EDGEWORTH EXPANSION FOR FUNCTIONALS OF CONTINUOUS DIFFUSION PROCESSES

By Mark Podolskij*, ${ }^{*}$ and NaKahiro Yoshida ${ }^{\dagger, \ddagger, \S, \%}$
Aarhus University*, CREST Japan Science and Technology Agency ${ }^{\dagger}$, The Institute of Statistical Mathematics ${ }^{\ddagger}$ and Graduate School of Mathematical Science ${ }^{\S}$

Abstract

This paper presents new results on the Edgeworth expansion for high frequency functionals of continuous diffusion processes. We derive asymptotic expansions for weighted functionals of the Brownian motion and apply them to provide the Edgeworth expansion for power variation of diffusion processes. Our methodology relies on martingale embedding, Malliavin calculus and stable central limit theorems for semimartingales. Finally, we demonstrate the density expansion for Studentized statistics of power variations.

1. Introduction. Edgeworth expansions have been widely investigated by probabilists and statisticians in various settings. Nowadays, there exists a vast amount of literature on Edgeworth expansions in the case of independent random variables (cf. [4]), weakly dependent variables (cf. [7]) or in the framework of martingales [19, 22]. We refer to classical books [4, 8] and [17] for a comprehensive theory of asymptotic expansions and their applications. We remark that those authors mainly deal with Edgeworth expansions associated with a normal limit.

In the framework of high frequency data (or infill asymptotics), which refers to the sampling scheme in which the time step between two consecutive observations converges to zero while the time span remains fixed, a mixed normal limit appears as a typical asymptotic distribution. In the last years, a lot of research has been devoted to limit theorems for high frequency observations of diffusion processes or Itô semimartingales; see, for example, $[2,10,11,14]$ among many others. Such limit theorems find manifold applications in parametric and semiparametric inference for diffusion models, estimation of quadratic variation and related objects

[^0](see, e.g., $[3,18]$), testing approaches for semimartingales (see, e.g., $[1,6]$) or numerical analysis (see, e.g., [12]). While asymptotic mixed normality of high frequency functionals has been proved in various settings, the Edgeworth expansions associated with mixed normal limits have not been considered.

In this paper, we present the asymptotic expansion for high frequency statistics of continuous diffusion processes. More precisely, we study the Edgeworth expansion of weighted functionals of Brownian motion, where the weight arises from a continuous SDE, and apply the asymptotic results to power variations of continuous SDEs. Finally, we will obtain the density expansion for a Studentized version of the power variation.

Our approach is based on the recent work of Yoshida [25], who uses a martingale embedding method to obtain the asymptotic expansion of the characteristic function associated with a mixed normal limit. In a second step, the asymptotic density expansion is achieved via the Fourier inversion. Let us briefly sketch the main concepts of [25]. We are given a functional Z_{n}, which admits the decomposition

$$
Z_{n}=M_{n}+r_{n} N_{n},
$$

where M_{n} is a leading term, r_{n} is a deterministic sequence with $r_{n} \rightarrow 0$ and N_{n} is some tight sequence of random variables. Here, M_{n} is a terminal value of a continuous martingale $\left(M_{t}^{n}\right)_{t \in[0,1]}$, which converges to a mixed normal limit in the functional sense. Under various technical conditions, including Malliavin differentiability of the involved objects, joint stable convergence of (M_{n}, N_{n}) and estimates of the tail behavior of the characteristic function, the paper [25] demonstrated the Edgeworth expansion for the density of Z_{n} [and, more generally, for the density of the pair $\left(Z_{n}, F_{n}\right)$, where F_{n} is another functional usually used for studentization]. The asymptotic theory has been applied to quadratic functionals M_{n} in [24]. We would also like to refer to a related work of [22], where a martingale expansion in the case of normal limits has been presented. It was applied to the Edgeworth expansion for an ergodic diffusion process and an estimator of the volatility parameter (cf. [5]).

Although the paper [25] presents a general theory, its particular application to typical functionals of continuous diffusion processes is by far not straightforward. When dealing with commonly used high frequency statistics such as, for example, power variations, we are confronted with several levels of complications, which we list below:
(i) The computation of the second-order term N_{n} in the decomposition of Z_{n} appears to be rather involved (cf. Theorem 4.2). This stochastic second-order expansion requires a very precise treatment of the functional Z_{n}.
(ii) The joint asymptotic mixed normality of the vector $\left(M^{n}, N_{n}, F_{n}, C^{n}\right)$, where C^{n} is the quadratic variation process associated with the martingale M^{n} and F_{n} is an external functional mentioned above, is required for the Edgeworth
expansion (cf. Theorem 5.1). The proof of such results relies on stable limit theorems for semimartingales (cf. Theorems A.1, A. 2 and 4.4).
(iii) Other ingredients of Edgeworth expansion are the adaptive random symbol $\underline{\sigma}$ and the anticipative random symbol $\bar{\sigma}$ (see [25] or Section 2 for the definition of random symbols). While the adaptive random symbol $\underline{\sigma}$ is given explicitly using the results of (ii), the anticipative random symbol $\bar{\sigma}$ is defined in an implicit way. We will show how this symbol can be determined in Sections 3.3 and 3.4. For this purpose, we will apply the Wiener chaos expansion and the duality between the k th Malliavin derivative D^{k} and its adjoint δ^{k}.
(iv) Checking the technical conditions presented in Section 2.3 is another difficult task. In particular, we need to show the existence of densities and to analyze the tail behavior of the characteristic function. This part involves many elements of Malliavin calculus (cf. Sections 3.5 and 3.6).

We see that the derivation of the Edgeworth expansion relies on a combination of various fields of stochastic calculus, such as limit theorems for semimartingales, Malliavin calculus and martingale methods. These steps require a completely new treatment in the power variation case, compared with those in simple quadratic functionals.

The paper is organized as follows. In Section 2, we review the main results of [25], which are crucial for this work. Section 3 is devoted to functionals of Brownian motion with random weights. We will deal with the treatment of the steps (i)-(iv), although the second-order term N_{n} remains absent. In Section 4, we show the asymptotic theory for the class of generalized power variations of continuous SDEs. In particular, we will determine the asymptotic behavior of the second-order term N_{n}. Section 5 combines the results of Sections 3 and 4, and we obtain an Edgeworth expansion for the power variation case. In Section 6, we deduce the formula for the asymptotic density associated with a Studentized version of power variation, which is probably most useful for applications. Section 7 is devoted to the derivation of the second-order term N_{n}. Finally, the Appendix collects the proofs of limit theorems for semimartingales, which are suitable for functionals considered in this paper.
2. Asymptotic expansion associated with mixed normal limit. As we are applying various techniques from Malliavin calculus and stable central limit theorems for semimartingales, we start by introducing some notation.
(a) Throughout the paper, Δ_{n} denotes a sequence of positive real numbers with $\Delta_{n} \rightarrow 0$ and such that $1 / \Delta_{n}$ is an integer. For the observation times $i \Delta_{n}, i \in \mathbb{N}$, we use a shorthand notation $t_{i}:=i \Delta_{n}$. For any function $f: \mathbb{R} \rightarrow \mathbb{R}$, we denote by $f^{(k)}$ its k th derivative; for a function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ and $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}_{0}^{2}$ the operator d^{α} is defined via $d^{\alpha}=d_{x_{1}}^{\alpha_{1}} d_{x_{2}}^{\alpha_{2}}$, where $d_{x_{i}}^{k} f, i=1,2$, denotes the k th partial derivative of f. The set $C_{p}^{k}(\mathbb{R})$ [resp., $\left.C_{b}^{k}(\mathbb{R})\right]$ denotes the space of k times
differentiable functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that all derivatives up to order k have polynomial growth (resp., are bounded). Finally, i $:=\sqrt{-1}$.
(b) The set \mathbb{L}^{q} denotes the space of random variables with finite q th moment; the corresponding \mathbb{L}^{q}-norms are denoted by $\|\cdot\|_{\mathbb{L} q}$. The notation $Y_{n} \xrightarrow{d_{\mathrm{st}}} Y$ (resp., $Y_{n} \xrightarrow{\mathbb{P}} Y, Y_{n} \xrightarrow{d} Y$) stands for stable convergence (resp., convergence in probability, convergence in law).
(c) We now introduce some notions of Malliavin calculus (we refer to the books of Ikeda and Watanabe [9] and Nualart [20] for a detailed exposition of Malliavin calculus). Set $\mathbb{H}=\mathbb{L}^{2}([0,1], d x)$ and let $\langle\cdot, \cdot\rangle_{\mathbb{H}}$ denote the usual scalar product on \mathbb{H}. We denote by D^{k} the k th Malliavin derivative operator and by δ^{k} its unbounded adjoint (also called Skrokhod integral of order k). The space $\mathbb{D}_{k, q}$ is the completion of the set of smooth random variables with respect to the norm

$$
\|Y\|_{k, q}:=\left(\mathbb{E}\left[|Y|^{q}\right]+\sum_{m=1}^{k} \mathbb{E}\left[\left\|D^{m} Y\right\|_{\mathbb{H} \mathbb{H}^{\otimes m}}^{q}\right]\right)^{1 / q}
$$

For any smooth d-dimensional random variable Y, the Malliavin matrix is defined via $\sigma_{Y}:=\left(\left\langle D Y_{i}, D Y_{j}\right\rangle_{\mathbb{H}}\right)_{1 \leq i, j \leq d}$. We sometimes write $\Delta_{Y}:=\operatorname{det} \sigma_{Y}$ for the determinant of the Malliavin matrix. Finally, we set $\mathbb{D}_{k, \infty}=\bigcap_{q \geq 2} \mathbb{D}_{k, q}$.

We start this section by reviewing the theoretical results from [25], which concern the Edgeworth expansion associated with a mixed normal limit. On a filtered Wiener space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0,1]}, \mathbb{P}\right)$, we consider a one-dimensional functional Z_{n}, which admits the decomposition

$$
\begin{equation*}
Z_{n}=M_{n}+r_{n} N_{n}, \tag{2.1}
\end{equation*}
$$

where r_{n} is a deterministic sequence with $r_{n} \rightarrow 0$ and N_{n} is some tight sequence of random variables (in this paper we will have $r_{n}=\Delta_{n}^{1 / 2}$). We assume that the leading term M_{n} is a terminal value of some continuous $\left(\mathcal{F}_{t}\right)$-martingale $\left(M_{t}^{n}\right)_{t \in[0,1]}$, that is, $M_{n}=M_{1}^{n}$. In this paper, we are interested in cases where M_{n} (and so Z_{n}) converges stably in law to a mixed normal variable M (stable convergence has been originally introduced in [21]). This means

$$
\begin{equation*}
M_{n} \xrightarrow{d_{\mathrm{st}}} M, \tag{2.2}
\end{equation*}
$$

where the random variable M is defined on an extension $(\bar{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{P}})$ of the original probability space $(\Omega, \mathcal{F}, \mathbb{P})$ and, conditionally on \mathcal{F}, M has a normal law with mean 0 and conditional variance C. In this case, we use the notation

$$
M \sim M N(0, C) .
$$

We recall that a sequence of random variables $\left(Y_{n}\right)_{n \in \mathbb{N}}$ defined on $(\Omega, \mathcal{F}, \mathbb{P})$ with values in a metric space E is said to converge stably with limit Y, written
$Y_{n} \xrightarrow{d_{\mathrm{st}}} Y$, where Y is defined on an extension $(\bar{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{P}})$ of the original probability space $(\Omega, \mathcal{F}, \mathbb{P})$, iff for any bounded, continuous function g and any bounded \mathcal{F}-measurable random variable X it holds that

$$
\begin{equation*}
\mathbb{E}\left[g\left(Y_{n}\right) X\right] \rightarrow \overline{\mathbb{E}}[g(Y) X], \quad n \rightarrow \infty \tag{2.3}
\end{equation*}
$$

For statistical applications, it is not sufficient to consider the Edgeworth expansion of the law of Z_{n}. It is much more adequate to study the asymptotic expansion for the pair $\left(Z_{n}, F_{n}\right)$, where F_{n} is another functional which converges in probability:

$$
F_{n} \xrightarrow{\mathbb{P}} F .
$$

When F_{n} is a consistent estimator of the conditional variance C (i.e., $F=C$), which is the most important application, we would obtain by the properties of stable convergence:

$$
\frac{Z_{n}}{\sqrt{F_{n}}} \xrightarrow{d} \mathcal{N}(0,1)
$$

In this case, the asymptotic expansion of the law of $\left(Z_{n}, F_{n}\right)$ would imply the Edgeworth expansion for the Studentized statistic $Z_{n} / \sqrt{F_{n}}$.

We consider the stochastic processes $\left(M_{t}\right)_{t \in[0,1]}$ and $\left(C_{t}^{n}\right)_{t \in[0,1]}$ with

$$
\begin{equation*}
M=M_{1}, \quad C_{t}=\langle M\rangle_{t}, \quad C_{t}^{n}=\left\langle M^{n}\right\rangle_{t}, \quad C_{n}=\left\langle M^{n}\right\rangle_{1} \tag{2.4}
\end{equation*}
$$

Here, the process $\left(M_{t}\right)_{t \in[0,1]}$, defined on $(\bar{\Omega}, \overline{\mathcal{F}}, \overline{\mathbb{P}})$, represents the stable limit of the continuous $\left(\mathcal{F}_{t}\right)$-martingale $\left(M_{t}^{n}\right)_{t \in[0,1]}$, while C^{n} denotes the quadratic variation process associated with M^{n}. Now, let us set

$$
\begin{equation*}
\widehat{C}_{n}=r_{n}^{-1}\left(C_{n}-C\right), \quad \widehat{F}_{n}=r_{n}^{-1}\left(F_{n}-F\right) \tag{2.5}
\end{equation*}
$$

Apart from various technical conditions, presented in the Section 2.3, our main assumption will be the following:
(i) $\left(M_{.}^{n}, N_{n}, \widehat{C}_{n}, \widehat{F}_{n}\right) \xrightarrow{d_{\mathrm{st}}}(M ., N, \widehat{C}, \widehat{F})$.
(ii) $M_{t} \sim M N\left(0, C_{t}\right)$.

In order to present an Edgeworth expansion for the pair $\left(Z_{n}, F_{n}\right)$, we need to define two random symbols $\underline{\sigma}$ and $\bar{\sigma}$, which play a crucial role in what follows. We call $\underline{\sigma}$ the adaptive (or classical) random symbol and $\bar{\sigma}$ the anticipative random symbol.
2.1. The classical random symbol $\underline{\sigma}$. Let $\widetilde{\mathcal{F}}=\mathcal{F} \vee \sigma(M)$. We take a random function $\widetilde{C}(z)$ such that

$$
\begin{equation*}
\widetilde{C}(M)=\mathbb{E}[\widehat{C} \mid \widetilde{\mathcal{F}}] \tag{2.6}
\end{equation*}
$$

In the same way we define the variables $\widetilde{F}(z)$ and $\widetilde{N}(z)$ such that

$$
\widetilde{F}(M)=\mathbb{E}[\widehat{F} \mid \widetilde{\mathcal{F}}], \quad \tilde{N}(M)=\mathbb{E}[N \mid \widetilde{\mathcal{F}}] .
$$

Remark 2.1. Due to Assumption (A1)(i), we have the pointwise stable convergence $\left(M_{n}, N_{n}, \widehat{C}_{n}, \widehat{F}_{n}\right) \xrightarrow{d_{\mathrm{st}}}(M, N, \widehat{C}, \widehat{F})$. Usually, the limit $(M, N, \widehat{C}, \widehat{F})$ is jointly mixed normal with expectation $\mu \in \mathbb{R}^{4}$ (and $\mu_{1}=0$) and conditional covariance matrix $\Sigma \in \mathbb{R}^{4 \times 4}$. We deduce, for instance, that

$$
\tilde{N}(M)=\mu_{2}+\frac{\Sigma_{12}}{\Sigma_{11}} M
$$

Consequently, we have $\widetilde{N}(z)=\mu_{2}+\frac{\Sigma_{12}}{\Sigma_{11}} z$. The quantities $\widetilde{C}(z)$ and $\widetilde{F}(z)$ are computed similarly.

