) +
∫ t

s

(
b[2])′(Xu)DsXu du +

∫ t

s

(
b[1])′(Xu)DsXu dWu

for s ≤ t (and 0 when s > t), and

DrDsXt = (
b[1])′(Xs)DrXs +

∫ t

s

(
b[2])′′(Xu)DrXuDsXu du

+
∫ t

s

(
b[2])′(Xu)DrDsXu du

+
∫ t

s

(
b[1])′′(Xu)DrXuDsXu dWu +

∫ t

s

(
b[1])′(Xu)DrDsXu dWu

for r < s ≤ t . Then (3.15) implies the identity

σ(iu,iv) = iuλ2

((
−u2

2
+ iv

)2
Var2[

f (Z)
]
C2

(3.16)

+
(
−u2

2
+ iv

)
Var

[
f (Z)

]
(C3 + C4)

)
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with

C2 =
∫ 1

0
a(Xs)

(∫ 1

s

(
a2)′

(Xu)DsXu du

)2
ds,

C3 =
∫ 1

0
a(Xs)

(∫ 1

s

(
a2)′′

(Xu)(DsXu)
2 du

)
ds,

C4 =
∫ 1

0
a(Xs)

(∫ 1

s

(
a2)′

(Xu)DsDsXu du

)
ds.

Now, having obtained the full random symbol σ = σ + σ and hence the density
pn(z, x) for σ , we can formulate the following statement, which generalizes the
results of [24], Theorem 1, on the quadratic form to the weighted power variation
of Brownian motion.

THEOREM 3.3. Let b[1], b[2] ∈ C∞
b,1(R), a ∈ C∞

p (R) and f ∈ C11
p (R). Let the

functional Fn be given by (3.4). Recall the definition β(x) = Var[f (Z)]a(x)2 and
βt = β(Xt) for a standard normal random variable Z. Assume that the following
conditions are satisfied:

(C1) infx |b[1](x)| > 0 and infx |a(x)| > 0.
(C2) For each x0 ∈ suppL{X0}, there exists k ≥ 1 such that β(k)(x0) �= 0.

Then for any positive numbers K and γ , it holds that

sup
h∈E(K,γ )

∣∣∣∣E[
h(Mn,Fn)

] −
∫

h(z, x)pn(z, x) dz dx

∣∣∣∣ = o(
√

�n)

as n → ∞, where the set E(K,γ ) was defined in Theorem 2.3.

In the rest of this section, we will prove Theorem 3.3. In this situation, we will
verify conditions (A1), (A2)�, (A3), (A4)�,n (A5) and (A6) of Theorem 2.3 for
� = 10. The conditions of Theorem 3.3 trivially imply (A1) and (A2)�. We already
have (A4)�,n. Condition (A6) is also easy to check. In the following subsections,
we concentrate on proving (A3) and (A5).

3.5. Estimate of the characteristic functions. We shall now show condition
(A5) of Section 2.3 under the assumptions of Theorem 3.3, namely

sup
n

sup
(u,v)∈�0

n(2,q)

∣∣(u, v)
∣∣3�−1/2

n

∣∣	α
n(u, v)

∣∣ < ∞(3.17)

for

	α
n(u, v) = i−|α|dα

(u,v)E
[
Ln

1(u)�(u, v)ψn

]
, Ln

t (u) = en
t (u) − 1.
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We apply the duality formula twice and use nondegeneracy of the Malliavin matrix
of (Mn

t ,F ) together with that of C − Ct , in the expression

	α
n(u, v) = i−|α|dα

(u,v)E

[∫ 1

0
en
t (u)d

(
iuMn

t

)
�(u, v)ψn

]
.

For this purpose, the representation (3.13) is useful. By the L
2-convergence, we

see that
1/�n∑
i=1

E

[∫ ti

ti−1

en
t (u) dMn

t �(u, v)ψn

]

= �−1/2
n

1/�n∑
i=1

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2

×E

[ ∞∑
k=2

k!λk�
−(k−2)/2
n

∫ s2

ti−1

∫ s3

ti−1

· · ·

×
∫ sk−1

ti−1

dWsk · · ·dWs4 dWs3ati−1Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψn

))]

= �−1/2
n

1/�n∑
i=1

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2E
[
f

†
n,i,s2

ati−1Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψn

))]
,

where

f
†
n,i,s2

=
∞∑

k=2

k!λk�
−(k−2)/2
n

∫ s2

ti−1

∫ s3

ti−1

· · ·
∫ sk−1

ti−1

dWsk · · ·dWs4 dWs3,

and consequently reach the representation

iu

1/�n∑
i=1

E

[∫ ti

ti−1

en
t (u) dMn

t �(u, v)ψn

]

= �−1/2
n

1/�n∑
i=1

∫ ti

ti−1

ds1

∫ s1

ti−1

ds2E
n
i (u, v)s1,s2,

where

En
i (u, v)s1,s2 = iuE

[
f

†
n,i,s2

ati−1Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψn

))]
.(3.18)

Let

E
n
s (u, v) = en

s (u)�(u, v).

Then Es(u, v) has the FGH-decomposition (cf. [25], page 911):

E
n
s (u, v) = F

n
s (u, v)Gs(u)Hn

s (u)



3434 M. PODOLSKIJ AND N. YOSHIDA

with

F
n
s (u, v) = exp

(
iuMn

s + ivC
)
, Gs(u) = exp

(
−1

2
u2(C − Cs)

)
,

H
n
s (u) = exp

(
1

2
u2(

Cn
s − Cs

))
.

From (3.18) and the FGH-decomposition,

En
i (u, v)s1,s2 = E

[
F

n
s1

(u, v)Gs1(u)Hn
s1

(u)ψn
s1,s2

(u, v)f
†
n,i,s2

ati−1

]
,(3.19)

where

ψn
s1,s2

(u, v) = iu
(
en
s1

(u)�(u, v)
)−1

Ds2

(
en
s1

(u)Ds1

(
�(u, v)ψn

))
=

{
ψn

(
−u2

2
+ iv

)
Ds1C1 + Ds1ψn

}
iu

(
iuDs2M

n
s1

+ u2

2
Ds2C

n
s1

)

+ ψniu

(
−u2

2
+ iv

)2
(Ds2C1)(Ds1C1)

+ 2(Ds2ψn)iu

(
−u2

2
+ iv

)
Ds1C1 + Ds2Ds1ψniu.

Suppose that the following condition, which we will prove in the next subsection,
is satisfied for � = 10:

(C2�) The variables sn (n ∈ N) satisfy the following conditions:

(i) sup
t≥ 1

2
P[detσ(Mn

t ,C1) < sn] = O(�
4/3+ε
n ) as n → ∞ for some ε > 0.

(ii) lim supn→∞E[s−p
n ] < ∞ for every p > 1.

(iii) lim supn→∞ ‖sn‖�,p < ∞ for every p ≥ 2.