Now, the adaptive random symbol $\underline{\sigma}$ is defined by

$$
\begin{equation*}
\underline{\sigma}(z, \mathrm{i} u, \mathrm{i} v)=\frac{(\mathrm{i} u)^{2}}{2} \widetilde{C}(z)+\mathrm{i} u \widetilde{N}(z)+\mathrm{i} v \widetilde{F}(z) \tag{2.7}
\end{equation*}
$$

Notice that $\underline{\sigma}$ is a second-order polynomial in ($i u, i v$). The random symbol $\underline{\sigma}(z, \mathrm{i} u, \mathrm{i} v)$ is called classical, because it appears already in the martingale expansion in the central limit theorem [22,23], that is, in the case where C is a deterministic constant. In contrast, the anticipative random symbol $\bar{\sigma}$, which will be defined in the next subsection, is due to the mixed normality of the limit. In fact, it disappears if C is nonrandom.
2.2. The anticipative random symbol $\bar{\sigma}$. The second random symbol $\bar{\sigma}$ is given in an implicit way. Let $\alpha=\left(\alpha_{1}, \alpha_{2}\right) \in \mathbb{N}_{0}^{2}$ with $|\alpha|=\alpha_{1}+\alpha_{2}$. Set

$$
\partial^{\alpha}=i^{-|\alpha|} d^{\alpha} .
$$

We define the quantity Φ_{n} by

$$
\Phi_{n}(u, v)=\mathbb{E}\left[\exp \left(-\frac{u^{2}}{2} C+\mathrm{i} v F\right)\left(\mathcal{E}\left(\mathrm{i} u M^{n}\right)_{1}-1\right) \psi_{n}\right]
$$

where $\mathcal{E}(H)_{t}$ denotes the exponential martingale associated with a continuous martingale H, that is,

$$
\mathcal{E}(H)_{t}=\exp \left(H_{t}-\frac{1}{2}\langle H\rangle_{t}\right)=1+\int_{0}^{t} \mathcal{E}(H)_{s} d H_{s}
$$

and the random variable ψ_{n} plays a role of a threshold that ensures the integrability of the above expression, whose precise definition is given in Section 2.3 below. In particular, ψ_{n} converges to 1 in probability.

REMARK 2.2. Recalling the definition of the exponential martingale $\mathcal{E}\left(i u M^{n}\right)$, we observe that $\Phi_{n}(u, v)$ is closely related to the joint characteristic function of $\left(M_{n}, F\right)$. Condition (A5) of Section 2.3 specifies the tail behavior of $\Phi_{n}(u, v)$. When $C=F$ is deterministic, that is, we are in the framework of a standard central limit theorem, the truncation ψ_{n} can be dropped and we obtain that $\Phi_{n}(u, v)=0$, since $\left(\mathcal{E}\left(\mathrm{i} u M^{n}\right)_{t}-1\right)_{t \in[0,1]}$ is a martingale with mean 0.

Now, we assume that the limit $\Phi^{\alpha}(u, v):=\lim _{n \rightarrow \infty} r_{n}^{-1} \partial^{\alpha} \Phi_{n}(u, v)$ (if it exists) admits the representation

$$
\begin{align*}
\Phi^{\alpha}(u, v)=\partial^{\alpha} \mathbb{E}\left[\exp \left(-\frac{u^{2}}{2} C+i v F\right) \bar{\sigma}(i u, i v)\right] & \tag{2.8}\\
& (u, v) \in \mathbb{R}^{2}, \alpha \in \mathbb{Z}_{+}^{2},
\end{align*}
$$

where the random symbol $\bar{\sigma}(\mathrm{i} u, \mathrm{i} v)$ has the form

$$
\begin{equation*}
\bar{\sigma}(\mathrm{i} u, \mathrm{i} v)=\sum_{j} \bar{c}_{j}(\mathrm{i} u)^{m_{j}}(\mathrm{i} v)^{n_{j}} \quad \text { (finite sum) } \tag{2.9}
\end{equation*}
$$

with $\bar{c}_{j} \in \mathbb{D}_{l, \infty}$ for a certain $l \in \mathbb{N}$ [cf. assumption (A4) in Section 2.3]. We remark that $\bar{\sigma}(\mathrm{i} u, i v)$ is a polynomial with random coefficients.
2.3. Assumptions and truncation functionals. In this subsection, we state the conditions (A2) ℓ, (A3), (A4) $)_{\ell, \mathfrak{n}}$, (A5) and (A6) ℓ required in Theorem 2.3 below. Localization techniques will be essential to carry out the computations rigorously. For this purpose, we need two auxiliary functionals s_{n} and $\tilde{\xi}_{n}$, which will be introduced in details later.
(A2) ℓ_{ℓ} (i) $F \in \mathbb{D}_{\ell+1, \infty}$ and $C \in \mathbb{D}_{\ell, \infty}$.
(ii) $M_{n} \in \mathbb{D}_{\ell+1, \infty}, F_{n} \in \mathbb{D}_{\ell+1, \infty}, C_{n} \in \mathbb{D}_{\ell, \infty}, N_{n} \in \mathbb{D}_{\ell+1, \infty}$ and $s_{n} \in \mathbb{D}_{\ell, \infty}$. Moreover,

$$
\sup \left\{\left\|M_{n}\right\|_{\ell+1, p}+\left\|\widehat{C}_{n}\right\|_{\ell, p}+\left\|\widehat{F}_{n}\right\|_{\ell+1, p}+\left\|N_{n}\right\|_{\ell+1, p}+\left\|s_{n}\right\|_{\ell, p}\right\}<\infty
$$

for every $p \geq 2$.
(A3) (i) $\mathbb{P}\left[\Delta_{\left(M_{n}, F\right)}<s_{n}\right]=O\left(r_{n}^{1+\kappa}\right)$ for some positive constant κ. Recall that $\Delta_{\left(M_{n}, F\right)}$ denotes the determinant of the Malliavin matrix of $\left(M_{n}, F\right)$.
(ii) For every $p \geq 2$,

$$
\limsup _{n \rightarrow \infty} \mathbb{E}\left[s_{n}^{-p}\right]<\infty
$$

and moreover $C^{-1} \in \mathbb{L}^{\infty}$.
(A4) $)_{\ell, \mathfrak{n}}$ (i) $\widetilde{C}(z), \widetilde{N}(z)$ and $\widetilde{F}(z)$ are random polynomials with coefficients in $\mathbb{D}_{4, \infty}$.
(ii) The random symbol $\bar{\sigma}$, which satisfies (2.8), admits a representation

$$
\bar{\sigma}(\mathrm{i} u, \mathrm{i} v)=\sum_{j} \bar{c}_{j}(\mathrm{i} u)^{m_{j}}(\mathrm{i} v)^{n_{j}} \quad \text { (finite sum) }
$$

where the numbers $n_{j} \in \mathbb{N}$ satisfy $n_{j} \leq \mathfrak{n}$ and $\bar{c}_{j} \in \mathbb{D}_{\ell, \infty}$.
Let $\Phi_{n}^{\alpha}=\partial^{\alpha} \Phi_{n}$. We remark that the functional Φ_{n}^{α} depends on a truncation functional ψ_{n} we will specify later.
(A5) For some $q \in(1 / 3,1 / 2)$,

$$
\sup _{n} \sup _{(u, v) \in \Lambda_{n}^{0}(2, q)}|(u, v)|^{3} r_{n}^{-1}\left|\Phi_{n}^{\alpha}(u, v)\right|<\infty
$$

for every $\alpha \in \mathbb{Z}_{+}^{2}$, where $\Lambda_{n}^{0}(2, q)=\left\{(u, v) \in \mathbb{R}^{2} ;|(u, v)| \leq r_{n}^{-q}\right\}$.
(A6) $)_{\ell} \tilde{\xi}_{n} \in \mathbb{D}_{\ell, \infty}, \sup _{n}\left\|\tilde{\xi}_{n}\right\|_{\ell, p}<\infty$ for every $p>1$, and $P\left[\left|\tilde{\xi}_{n}\right|>1 / 2\right]=$ $O\left(r_{n}^{1+\kappa}\right)$ as $n \rightarrow \infty$ for some positive constant κ.

Truncation techniques will play an essential role in derivation of the asymptotic expansion. We shall construct a truncation functional ψ_{n} below, which has been introduced in the definition of $\Phi_{n}(u, v)$. Let $\psi \in C^{\infty}([0,1])$ be a real-valued function with $\psi(x)=1$ for $|x| \leq 1 / 2$ and $\psi(x)=0$ for $|x| \geq 1$. Recalling that $C_{1}=C$, we define a random variable ξ_{n} by

$$
\begin{equation*}
\xi_{n}=10^{-1} r_{n}^{-2 c}\left(C_{1}^{n}-C\right)^{2}+2\left[1+4 \Delta_{\left(M_{1}^{n}, C\right)} s_{n}^{-1}\right]^{-1}+r_{n}^{2 c_{1}} C^{2} \tag{2.10}
\end{equation*}
$$

where $c_{1}>0, c$ satisfies $2 q<c<1$ and the constant q is given in (A5). Define the 2×2 random matrix R_{n}^{\prime} by

$$
R_{n}^{\prime}=\sigma_{Q_{n}}^{-1}\left(r_{n}\left\langle D Q_{n}, D R_{n}\right\rangle_{\mathbb{H}}+r_{n}\left\langle D R_{n}, D Q_{n}\right\rangle_{\mathbb{H}}+r_{n}^{2}\left\langle D R_{n}, D R_{n}\right\rangle_{\mathbb{H}}\right),
$$

where $Q_{n}=\left(M_{n}, F\right)$ and $R_{n}=\left(N_{n}, \widehat{F}_{n}\right)$. Obviously,

$$
\begin{equation*}
\sigma_{\left(Z_{n}, F_{n}\right)}=\sigma_{Q_{n}}\left(I_{2}+R_{n}^{\prime}\right), \tag{2.11}
\end{equation*}
$$

where I_{2} is the 2×2 identity matrix. Let $\xi_{n}^{\prime}=r_{n}^{-1}\left|R_{n}^{\prime}\right|^{2}$. We define ψ_{n} by

$$
\begin{equation*}
\psi_{n}=\psi\left(\xi_{n}\right) \psi\left(\xi_{n}^{\prime}\right) \psi\left(\tilde{\xi}_{n}\right) \tag{2.12}
\end{equation*}
$$

We remark that the random variables appearing in the definition of ξ_{n} and ξ_{n}^{\prime} are bounded under truncation. Since we later deal with exponentials of these variables, we need to exclude their large values to obtain finite expectations. This is exactly the intuition behind the definition of the truncation functional ψ_{n}. A priori the meaning of the random variables s_{n} and $\tilde{\xi}_{n}$, which enter the formulas (2.10) and (2.12), respectively, is not clear at this stage. The variable $\tilde{\xi}_{n}$ will play again a role of truncation, which is proof specific. The term s_{n} will be set up in Section 3.2.

2.4. The asymptotic expansion of the density of $\left(Z_{n}, F_{n}\right)$. We set

$$
\begin{equation*}
\sigma=\underline{\sigma}+\bar{\sigma} \tag{2.13}
\end{equation*}
$$

We remark that due to the definition of $\underline{\sigma}$ and $\bar{\sigma}$ the random symbol σ admits the representation

$$
\begin{equation*}
\sigma(z, \mathrm{i} u, \mathrm{i} v)=\sum_{j} c_{j}(z)(\mathrm{i} u)^{m_{j}}(\mathrm{i} v)^{n_{j}} \quad \text { (finite sum) } \tag{2.14}
\end{equation*}
$$

for some $c_{j}(z) \in \bigcap_{p>1} \mathbb{L}^{p}$. The approximative density of $\left(Z_{n}, F_{n}\right)$ is defined as

$$
\begin{align*}
p_{n}(z, x)= & \mathbb{E}[\phi(z ; 0, C) \mid F=x] p^{F}(x) \\
& +r_{n} \sum_{j}\left(-d_{z}\right)^{m_{j}}\left(-d_{x}\right)^{n_{j}}\left(\mathbb{E}\left[c_{j}(z) \phi(z ; 0, C) \mid F=x\right] p^{F}(x)\right), \tag{2.15}
\end{align*}
$$

where p^{F} denotes the density of F and $\phi\left(\cdot ; a, b^{2}\right)$ is the density of $\mathcal{N}\left(a, b^{2}\right)$ distribution. Obviously, we will require certain regularity conditions in terms of Malliavin calculus in order to validate the existence of the density p^{F} and the derivatives in (2.15) as well as to validate the estimate of the approximation error.

For any integrable function $h: \mathbb{R}^{2} \rightarrow \mathbb{R}$, we set

$$
\begin{equation*}
\Delta_{n}(h)=\left|\mathbb{E}\left[h\left(Z_{n}, F_{n}\right)\right]-\int h(z, x) p_{n}(z, x) d z d x\right| \tag{2.16}
\end{equation*}
$$

The following theorem is Theorem 2 of [25] (see also [24]).
THEOREM 2.3. Let $\ell=5 \vee 2[(\mathfrak{n}+3) / 2]$ with $\mathfrak{n}=\max _{j} n_{j}$, where the integers n_{j} are defined at (2.14). Define the set $\mathcal{E}(K, \gamma)=\left\{h: \mathbb{R}^{2} \rightarrow \mathbb{R} \mid h\right.$ is measurable and $\left.|h(z, x)| \leq K(|z|+|x|)^{\gamma}\right\}$ for $K, \gamma>0$. Then under the assumptions (A1), (A2) ℓ_{ℓ}, (A3), (A4) $\ell_{\ell, \mathfrak{n}}$, (A5) and (A6) ℓ_{ℓ},

$$
\begin{equation*}
\sup _{h \in \mathcal{E}(K, \gamma)} \Delta_{n}(h)=o\left(r_{n}\right) . \tag{2.17}
\end{equation*}
$$

3. Functionals of Brownian motion with random weights. In this section, we consider general weighted functionals of a Brownian motion with weights depending on a given stochastic differential equation, and we shall derive an expansion formula. Here, the stochastic second-order term N_{n} is still absent. In later sections, we will meet an expansion with nonvanishing N_{n} when considering the power variations of diffusion processes. However, we will solve two essential problems in this general but concrete situation, that is, identification of the anticipative random symbol in this model, and proof of the nondegeneracy of the functionals.

On a given Wiener space $\left(\Omega, \mathcal{F},\left(\mathcal{F}_{t}\right)_{t \in[0,1]}, \mathbb{P}\right)$ we consider a 1 -dimensional stochastic differential equation of the form

$$
\begin{equation*}
d X_{t}=b^{[1]}\left(X_{t}\right) d W_{t}+b^{[2]}\left(X_{t}\right) d t \tag{3.1}
\end{equation*}
$$

where X_{0} is a bounded random variable, $b^{[1]}, b^{[2]}: \mathbb{R} \rightarrow \mathbb{R}$ are two deterministic functions and W is a standard Brownian motion. Sometimes we will use the notation

$$
b_{t}^{[1]}=b^{[1]}\left(X_{t}\right), \quad b_{t}^{[2]}=b^{[2]}\left(X_{t}\right)
$$

The somewhat unusual notation $b^{[1]}, b^{[2]}$ refers to the fact that the diffusion term $b^{[1]}$ dominates the drift term $b^{[2]}$ in all asymptotic expansions (so $b^{[1]}$ is the firstorder term and $b^{[2]}$ is the second-order term). Under standard smoothness conditions, the processes $b_{t}^{[k]}, k=1,2$, also satisfy a SDE of the type (3.1) by Itô's
formula; in this case we denote by $b_{t}^{[k .1]}$ (resp., $b_{t}^{[k .2]}$) the diffusion term (resp., the drift term) of $b_{t}^{[k]}$. In the same manner, we introduce the processes $b_{t}^{\left[k_{1} \cdots k_{d}\right]}$, $k_{1}, \ldots, k_{d}=1,2$, recursively. We will assume that $b^{[1]}$ and $b^{[2]}$ are in $C_{b, 1}^{\infty}(\mathbb{R})$ (the set of smooth functions such that each derivative of positive order is bounded).

In this section, we consider weighted functionals of the Brownian motion of the type

$$
\begin{equation*}
M_{n}=\Delta_{n}^{1 / 2} \sum_{i=1}^{1 / \Delta_{n}} a\left(X_{t_{i-1}}\right) f\left(\frac{\Delta_{i}^{n} W}{\sqrt{\Delta_{n}}}\right), \quad \Delta_{i}^{n} W=W_{i \Delta_{n}}-W_{(i-1) \Delta_{n}} \tag{3.2}
\end{equation*}
$$

where $a \in C_{p}^{\infty}(\mathbb{R})$ and $f \in C_{p}^{11}(\mathbb{R})$. Since f has polynomial growth, it holds that $\mathbb{E}\left[f^{2}(Z)\right]<\infty$ with $Z \sim \mathcal{N}(0,1)$. Consequently, the function f exhibits a Hermite expansion. We assume that the function f has the form

$$
\begin{equation*}
f(x)=\sum_{k=2}^{\infty} \lambda_{k} H_{k}(x) \quad \text { in } \mathbb{L}^{2}(\mathbb{R} ; \phi(x ; 0,1) d x) \tag{3.3}
\end{equation*}
$$

with $\lambda_{k}=\mathbb{E}\left[f(Z) H_{k}(Z)\right] / k!$ and $Z \sim \mathcal{N}(0,1)$, where H_{k} is the k th Hermite polynomial, that is, $H_{0}(x)=1$ and

$$
H_{k}(x)=(-1)^{k} e^{\frac{x^{2}}{2}} \frac{d^{k}}{d x^{k}}\left(e^{-\frac{x^{2}}{2}}\right), \quad k \geq 1
$$

In particular, the Hermite rank of the function f is at least 2 and $\mathbb{E}[f(Z)]=0$ for $Z \sim \mathcal{N}(0,1)$. We will see later that the Hermite rank 1 would not lead to the asymptotic mixed normal distribution with conditional mean 0 . In this section, we will consider

$$
\begin{equation*}
F_{n}=\Delta_{n} \operatorname{Var}[f(Z)] \sum_{i=1}^{1 / \Delta_{n}} a^{2}\left(X_{t_{i-1}}\right) \tag{3.4}
\end{equation*}
$$

which is a Riemann sum approximation of $C=\langle M\rangle_{1}$, as the reference variable. The second convergence of the following proposition is a straightforward consequence of [2], Section 8.

Proposition 3.1. It holds that

$$
F_{n} \xrightarrow{\mathbb{P}} C=\operatorname{Var}[f(Z)] \int_{0}^{1} a^{2}\left(X_{s}\right) d s \quad \text { and } \quad \Delta_{n}^{-1 / 2}\left(F_{n}-C\right) \xrightarrow{\mathbb{P}} 0 .
$$

3.1. A limit theorem for $\left(M_{n}, \widehat{C}_{n}\right)$ and the adaptive random symbol. First, we note that for $H=f\left(\frac{\Delta_{i}^{n} W}{\sqrt{\Delta_{n}}}\right)$ it holds

$$
H=\int_{0}^{1} \mathbb{E}\left[D_{s} H \mid \mathcal{F}_{s}\right] d W_{s}
$$

which is the Clark-Ocone formula. Consequently, we deduce the identity

$$
f\left(\frac{\Delta_{i}^{n} W}{\sqrt{\Delta_{n}}}\right)=\Delta_{n}^{-1 / 2} \int_{t_{i-1}}^{t_{i}} \mathbb{E}\left[\left.f^{\prime}\left(\frac{\Delta_{i}^{n} W}{\sqrt{\Delta_{n}}}\right) \right\rvert\, \mathcal{F}_{s}\right] d W_{s} .
$$

Thus, we naturally have a continuous square-integrable $\left(\mathcal{F}_{t}\right)$-martingale $M^{n}=$ $\left(M_{t}^{n}\right)_{t \in[0,1]}$ given by

$$
\begin{align*}
M_{t}^{n} & =\int_{0}^{t} b_{s}^{n} d W_{s} \tag{3.5}\\
b_{s}^{n} & =a\left(X_{\Delta_{n}\left[s / \Delta_{n}\right]}\right) \mathbb{E}\left[\left.f^{\prime}\left(\frac{W_{\Delta_{n}\left[s / \Delta_{n}\right]+\Delta_{n}}-W_{\Delta_{n}\left[s / \Delta_{n}\right]}}{\sqrt{\Delta_{n}}}\right) \right\rvert\, \mathcal{F}_{s}\right]
\end{align*}
$$

and we deduce that

$$
\begin{align*}
C_{t}^{n} & =\left\langle M^{n}\right\rangle_{t} \tag{3.6}\\
& =\int_{0}^{t} a^{2}\left(X_{\Delta_{n}\left[s / \Delta_{n}\right]}\right) \mathbb{E}^{2}\left[\left.f^{\prime}\left(\frac{W_{\Delta_{n}\left[s / \Delta_{n}\right]+\Delta_{n}}-W_{\Delta_{n}}\left[s / \Delta_{n}\right]}{\sqrt{\Delta_{n}}}\right) \right\rvert\, \mathcal{F}_{s}\right] d s
\end{align*}
$$

From this identity, we obtain the convergence

$$
C_{t}^{n} \xrightarrow{\mathbb{P}} C_{t}=\operatorname{Var}[f(Z)] \int_{0}^{t} a^{2}\left(X_{s}\right) d s .
$$

The latter follows from Theorem A. 1 in the Appendix applied to the function g : $\mathbb{R} \times C([0,1]) \rightarrow \mathbb{R}_{+}$defined via

$$
g(z, w):=z^{2} \int_{0}^{1} \mathbb{E}^{2}\left[f^{\prime}\left(U_{s}+w(s)\right)\right] d s \quad \text { with } U_{s} \sim \mathcal{N}(0,1-s)
$$

By Theorem A. 2 of the Appendix, we deduce the following result.
Proposition 3.2. It holds that

$$
\left(M_{n}, \widehat{C}_{n}\right) \xrightarrow{d_{\mathrm{st}}}(M, \widehat{C}) \sim M N(0, \Sigma) \quad \text { with } \Sigma=\int_{0}^{1} \Sigma_{s} d s
$$

where the matrix Σ_{s} is defined by

$$
\Sigma_{s}^{11}=\operatorname{Var}[f(Z)] a^{2}\left(X_{s}\right), \quad \Sigma_{s}^{22}=\Gamma_{1} a^{4}\left(X_{s}\right), \quad \Sigma_{s}^{12}=\Sigma_{s}^{21}=\Gamma_{2} a^{3}\left(X_{s}\right),
$$

with

$$
\begin{aligned}
& \Gamma_{1}=\operatorname{Var}\left[\int_{0}^{1} \mathbb{E}^{2}\left[f^{\prime}\left(W_{1}\right) \mid \mathcal{F}_{s}\right] d s\right] \\
& \Gamma_{2}=\operatorname{Cov}\left[f\left(W_{1}\right), \int_{0}^{1} \mathbb{E}^{2}\left[f^{\prime}\left(W_{1}\right) \mid \mathcal{F}_{s}\right] d s\right] .
\end{aligned}
$$

Notice that the stable convergence in the above proposition does not hold if f has Hermite rank 1, since in this case the process $\left(v_{s}\right)_{s \geq 0}$ defined in Theorem A. 2 is not identically 0 . As in the previous section, we immediately obtain the adaptive random symbol

$$
\begin{equation*}
\underline{\sigma}(z, \mathrm{i} u, \mathrm{i} v)=\frac{4 z(\mathrm{i} u)^{2} \int_{0}^{1} a^{3}\left(X_{s}\right) d s}{3 \operatorname{Var}[f(Z)] \int_{0}^{1} a^{2}\left(X_{s}\right) d s}=: z(\mathrm{i} u)^{2} \mathcal{C}_{1} . \tag{3.7}
\end{equation*}
$$

3.2. Setting s_{n}. We need to define the functionals s_{n} (and consequently ξ_{n}) to go further. We set $r_{n}=\Delta_{n}^{1 / 2}, \beta(x)=\operatorname{Var}[(f(Z))] a(x)^{2}$ with $Z \sim \mathcal{N}(0,1)$ and $a_{t}=a\left(X_{t}\right), \beta_{t}=\beta\left(X_{t}\right)$. Let

$$
\begin{equation*}
\sigma_{22}(t)=\int_{0}^{t}\left[\int_{r}^{1} \beta_{s}^{\prime} D_{r} X_{s} d s\right]^{2} d r \tag{3.8}
\end{equation*}
$$

Define a matrix $\tilde{\sigma}(n, t)$ by

$$
\tilde{\sigma}(n, t)=\left[\begin{array}{cc}
\tilde{\sigma}_{11}(n, t) & \tilde{\sigma}_{12}(n, t) \\
\tilde{\sigma}_{12}(n, t) & \sigma_{22}(t)
\end{array}\right]
$$

with

$$
\begin{aligned}
\tilde{\sigma}_{11}(n, t)= & \Delta_{n} \sum_{i: t_{i} \leq t}\left[a_{t_{i-1}} f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)\right]^{2} \\
& +\sum_{i: t_{i} \leq t} \int_{t_{i-1}}^{t_{i}}\left[\Delta_{n}^{1 / 2} \sum_{k=i+1}^{n} a_{t_{k-1}}^{\prime} f\left(\Delta_{n}^{-1 / 2} \Delta_{k}^{n} W\right) 1_{\left\{t_{k} \leq t\right\}} D_{r} X_{t_{k-1}}\right]^{2} d r
\end{aligned}
$$

and

$$
\begin{aligned}
\tilde{\sigma}_{12}(n, t)= & \sum_{i: t_{i} \leq t} \int_{t_{i-1}}^{t_{i}}\left(\left[\Delta_{n}^{1 / 2} \sum_{k=i+1}^{n} a_{t_{k-1}}^{\prime} f\left(\Delta_{n}^{-1 / 2} \Delta_{k}^{n} W\right) 1_{\left\{t_{k} \leq t\right\}} D_{r} X_{t_{k-1}}\right]\right. \\
& \left.\times \int_{r}^{1} \beta_{s}^{\prime} D_{r} X_{s} d s\right) d r
\end{aligned}
$$

for $t \in \Pi^{n}$. Define s_{n} by

$$
\begin{equation*}
s_{n}=\frac{1}{2} \operatorname{det}\left[\tilde{\sigma}\left(n, \frac{1}{2}\right)+\psi\left(\frac{m_{n}}{2 \mathrm{c}_{1}}\right) I_{2}\right], \tag{3.9}
\end{equation*}
$$

where I_{2} is the 2×2 unit matrix, $\psi: \mathbb{R} \rightarrow[0,1]$ is a smooth function such that $\psi(x)=1$ if $|x| \leq 1 / 2$ and $\psi(x)=0$ if $|x| \geq 1, \mathrm{c}_{1}$ is a positive number, and

$$
m_{n}=\Delta_{n} \sum_{i=1}^{\left[1 / 2 \Delta_{n}\right]}\left[f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)\right]^{2}
$$

Let

$$
\tilde{\xi}_{n}=L^{*} \int_{[0,1]^{2}}\left(\frac{r_{n}^{-2 q}\left|C_{t}^{n}-C_{t}-C_{s}^{n}+C_{s}\right|}{|t-s|^{3 / 8}}\right)^{8} d t d s
$$

where L^{*} is a sufficiently large constant. We will later show that the random variable s_{n} satisfies assumption (A3). We define ξ_{n} using s_{n} as in (2.10) of Section 2.3.
3.3. Decompositions of the torsion. In this subsection, we present some preparatory decompositions for the computation of $\bar{\sigma}$. Recall that $f \in C_{p}^{11}(\mathbb{R})$ and it admits the Hermite expansion $f(x)=\sum_{k=2}^{\infty} \lambda_{k} H_{k}(x)$. Consequently, it holds that $\sum_{k=2}^{\infty} k!k^{11} \lambda_{k}^{2}<\infty$.

The martingale $M^{n}=\left(M_{t}\right)_{t \in[0,1]}$ admits the local chaos expansion

$$
\begin{align*}
M_{t}^{n}= & \Delta_{n}^{1 / 2} \sum_{i=1}^{1 / \Delta_{n}} a_{t_{i-1}} \sum_{k=2}^{\infty} k!\lambda_{k} \Delta_{n}^{-k / 2} \\
& \times \int_{t_{i-1} \wedge t}^{t_{i} \wedge t} \int_{t_{i-1}}^{s_{1}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{2}} d W_{s_{1}} \tag{3.10}
\end{align*}
$$

Obviously, each infinite sum in (3.10) is well defined as an \mathbb{L}^{2}-limit when $k \rightarrow \infty$. Since

$$
H_{k}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)=k!\Delta_{n}^{-k / 2} \int_{t_{i-1}}^{t_{i}} \int_{t_{i-1}}^{s_{1}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{2}} d W_{s_{1}}
$$

we find (3.2) again. Now, we set

$$
\begin{equation*}
e_{t}^{n}(u)=\mathcal{E}\left(\mathrm{i} u M^{n}\right)_{t}, \quad \Psi(u, v)=\exp \left(\left(-\frac{u^{2}}{2}+\mathrm{i} v\right) C\right) \tag{3.11}
\end{equation*}
$$

Now, we recall the integration by parts (or duality) formula (see, e.g., [20]): For any $w \in \operatorname{Dom} \delta$ and any smooth random variable $Y \in \mathbb{D}_{1,2}$, it holds that

$$
\begin{equation*}
\mathbb{E}[\delta(w) Y]=\mathbb{E}\left[\langle w, D Y\rangle_{\mathbb{H}}\right] \tag{3.12}
\end{equation*}
$$

For each $n \in \mathbb{N}$, there exists a positive constant a_{n} such that $\mathrm{a}_{n} \max \left\{C, C_{1}^{n}\right\}<1 / 2$ whenever $\psi_{n}>0$ [cf. (2.12)]. Thus, on the event $\left\{\psi_{n}>0\right\}, e_{t}^{n}(u)=\bar{e}_{t}^{n}(u)(t \in$ $[0,1], u \in \mathbb{R})$ and $\Psi(u, v)=\bar{\Psi}_{n}(u, v)(u, v \in \mathbb{R})[\Psi(u, v)$ is defined before (2.8)], where

$$
\bar{e}_{t}^{n}(u)=e_{t}^{n}(u) \psi\left(\mathrm{a}_{n} C_{1}^{n}\right) \quad \text { and } \quad \bar{\Psi}_{n}(u, v)=\Psi(u, v) \psi\left(\mathrm{a}_{n} C\right) .
$$

By definition,

$$
\bar{e}_{.}^{n}(u) \int_{t_{i-1}}^{.} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{2}} \in \operatorname{Dom} \delta
$$

and $\bar{\Psi}_{n}(u, v) \in \mathbb{D}_{1, p}$ for $p>1$. Therefore, for

$$
\mathbb{Y}=\mathbb{E}\left[\int_{t_{i-1}}^{t_{i}} e_{s_{1}}^{n}(u)\left(\int_{t_{i-1}}^{s_{1}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{2}}\right) d W_{s_{1}} \Psi(u, v) \psi_{n} a_{t_{i-1}}\right]
$$

we obtain

$$
\begin{aligned}
\mathbb{Y}= & \mathbb{E}\left[\int_{0}^{1} \bar{e}_{s_{1}}^{n}(u)\left(\int_{t_{i-1}}^{s_{1}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{2}}\right)\right. \\
& \left.\times 1_{I_{i}^{n}}\left(s_{1}\right) D_{s_{1}}\left(\bar{\Psi}_{n}(u, v) \psi_{n} a_{t_{i-1}}\right) d s_{1}\right]
\end{aligned}
$$

by (3.12). Moreover, since $\bar{e}_{t}^{n}(u) \in \mathbb{D}_{1, p}$ for $p>1$ and $D_{s_{1}}\left(\bar{\Psi}_{n}(u, v) \psi_{n} a_{t_{i-1}}\right) \in$ $\mathbb{D}_{1, p}$ for $p>1$ as well as

$$
\int_{t_{i-1}}^{.} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{3}} \in \operatorname{Dom} \delta
$$

we also have

$$
\begin{aligned}
\mathbb{Y}= & \int_{t_{i-1}}^{t_{i}} \mathbb{E}\left[\int_{t_{i-1}}^{s_{1}} \int_{t_{i-1}}^{s_{2}}\left(\int_{t_{i-1}}^{s_{3}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{4}}\right) d W_{s_{3}}\right. \\
& \left.\times D_{s_{2}}\left(\bar{e}_{s_{1}}^{n}(u) D_{s_{1}}\left(\bar{\Psi}_{n}(u, v) \psi_{n} a_{t_{i-1}}\right)\right) d s_{2}\right] d s_{1} .
\end{aligned}
$$

In what follows, we will identify $e_{t}^{n}(u)$ with $\bar{e}_{t}^{n}(u)$ and $\Psi(u, v)$ with $\bar{\Psi}_{n}(u, v)$, respectively, and apply such procedures for taming exponential type functionals, without explicitly mentioned.