Now following the (a)–(h) procedure of [25], pages 911–912, and the argument
of the proof of Theorem 4 therein, we can obtain

sup
n

sup
i=1,...,n

sup
s1,s2:ti−1<s1<s2≤ti

sup
(u,v)∈�0

n(2,q)

∣∣(u, v)
∣∣3∣∣En

i (u, v)s1,s2

∣∣ < ∞(3.20)

by applying the integration-by-parts formula at most 8 times. More precisely, we
introduce a new truncation

ψn,s1 = ψ
(
2
[
1 + 4�(Mn

s1
,C)s

−1
n

]−1)
,

which will be used when the integration-by-parts formula for (Mn
s1

,C) is applied
for s1 ≥ 1/2. We have the decomposition of En

i (u, v)s1,s2 expressed by (3.19):

En
i (u, v)s1,s2 = E

[
F

n
s1

(u, v)Gs1(u)Hn
s1

(u)ψn
s1,s2

(u, v)ψn
s1

f
†
n,i,s2

ati−1

]
+ Rn,s1,s2(u, v)
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with ∣∣Rn,s1,s2(u, v)
∣∣ ≤ K�−5q/2

n sup
s′

‖1 − ψn,s′‖Lp

for all n, s1 and restricted (u, v), where K denotes a generic positive constant.
The right-hand side can be shown to be of order o(�

3q/2
n ) for sufficiently small

numbers q > 1/3 [cf. Assumption (A5)] and p > 1. Then, as already noticed, we
can follow the (a)–(h) procedure of [25], by using the FGH-decomposition, but
with ψ(ξn)ψn,s1 for truncation, to obtain (3.20).

Finally, we obtain (3.17) for α = 0 from (3.20). When α �= 0, the argument of
the proof is essentially the same as above. As a conclusion, (3.17) [and conse-
quently (A5)] holds for every α under the assumptions (C1) and (C2�).

Obviously, condition (A3) is valid under (C1) and (C2�). In particular, the non-
degeneracy of C simply follows from infx |a(x)| > 0. Thus, we are left to proving
condition (C2�).

3.6. Proof of (C2�). We shall now prove that condition (C2�) holds under the
assumptions of Theorem 3.3. Recall that

Mn
t = �1/2

n

∑
i:ti≤t

a(Xti−1)f
(
�−1/2

n �n
i W

)
for t ∈ �n = {ti}. We deduce that

DrM
n
t = ∑

i:ti≤t

ati−1f
′(�−1/2

n �n
i W

)
1(ti−1,ti ](r)

+ �1/2
n

∑
i:ti≤t

a′
ti−1

DrXti−1f
(
�−1/2

n �n
i W

)
1{r≤ti−1}

= ∑
i:ti≤t

[
ati−1f

′(�−1/2
n �n

i W
)

+ �1/2
n

n∑
k=i+1

a′
tk−1

f
(
�−1/2

n �n
kW

)
1{tk≤t}DrXtk−1

]
1(ti−1,ti ](r)

for t ∈ �n, where
∑n

k=n+1 · · · = 0. Hence,

σ11(n, t) := σMn
t

= ∑
i:ti≤t

∫ ti

ti−1

[
ati−1f

′(�−1/2
n �n

i W
)

+ �1/2
n

n∑
k=i+1

a′
tk−1

f
(
�−1/2

n �n
kW

)
1{tk≤t}DrXtk−1

]2

dr
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for t ∈ �n. We have Ct = ∫ t
0 β(Xs) ds. Since DrCt = ∫ t

r β ′
sDrXs ds for t ∈ [0,1],

we obtain

σ12(n, t) := 〈
DMn,DC

〉
H

= ∑
i:ti≤t

∫ ti

ti−1

([
ati−1f

′(�−1/2
n �n

i W
)

+ �1/2
n

n∑
k=i+1

a′
tk−1

f
(
�−1/2

n �n
kW

)
1{tk≤t}DrXtk−1

]

×
∫ 1

r
β ′

sDrXs ds

)
dr

for t ∈ �n. The Malliavin matrix of (Mn
t ,C) is

σ(Mn
t ,C) =

[
σ11(n, t) σ12(n, t)

σ12(n, t) σ22(1)

]
for t ∈ �n. Let

σ(n, t) =
[
σ11(n, t) σ12(n, t)

σ12(n, t) σ22(t)

]
.

By the Clark–Ocone representation formula, we have f ′(�−1/2
n �n

i W) =
�

−1/2
n

∫ ti
ti−1

an,i(s) dWs with

an,i(s) = �1/2
n E

[
Ds

(
f ′(�−1/2

n �n
i W

))|Fs

]
,

and moreover,

an,i(s) = E
[
f ′′(�−1/2

n �n
i W

)|Fs

]
1(ti−1,ti ](s)

= gs

(
�−1/2

n (Ws − Wti−1)
)
1(ti−1,ti ](s),

gr(z) =
∫
R

f ′′
(
z +

√
ti − r

�n

x

)
φ(x;0,1) dx

for r ∈ (ti−1, ti]. Then obviously sups∈(ti−1,ti ],i=1,...,n,n∈N ‖an,i(s)‖9,p < ∞ for ev-
ery p > 1. In the same way, we see that

f
(
�−1/2

n �n
i W

) = �−1/2
n

∫ ti

ti−1

αn,i(s) dWs

with some predictable processes αn,i(s) satisfying

sup
s∈(ti−1,ti ],i=1,...,n,n∈N

∥∥an,i(s)
∥∥

10,p < ∞
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for every p > 1. By Lemma 5 of [25],∥∥∥∥∥ ∑
i:ti≤t

∫ ti

ti−1

ati−1f
′(�−1/2

n �n
i W

)
�1/2

n

×
n∑

k=i+1

a′
tk−1

f
(
�−1/2

n �n
kW

)
1{tk≤t}DrXtk−1 dr

∥∥∥∥∥
L9

=
∥∥∥∥∥�n

∑
i:ti≤t

[
ati−1

(
�−1/2

n

∫ ti

ti−1

an,i(s1) dWs1

)

×
(
�1/2

n

n∑
k=i+1

{∫ ti

ti−1

a′
tk−1

1{tk≤t}�−1
n DrXtk−1 dr

}
�−1/2

n

×
∫ tk

tk−1

αn,i(s) dWs

)]∥∥∥∥∥
L9

= O
(
�1/2

n

)
for t ∈ �n. Hence,

sup
n∈N

sup
t∈�n

∥∥σ11(n, t) − σ̃11(n, t)
∥∥
L9 = O

(
�1/2

n

)
as n → ∞, where the term σ̃11(n, t) is defined in Section 3.2. Furthermore, by the
same lemma, we have

sup
t∈�n

∥∥∥∥ ∑
i:ti≤t

∫ ti

ti−1

(
ati−1f

′(�−1/2
n �n

i W
) ∫ 1

r
β ′

sDrXs ds

)
dr

∥∥∥∥
L10

= sup
t∈�n

∥∥∥∥�n

∑
i:ti≤t

ati−1

(
�−1/2

n

∫ ti

ti−1

an,i(s1) dWs1

)

×
(
�−1

n

∫ ti

ti−1

(∫ 1

r
β ′

sDrXs ds

)
dr

)∥∥∥∥
L9

= O
(
�1/2

n

)
.