Since the infinite sums in k of (3.10) are also limits of \mathbb{L}^{2}-martingales, we can validate the exchange of the limit and the sum, and then use the duality between the Skorokhod integral and the derivative operator D at (3.12) to carry out

$$
\begin{aligned}
\sum_{i=1}^{1 / \Delta_{n}} \mathbb{E} & {\left[\int_{t_{i-1}}^{t_{i}} e_{t}^{n}(u) d M_{t}^{n} \Psi(u, v) \psi_{n}\right] } \\
= & \Delta_{n}^{1 / 2} \sum_{i=1}^{1 / \Delta_{n}} \sum_{k=2}^{\infty} k!\lambda_{k} \Delta_{n}^{-k / 2} \\
& \times \mathbb{E}\left[\int_{t_{i-1}}^{t_{i}} e_{s_{1}}^{n}(u)\left(\int_{t_{i-1}}^{s_{1}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{2}}\right) d W_{s_{1}} \Psi(u, v) \psi_{n} a_{t_{i-1}}\right] \\
= & \Delta_{n}^{1 / 2} \sum_{i=1}^{1 / \Delta_{n}} \sum_{k=2}^{\infty} k!\lambda_{k} \Delta_{n}^{-k / 2} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} \\
& \times \mathbb{E}\left[\int_{t_{i-1}}^{s_{2}}\left(\int_{t_{i-1}}^{s_{3}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{4}}\right)\right. \\
& \left.\times d W_{s_{3}} D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n} a_{t_{i-1}}\right)\right)\right] .
\end{aligned}
$$

Applying the duality once again, we obtain the decomposition

$$
\begin{aligned}
\mathfrak{A}_{n}(u, v):= & \Delta_{n}^{-1 / 2} \sum_{i=1}^{1 / \Delta_{n}} \mathbb{E}\left[\int_{t_{i-1}}^{t_{i}} e_{t}^{n}(u) d M_{t}^{n} \Psi(u, v) \psi_{n}\right] \\
= & 2 \sum_{i=1}^{1 / \Delta_{n}} \lambda_{2} \Delta_{n}^{-1} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} \mathbb{E}\left[D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n} a_{t_{i-1}}\right)\right)\right] \\
& +\sum_{i=1}^{1 / \Delta_{n}} \sum_{k=3}^{\infty} k!\lambda_{k} \Delta_{n}^{-k / 2} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} \int_{t_{i-1}}^{s_{2}} d s_{3} \\
& \times \mathbb{E}\left[\int_{t_{i-1}}^{s_{3}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{4}}\right. \\
& \left.\times D_{s_{3}}\left\{D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n} a_{t_{i-1}}\right)\right)\right\}\right] \\
= & \ddot{\mathfrak{A}}_{n}(u, v)+\dddot{\mathfrak{A}}_{n}(u, v)
\end{aligned}
$$

where

$$
\begin{aligned}
\ddot{\mathfrak{A}}_{n}(u, v)= & 2 \sum_{i=1}^{1 / \Delta_{n}} \lambda_{2} \Delta_{n}^{-1} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} \mathbb{E}\left[D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n} a_{t_{i-1}}\right)\right)\right] \\
\dddot{\mathfrak{A}}_{n}(u, v)= & \sum_{i=1}^{1 / \Delta_{n}} \Delta_{n}^{-3 / 2} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} \int_{t_{i-1}}^{s_{2}} d s_{3} \\
& \times \mathbb{E}\left[\left(\sum_{k=3}^{\infty} k!\lambda_{k} \Delta_{n}^{-(k-3) / 2} \int_{t_{i-1}}^{s_{3}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{4}}\right)\right. \\
& \left.\times D_{s_{3}}\left\{D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n} a_{t_{i-1}}\right)\right)\right\}\right]
\end{aligned}
$$

Here, we used three times Malliavin differentiability of the objects. We remark that the first term $\ddot{\mathfrak{A}}_{n}(u, v)$, which is associated with the second-order Wiener chaos, is a dominating quantity, while $\dddot{\mathfrak{A}}_{n}(u, v)$ will turn out to be negligible.
3.4. Identification of the anticipative random symbol. We shall specify the limit of $\mathfrak{A}_{n}(u, v)$. First,

$$
\begin{aligned}
\left|\ddot{\mathfrak{A}}_{n}(u, v)\right| \leq & \sum_{i=1}^{1 / \Delta_{n}} \Delta_{n}^{-3 / 2} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} \int_{t_{i-1}}^{s_{2}} d s_{3} \\
& \times\left\|\sum_{k=3}^{\infty} k!\lambda_{k} \Delta_{n}^{-(k-3) / 2} \int_{t_{i-1}}^{s_{3}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{4}}\right\|_{\mathbb{L}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& \times\left\|D_{s_{3}}\left\{D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n} a_{t_{i-1}}\right)\right)\right\}\right\|_{\mathbb{L}^{2}} \\
& \leq \frac{\Delta_{n}^{1 / 2}}{6} \sqrt{\sum_{k=3}^{\infty} k!k^{3} \lambda_{k}^{2}} \\
& \quad \times \sup _{\substack{n \in \mathbb{N}, s_{1}, s_{2}, s_{3} \in[0,1] \\
t_{i-1}<s_{3} \leq s_{2}<s_{1} \leq t_{i}}}\left\|D_{s_{3}}\left\{D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n} a_{t_{i-1}}\right)\right)\right\}\right\|_{\mathbb{L}^{2}} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ for every (u, v), since the above supremum is bounded due to assumption (A2) ${ }_{8}$, and product and chain rule for the Malliavin derivative.

Next, we will treat $\ddot{\mathfrak{A}}_{n}(u, v)$. We deform it as $\ddot{\mathfrak{A}}_{n}(u, v)=\check{\mathfrak{A}}_{n}(u, v)+\hat{\mathfrak{A}}_{n}(u, v)$ with

$$
\check{\mathfrak{A}}_{n}(u, v)=2 \sum_{i=1}^{1 / \Delta_{n}} \lambda_{2} \Delta_{n}^{-1} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} \mathbb{E}\left[a_{t_{i-1}} e_{t_{i-1}}^{n}(u) D_{s_{2}}\left(D_{s_{1}}\left(\Psi(u, v) \psi_{n}\right)\right)\right],
$$

thanks to $D_{s} a_{t_{i-1}}=0$ and $D_{s} e_{t_{i-1}}^{n}(u)=0$ for $s>t_{i-1}$, and

$$
\begin{aligned}
\hat{\mathfrak{A}}_{n}(u, v)= & 2 \sum_{i=1}^{1 / \Delta_{n}} \lambda_{2} \Delta_{n}^{-1} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} \mathbb{E}\left[D_{s_{2}}\left(e_{s_{1}}^{n}(u)-e_{t_{i-1}}^{n}(u)\right)\right. \\
& \left.\times D_{s_{1}}\left(\Psi(u, v) \psi_{n} a_{t_{i-1}}\right)\right]
\end{aligned}
$$

Then by continuity of $e_{.}^{n}(u)$ in $\mathbb{D}_{1, p}$ [see again (A2)], we conclude $\hat{\mathfrak{A}}_{n}(u, v) \rightarrow 0$ as $n \rightarrow \infty$ for every (u, v). Since $e_{s_{1}}^{n}(u) \Psi(u, v)$ is bounded under truncation by ψ_{n} or even by its derivative, the \mathbb{L}^{p}-continuity of the objects yields

$$
\begin{equation*}
\check{\mathfrak{A}}_{n}(u, v) \rightarrow \lambda_{2} \mathbb{E}\left[\int_{0}^{1} a_{t} \exp \left(\mathrm{i} u M_{t}+\frac{1}{2} u^{2} C_{t}\right) D_{t} D_{t} \Psi(u, v) d t\right] \tag{3.14}
\end{equation*}
$$

where $D_{t} D_{t} \Psi(u, v)=\lim _{s \uparrow t} D_{s} D_{t} \Psi(u, v)$. It should be noted that the integrability and this limiting procedure are valid because $D_{t} D_{t} \Psi(u, v)=\Psi(u, v) A_{t}$ with a sum A_{t} of regular variables, and

$$
\underset{\omega}{\operatorname{ess} \sup } \sup _{t \in[0,1]}\left(C_{t}^{n}-C_{1}\right) 1_{\left\{\left|\xi_{n}\right|<1\right\}} \leq \Delta_{n}^{c / 2} \leq 1<\infty
$$

for all n, due to $C_{t}^{n} \leq C_{1}^{n}$ and the construction of the quantity ξ_{n} in (2.10) of Section 2.3. Furthermore,

$$
\begin{aligned}
\lambda_{2} \mathbb{E} & {\left[\int_{0}^{1} a_{t} \exp \left(\mathrm{i} u M_{t}+\frac{1}{2} u^{2} C_{t}\right) D_{t} D_{t} \Psi(u, v) d t\right] } \\
& =\lambda_{2} \mathbb{E}\left[\int_{0}^{1} a_{t} \mathbb{E}\left[\exp \left(\mathrm{i} u M_{t}\right) \mid \mathcal{F}\right]\left\{\exp \left(\frac{1}{2} u^{2} C_{t}\right) \times \Psi(u, v)\right\} A_{t} d t\right] \\
& =\lambda_{2} \mathbb{E}\left[\int_{0}^{1} a_{t} D_{t} D_{t} \Psi(u, v) d t\right] .
\end{aligned}
$$

Consequently, for

$$
\begin{aligned}
\Phi_{n}^{\alpha}(u, v) & =\mathrm{i}^{-|\alpha|} d_{(u, v)}^{\alpha} \mathbb{E}\left[L_{1}^{n}(u) \Psi(u, v) \psi_{n}\right] \\
& =\mathrm{i}^{-|\alpha|} d_{(u, v)}^{\alpha} \mathbb{E}\left[\mathrm{i} u \int_{0}^{1} e_{t}^{n}(u) d M_{t}^{n} \Psi(u, v) \psi_{n}\right]
\end{aligned}
$$

where $L_{t}^{n}(u)=e_{t}^{n}(u)-1$, we obtain

$$
\begin{aligned}
\tilde{\Phi}^{\alpha}(u, v)= & \lim _{n \rightarrow \infty} \Delta_{n}^{-1 / 2} \Phi_{n}^{\alpha}(u, v) \\
= & \lim _{n \rightarrow \infty} \mathrm{i}^{-|\alpha|} d_{(u, v)}^{\alpha}\left(\mathrm{i} u \mathfrak{A}_{n}(u, v)\right) \\
= & \lambda_{2} \mathrm{i}^{-|\alpha|} d_{(u, v)}^{\alpha} \mathbb{E}\left[\int_{0}^{1} \mathrm{i} u a_{t} D_{t} D_{t} \Psi(u, v) d t\right] \\
= & \lambda_{2} \mathrm{i}^{-|\alpha|} d_{(u, v)}^{\alpha} \mathbb{E}\left[\Psi (u , v) \cdot \int _ { 0 } ^ { 1 } \mathrm { i } u a _ { t } \left(\left(-\frac{u^{2}}{2}+\mathrm{i} u\right)^{2}\left(D_{t} C\right)^{2}\right.\right. \\
& \left.\left.+\left(-\frac{u^{2}}{2}+\mathrm{i} u\right) D_{t} D_{t} C\right) d t\right] .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\bar{\sigma}(\mathrm{i} u, \mathrm{i} v)= & \lambda_{2} \int_{0}^{1} \mathrm{i} u a_{t}\left(\left(-\frac{u^{2}}{2}+\mathrm{i} u\right)^{2}\left(D_{t} C\right)^{2}\right. \tag{3.15}\\
& \left.+\left(-\frac{u^{2}}{2}+\mathrm{i} u\right) D_{t} D_{t} C\right) d t
\end{align*}
$$

We recall that the process $D X_{t}$ is given as the solution of the SDE

$$
D_{s} X_{t}=b^{[1]}\left(X_{s}\right)+\int_{s}^{t}\left(b^{[2]}\right)^{\prime}\left(X_{u}\right) D_{s} X_{u} d u+\int_{s}^{t}\left(b^{[1]}\right)^{\prime}\left(X_{u}\right) D_{s} X_{u} d W_{u}
$$

for $s \leq t$ (and 0 when $s>t$), and

$$
\begin{aligned}
D_{r} D_{s} X_{t}= & \left(b^{[1]}\right)^{\prime}\left(X_{s}\right) D_{r} X_{s}+\int_{s}^{t}\left(b^{[2]}\right)^{\prime \prime}\left(X_{u}\right) D_{r} X_{u} D_{s} X_{u} d u \\
& +\int_{s}^{t}\left(b^{[2]}\right)^{\prime}\left(X_{u}\right) D_{r} D_{s} X_{u} d u \\
& +\int_{s}^{t}\left(b^{[1]}\right)^{\prime \prime}\left(X_{u}\right) D_{r} X_{u} D_{s} X_{u} d W_{u}+\int_{s}^{t}\left(b^{[1]}\right)^{\prime}\left(X_{u}\right) D_{r} D_{s} X_{u} d W_{u}
\end{aligned}
$$

for $r<s \leq t$. Then (3.15) implies the identity

$$
\begin{align*}
\bar{\sigma}(\mathrm{i} u, \mathrm{i} v)= & \mathrm{i} u \lambda_{2}\left(\left(-\frac{u^{2}}{2}+\mathrm{i} v\right)^{2} \operatorname{Var}^{2}[f(Z)] \mathcal{C}_{2}\right. \\
& \left.+\left(-\frac{u^{2}}{2}+\mathrm{i} v\right) \operatorname{Var}[f(Z)]\left(\mathcal{C}_{3}+\mathcal{C}_{4}\right)\right) \tag{3.16}
\end{align*}
$$

with

$$
\begin{aligned}
& \mathcal{C}_{2}=\int_{0}^{1} a\left(X_{s}\right)\left(\int_{s}^{1}\left(a^{2}\right)^{\prime}\left(X_{u}\right) D_{s} X_{u} d u\right)^{2} d s \\
& \mathcal{C}_{3}=\int_{0}^{1} a\left(X_{s}\right)\left(\int_{s}^{1}\left(a^{2}\right)^{\prime \prime}\left(X_{u}\right)\left(D_{s} X_{u}\right)^{2} d u\right) d s, \\
& \mathcal{C}_{4}=\int_{0}^{1} a\left(X_{s}\right)\left(\int_{s}^{1}\left(a^{2}\right)^{\prime}\left(X_{u}\right) D_{s} D_{s} X_{u} d u\right) d s .
\end{aligned}
$$

Now, having obtained the full random symbol $\sigma=\underline{\sigma}+\bar{\sigma}$ and hence the density $p_{n}(z, x)$ for σ, we can formulate the following statement, which generalizes the results of [24], Theorem 1, on the quadratic form to the weighted power variation of Brownian motion.

THEOREM 3.3. Let $b^{[1]}, b^{[2]} \in C_{b, 1}^{\infty}(\mathbb{R}), a \in C_{p}^{\infty}(\mathbb{R})$ and $f \in C_{p}^{11}(\mathbb{R})$. Let the functional F_{n} be given by (3.4). Recall the definition $\beta(x)=\operatorname{Var}[f(Z)] a(x)^{2}$ and $\beta_{t}=\beta\left(X_{t}\right)$ for a standard normal random variable Z. Assume that the following conditions are satisfied:
(C1) $\inf _{x}\left|b^{[1]}(x)\right|>0$ and $\inf _{x}|a(x)|>0$.
(C2) For each $x_{0} \in \operatorname{supp} \mathcal{L}\left\{X_{0}\right\}$, there exists $k \geq 1$ such that $\beta^{(k)}\left(x_{0}\right) \neq 0$.
Then for any positive numbers K and γ, it holds that

$$
\sup _{h \in \mathcal{E}(K, \gamma)}\left|\mathbb{E}\left[h\left(M_{n}, F_{n}\right)\right]-\int h(z, x) p_{n}(z, x) d z d x\right|=o\left(\sqrt{\Delta_{n}}\right)
$$

as $n \rightarrow \infty$, where the set $\mathcal{E}(K, \gamma)$ was defined in Theorem 2.3.

In the rest of this section, we will prove Theorem 3.3. In this situation, we will verify conditions (A1), (A2) $)_{\ell}$, (A3), (A4) $)_{\ell, \mathfrak{n}}$ (A5) and (A6) of Theorem 2.3 for $\ell=10$. The conditions of Theorem 3.3 trivially imply (A1) and (A2) ℓ. We already have (A4) ℓ, \mathfrak{n}. Condition (A6) is also easy to check. In the following subsections, we concentrate on proving (A3) and (A5).
3.5. Estimate of the characteristic functions. We shall now show condition (A5) of Section 2.3 under the assumptions of Theorem 3.3, namely

$$
\begin{equation*}
\sup _{n} \sup _{(u, v) \in \Lambda_{n}^{0}(2, q)}|(u, v)|^{3} \Delta_{n}^{-1 / 2}\left|\Phi_{n}^{\alpha}(u, v)\right|<\infty \tag{3.17}
\end{equation*}
$$

for

$$
\Phi_{n}^{\alpha}(u, v)=\mathrm{i}^{-|\alpha|} d_{(u, v)}^{\alpha} \mathbb{E}\left[L_{1}^{n}(u) \Psi(u, v) \psi_{n}\right], \quad L_{t}^{n}(u)=e_{t}^{n}(u)-1 .
$$

We apply the duality formula twice and use nondegeneracy of the Malliavin matrix of $\left(M_{t}^{n}, F\right)$ together with that of $C-C_{t}$, in the expression

$$
\Phi_{n}^{\alpha}(u, v)=\mathrm{i}^{-|\alpha|} d_{(u, v)}^{\alpha} \mathbb{E}\left[\int_{0}^{1} e_{t}^{n}(u) d\left(\mathrm{i} u M_{t}^{n}\right) \Psi(u, v) \psi_{n}\right] .
$$

For this purpose, the representation (3.13) is useful. By the \mathbb{L}^{2}-convergence, we see that

$$
\begin{aligned}
& \sum_{i=1}^{1 / \Delta_{n}} \mathbb{E}\left[\int_{t_{i-1}}^{t_{i}} e_{t}^{n}(u) d M_{t}^{n} \Psi(u, v) \psi_{n}\right] \\
&= \Delta_{n}^{-1 / 2} \sum_{i=1}^{1 / \Delta_{n}} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} \\
& \times \mathbb{E}\left[\sum_{k=2}^{\infty} k!\lambda_{k} \Delta_{n}^{-(k-2) / 2} \int_{t_{i-1}}^{s_{2}} \int_{t_{i-1}}^{s_{3}} \cdots\right. \\
&\left.\times \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{4}} d W_{s_{3}} a_{t_{i-1}} D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n}\right)\right)\right] \\
&= \Delta_{n}^{-1 / 2} \sum_{i=1}^{1 / \Delta_{n}} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} \mathbb{E}\left[f_{n, i, s_{2}}^{\dagger} a_{t_{i-1}} D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n}\right)\right)\right]
\end{aligned}
$$

where

$$
f_{n, i, s_{2}}^{\dagger}=\sum_{k=2}^{\infty} k!\lambda_{k} \Delta_{n}^{-(k-2) / 2} \int_{t_{i-1}}^{s_{2}} \int_{t_{i-1}}^{s_{3}} \cdots \int_{t_{i-1}}^{s_{k-1}} d W_{s_{k}} \cdots d W_{s_{4}} d W_{s_{3}},
$$

and consequently reach the representation

$$
\begin{aligned}
& \mathrm{i} u \sum_{i=1}^{1 / \Delta_{n}} \mathbb{E}\left[\int_{t_{i-1}}^{t_{i}} e_{t}^{n}(u) d M_{t}^{n} \Psi(u, v) \psi_{n}\right] \\
& \quad=\Delta_{n}^{-1 / 2} \sum_{i=1}^{1 / \Delta_{n}} \int_{t_{i-1}}^{t_{i}} d s_{1} \int_{t_{i-1}}^{s_{1}} d s_{2} E_{i}^{n}(u, v)_{s_{1}, s_{2}}
\end{aligned}
$$

where

$$
\begin{equation*}
E_{i}^{n}(u, v)_{s_{1}, s_{2}}=i u \mathbb{E}\left[f_{n, i, s_{2}}^{\dagger} a_{t_{i-1}} D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n}\right)\right)\right] \tag{3.18}
\end{equation*}
$$

Let

$$
\mathbb{E}_{s}^{n}(u, v)=e_{s}^{n}(u) \Psi(u, v)
$$

Then $\mathbb{E}_{s}(u, v)$ has the FGH -decomposition (cf. [25], page 911):

$$
\mathbb{E}_{s}^{n}(u, v)=\mathbb{F}_{s}^{n}(u, v) \mathbb{G}_{s}(u) \mathbb{H}_{s}^{n}(u)
$$

with

$$
\begin{aligned}
\mathbb{F}_{s}^{n}(u, v) & =\exp \left(\mathrm{i} u M_{s}^{n}+\mathrm{i} v C\right), \quad \mathbb{G}_{s}(u)=\exp \left(-\frac{1}{2} u^{2}\left(C-C_{s}\right)\right), \\
\mathbb{H}_{s}^{n}(u) & =\exp \left(\frac{1}{2} u^{2}\left(C_{s}^{n}-C_{s}\right)\right) .
\end{aligned}
$$

From (3.18) and the FGH-decomposition,

$$
\begin{equation*}
E_{i}^{n}(u, v)_{s_{1}, s_{2}}=\mathbb{E}\left[\mathbb{F}_{s_{1}}^{n}(u, v) \mathbb{G}_{s_{1}}(u) \mathbb{H}_{s_{1}}^{n}(u) \psi_{s_{1}, s_{2}}^{n}(u, v) f_{n, i, s_{2}}^{\dagger} a_{t_{i-1}}\right] \tag{3.19}
\end{equation*}
$$

where

$$
\begin{aligned}
\psi_{s_{1}, s_{2}}^{n}(u, v)= & i u\left(e_{s_{1}}^{n}(u) \Psi(u, v)\right)^{-1} D_{s_{2}}\left(e_{s_{1}}^{n}(u) D_{s_{1}}\left(\Psi(u, v) \psi_{n}\right)\right) \\
= & \left\{\psi_{n}\left(-\frac{u^{2}}{2}+\mathrm{i} v\right) D_{s_{1}} C_{1}+D_{s_{1}} \psi_{n}\right\} \mathrm{i} u\left(\mathrm{i} u D_{s_{2}} M_{s_{1}}^{n}+\frac{u^{2}}{2} D_{s_{2}} C_{s_{1}}^{n}\right) \\
& +\psi_{n} \mathrm{i} u\left(-\frac{u^{2}}{2}+\mathrm{i} v\right)^{2}\left(D_{s_{2}} C_{1}\right)\left(D_{s_{1}} C_{1}\right) \\
& +2\left(D_{s_{2}} \psi_{n}\right) \mathrm{i} u\left(-\frac{u^{2}}{2}+\mathrm{i} v\right) D_{s_{1}} C_{1}+D_{s_{2}} D_{s_{1}} \psi_{n} \mathrm{i} u .
\end{aligned}
$$

Suppose that the following condition, which we will prove in the next subsection, is satisfied for $\ell=10$:
$\left(\mathrm{C} 2^{b}\right)$ The variables $s_{n}(n \in \mathbb{N})$ satisfy the following conditions:
(i) $\sup _{t \geq \frac{1}{2}} \mathbb{P}\left[\operatorname{det} \sigma_{\left(M_{t}^{n}, C_{1}\right)}<s_{n}\right]=O\left(\Delta_{n}^{4 / 3+\varepsilon}\right)$ as $n \rightarrow \infty$ for some $\varepsilon>0$.
(ii) $\lim \sup _{n \rightarrow \infty} \mathbb{E}\left[s_{n}^{-p}\right]<\infty$ for every $p>1$.
(iii) $\lim \sup _{n \rightarrow \infty}\left\|s_{n}\right\|_{\ell, p}<\infty$ for every $p \geq 2$.

Now following the (a)-(h) procedure of [25], pages 911-912, and the argument of the proof of Theorem 4 therein, we can obtain

$$
\begin{equation*}
\sup _{n} \sup _{i=1, \ldots, n} \sup _{s_{1}, s_{2}: t_{i-1}<s_{1}<s_{2} \leq t_{i}} \sup _{(u, v) \in \Lambda_{n}^{0}(2, q)}|(u, v)|^{3}\left|E_{i}^{n}(u, v)_{s_{1}, s_{2}}\right|<\infty \tag{3.20}
\end{equation*}
$$

by applying the integration-by-parts formula at most 8 times. More precisely, we introduce a new truncation

$$
\psi_{n, s_{1}}=\psi\left(2\left[1+4 \Delta_{\left(M_{s_{1}}^{n}, C\right)} s_{n}^{-1}\right]^{-1}\right)
$$

which will be used when the integration-by-parts formula for $\left(M_{s_{1}}^{n}, C\right)$ is applied for $s_{1} \geq 1 / 2$. We have the decomposition of $E_{i}^{n}(u, v)_{s_{1}, s_{2}}$ expressed by (3.19):

$$
\begin{aligned}
E_{i}^{n}(u, v)_{s_{1}, s_{2}}= & \mathbb{E}\left[\mathbb{F}_{s_{1}}^{n}(u, v) \mathbb{G}_{s_{1}}(u) \mathbb{H}_{s_{1}}^{n}(u) \psi_{s_{1}, s_{2}}^{n}(u, v) \psi_{s_{1}}^{n} f_{n, i, s_{2}}^{\dagger} a_{t_{i-1}}\right] \\
& +R_{n, s_{1}, s_{2}}(u, v)
\end{aligned}
$$

with

$$
\left|R_{n, s_{1}, s_{2}}(u, v)\right| \leq K \Delta_{n}^{-5 q / 2} \sup _{s^{\prime}}\left\|1-\psi_{n, s^{\prime}}\right\|_{\mathbb{L}^{p}}
$$

for all n, s_{1} and restricted (u, v), where K denotes a generic positive constant. The right-hand side can be shown to be of order $o\left(\Delta_{n}^{3 q / 2}\right)$ for sufficiently small numbers $q>1 / 3$ [cf. Assumption (A5)] and $p>1$. Then, as already noticed, we can follow the (a)-(h) procedure of [25], by using the FGH-decomposition, but with $\psi\left(\xi_{n}\right) \psi_{n, s_{1}}$ for truncation, to obtain (3.20).

Finally, we obtain (3.17) for $\alpha=0$ from (3.20). When $\alpha \neq 0$, the argument of the proof is essentially the same as above. As a conclusion, (3.17) [and consequently (A5)] holds for every α under the assumptions (C1) and (C2 ${ }^{\text {b }}$).

Obviously, condition (A3) is valid under (C1) and (C2 ${ }^{b}$). In particular, the nondegeneracy of C simply follows from $\inf _{x}|a(x)|>0$. Thus, we are left to proving condition ($\mathrm{C} 2^{b}$).
3.6. Proof of $\left(\mathrm{C}^{\text {b }}\right)$. We shall now prove that condition $\left(\mathrm{C} 2^{\text {b }}\right)$ holds under the assumptions of Theorem 3.3. Recall that

$$
M_{t}^{n}=\Delta_{n}^{1 / 2} \sum_{i: t_{i} \leq t} a\left(X_{t_{i-1}}\right) f\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)
$$

for $t \in \Pi^{n}=\left\{t_{i}\right\}$. We deduce that

$$
\begin{aligned}
D_{r} M_{t}^{n}= & \sum_{i: t_{i} \leq t} a_{t_{i-1}} f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right) 1_{\left(t_{i-1}, t_{i}\right]}(r) \\
& +\Delta_{n}^{1 / 2} \sum_{i: t_{i} \leq t} a_{t_{i-1}}^{\prime} D_{r} X_{t_{i-1}} f\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right) 1_{\left\{r \leq t_{i-1}\right\}} \\
= & \sum_{i: t_{i} \leq t}\left[a_{t_{i-1}} f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)\right. \\
& \left.+\Delta_{n}^{1 / 2} \sum_{k=i+1}^{n} a_{t_{k-1}}^{\prime} f\left(\Delta_{n}^{-1 / 2} \Delta_{k}^{n} W\right) 1_{\left\{t_{k} \leq t\right\}} D_{r} X_{t_{k-1}}\right] 1_{\left(t_{i-1}, t_{i}\right]}(r)
\end{aligned}
$$

for $t \in \Pi^{n}$, where $\sum_{k=n+1}^{n} \cdots=0$. Hence,

$$
\begin{aligned}
\sigma_{11}(n, t):= & \sigma_{M_{t}^{n}}=\sum_{i: t_{i} \leq t} \int_{t_{i-1}}^{t_{i}}\left[a_{t_{i-1}} f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)\right. \\
& \left.+\Delta_{n}^{1 / 2} \sum_{k=i+1}^{n} a_{t_{k-1}}^{\prime} f\left(\Delta_{n}^{-1 / 2} \Delta_{k}^{n} W\right) 1_{\left\{t_{k} \leq t\right\}} D_{r} X_{t_{k-1}}\right]^{2} d r
\end{aligned}
$$

for $t \in \Pi^{n}$. We have $C_{t}=\int_{0}^{t} \beta\left(X_{s}\right) d s$. Since $D_{r} C_{t}=\int_{r}^{t} \beta_{s}^{\prime} D_{r} X_{s} d s$ for $t \in[0,1]$, we obtain

$$
\begin{aligned}
\sigma_{12}(n, t):= & \left\langle D M^{n}, D C\right\rangle_{\mathbb{H}}=\sum_{i: t_{i} \leq t} \int_{t_{i-1}}^{t_{i}}\left(\left[a_{t_{i-1}} f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)\right.\right. \\
& \left.+\Delta_{n}^{1 / 2} \sum_{k=i+1}^{n} a_{t_{k-1}}^{\prime} f\left(\Delta_{n}^{-1 / 2} \Delta_{k}^{n} W\right) 1_{\left\{t_{k} \leq t\right\}} D_{r} X_{t_{k-1}}\right] \\
& \left.\times \int_{r}^{1} \beta_{s}^{\prime} D_{r} X_{s} d s\right) d r
\end{aligned}
$$

for $t \in \Pi^{n}$. The Malliavin matrix of $\left(M_{t}^{n}, C\right)$ is

$$
\sigma_{\left(M_{t}^{n}, C\right)}=\left[\begin{array}{cc}
\sigma_{11}(n, t) & \sigma_{12}(n, t) \\
\sigma_{12}(n, t) & \sigma_{22}(1)
\end{array}\right]
$$

for $t \in \Pi^{n}$. Let

$$
\sigma(n, t)=\left[\begin{array}{cc}
\sigma_{11}(n, t) & \sigma_{12}(n, t) \\
\sigma_{12}(n, t) & \sigma_{22}(t)
\end{array}\right] .
$$