Therefore,

sup
t∈�n

∥∥σ12(n, t) − σ̃12(n, t)
∥∥
L9 = O

(
�1/2

n

)
.

From these estimates,

sup
t∈�n

∥∥σ(n, t) − σ̃ (n, t)
∥∥
L9 = O

(
�1/2

n

)
.
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One has

det σ̃ (n, t) = σ̃11(n, t)σ22(t) − σ̃12(n, t)2

(3.21)
≥ �n

∑
i:ti≤t

[
ati−1f

′(�−1/2
n �n

i W
)]2

σ22(t) ≥ inf
x

∣∣a(x)
∣∣2mnσ22(t)

for t ∈ �n, where the random variable mn is defined in Section 3.2.
Now, we shall verify (C2�). Checking (C2�)(iii) is not difficult if one estimates

the H
⊗m-norms of Dr1,...,rm-derivative of the objects, in part with the aid of the

Burkhölder inequality. For (C2�)(ii), it suffices to show

lim sup
n→∞

E
[
1{mn≥c1}

(
det σ̃ (n,1/2)

)−p]
< ∞(3.22)

for every p > 1 since sn ≥ 1/2 when mn < c1. Consider the two-dimensional
stochastic process X̄t = (X

(1)
t ,X

(2)
t ) defined by the stochastic integral equations

with smooth coefficients

X̄t = X̄0 +
∫ t

0
V1(X̄s) ◦ dWs +

∫ t

0
V0(X̄s) ds,(3.23)

for t ∈ [0,1], where the first integral is given in the Stratonovich sense and

V1(x) =
[

b[1](x1)
0

]
, V0(x) =

[
b̃[2](x1)
β

(
x1) ]

for x = (x1, x2), b̃[2] = b[2] − 2−1b[1](b[1])′. Under (C2), the system (3.23) satis-
fies the Hörmander condition

(3.24) Lie[V0;V1](x1,0
) =R

2 (∀x1 ∈ suppL{X0}),
where Lie[V0;V1] denotes the Lie algebra generated by V1 and V0. That is,
Lie[V0;V1] = span(

⋃∞
j=0 �j), where �0 = {V1} and �j = {[V,Vi];V ∈ �j−1,

i = 0,1} (j ≥ 1) with the Lie bracket [·, ·]. Lie[V0;V1](x) is Lie[V0;V1] evaluated
at x.

As a result, for any t ∈ (0,1] and p > 1, there exists a constant Kp such that

(3.25) sup
v∈R2:|v|=1

P

[
v�

∫ t

0
Ȳ−1

s V1(X̄s)V1(X̄s)
�(Ȳ−1

s

)�
dsv ≤ ε

]
≤ Kpεp

for all ε ∈ (0,1). Here, Ȳt denotes a unique solution of the variational equation
corresponding to (3.23). See [20], Theorems 2.3.2, 2.3.3 and Lemma 2.3.1, or
Kusuoka and Stroock [15, 16], Ikeda and Watanabe [9] for the implication of (3.25)
through (3.24). Therefore, we obtain

E

[(
det

∫ t

0
Ȳ−1

s V1(X̄s)V1(X̄s)
�(Ȳ−1

s

)�
ds

)−p]
< ∞
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for every p > 1. Since Ȳ−1
1 is bounded in

⋂
p>1 L

p , we have

E

[(
det

∫ t

0
Ȳ1Ȳ

−1
s V1(X̄s)V1(X̄s)

�(Ȳ−1
s

)�
Ȳ �

1 ds

)−p]
< ∞

for every p > 1. Recalling the definition at (3.8), this inequality gives σ22(t)
−1 ∈⋂

p>1 L
p for every t ∈ (0,1], and consequently, in view of (3.21), we obtained

(3.22), and hence (C2�)(ii) for arbitrary c1 > 0. Finally,

sup
t≥ 1

2

P[detσ(Mn
t ,C1) < sn]

≤ sup
t≥ 1

2

P
[
detσ(n, t) < sn

]
≤ sup

t∈�n:t≥ 1
2

P
[
detσ(n, t) < 1.5sn

]
+ sup

s,t :|t−s|≤�n

P
[∣∣detσ(n, t) − detσ(n, s)

∣∣ > 0.5sn
]

≤ P
[
detσ(n,1/2) < 1.75sn

] + O
(
�1.35

n

)
≤ P

[
det σ̃ (n,1/2) < 2sn

] + P
[∣∣detσ(n,1/2) − det σ̃ (n,1/2)

∣∣ > 0.25sn
]

+ O
(
�1.35

n

)
≤ P

[
mn > 2c1,det σ̃ (n,1/2) < 2sn

] + P[mn ≤ 2c1]
+ �−3/19

n E
[∣∣detσ(n,1/2) − det σ̃ (n,1/2)

∣∣3] + 25×19/3�5/3
n E

[
s−5×19/3
n

]
+ O

(
�1.35

n

)
= O

(
�51/38

n

)
as n → ∞ if we take c1 < E[f ′(Z)2]/2. Thus, we have verified (C2�)(i), which
completes the proof.

4. Stochastic expansion of generalized power variation of diffusions.
Hereafter, we will concentrate on the stochastic expansion of the type (2.1) for
the class of generalized power variation. The results of this section are necessary
for the derivation of the Edgeworth expansion for power variation, which is pre-
sented in Section 5, but they might be also useful for other expansion problems in
high frequency framework. We again consider a one-dimensional diffusion process
X = (Xt)t∈[0,1] satisfying the stochastic differential equation

dXt = b[1](Xt) dWt + b[2](Xt) dt.
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Our aim is to study the stochastic expansion of generalized power variations of the
form

(4.1) Vn(f ) = �n

1/�n∑
i=1

f

(
�n

i X√
�n

)
, �n

i X = Xti − Xti−1,

where f : R → R is a given even function, that is, f (x) = f (−x) for all x ∈ R.
These types of functionals play a very important role in mathematical finance,
where they are used for various estimation and testing procedures; see, for exam-
ple, [2, 3, 6] and [11] among many others. The most classical subclass of statistics
(4.1) are power variations, which correspond to functions of the form f (x) = |x|p;
we will concentrate on Edgeworth expansion of power variations in the next sec-
tion. We introduce the notation

(4.2) ρx(f ) = E
[
f (xZ)

]
, x ∈ R,Z ∼ N (0,1)

whenever the latter is finite. Now, let us recall the law of large numbers and the
central limit theorem for the functional Vn(f ) derived in [2].

THEOREM 4.1. (i) Assume that b[1], b[2] ∈ C(R) and f ∈ Cp(R). Then it
holds that

(4.3) Vn(f )
P−→ V (f ) =

∫ 1

0
ρ

b
[1]
s

(f ) ds.

(ii) If moreover b[1] ∈ C2(R) and f ∈ C1
p(R), we obtain the stable convergence

(4.4) �−1/2
n

(
Vn(f ) − V (f )

) dst−→ M ∼ MN

(
0,

∫ 1

0
ρ

b
[1]
s

(
f 2) − ρ2

b
[1]
s

(f ) ds

)
.

Now, we derive the second-order stochastic expansion associated with the cen-
tral limit theorem (4.4). Let us introduce the notation

(4.5) αn
i = �−1/2

n b
[1]
ti−1

�n
i W,

which serves as an approximation of the increment �n
i X/

√
�n. One of the main

results of this section is the following theorem. We remark that this result might be
of independent interest for other expansion problems in probability and statistics.

THEOREM 4.2. Assume that b[2] ∈ C2(R), b[1] ∈ C4(R) and f ∈ C2
p(R).

Then we obtain the stochastic expansion

(4.6) Ṽn(f ) := �−1/2
n

(
Vn(f ) − V (f )

) = Mn + �1/2
n Nn + oP

(
�1/2

n

)
with

Mn = �1/2
n

1/�n∑
i=1

(
f

(
αn

i

) − ρ
b
[1]
ti−1

)
,(4.7)
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and Nn = ∑5
k=1 Nn,k

Nn,1 = �1/2
n

1/�n∑
i=1

f ′(αn
i

)(
b

[2]
ti−1

+ 1

2
b

[1.1]
ti−1

H2
(
�n

i W/
√

�n

))
,

Nn,2 = �−1/2
n

1/�n∑
i=1

f ′(αn
i

)(
b

[2.1]
ti−1

∫ ti

ti−1

(Ws − Wti−1) ds

+ b
[1.2]
ti−1

∫ ti

ti−1

{s − ti−1}dWs + �
3/2
n b

[1.1.1]
ti−1

6
H3

(
�n

i W/
√

�n

))
,

Nn,3 = �n

2

1/�n∑
i=1

f ′′(αn
i

)(
b

[2]
ti−1

+ 1

2
b

[1.1]
ti−1

H2
(
�n

i W/
√

�n

))2
,(4.8)

Nn,4 = 1

2�n

1/�n∑
i=1

(
−ρ′′

b
[1]
ti−1

(f )
∣∣b[1.1]

ti−1

∣∣2 ∫ ti

ti−1

(Ws − Wti−1)
2 ds

− �2
nρ

′
b
[1]
ti−1

(f )b
[1.2]
ti−1

)
,

Nn,5 = −�−1
n

1/�n∑
i=1

ρ′
b
[1]
ti−1

(f )b
[1.1]
ti−1

∫ ti

ti−1

(Ws − Wti−1) ds,

where (Hk)k≥0 denote the Hermite polynomials and the processes b
[k1···kd ]
t were

defined in Section 3.

PROOF. See Section 7. �

To describe the limits of the quantities Nn,k , 1 ≤ k ≤ 5, we need to introduce
some further notation.

NOTATION. We introduce the functions gk :R6 →R, 1 ≤ k ≤ 5, as follows:

g1(x1, . . . , x6) = E

[
Uf ′(x2U)

(
x1 + 1

2
x5H2(U)

)
− ρ′

x2
(f )x5UV

]
,

g2(x1, . . . , x6) = E

[
f ′(x2U)

(
(x3 + x4)V + 1

6
x6H3(U)

)]
,

g3(x1, . . . , x6) = 1

2
E

[
f ′′(x2U)

(
x1 + 1

2
x5H2(U)

)2]
,

g4(x1, . . . , x6) = −1

4
ρ′′

x2
(f )x2

5 − 1

2
ρ′

x2
(f )x4,

g5(x1, . . . , x6) = E

[{
f ′(x2U)

(
x1 + 1

2
x5H2(U)

)
− ρ′

x2
(f )x5V

}2]
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with (U,V ) ∼ N2
(
0,

( 1 1/2
1/2 1/3

))
.

Theorem A.1 implies the convergence in probability

Nn,k
P−→ Nk =

∫ 1

0
gk

(
b[2]
s , b[1]

s , b[2.1]
s , b[1.2]

s , b[1.1]
s , b[1.1.1]

s

)
ds,

(4.9)
k = 2,3,4

under the assumptions of Theorem 4.2. The terms Nn,1 and Nn,5 converge stably
in law due to Theorem A.2; their asymptotic distributions will be specified later.

REMARK 4.3. The fact that we consider the drift and volatility processes of
the type b[k]

s = b[k](Xs) is not essential for developing the stochastic expansion of
Theorem 4.2. In general, the processes b

[k1···kl]
s that appear in Theorem 4.2 may

depend on different Brownian motions, which are not perfectly correlated with
W that drives the process X. In this case, a similar stochastic expansion can be
deduced; however, it will contain additional terms, which are due to new Brownian
motions.

In the next section, we will require a consistent estimator of the asymptotic
variance of Mn, that is,

C =
∫ 1

0

{
ρ

b
[1]
s

(
f 2) − ρ2

b
[1]
s

(f )
}
ds.

A rather natural one is given by

(4.10) Fn = �n

1/�n∑
i=1

f 2
(

�n
i X√
�n

)
− f

(
�n

i X√
�n

)
f

(
�n

i+1X√
�n

)
.

The next theorem, which follows from the combination of central limit theorems
presented in [2] and Theorem A.2, describes the joint asymptotic distribution of
(Mn,Fn,Nn). This result is crucial for the derivation of the Edgeworth expansion.

THEOREM 4.4. Assume that conditions of Theorem 4.2 are satisfied. Then we
obtain the stable convergence(

Mn,�
−1/2
n (Fn − C),Nn

) dst−→ (M, F̂ ,N) ∼ MN

(
μ,

∫ 1

0
�s ds

)
,

where the matrix �s is given as

�11
s = ρ

b
[1]
s

(
f 2) − ρ2

b
[1]
s

(f ),

�12
s = �21

s = ρ
b
[1]
s

(
f 3) − 3ρ

b
[1]
s

(
f 2)

ρ
b
[1]
s

(f ) + 2ρ3
b
[1]
s

(f ),

�22
s = ρ

b
[1]
s

(
f 4) − 4ρ

b
[1]
s

(
f 3)

ρ
b
[1]
s

(f ) + 6ρ
b
[1]
s

(
f 2)

ρ2
b
[1]
s

(f ) − 3ρ4
b
[1]
s

(f ),

�33
s = (

g5 − g2
1
)(

b[2]
s , b[1]

s , b[2.1]
s , b[1.2]

s , b[1.1]
s , b[1.1.1]

s

)
,
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and �13
s = �23

s = 0, and μ1 = μ2 = 0,

μ3 =
∫ 1

0
g1

(
b[2]
s , b[1]

s , b[2.1]
s , b[1.2]

s , b[1.1]
s , b[1.1.1]

s

)
dWs +

4∑
k=2

Nk.