By the Clark-Ocone representation formula, we have $f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)=$ $\Delta_{n}^{-1 / 2} \int_{t_{i-1}}^{t_{i}} a_{n, i}(s) d W_{s}$ with

$$
a_{n, i}(s)=\Delta_{n}^{1 / 2} \mathbb{E}\left[D_{s}\left(f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)\right) \mid \mathcal{F}_{s}\right]
$$

and moreover,

$$
\begin{aligned}
a_{n, i}(s) & =\mathbb{E}\left[f^{\prime \prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right) \mid \mathcal{F}_{s}\right] 1_{\left(t_{i-1}, t_{i}\right]}(s) \\
& =g_{s}\left(\Delta_{n}^{-1 / 2}\left(W_{s}-W_{t_{i-1}}\right)\right) 1_{\left(t_{i-1}, t_{i}\right]}(s) \\
g_{r}(z) & =\int_{\mathbb{R}} f^{\prime \prime}\left(z+\sqrt{\frac{t_{i}-r}{\Delta_{n}}} x\right) \phi(x ; 0,1) d x
\end{aligned}
$$

for $r \in\left(t_{i-1}, t_{i}\right]$. Then obviously $\sup _{s \in\left(t_{i-1}, t_{i}\right], i=1, \ldots, n, n \in \mathbb{N}}\left\|a_{n, i}(s)\right\|_{9, p}<\infty$ for every $p>1$. In the same way, we see that

$$
f\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)=\Delta_{n}^{-1 / 2} \int_{t_{i-1}}^{t_{i}} \alpha_{n, i}(s) d W_{s}
$$

with some predictable processes $\alpha_{n, i}(s)$ satisfying

$$
\sup _{s \in\left(t_{i-1}, t_{i}\right], i=1, \ldots, n, n \in \mathbb{N}}\left\|a_{n, i}(s)\right\|_{10, p}<\infty
$$

for every $p>1$. By Lemma 5 of [25],

$$
\begin{aligned}
& \| \sum_{i: t_{i} \leq t} \int_{t_{i-1}}^{t_{i}} a_{t_{i-1}} f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right) \Delta_{n}^{1 / 2} \\
& \quad \times \sum_{k=i+1}^{n} a_{t_{k-1}}^{\prime} f\left(\Delta_{n}^{-1 / 2} \Delta_{k}^{n} W\right) 1_{\left\{t_{k} \leq t\right\}} D_{r} X_{t_{k-1}} d r \|_{\mathbb{L}^{9}} \\
& =\| \Delta_{n} \sum_{i: t_{i} \leq t}\left[a_{t_{i-1}}\left(\Delta_{n}^{-1 / 2} \int_{t_{i-1}}^{t_{i}} a_{n, i}\left(s_{1}\right) d W_{s_{1}}\right)\right. \\
& \quad \times\left(\Delta_{n}^{1 / 2} \sum_{k=i+1}^{n}\left\{\int_{t_{i-1}}^{t_{i}} a_{t_{k-1}}^{\prime} 1_{\left\{t_{k} \leq t\right\}} \Delta_{n}^{-1} D_{r} X_{t_{k-1}} d r\right\} \Delta_{n}^{-1 / 2}\right. \\
& \left.\left.\quad \times \int_{t_{k-1}}^{t_{k}} \alpha_{n, i}(s) d W_{s}\right)\right] \|_{\mathbb{L}^{9}} \\
& =
\end{aligned}
$$

for $t \in \Pi^{n}$. Hence,

$$
\sup _{n \in \mathbb{N} t \in \Pi^{n}}\left\|\sigma_{11}(n, t)-\tilde{\sigma}_{11}(n, t)\right\|_{\mathbb{L}^{9}}=O\left(\Delta_{n}^{1 / 2}\right)
$$

as $n \rightarrow \infty$, where the term $\tilde{\sigma}_{11}(n, t)$ is defined in Section 3.2. Furthermore, by the same lemma, we have

$$
\begin{aligned}
\sup _{t \in \Pi^{n}} \| & \sum_{i: t_{i} \leq t} \int_{t_{i-1}}^{t_{i}}\left(a_{t_{i-1}} f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right) \int_{r}^{1} \beta_{s}^{\prime} D_{r} X_{s} d s\right) d r \|_{\mathbb{L}^{10}} \\
= & \sup _{t \in \Pi^{n}} \| \Delta_{n} \sum_{i: t_{i} \leq t} a_{t_{i-1}}\left(\Delta_{n}^{-1 / 2} \int_{t_{i-1}}^{t_{i}} a_{n, i}\left(s_{1}\right) d W_{s_{1}}\right) \\
& \times\left(\Delta_{n}^{-1} \int_{t_{i-1}}^{t_{i}}\left(\int_{r}^{1} \beta_{s}^{\prime} D_{r} X_{s} d s\right) d r\right) \|_{\mathbb{L}^{9}} \\
= & O\left(\Delta_{n}^{1 / 2}\right) .
\end{aligned}
$$

Therefore,

$$
\sup _{t \in \Pi^{n}}\left\|\sigma_{12}(n, t)-\tilde{\sigma}_{12}(n, t)\right\|_{\mathbb{L}^{9}}=O\left(\Delta_{n}^{1 / 2}\right)
$$

From these estimates,

$$
\sup _{t \in \Pi^{n}}\|\sigma(n, t)-\tilde{\sigma}(n, t)\|_{\mathbb{L}^{9}}=O\left(\Delta_{n}^{1 / 2}\right)
$$

One has

$$
\begin{align*}
\operatorname{det} \tilde{\sigma}(n, t) & =\tilde{\sigma}_{11}(n, t) \sigma_{22}(t)-\tilde{\sigma}_{12}(n, t)^{2} \\
& \geq \Delta_{n} \sum_{i: t_{i} \leq t}\left[a_{t_{i-1}} f^{\prime}\left(\Delta_{n}^{-1 / 2} \Delta_{i}^{n} W\right)\right]^{2} \sigma_{22}(t) \geq \inf _{x}|a(x)|^{2} m_{n} \sigma_{22}(t) \tag{3.21}
\end{align*}
$$

for $t \in \Pi^{n}$, where the random variable m_{n} is defined in Section 3.2.
Now, we shall verify $\left(\mathrm{C} 2^{b}\right)$. Checking ($\mathrm{C} 2^{b}$)(iii) is not difficult if one estimates the $\mathbb{H}^{\otimes m}$-norms of $D_{r_{1}, \ldots, r_{m}}$-derivative of the objects, in part with the aid of the Burkhölder inequality. For (C^{b}) (ii), it suffices to show

$$
\begin{equation*}
\limsup _{n \rightarrow \infty} \mathbb{E}\left[1_{\left\{m_{n} \geq c_{1}\right\}}(\operatorname{det} \tilde{\sigma}(n, 1 / 2))^{-p}\right]<\infty \tag{3.22}
\end{equation*}
$$

for every $p>1$ since $s_{n} \geq 1 / 2$ when $m_{n}<\mathrm{c}_{1}$. Consider the two-dimensional stochastic process $\bar{X}_{t}=\left(X_{t}^{(1)}, X_{t}^{(2)}\right)$ defined by the stochastic integral equations with smooth coefficients

$$
\begin{equation*}
\bar{X}_{t}=\bar{X}_{0}+\int_{0}^{t} V_{1}\left(\bar{X}_{s}\right) \circ d W_{s}+\int_{0}^{t} V_{0}\left(\bar{X}_{s}\right) d s \tag{3.23}
\end{equation*}
$$

for $t \in[0,1]$, where the first integral is given in the Stratonovich sense and

$$
V_{1}(x)=\left[\begin{array}{c}
b^{[1]}\left(x^{1}\right) \\
0
\end{array}\right], \quad V_{0}(x)=\left[\begin{array}{c}
\tilde{b}^{[2]}\left(x^{1}\right) \\
\beta\left(x^{1}\right)
\end{array}\right]
$$

for $x=\left(x^{1}, x^{2}\right), \tilde{b}^{[2]}=b^{[2]}-2^{-1} b^{[1]}\left(b^{[1]}\right)^{\prime}$. Under (C2), the system (3.23) satisfies the Hörmander condition

$$
\begin{equation*}
\operatorname{Lie}\left[V_{0} ; V_{1}\right]\left(x^{1}, 0\right)=\mathbb{R}^{2} \quad\left(\forall x^{1} \in \operatorname{supp} \mathcal{L}\left\{X_{0}\right\}\right) \tag{3.24}
\end{equation*}
$$

where $\operatorname{Lie}\left[V_{0} ; V_{1}\right]$ denotes the Lie algebra generated by V_{1} and V_{0}. That is, $\operatorname{Lie}\left[V_{0} ; V_{1}\right]=\operatorname{span}\left(\cup_{j=0}^{\infty} \Sigma_{j}\right)$, where $\Sigma_{0}=\left\{V_{1}\right\}$ and $\Sigma_{j}=\left\{\left[V, V_{i}\right] ; V \in \Sigma_{j-1}\right.$, $i=0,1\}(j \geq 1)$ with the Lie bracket $[\cdot, \cdot] . \operatorname{Lie}\left[V_{0} ; V_{1}\right](x)$ is $\operatorname{Lie}\left[V_{0} ; V_{1}\right]$ evaluated at x.

As a result, for any $t \in(0,1]$ and $p>1$, there exists a constant K_{p} such that

$$
\begin{equation*}
\sup _{\mathbf{v} \in \mathbb{R}^{2}:|\mathbf{v}|=1} \mathbb{P}\left[\mathbf{v}^{\star} \int_{0}^{t} \bar{Y}_{s}^{-1} V_{1}\left(\bar{X}_{s}\right) V_{1}\left(\bar{X}_{S}\right)^{\star}\left(\bar{Y}_{s}^{-1}\right)^{\star} d s \mathbf{v} \leq \varepsilon\right] \leq K_{p} \varepsilon^{p} \tag{3.25}
\end{equation*}
$$

for all $\varepsilon \in(0,1)$. Here, \bar{Y}_{t} denotes a unique solution of the variational equation corresponding to (3.23). See [20], Theorems 2.3.2, 2.3.3 and Lemma 2.3.1, or Kusuoka and Stroock [15, 16], Ikeda and Watanabe [9] for the implication of (3.25) through (3.24). Therefore, we obtain

$$
\mathbb{E}\left[\left(\operatorname{det} \int_{0}^{t} \bar{Y}_{s}^{-1} V_{1}\left(\bar{X}_{s}\right) V_{1}\left(\bar{X}_{s}\right)^{\star}\left(\bar{Y}_{s}^{-1}\right)^{\star} d s\right)^{-p}\right]<\infty
$$

for every $p>1$. Since \bar{Y}_{1}^{-1} is bounded in $\bigcap_{p>1} \mathbb{L}^{p}$, we have

$$
\mathbb{E}\left[\left(\operatorname{det} \int_{0}^{t} \bar{Y}_{1} \bar{Y}_{s}^{-1} V_{1}\left(\bar{X}_{s}\right) V_{1}\left(\bar{X}_{s}\right)^{\star}\left(\bar{Y}_{s}^{-1}\right)^{\star} \bar{Y}_{1}^{\star} d s\right)^{-p}\right]<\infty
$$

for every $p>1$. Recalling the definition at (3.8), this inequality gives $\sigma_{22}(t)^{-1} \in$ $\bigcap_{p>1} \mathbb{L}^{p}$ for every $t \in(0,1]$, and consequently, in view of (3.21), we obtained (3.22), and hence ($\mathrm{C} 2^{b}$) (ii) for arbitrary $\mathrm{c}_{1}>0$. Finally,

$$
\begin{aligned}
\sup _{t \geq \frac{1}{2}} \mathbb{P} & {\left[\operatorname{det} \sigma_{\left(M_{t}^{n}, C_{1}\right)}<s_{n}\right] } \\
\leq & \sup _{t \geq \frac{1}{2}} \mathbb{P}\left[\operatorname{det} \sigma(n, t)<s_{n}\right] \\
\leq & \sup _{t \in \Pi^{n}: t \geq \frac{1}{2}} \mathbb{P}\left[\operatorname{det} \sigma(n, t)<1.5 s_{n}\right] \\
& \quad+\sup _{s, t:|t-s| \leq \Delta_{n}} \mathbb{P}\left[|\operatorname{det} \sigma(n, t)-\operatorname{det} \sigma(n, s)|>0.5 s_{n}\right] \\
\leq & \mathbb{P}\left[\operatorname{det} \sigma(n, 1 / 2)<1.75 s_{n}\right]+O\left(\Delta_{n}^{1.35}\right) \\
\leq & \mathbb{P}\left[\operatorname{det} \tilde{\sigma}(n, 1 / 2)<2 s_{n}\right]+\mathbb{P}\left[|\operatorname{det} \sigma(n, 1 / 2)-\operatorname{det} \tilde{\sigma}(n, 1 / 2)|>0.25 s_{n}\right] \\
& +O\left(\Delta_{n}^{1.35}\right) \\
\leq & \mathbb{P}\left[m_{n}>2 \mathrm{c}_{1}, \operatorname{det} \tilde{\sigma}(n, 1 / 2)<2 s_{n}\right]+\mathbb{P}\left[m_{n} \leq 2 \mathrm{c}_{1}\right] \\
& +\Delta_{n}^{-3 / 19} \mathbb{E}\left[|\operatorname{det} \sigma(n, 1 / 2)-\operatorname{det} \tilde{\sigma}(n, 1 / 2)|^{3}\right]+2^{5 \times 19 / 3} \Delta_{n}^{5 / 3} \mathbb{E}\left[s_{n}^{-5 \times 19 / 3}\right] \\
& +O\left(\Delta_{n}^{1.35}\right) \\
= & O\left(\Delta_{n}^{51 / 38}\right)
\end{aligned}
$$

as $n \rightarrow \infty$ if we take $\mathrm{c}_{1}<\mathbb{E}\left[f^{\prime}(Z)^{2}\right] / 2$. Thus, we have verified $\left(\mathrm{C} 2^{b}\right)(\mathrm{i})$, which completes the proof.

4. Stochastic expansion of generalized power variation of diffusions.

Hereafter, we will concentrate on the stochastic expansion of the type (2.1) for the class of generalized power variation. The results of this section are necessary for the derivation of the Edgeworth expansion for power variation, which is presented in Section 5, but they might be also useful for other expansion problems in high frequency framework. We again consider a one-dimensional diffusion process $X=\left(X_{t}\right)_{t \in[0,1]}$ satisfying the stochastic differential equation

$$
d X_{t}=b^{[1]}\left(X_{t}\right) d W_{t}+b^{[2]}\left(X_{t}\right) d t
$$

Our aim is to study the stochastic expansion of generalized power variations of the form

$$
\begin{equation*}
V_{n}(f)=\Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} f\left(\frac{\Delta_{i}^{n} X}{\sqrt{\Delta_{n}}}\right), \quad \Delta_{i}^{n} X=X_{t_{i}}-X_{t_{i-1}} \tag{4.1}
\end{equation*}
$$

where $f: \mathbb{R} \rightarrow \mathbb{R}$ is a given even function, that is, $f(x)=f(-x)$ for all $x \in \mathbb{R}$. These types of functionals play a very important role in mathematical finance, where they are used for various estimation and testing procedures; see, for example, $[2,3,6]$ and [11] among many others. The most classical subclass of statistics (4.1) are power variations, which correspond to functions of the form $f(x)=|x|^{p}$; we will concentrate on Edgeworth expansion of power variations in the next section. We introduce the notation

$$
\begin{equation*}
\rho_{x}(f)=\mathbb{E}[f(x Z)], \quad x \in \mathbb{R}, Z \sim \mathcal{N}(0,1) \tag{4.2}
\end{equation*}
$$

whenever the latter is finite. Now, let us recall the law of large numbers and the central limit theorem for the functional $V_{n}(f)$ derived in [2].

Theorem 4.1. (i) Assume that $b^{[1]}, b^{[2]} \in C(\mathbb{R})$ and $f \in C_{p}(\mathbb{R})$. Then it holds that

$$
\begin{equation*}
V_{n}(f) \xrightarrow{\mathbb{P}} V(f)=\int_{0}^{1} \rho_{b_{s}^{[1]}}(f) d s . \tag{4.3}
\end{equation*}
$$

(ii) If moreover $b^{[1]} \in C^{2}(\mathbb{R})$ and $f \in C_{p}^{1}(\mathbb{R})$, we obtain the stable convergence

$$
\begin{equation*}
\Delta_{n}^{-1 / 2}\left(V_{n}(f)-V(f)\right) \xrightarrow{d_{\mathrm{st}}} M \sim M N\left(0, \int_{0}^{1} \rho_{b_{s}^{[1]}}\left(f^{2}\right)-\rho_{b_{s}^{[1]}}^{2}(f) d s\right) . \tag{4.4}
\end{equation*}
$$

Now, we derive the second-order stochastic expansion associated with the central limit theorem (4.4). Let us introduce the notation

$$
\begin{equation*}
\alpha_{i}^{n}=\Delta_{n}^{-1 / 2} b_{t_{i-1}}^{[1]} \Delta_{i}^{n} W, \tag{4.5}
\end{equation*}
$$

which serves as an approximation of the increment $\Delta_{i}^{n} X / \sqrt{\Delta_{n}}$. One of the main results of this section is the following theorem. We remark that this result might be of independent interest for other expansion problems in probability and statistics.