5. Asymptotic expansion for the power variation. Now we have all instru-
ments at hand to obtain the Edgeworth expansion for the case of power variation
Vn(fp) with

fp(x) = |x|p,

which is our leading example. As we mentioned in Section 4, this would be the
most important class of functionals in mathematical finance. In order to obtain
the Edgeworth expansion for power variation, we will combine the results of Sec-
tions 3 and 4. Applying Theorem 4.2 to the function fp , we see that the martingale
part Mn is given as

Mn = �1/2
n

1/�n∑
i=1

∣∣b[1](Xti−1)
∣∣p(∣∣∣∣�n

i W√
�n

∣∣∣∣p − mp

)
with mp = E[|N (0,1)|p]. In particular, Mn is a weighted power variation studied
in Section 3. Consequently, we can apply the results of Section 3 with

a(x) = ∣∣b[1](x)
∣∣p, f (x) = fp(x) − mp and p ∈ 2N∪ (11,∞).

Now, we will compute all quantities from previous sections required for the Edge-
worth expansion. First, we obtain the Hermite expansion

f (x) =
∞∑

k=2

λkHk(x)

with λk = 0 if k is odd (because f is an even function), and λ2 = (mp+2 −mp)/2.
We start with the computation of the random symbol σ . Here, we mainly need to
determine the functions g1, . . . , g5 defined in Section 4. We observe that, for any
k ≥ 0 with k < p,

f (k)
p (x) = sgn(x)kp(p − 1) · · · (p − k + 1)|x|p−k, ρx(fp) = mp|x|p.

Now, a straightforward calculation gives the identities

g1(x1, . . . , x6) = p sgn(x2)|x2|p−1
(
x1mp + 1

2
x5(mp+2 − 2mp)

)
,

g2(x1, . . . , x6) = p sgn(x2)|x2|p−1
(

1

2
(x3 + x4)mp + 1

6
x6(mp+2 − mp)

)
,

g3(x1, . . . , x6) = p(p − 1)

2
|x2|p−2

(
x2

1mp−2 + x1x5(mp − mp−2)
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+ x2
5

4
(mp+2 − 2mp + mp−2)

)
,

g4(x1, . . . , x6) = p

4
mp

(−(p − 1)|x2|p−2x2
5 − 2x4 sgn(x2)|x2|p−1)

,

g5(x1, . . . , x6) = p2|x2|2p−2
(
x2

1m2p−2 + x1x5(m2p − m2p−2)

+ x2
5

4
(m2p+2 − 2m2p + m2p−2)

+ x2
5

3
m2

p − x5mp

(
x1mp + x5

2
[mp+2 − mp]

))
.

As in the previous section, we consider the quantity

Fn = �n

1/�n∑
i=1

f2p

(
�n

i X√
�n

)
− fp

(
�n

i X√
�n

)
fp

(
�n

i+1X√
�n

)
as a consistent estimator of C. We obtain the following result, which again follows
from Theorem A.2.

THEOREM 5.1. Assume that conditions of Theorem 4.2 are satisfied. Then we
obtain the stable convergence(

Mn,�
−1/2
n (Fn − C),Nn,�

−1/2
n (Cn − C)

)
dst−→ (M, F̂ ,N, Ĉ) ∼ MN

(
μ,

∫ 1

0
�s ds

)
,

where the entries �
ij
s , 1 ≤ i, j ≤ 3, of the matrix �s ∈ R

4×4 and μj , 1 ≤ j ≤ 3 of
the vector μ ∈ R

4 are given in Theorem 4.4, and μ4 = �34
s = 0,

�14
s = �41

s = �2
∣∣b[1](Xs)

∣∣3p
, �24

s = �42
s = �

∣∣b[1](Xs)
∣∣4p

,

�44
s = �1

∣∣b[1](Xs)
∣∣4p

,

where the constants �1,�2 are given in Proposition 3.2 and � is defined as

� = Cov
[
f2p(W1),

∫ 1

0
E

2[
f ′

p(W1)|Fs

]
ds

]

− 2 Cov
[
fp(W1)fp(W2 − W1),

∫ 1

0
E

2[
f ′

p(W1)|Fs

]
ds

]
.

As a consequence of Theorem 5.1 and Remark 2.1, we conclude that

σ(z,iu,iv) = (iu)2H1(z) + iuH2 + ivH3(z)(5.1)
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with

H1(z) = z

∫ 1
0 �14

s ds

2
∫ 1

0 �11
s ds

, H2 = μ3, H3(z) = z

∫ 1
0 �12

s ds∫ 1
0 �11

s ds
.

It should be noted that σ of (5.1) is essentially the same but different from σ

of (3.7) since the reference functional Fn is now defined by (4.10) not by (3.4)
while the limits of both coincide with each other and the ways of derivation of two
adaptive random symbols are the same except for F̂ . Using the results of Section 3,
we immediately obtain the anticipative random symbol

σ(iu,iv) = iu

(
iv − u2

2

)2
H4 + iu

(
iv − u2

2

)
H5(5.2)

with H4 = λ2(m2p − m2
p)2C2,H5 = λ2(m2p − m2

p)(C3 + C4), where

C2 =
∫ 1

0

∣∣b[1](Xs)
∣∣p(∫ 1

s

(∣∣b[1]∣∣2p)′
(Xu)DsXu du

)2
ds,

C3 =
∫ 1

0

∣∣b[1](Xs)
∣∣p(∫ 1

s

(∣∣b[1]∣∣2p)′′
(Xu)(DsXu)

2 du

)
ds,

C4 =
∫ 1

0

∣∣b[1](Xs)
∣∣p(∫ 1

s

(∣∣b[1]∣∣2p)′
(Xu)DsDsXu du

)
ds.

In the power variation case, a(x) = |b[1](x)|p and we assumed in (C1) that a(x) is
bounded away from zero. So, in our situation, a(x) is smooth in a neighborhood
of X0. By a certain large deviation argument, we may assume that a(x) is smooth
and even having bounded derivatives, from the beginning, at least in the proof of
asymptotic nondegeneracy.

From the above argument, we obtain an asymptotic expansion for the power
variation. Recall Ṽn(f ) = �

−1/2
n (Vn(f ) − V (f )).

THEOREM 5.2. Let b[1], b[2] ∈ C∞
b,1(R) and fp(x) = |x|p with p ∈ 2N ∪

(13,∞). Assume that infx |b[1](x)| > 0,
∑∞

k=1 |(b[1])(k)(X0)| > 0 and let the func-
tional Fn be given by (3.4). Then for the density pn(z, x) corresponding to the
random symbol σ determined by (5.1) and (5.2), it holds that

sup
h∈E(K,γ )

∣∣∣∣E[
h
(
Ṽn(fp),Fn

)] −
∫

h(z, x)pn(z, x) dz dx

∣∣∣∣ = o(
√

�n)

as n → ∞, for any positive numbers K and γ .