THEOREM 4.2. Assume that $b^{[2]} \in C^{2}(\mathbb{R}), b^{[1]} \in C^{4}(\mathbb{R})$ and $f \in C_{p}^{2}(\mathbb{R})$. Then we obtain the stochastic expansion

$$
\begin{equation*}
\tilde{V}_{n}(f):=\Delta_{n}^{-1 / 2}\left(V_{n}(f)-V(f)\right)=M_{n}+\Delta_{n}^{1 / 2} N_{n}+o_{\mathbb{P}}\left(\Delta_{n}^{1 / 2}\right) \tag{4.6}
\end{equation*}
$$

with

$$
\begin{equation*}
M_{n}=\Delta_{n}^{1 / 2} \sum_{i=1}^{1 / \Delta_{n}}\left(f\left(\alpha_{i}^{n}\right)-\rho_{b_{t_{i-1}}^{[1]}}\right) \tag{4.7}
\end{equation*}
$$

and $N_{n}=\sum_{k=1}^{5} N_{n, k}$

$$
\begin{aligned}
N_{n, 1}= & \Delta_{n}^{1 / 2} \sum_{i=1}^{1 / \Delta_{n}} f^{\prime}\left(\alpha_{i}^{n}\right)\left(b_{t_{i-1}}^{[2]}+\frac{1}{2} b_{t_{i-1}}^{[1.1]} H_{2}\left(\Delta_{i}^{n} W / \sqrt{\Delta_{n}}\right)\right), \\
N_{n, 2}= & \Delta_{n}^{-1 / 2} \sum_{i=1}^{1 / \Delta_{n}} f^{\prime}\left(\alpha_{i}^{n}\right)\left(b_{t_{i-1}}^{[2.1]} \int_{t_{i-1}}^{t_{i}}\left(W_{s}-W_{t_{i-1}}\right) d s\right. \\
& \left.+b_{t_{i-1}}^{[1.2]} \int_{t_{i-1}}^{t_{i}}\left\{s-t_{i-1}\right\} d W_{s}+\frac{\Delta_{n}^{3 / 2} b_{t_{i-1}}^{[1.1 .1]}}{6} H_{3}\left(\Delta_{i}^{n} W / \sqrt{\Delta_{n}}\right)\right), \\
N_{n, 3}= & \frac{\Delta_{n}}{2} \sum_{i=1}^{1 / \Delta_{n}} f^{\prime \prime}\left(\alpha_{i}^{n}\right)\left(b_{t_{i-1}}^{[2]}+\frac{1}{2} b_{t_{i-1}}^{[1.1]} H_{2}\left(\Delta_{i}^{n} W / \sqrt{\Delta_{n}}\right)\right)^{2}, \\
N_{n, 4}= & \frac{1}{2 \Delta_{n}} \sum_{i=1}^{1 / \Delta_{n}}\left(-\rho_{b_{t_{i-1}}^{[1]}}^{\prime \prime}(f)\left|b_{t_{i-1}}^{[1.1]}\right|^{2} \int_{t_{i-1}}^{t_{i}}\left(W_{s}-W_{t_{i-1}}\right)^{2} d s\right. \\
& \left.-\Delta_{n}^{2} \rho_{b_{t_{i-1}}^{\prime[1]}}^{\prime}(f) b_{t_{i-1}}^{[1.2]}\right), \\
N_{n, 5}= & -\Delta_{n}^{-1} \sum_{i=1}^{1 / \Delta_{n}} \rho_{b_{t_{i-1}}^{\prime[1]}}^{\prime}(f) b_{t_{i-1}}^{[1.1]} \int_{t_{i-1}}^{t_{i}}\left(W_{s}-W_{t_{i-1}}\right) d s,
\end{aligned}
$$

where $\left(H_{k}\right)_{k \geq 0}$ denote the Hermite polynomials and the processes $b_{t}^{\left[k_{1} \cdots k_{d}\right]}$ were defined in Section 3.

Proof. See Section 7.
To describe the limits of the quantities $N_{n, k}, 1 \leq k \leq 5$, we need to introduce some further notation.

Notation. We introduce the functions $g_{k}: \mathbb{R}^{6} \rightarrow \mathbb{R}, 1 \leq k \leq 5$, as follows:

$$
\begin{aligned}
& g_{1}\left(x_{1}, \ldots, x_{6}\right)=\mathbb{E}\left[U f^{\prime}\left(x_{2} U\right)\left(x_{1}+\frac{1}{2} x_{5} H_{2}(U)\right)-\rho_{x_{2}}^{\prime}(f) x_{5} U V\right], \\
& g_{2}\left(x_{1}, \ldots, x_{6}\right)=\mathbb{E}\left[f^{\prime}\left(x_{2} U\right)\left(\left(x_{3}+x_{4}\right) V+\frac{1}{6} x_{6} H_{3}(U)\right)\right], \\
& g_{3}\left(x_{1}, \ldots, x_{6}\right)=\frac{1}{2} \mathbb{E}\left[f^{\prime \prime}\left(x_{2} U\right)\left(x_{1}+\frac{1}{2} x_{5} H_{2}(U)\right)^{2}\right], \\
& g_{4}\left(x_{1}, \ldots, x_{6}\right)=-\frac{1}{4} \rho_{x_{2}}^{\prime \prime}(f) x_{5}^{2}-\frac{1}{2} \rho_{x_{2}}^{\prime}(f) x_{4}, \\
& g_{5}\left(x_{1}, \ldots, x_{6}\right)=\mathbb{E}\left[\left\{f^{\prime}\left(x_{2} U\right)\left(x_{1}+\frac{1}{2} x_{5} H_{2}(U)\right)-\rho_{x_{2}}^{\prime}(f) x_{5} V\right\}^{2}\right]
\end{aligned}
$$

with $(U, V) \sim \mathcal{N}_{2}\left(0,\left(\begin{array}{cc}1 & 1 / 2 \\ 1 / 2 & 1 / 3\end{array}\right)\right)$.
Theorem A. 1 implies the convergence in probability

$$
\begin{align*}
N_{n, k} \xrightarrow{\mathbb{P}} N_{k}=\int_{0}^{1} g_{k}\left(b_{s}^{[2]}, b_{s}^{[1]}, b_{s}^{[2.1]}, b_{s}^{[1.2]}, b_{s}^{[1.1]}, b_{s}^{[1.1 .1]}\right) d s, & \tag{4.9}\\
& k=2,3,4
\end{align*}
$$

under the assumptions of Theorem 4.2 . The terms $N_{n, 1}$ and $N_{n, 5}$ converge stably in law due to Theorem A.2; their asymptotic distributions will be specified later.

REMARK 4.3. The fact that we consider the drift and volatility processes of the type $b_{s}^{[k]}=b^{[k]}\left(X_{s}\right)$ is not essential for developing the stochastic expansion of Theorem 4.2. In general, the processes $b_{s}^{\left[k_{1} \cdots k_{l}\right]}$ that appear in Theorem 4.2 may depend on different Brownian motions, which are not perfectly correlated with W that drives the process X. In this case, a similar stochastic expansion can be deduced; however, it will contain additional terms, which are due to new Brownian motions.

In the next section, we will require a consistent estimator of the asymptotic variance of M_{n}, that is,

$$
C=\int_{0}^{1}\left\{\rho_{b_{s}^{[1]}}\left(f^{2}\right)-\rho_{b_{s}^{[1]}}^{2}(f)\right\} d s .
$$

A rather natural one is given by

$$
\begin{equation*}
F_{n}=\Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} f^{2}\left(\frac{\Delta_{i}^{n} X}{\sqrt{\Delta_{n}}}\right)-f\left(\frac{\Delta_{i}^{n} X}{\sqrt{\Delta_{n}}}\right) f\left(\frac{\Delta_{i+1}^{n} X}{\sqrt{\Delta_{n}}}\right) \tag{4.10}
\end{equation*}
$$

The next theorem, which follows from the combination of central limit theorems presented in [2] and Theorem A.2, describes the joint asymptotic distribution of (M_{n}, F_{n}, N_{n}). This result is crucial for the derivation of the Edgeworth expansion.

THEOREM 4.4. Assume that conditions of Theorem 4.2 are satisfied. Then we obtain the stable convergence

$$
\left(M_{n}, \Delta_{n}^{-1 / 2}\left(F_{n}-C\right), N_{n}\right) \xrightarrow{d_{\mathrm{st}}}(M, \widehat{F}, N) \sim M N\left(\mu, \int_{0}^{1} \Xi_{s} d s\right),
$$

where the matrix Ξ_{s} is given as

$$
\begin{aligned}
& \Xi_{s}^{11}=\rho_{b_{s}^{[1]}}\left(f^{2}\right)-\rho_{b_{s}^{[1]}}^{2}(f), \\
& \Xi_{s}^{12}=\Xi_{s}^{21}=\rho_{b_{s}^{[1]}}\left(f^{3}\right)-3 \rho_{b_{s}^{[1]}}\left(f^{2}\right) \rho_{b_{s}^{[1]}}(f)+2 \rho_{b_{s}^{[1]}}^{3}(f), \\
& \Xi_{s}^{22}=\rho_{b_{s}^{[1]}}\left(f^{4}\right)-4 \rho_{b_{s}^{[1]}}\left(f^{3}\right) \rho_{b_{s}^{[1]}}(f)+6 \rho_{b_{s}^{[1]}}\left(f^{2}\right) \rho_{b_{s}^{[1]}}^{2}(f)-3 \rho_{b_{s}^{[1]}}^{4}(f), \\
& \Xi_{s}^{33}=\left(g_{5}-g_{1}^{2}\right)\left(b_{s}^{[2]}, b_{s}^{[1]}, b_{s}^{[2.1]}, b_{s}^{[1.2]}, b_{s}^{[1.1]}, b_{s}^{[1.1 .1]}\right),
\end{aligned}
$$

and $\Xi_{s}^{13}=\Xi_{s}^{23}=0$, and $\mu_{1}=\mu_{2}=0$,

$$
\mu_{3}=\int_{0}^{1} g_{1}\left(b_{s}^{[2]}, b_{s}^{[1]}, b_{s}^{[2.1]}, b_{s}^{[1.2]}, b_{s}^{[1.1]}, b_{s}^{[1.1 .1]}\right) d W_{s}+\sum_{k=2}^{4} N_{k} .
$$

5. Asymptotic expansion for the power variation. Now we have all instruments at hand to obtain the Edgeworth expansion for the case of power variation $V_{n}\left(f_{p}\right)$ with

$$
f_{p}(x)=|x|^{p},
$$

which is our leading example. As we mentioned in Section 4, this would be the most important class of functionals in mathematical finance. In order to obtain the Edgeworth expansion for power variation, we will combine the results of Sections 3 and 4. Applying Theorem 4.2 to the function f_{p}, we see that the martingale part M_{n} is given as

$$
M_{n}=\Delta_{n}^{1 / 2} \sum_{i=1}^{1 / \Delta_{n}}\left|b^{[1]}\left(X_{t_{i-1}}\right)\right|^{p}\left(\left|\frac{\Delta_{i}^{n} W}{\sqrt{\Delta_{n}}}\right|^{p}-m_{p}\right)
$$

with $m_{p}=\mathbb{E}\left[|\mathcal{N}(0,1)|^{p}\right]$. In particular, M_{n} is a weighted power variation studied in Section 3. Consequently, we can apply the results of Section 3 with

$$
a(x)=\left|b^{[1]}(x)\right|^{p}, \quad f(x)=f_{p}(x)-m_{p} \quad \text { and } \quad p \in 2 \mathbb{N} \cup(11, \infty)
$$

Now, we will compute all quantities from previous sections required for the Edgeworth expansion. First, we obtain the Hermite expansion

$$
f(x)=\sum_{k=2}^{\infty} \lambda_{k} H_{k}(x)
$$

with $\lambda_{k}=0$ if k is odd (because f is an even function), and $\lambda_{2}=\left(m_{p+2}-m_{p}\right) / 2$. We start with the computation of the random symbol $\underline{\sigma}$. Here, we mainly need to determine the functions g_{1}, \ldots, g_{5} defined in Section 4. We observe that, for any $k \geq 0$ with $k<p$,

$$
f_{p}^{(k)}(x)=\operatorname{sgn}(x)^{k} p(p-1) \cdots(p-k+1)|x|^{p-k}, \quad \rho_{x}\left(f_{p}\right)=m_{p}|x|^{p}
$$

Now, a straightforward calculation gives the identities

$$
\begin{aligned}
& g_{1}\left(x_{1}, \ldots, x_{6}\right)=p \operatorname{sgn}\left(x_{2}\right)\left|x_{2}\right|^{p-1}\left(x_{1} m_{p}+\frac{1}{2} x_{5}\left(m_{p+2}-2 m_{p}\right)\right) \\
& g_{2}\left(x_{1}, \ldots, x_{6}\right)=p \operatorname{sgn}\left(x_{2}\right)\left|x_{2}\right|^{p-1}\left(\frac{1}{2}\left(x_{3}+x_{4}\right) m_{p}+\frac{1}{6} x_{6}\left(m_{p+2}-m_{p}\right)\right) \\
& g_{3}\left(x_{1}, \ldots, x_{6}\right)=\frac{p(p-1)}{2}\left|x_{2}\right|^{p-2}\left(x_{1}^{2} m_{p-2}+x_{1} x_{5}\left(m_{p}-m_{p-2}\right)\right.
\end{aligned}
$$

$$
\begin{aligned}
& \left.+\frac{x_{5}^{2}}{4}\left(m_{p+2}-2 m_{p}+m_{p-2}\right)\right) \\
g_{4}\left(x_{1}, \ldots, x_{6}\right)= & \frac{p}{4} m_{p}\left(-(p-1)\left|x_{2}\right|^{p-2} x_{5}^{2}-2 x_{4} \operatorname{sgn}\left(x_{2}\right)\left|x_{2}\right|^{p-1}\right), \\
g_{5}\left(x_{1}, \ldots, x_{6}\right)= & p^{2}\left|x_{2}\right|^{2 p-2}\left(x_{1}^{2} m_{2 p-2}+x_{1} x_{5}\left(m_{2 p}-m_{2 p-2}\right)\right. \\
& +\frac{x_{5}^{2}}{4}\left(m_{2 p+2}-2 m_{2 p}+m_{2 p-2}\right) \\
& \left.+\frac{x_{5}^{2}}{3} m_{p}^{2}-x_{5} m_{p}\left(x_{1} m_{p}+\frac{x_{5}}{2}\left[m_{p+2}-m_{p}\right]\right)\right) .
\end{aligned}
$$

As in the previous section, we consider the quantity

$$
F_{n}=\Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} f_{2 p}\left(\frac{\Delta_{i}^{n} X}{\sqrt{\Delta_{n}}}\right)-f_{p}\left(\frac{\Delta_{i}^{n} X}{\sqrt{\Delta_{n}}}\right) f_{p}\left(\frac{\Delta_{i+1}^{n} X}{\sqrt{\Delta_{n}}}\right)
$$

as a consistent estimator of C. We obtain the following result, which again follows from Theorem A.2.