Theorem 5.2 is proved by applying Theorems 3.3 and 5.1. In the present situa-
tion, Nn involves f ′′ and that is the reason why the number 13 appears. However,
it would be possible to reduce it to 11 if the estimations related with Nn-part is
refined, though we do not pursue this point in this article.
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Theorem 5.2 and the corresponding Edgeworth expansion for the Studentized
statistics at (6.1) are the main results of this paper. In particular, these asymptotic
expansions can be applied to distribution analysis of various statistics in financial
mathematics as power variation-type estimators are frequently used in this field.
Another potential area of application is Euler approximation of continuous SDEs
of the form (3.1). As is well known from [12], the Euler approximation scheme
is asymptotically mixed normal and its limit depends on the asymptotic theory
for quadratic variation. Thus, our Edgeworth expansion results can be potentially
applied to numerical analysis of SDEs to obtain a more precise formula for the
error distribution.

6. Studentization. As we mentioned in the beginning, we are mainly inter-
ested in the Edgeworth expansion connected with standard central limit theorem

Zn√
Fn

d−→ N (0,1),

where Fn is a consistent estimator of C defined in (4.10). In the following, we
present such an Edgeworth expansion for the case of power variation discussed in
the previous section. First of all, we remark that the random symbol σ(z,iu,iv)

is given as

σ(z,iu,iv) =
8∑

j=1

cj (z)(iu)mj (iv)nj ,

where m = (mj )1≤j≤8, n = (nj )1≤j≤8, c(z) = (cj (z))1≤j≤8 are given by

m = (1,0,2,1,3,1,3,5), n = (0,1,0,1,0,2,1,0),

c(z) =
(
H2,H3(z),H1(z),H5,

1

2
H5,H4,H4,

1

4
H4

)
.

As a consequence, we obtain the following decomposition for the density pn(z, x)

of (Zn,Fn):

pn(z, x) = φ(z;0, x)pC(x) + �1/2
n

8∑
j=1

pj (z, x)

with

pj (z, x) = (−dz)
mj (−dx)

nj
(
φ(z;0, x)pC(x)E

[
cj (z)|C = x

])
, 1 ≤ j ≤ 8.

We start with the following observation. Let � be a finite measure on R with
density π , such that all moments of � are finite. Then it trivially holds that

lim
x→∞|x|kπ(x) = 0, lim

x→−∞|x|kπ(x) = 0, k ≥ 0.
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Given that the density π is a Ck function and g is a polynomial, we also have∫
R

g(k)(x)π(x) dx = (−1)k
∫
R

g(x)π(k)(x) dx

by induction. Let g be an arbitrary polynomial and κ(x) = E[H |C = x]pC(x) for
an integrable random variable H , and note that∫

R

m(x)κ(x) dx = E
[
m(C)H

]
,

whenever the integral makes sense. We define the polynomials qβ,v(z, x) via

dβ
x g(z/

√
x) = ∑

v≤β

qβ,v(z/
√

x,1/
√

x)g(v)(z/
√

x),

where g(v) denotes the vth derivative of g. Let (α,β) ∈N
2
0. Then it holds that∫

R2
g

(
z√
x

)
dα
z dβ

x

[
φ(z;0, x)κ(x)

]
dzdx

= (−1)β
∫
R2

dβ
x g

(
z√
x

)
dα
z φ(z;0, x)κ(x) dz dx

= (−1)β
∫
R2

∑
v≤β

qβ,v

(
z√
x

,
1√
x

)
g(v)

(
z√
x

)
dα
z φ(z;0, x)κ(x) dz dx

= (−1)β
∫
R2

∑
v≤β

qβ,v

(
y,

1√
x

)
g(v)(y)x−α/2dα

y φ(y;0,1)κ(x) dy dx

= (−1)β
∫
R

g(y)
∑
v≤β

(−1)vdv
y

{
dα
y φ(y;0,1)

×
∫
R

qβ,v

(
y,

1√
x

)
x−α/2κ(x) dx

}
dy

=
∫
R

g(y)
∑
v≤β

(−1)β+vdv
y

{
dα
y φ(y;0,1)E

[
HC−α/2qβ,v

(
y,C−1/2)]}

dy.

Clearly, the above identity will enable us to compute the Edgeworth expansion for
the Studentized statistic Zn/

√
Fn. We need to determine the polynomials qβ,v for

β = 0,1,2:

q0,0(a, b) = 1, q1,0(a, b) = 0, q1,1(a, b) = −1

2
ab2,

q2,0(a, b) = 0, q2,1(a, b) = 3

4
ab4, q2,2(a, b) = 1

4
a2b4.

Recall the identity dα
y φ(y;0,1) = (−1)αHα(y)φ(y;0,1) and

H1(x) = x, H3(x) = x3 − 3x, H5(x) = x5 − 10x3 + 15x.
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A straightforward computation shows that∫
R2

g

(
z√
x

)
p1(z, x) dz dx = E

[
H2C

−1/2] ∫
R

g(y)yφ(y;0,1) dy,

∫
R2

g

(
z√
x

) 5∑
j=4

pj (z, x) dz dx = −1

2
E

[
H5C

−3/2] ∫
R

g(y)yφ(y;0,1) dy,

∫
R2

g

(
z√
x

) 8∑
j=6

pj (z, x) dz dx = 3

4
E

[
H4C

−5/2] ∫
R

g(y)yφ(y;0,1) dy.

The corresponding computation for the terms p2(z, x) and p3(z, x) has to be per-
formed separately, since the random variables c2 and c3 depend on z. Recall that
the quantities H1(z) and H3(z) are linear in z, that is, H1(z) = zH̃1, H3(z) = zH̃3.
We deduce as above (here κ(x) = E[H̃3|C = x]pC(x))∫

R2
g

(
z√
x

)
p2(z, x) dz dx

= −
∫
R2

zg

(
z√
x

)
dx

[
φ(z;0, x)κ(x)

]
dzdx

=
∫
R

g(y)dy

{
yφ(y;0,1)E

[
H̃3q1,1

(
y,C−1/2)

C1/2]}
dy

= 1

2
E

[
H̃3C

−1/2] ∫
R

g(y)φ(y;0,1)
(
2y − y3)

dy.

Finally, we obtain that (here κ(x) = E[H̃1|C = x]pC(x))∫
R2

g

(
z√
x

)
p3(z, x) dz dx

=
∫
R2

g

(
z√
x

)
d2
z

[
zφ(z;0, x)κ(x)

]
dzdx

=
∫
R2

x−1g′′(y)yφ(y;0,1)κ(x) dy dx

= E
[
H̃1C

−1/2] ∫
R

g(y)d2
y

[
yφ(y;0,1)

]
dy

= E
[
H̃1C

−1/2] ∫
R

g(y)H3(y)φ(y;0,1) dy.

Combining the above results, we deduce the Edgeworth expansion for the density
of Zn/

√
Fn, which is one of the main statements of the paper.
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COROLLARY 6.1. Assume that the conditions of Theorem 5.2 hold. Then we
obtain the expansion

pZn/
√

Fn(y) = φ(y;0,1) + �1/2
n φ(y;0,1)

(
y

{
E

[
H2C

−1/2] − 1

2
E

[
H5C

−3/2]
+ 3

4
E

[
H4C

−5/2] +E
[
H̃3C

−1/2] − 3E
[
H̃1C

−1/2]}
(6.1)

+ y3
{
E

[
H̃1C

−1/2] − 1

2
E

[
H̃3C

−1/2]})
.

If we consider the quantity Mn from (3.2) with a ≡ 1 and �n = n−1, that is,

Mn = n−1/2
n∑

i=1

f
(√

n�n
i W

)
with E

[
f (W1)

] = 0,

and Fn = C = E[f 2(W1)], a straightforward application of the formula (6.1) im-
plies the identity

pMn/C = φ(y;0,1) + E[f 3(W1)]
6
√

nC3
φ(y;0,1)H3(y),

where H3 denotes the third Hermite polynomial. This identity corresponds to the
classical Edgeworth expansion for sums of i.i.d. random variables.

REMARK 6.2. In practice, the application of the asymptotic expansion at (6.1)
requires the knowledge of the coefficients of the type b[k1···kd ] [cf. (4.9)]. While
the volatility related processes b[1], b[1.1], b[1.1.1] can be estimated from high fre-
quency data Xti , the drift related processes b[2], b[2.1], b[1.2] cannot be consistently
estimated on a fixed time span. Thus, the applicability of the Edgeworth expansion
at (6.1) relies on the knowledge of the drift related coefficients or their estimation
on an infinite time span.

7. Proofs.

7.1. A stochastic expansion. Below, we denote by K a generic positive con-
stant, which may change from line to line. We also write Kp if the constant depends
on an external parameter p.

PROOF OF THEOREM 4.2. First, we remark that all processes of the type
(b

[k1···km]
s )s≥0 (kj ∈ {1,2}), which we consider below, are continuous and so lo-

cally bounded. Applying the localization technique described in Section 3 of [2]
we can assume w.l.o.g. that these processes are bounded in (ω, s), which we do
from now on. We decompose

�−1/2
n

(
Vn(f ) − V (f )

) = Mn + R(1)
n + R(2)

n
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with

R(1)
n = �−1/2

n

(
Vn(f ) − �n

1/�n∑
i=1

f
(
αn

i

))
,

R(2)
n = �−1/2

n

(
�n

1/�n∑
i=1

ρ
b
[1]
ti−1

− V (f )

)
.

We start with the asymptotic expansion of the quantity R
(2)
n . Due to Burkhölder

inequality any process Y of the form (3.1) with bounded coefficients b[1], b[2]
satisfies the inequality

(7.1) E
[|Yt − Ys |p] ≤ Cp|t − s|p/2

for any p ≥ 0. In particular, this inequality holds for the processes b[1], b[2], b[2.2],
b[2.1], b[1.2], b[1.1] as they are diffusion processes (due to Itô formula). Applying
(7.1) and the Taylor expansion, we deduce that

R(2)
n = �−1/2

n

1/�n∑
i=1

∫ ti

ti−1

{ρ
b
[1]
ti−1

− ρ
b
[1]
s

}ds

= �−1/2
n

1/�n∑
i=1

∫ ti

ti−1

{
ρ′

b
[1]
ti−1

(
b

[1]
ti−1

− b[1]
s

) − 1

2
ρ′′

b
[1]
ti−1

(
b

[1]
ti−1

− b[1]
s

)2
}

ds

+ oP
(
�1/2

n

)
=: R(2.1)

n + R(2.2)
n + oP

(
�1/2

n

)
.

Recall that db
[1]
t = b

[1.2]
t dt + b

[1.1]
t dWt . We conclude the identity

R(2.2)
n = −�

−1/2
n

2

1/�n∑
i=1

ρ′′
b
[1]
ti−1

∫ ti

ti−1

(
b

[1]
ti−1

− b[1]
s

)2
ds

= −�
−1/2
n

2

1/�n∑
i=1

ρ′′
b
[1]
ti−1

∣∣b[1.1]
ti−1

∣∣2 ∫ ti

ti−1

(Wti−1 − Ws)
2 ds + oP

(
�1/2

n

)
=: �1/2

n

(
N

(1)
n,4 + oP(1)

)
.

For the term R
(2.1)
n , we obtain the decomposition

R(2.1)
n = −�−1/2

n

1/�n∑
i=1

ρ′
b
[1]
ti−1

∫ ti

ti−1

(∫ s

ti−1

b[1.2]
u du +

∫ s

ti−1

b[1.1]
u dWu

)
ds

= −�−1/2
n

1/�n∑
i=1

ρ′
b
[1]
ti−1

(
�2

n

2
b

[1.2]
ti−1

+ b
[1.1]
ti−1

∫ ti

ti−1

(Ws − Wti−1) ds

)
+ oP

(
�1/2

n

)
=: �1/2

n

(
N

(2)
n,4 + Nn,5 + oP(1)

)
.
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We remark that Nn,4 = N
(1)
n,4 + N

(2)
n,4. The treatment of the quantity R

(1)
n is a bit

more involved. We apply again (7.1) and Taylor expansion:

R(1)
n = �1/2

n

1/�n∑
i=1

(
f ′(αn

i

){�n
i X√
�n

− αn
i

}
+ 1

2
f ′′(αn

i

){�n
i X√
�n

− αn
i

}2)
+ oP

(
�1/2

n

)
=: R(1.1)

n + R(1.2)
n + oP

(
�1/2

n

)
.

For the term R
(1.2)
n , we obtain the decomposition

R(1.2)
n = �

−1/2
n

2

1/�n∑
i=1

f ′′(αn
i

)(∫ ti

ti−1

b[2]
s ds +

∫ ti

ti−1

b[1]
s − b

[1]
ti−1

dWs

)2

= �
−1/2
n

2

1/�n∑
i=1

f ′′(αn
i

)(
�nb

[2]
ti−1

+ b
[1.1]
ti−1

∫ ti

ti−1

(Ws − Wti−1) dWs

)2

+ oP
(
�1/2

n

)
= �

3/2
n

2

1/�n∑
i=1

f ′′(αn
i

)(
b

[2]
ti−1

+ 1

2
b

[1.1]
ti−1

H2

(
�n

i W√
�n

))2
+ oP

(
�1/2

n

)
= �1/2

n

(
Nn,3 + oP(1)

)
.

The quantity R
(1.1)
n is decomposed as

R(1.1)
n =

1/�n∑
i=1

f ′(αn
i

)(∫ ti

ti−1

b[2]
s ds +

∫ ti

ti−1

{
b[1]
s − b

[1]
ti−1

}
dWs

)
=: R(1.1.1)

n + R(1.1.2)
n

with

R(1.1.1)
n = �n

1/�n∑
i=1

f ′(αn
i

)(
b

[2]
ti−1

ds + 1

2
b

[1.1]
ti−1

H2

(
�n

i W√
�n

))
,

R(1.1.2)
n =

1/�n∑
i=1

f ′(αn
i

)(∫ ti

ti−1

{
b[2]
s − b

[2]
ti−1

}
ds

+
∫ ti

ti−1

(∫ s

ti−1

b[1.2]
u du +

∫ s

ti−1

{
b[1.1]
u − b

[1.1]
ti−1

}
dWu

)
dWs

)
.

We remark that R
(1.1.1)
n = �

1/2
n Nn,1. Since f ′ is an odd function (because f is

even), we deduce that

R(1.1.2)
n =

1/�n∑
i=1

f ′(αn
i

)(
b

[2.1]
ti−1

∫ ti

ti−1

(Ws − Wti−1) ds + �
3/2
n b

[1.1.1]
ti−1

6
H3

(
�n

i W√
�n

)

+ b
[1.2]
ti−1

∫ ti

ti−1

(s − ti−1) dWs

)
+ oP

(
�1/2

n

)
.
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As R
(1.1.2)
n = �

1/2
n (Nn,2 + oP(1)), we are done. �

APPENDIX

In this subsection, we present a law of large numbers and a multivariate func-
tional stable convergence theorem, which is frequently used in this paper. For any
k = 1, . . . , d , let gk : C([0,1]) → R be a measurable function with polynomial
growth, that is, ∣∣gk(x)

∣∣ ≤ K
(
1 + ‖x‖p∞

)
,

for some K > 0, p > 0 and ‖x‖∞ = supz∈[0,1] |x(z)|. In most cases, gk will be a
function of x(1); the path-dependent version is only required to account for the
asymptotic behavior of the functional Cn. Let (as)s≥0 be an R

d -valued, (Fs)-
adapted, continuous and bounded stochastic process. Our first result is the fol-
lowing theorem.

THEOREM A.1. Let g : Rd × C([0,1]) → R be a measurable function with
polynomial growth in the last variable and a = (a1, . . . , ad). Then it holds that

�n

1/�n∑
i=1

g
(
ati−1,�

−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

) P−→
∫ 1

0
ρ(as, g) ds

with ρ(z, g) := E[g(z, {Ws}0≤s≤1)], z ∈ R
d .

PROOF. Since �
−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

d= {Ws}0≤s≤1, we obtain that

�n

1/�n∑
i=1

E
[
g
(
ati−1,�

−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

)|Fti−1

]

= �n

1/�n∑
i=1

ρ(ati−1, g)
P−→

∫ 1

0
ρ(as, g) ds.

On the other hand, we deduce that

�n

1/�n∑
i=1

g
(
ati−1,�

−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

)

− �n

1/�n∑
i=1

E
[
g
(
ati−1,�

−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

)|Fti−1

] P−→ 0,

because

�2
n

1/�n∑
i=1

E
[
g2(

ati−1,�
−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

)|Fti−1

] P−→ 0.
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This completes the proof. �

Next, we consider a sequence of d-dimensional processes Yn
t = (Y n

1,t , . . . , Y
n
d,t )

defined via

Yn
k,t = �1/2

n

[t/�n]∑
i=1

ak
ti−1

[
gk(�−1/2

n {Wti−1+s�n − Wti−1}0≤s≤1
)

−Egk(�−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

)]
, k = 1, . . . , d,

where the functions gk satisfy the assumption of Theorem A.1. The stable conver-
gence of Yn is as follows.

THEOREM A.2. It holds that

Yn
t

dst−→ Yt =
∫ t

0
vs dWs +

∫ t

0

(
ws − vsv

�
s

)1/2
dW ′

s,

where the functional convergence is stable in law, W ′ is a d-dimensional Brownian
motion independent of F , and the processes (vs)s≥0 in R

d and (ws)s≥0 in R
d×d

are defined as

vk
s = ak

sE
[
gk({Ws}0≤s≤1

)
W1

]
,

wkl
s = ak

s a
l
s Cov

[
gk({Ws}0≤s≤1

)
, gl

({Ws}0≤s≤1
)]

,

with 1 ≤ k, l ≤ d . In particular, it holds that
∫ t

0 w
1/2
s dW ′

s ∼ MN(0,
∫ t

0 ws ds).

PROOF. We write Yn
t = ∑[t/�n]

i=1 χn
i with

χn
i,k = �1/2

n ak
ti−1

[
gk(�−1/2

n {Wti−1+s�n − Wti−1}0≤s≤1
)

−Egk(�−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

)]
, k = 1, . . . , d.

According to Theorem IX.7.28 of [13], we need to show that

[t/�n]∑
i=1

E
[
χn

i,kχ
n
i,l|Fti−1

] P−→
∫ t

0
wkl

s ds,(A.1)

[t/�n]∑
i=1

E
[
χn

i,k�
n
i W |Fti−1

] P−→
∫ t

0
vk
s ds,(A.2)

[t/�n]∑
i=1

E
[∣∣χn

i,k

∣∣21{|χn
i,k |>ε}|Fti−1

] P−→ 0 ∀ε > 0,(A.3)

[t/�n]∑
i=1

E
[
χn

i,k�
n
i Q|Fti−1

] P−→ 0 ,(A.4)
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where 1 ≤ k, l ≤ d and the last condition must hold for all bounded continuous
martingales Q with [W,Q] = 0. Conditions (A.1) and (A.2) are obvious since

�−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

d= {Ws}0≤s≤1.

Condition (A.3) follows from

[t/�n]∑
i=1

E
[∣∣χn

i,k

∣∣21{|χn
i,k |>ε}|Fti−1

] ≤ ε−2
[t/�n]∑
i=1

E
[∣∣χn

i,k

∣∣4|Fti−1

] ≤ K�n → 0,

which holds since the process a is bounded and gk is of polynomial growth. In
order to prove the last condition, we use the Itô–Clark representation theorem

gk(�−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

) −Egk(�−1/2
n {Wti−1+s�n − Wti−1}0≤s≤1

)
=

∫ ti

ti−1

ηn
k,s dWs

for some predictable process ηn
k . Itô isometry implies the identity

E
[
χn

i,k�
n
i Q|Fti−1

] = �1/2
n ak

ti−1
E

[∫ ti

ti−1

ηn
k,sd[W,Q]s |Fti−1

]
= 0.

This completes the proof of Theorem A.2. �
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