THEOREM 5.1. Assume that conditions of Theorem 4.2 are satisfied. Then we obtain the stable convergence

$$
\begin{aligned}
& \left(M_{n}, \Delta_{n}^{-1 / 2}\left(F_{n}-C\right), N_{n}, \Delta_{n}^{-1 / 2}\left(C_{n}-C\right)\right) \\
& \quad \xrightarrow{d_{\mathrm{st}}}(M, \widehat{F}, N, \widehat{C}) \sim M N\left(\mu, \int_{0}^{1} \Xi_{s} d s\right),
\end{aligned}
$$

where the entries $\Xi_{s}^{i j}, 1 \leq i, j \leq 3$, of the matrix $\Xi_{s} \in \mathbb{R}^{4 \times 4}$ and $\mu_{j}, 1 \leq j \leq 3$ of the vector $\mu \in \mathbb{R}^{4}$ are given in Theorem 4.4, and $\mu_{4}=\Xi_{s}^{34}=0$,

$$
\begin{aligned}
& \Xi_{s}^{14}=\Xi_{s}^{41}=\Gamma_{2}\left|b^{[1]}\left(X_{s}\right)\right|^{3 p}, \quad \Xi_{s}^{24}=\Xi_{s}^{42}=\bar{\Gamma}\left|b^{[1]}\left(X_{s}\right)\right|^{4 p}, \\
& \Xi_{s}^{44}=\Gamma_{1}\left|b^{[1]}\left(X_{s}\right)\right|^{4 p},
\end{aligned}
$$

where the constants Γ_{1}, Γ_{2} are given in Proposition 3.2 and $\bar{\Gamma}$ is defined as

$$
\begin{aligned}
\bar{\Gamma}= & \operatorname{Cov}\left[f_{2 p}\left(W_{1}\right), \int_{0}^{1} \mathbb{E}^{2}\left[f_{p}^{\prime}\left(W_{1}\right) \mid \mathcal{F}_{s}\right] d s\right] \\
& -2 \operatorname{Cov}\left[f_{p}\left(W_{1}\right) f_{p}\left(W_{2}-W_{1}\right), \int_{0}^{1} \mathbb{E}^{2}\left[f_{p}^{\prime}\left(W_{1}\right) \mid \mathcal{F}_{s}\right] d s\right] .
\end{aligned}
$$

As a consequence of Theorem 5.1 and Remark 2.1, we conclude that

$$
\begin{equation*}
\underline{\sigma}(z, \mathrm{i} u, \mathrm{i} v)=(\mathrm{i} u)^{2} \mathcal{H}_{1}(z)+\mathrm{i} u \mathcal{H}_{2}+\mathrm{i} v \mathcal{H}_{3}(z) \tag{5.1}
\end{equation*}
$$

with

$$
\mathcal{H}_{1}(z)=z \frac{\int_{0}^{1} \Xi_{s}^{14} d s}{2 \int_{0}^{1} \Xi_{s}^{11} d s}, \quad \mathcal{H}_{2}=\mu_{3}, \quad \mathcal{H}_{3}(z)=z \frac{\int_{0}^{1} \Xi_{s}^{12} d s}{\int_{0}^{1} \Xi_{s}^{11} d s}
$$

It should be noted that $\underline{\sigma}$ of (5.1) is essentially the same but different from $\underline{\sigma}$ of (3.7) since the reference functional F_{n} is now defined by (4.10) not by (3.4) while the limits of both coincide with each other and the ways of derivation of two adaptive random symbols are the same except for \widehat{F}. Using the results of Section 3, we immediately obtain the anticipative random symbol

$$
\begin{equation*}
\bar{\sigma}(\mathrm{i} u, \mathrm{i} v)=\mathrm{i} u\left(\mathrm{i} v-\frac{u^{2}}{2}\right)^{2} \mathcal{H}_{4}+\mathrm{i} u\left(\mathrm{i} v-\frac{u^{2}}{2}\right) \mathcal{H}_{5} \tag{5.2}
\end{equation*}
$$

with $\mathcal{H}_{4}=\lambda_{2}\left(m_{2 p}-m_{p}^{2}\right)^{2} \mathcal{C}_{2}, \mathcal{H}_{5}=\lambda_{2}\left(m_{2 p}-m_{p}^{2}\right)\left(\mathcal{C}_{3}+\mathcal{C}_{4}\right)$, where

$$
\begin{aligned}
& \mathcal{C}_{2}=\int_{0}^{1}\left|b^{[1]}\left(X_{s}\right)\right|^{p}\left(\int_{s}^{1}\left(\left|b^{[1]}\right|^{2 p}\right)^{\prime}\left(X_{u}\right) D_{s} X_{u} d u\right)^{2} d s, \\
& \mathcal{C}_{3}=\int_{0}^{1}\left|b^{[1]}\left(X_{s}\right)\right|^{p}\left(\int_{s}^{1}\left(\left|b^{[1]}\right|^{2 p}\right)^{\prime \prime}\left(X_{u}\right)\left(D_{s} X_{u}\right)^{2} d u\right) d s, \\
& \mathcal{C}_{4}=\int_{0}^{1}\left|b^{[1]}\left(X_{s}\right)\right|^{p}\left(\int_{s}^{1}\left(\left|b^{[1]}\right|^{2 p}\right)^{\prime}\left(X_{u}\right) D_{s} D_{s} X_{u} d u\right) d s .
\end{aligned}
$$

In the power variation case, $a(x)=\left|b^{[1]}(x)\right|^{p}$ and we assumed in (C1) that $a(x)$ is bounded away from zero. So, in our situation, $a(x)$ is smooth in a neighborhood of X_{0}. By a certain large deviation argument, we may assume that $a(x)$ is smooth and even having bounded derivatives, from the beginning, at least in the proof of asymptotic nondegeneracy.

From the above argument, we obtain an asymptotic expansion for the power variation. Recall $\tilde{V}_{n}(f)=\Delta_{n}^{-1 / 2}\left(V_{n}(f)-V(f)\right)$.

THEOREM 5.2. Let $b^{[1]}, b^{[2]} \in C_{b, 1}^{\infty}(\mathbb{R})$ and $f_{p}(x)=|x|^{p}$ with $p \in 2 \mathbb{N} \cup$ $(13, \infty)$. Assume that $\inf _{x}\left|b^{[1]}(x)\right|>0, \sum_{k=1}^{\infty}\left|\left(b^{[1]}\right)^{(k)}\left(X_{0}\right)\right|>0$ and let the functional F_{n} be given by (3.4). Then for the density $p_{n}(z, x)$ corresponding to the random symbol σ determined by (5.1) and (5.2), it holds that

$$
\sup _{h \in \mathcal{E}(K, \gamma)}\left|\mathbb{E}\left[h\left(\tilde{V}_{n}\left(f_{p}\right), F_{n}\right)\right]-\int h(z, x) p_{n}(z, x) d z d x\right|=o\left(\sqrt{\Delta_{n}}\right)
$$

as $n \rightarrow \infty$, for any positive numbers K and γ.
Theorem 5.2 is proved by applying Theorems 3.3 and 5.1. In the present situation, N_{n} involves $f^{\prime \prime}$ and that is the reason why the number 13 appears. However, it would be possible to reduce it to 11 if the estimations related with N_{n}-part is refined, though we do not pursue this point in this article.

Theorem 5.2 and the corresponding Edgeworth expansion for the Studentized statistics at (6.1) are the main results of this paper. In particular, these asymptotic expansions can be applied to distribution analysis of various statistics in financial mathematics as power variation-type estimators are frequently used in this field. Another potential area of application is Euler approximation of continuous SDEs of the form (3.1). As is well known from [12], the Euler approximation scheme is asymptotically mixed normal and its limit depends on the asymptotic theory for quadratic variation. Thus, our Edgeworth expansion results can be potentially applied to numerical analysis of SDEs to obtain a more precise formula for the error distribution.
6. Studentization. As we mentioned in the beginning, we are mainly interested in the Edgeworth expansion connected with standard central limit theorem

$$
\frac{Z_{n}}{\sqrt{F_{n}}} \xrightarrow{d} \mathcal{N}(0,1)
$$

where F_{n} is a consistent estimator of C defined in (4.10). In the following, we present such an Edgeworth expansion for the case of power variation discussed in the previous section. First of all, we remark that the random symbol $\sigma(z, \mathrm{i} u, \mathrm{i} v)$ is given as

$$
\sigma(z, \mathrm{i} u, \mathrm{i} v)=\sum_{j=1}^{8} c_{j}(z)(\mathrm{i} u)^{m_{j}}(\mathrm{i} v)^{n_{j}}
$$

where $m=\left(m_{j}\right)_{1 \leq j \leq 8}, n=\left(n_{j}\right)_{1 \leq j \leq 8}, c(z)=\left(c_{j}(z)\right)_{1 \leq j \leq 8}$ are given by

$$
\begin{aligned}
m & =(1,0,2,1,3,1,3,5), \quad n=(0,1,0,1,0,2,1,0), \\
c(z) & =\left(\mathcal{H}_{2}, \mathcal{H}_{3}(z), \mathcal{H}_{1}(z), \mathcal{H}_{5}, \frac{1}{2} \mathcal{H}_{5}, \mathcal{H}_{4}, \mathcal{H}_{4}, \frac{1}{4} \mathcal{H}_{4}\right) .
\end{aligned}
$$

As a consequence, we obtain the following decomposition for the density $p_{n}(z, x)$ of $\left(Z_{n}, F_{n}\right)$:

$$
p_{n}(z, x)=\phi(z ; 0, x) p^{C}(x)+\Delta_{n}^{1 / 2} \sum_{j=1}^{8} p_{j}(z, x)
$$

with

$$
p_{j}(z, x)=\left(-d_{z}\right)^{m_{j}}\left(-d_{x}\right)^{n_{j}}\left(\phi(z ; 0, x) p^{C}(x) \mathbb{E}\left[c_{j}(z) \mid C=x\right]\right), \quad 1 \leq j \leq 8
$$

We start with the following observation. Let Π be a finite measure on \mathbb{R} with density π, such that all moments of Π are finite. Then it trivially holds that

$$
\lim _{x \rightarrow \infty}|x|^{k} \pi(x)=0, \quad \lim _{x \rightarrow-\infty}|x|^{k} \pi(x)=0, \quad k \geq 0
$$

Given that the density π is a C^{k} function and g is a polynomial, we also have

$$
\int_{\mathbb{R}} g^{(k)}(x) \pi(x) d x=(-1)^{k} \int_{\mathbb{R}} g(x) \pi^{(k)}(x) d x
$$

by induction. Let g be an arbitrary polynomial and $\kappa(x)=\mathbb{E}[H \mid C=x] p^{C}(x)$ for an integrable random variable H, and note that

$$
\int_{\mathbb{R}} m(x) \kappa(x) d x=\mathbb{E}[m(C) H]
$$

whenever the integral makes sense. We define the polynomials $q_{\beta, v}(z, x)$ via

$$
d_{x}^{\beta} g(z / \sqrt{x})=\sum_{v \leq \beta} q_{\beta, v}(z / \sqrt{x}, 1 / \sqrt{x}) g^{(v)}(z / \sqrt{x})
$$

where $g^{(v)}$ denotes the v th derivative of g. Let $(\alpha, \beta) \in \mathbb{N}_{0}^{2}$. Then it holds that

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} g\left(\frac{z}{\sqrt{x}}\right) d_{z}^{\alpha} d_{x}^{\beta}[\phi(z ; 0, x) \kappa(x)] d z d x \\
&=(-1)^{\beta} \int_{\mathbb{R}^{2}} d_{x}^{\beta} g\left(\frac{z}{\sqrt{x}}\right) d_{z}^{\alpha} \phi(z ; 0, x) \kappa(x) d z d x \\
&=(-1)^{\beta} \int_{\mathbb{R}^{2}} \sum_{v \leq \beta} q_{\beta, v}\left(\frac{z}{\sqrt{x}}, \frac{1}{\sqrt{x}}\right) g^{(v)}\left(\frac{z}{\sqrt{x}}\right) d_{z}^{\alpha} \phi(z ; 0, x) \kappa(x) d z d x \\
&=(-1)^{\beta} \int_{\mathbb{R}^{2}} \sum_{v \leq \beta} q_{\beta, v}\left(y, \frac{1}{\sqrt{x}}\right) g^{(v)}(y) x^{-\alpha / 2} d_{y}^{\alpha} \phi(y ; 0,1) \kappa(x) d y d x \\
&=(-1)^{\beta} \int_{\mathbb{R}} g(y) \sum_{v \leq \beta}(-1)^{v} d_{y}^{v}\left\{d_{y}^{\alpha} \phi(y ; 0,1)\right. \\
&\left.\times \int_{\mathbb{R}} q_{\beta, v}\left(y, \frac{1}{\sqrt{x}}\right) x^{-\alpha / 2} \kappa(x) d x\right\} d y \\
&= \int_{\mathbb{R}} g(y) \sum_{v \leq \beta}(-1)^{\beta+v} d_{y}^{v}\left\{d_{y}^{\alpha} \phi(y ; 0,1) \mathbb{E}\left[H C^{-\alpha / 2} q_{\beta, v}\left(y, C^{-1 / 2}\right)\right]\right\} d y
\end{aligned}
$$

Clearly, the above identity will enable us to compute the Edgeworth expansion for the Studentized statistic $Z_{n} / \sqrt{F_{n}}$. We need to determine the polynomials $q_{\beta, v}$ for $\beta=0,1,2$:

$$
\begin{array}{ll}
q_{0,0}(a, b)=1, & q_{1,0}(a, b)=0,
\end{array} q_{1,1}(a, b)=-\frac{1}{2} a b^{2}, ~ 子 q_{2,1}(a, b)=\frac{3}{4} a b^{4}, \quad q_{2,2}(a, b)=\frac{1}{4} a^{2} b^{4} . ~ \$ q_{2,0}(a, b)=0, \quad q_{2} .
$$

Recall the identity $d_{y}^{\alpha} \phi(y ; 0,1)=(-1)^{\alpha} H_{\alpha}(y) \phi(y ; 0,1)$ and

$$
H_{1}(x)=x, \quad H_{3}(x)=x^{3}-3 x, \quad H_{5}(x)=x^{5}-10 x^{3}+15 x
$$

A straightforward computation shows that

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} g\left(\frac{z}{\sqrt{x}}\right) p_{1}(z, x) d z d x & =\mathbb{E}\left[\mathcal{H}_{2} C^{-1 / 2}\right] \int_{\mathbb{R}} g(y) y \phi(y ; 0,1) d y \\
\int_{\mathbb{R}^{2}} g\left(\frac{z}{\sqrt{x}}\right) \sum_{j=4}^{5} p_{j}(z, x) d z d x & =-\frac{1}{2} \mathbb{E}\left[\mathcal{H}_{5} C^{-3 / 2}\right] \int_{\mathbb{R}} g(y) y \phi(y ; 0,1) d y, \\
\int_{\mathbb{R}^{2}} g\left(\frac{z}{\sqrt{x}}\right) \sum_{j=6}^{8} p_{j}(z, x) d z d x & =\frac{3}{4} \mathbb{E}\left[\mathcal{H}_{4} C^{-5 / 2}\right] \int_{\mathbb{R}} g(y) y \phi(y ; 0,1) d y
\end{aligned}
$$

The corresponding computation for the terms $p_{2}(z, x)$ and $p_{3}(z, x)$ has to be performed separately, since the random variables c_{2} and c_{3} depend on z. Recall that the quantities $\mathcal{H}_{1}(z)$ and $\mathcal{H}_{3}(z)$ are linear in z, that is, $\mathcal{H}_{1}(z)=z \widetilde{\mathcal{H}}_{1}, \mathcal{H}_{3}(z)=z \widetilde{\mathcal{H}}_{3}$. We deduce as above (here $\kappa(x)=\mathbb{E}\left[\widetilde{\mathcal{H}}_{3} \mid C=x\right] p^{C}(x)$)

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} g\left(\frac{z}{\sqrt{x}}\right) p_{2}(z, x) d z d x \\
&=-\int_{\mathbb{R}^{2}} z g\left(\frac{z}{\sqrt{x}}\right) d_{x}[\phi(z ; 0, x) \kappa(x)] d z d x \\
&=\int_{\mathbb{R}} g(y) d_{y}\left\{y \phi(y ; 0,1) \mathbb{E}\left[\tilde{\mathcal{H}}_{3} q_{1,1}\left(y, C^{-1 / 2}\right) C^{1 / 2}\right]\right\} d y \\
&=\frac{1}{2} \mathbb{E}\left[\tilde{\mathcal{H}}_{3} C^{-1 / 2}\right] \int_{\mathbb{R}} g(y) \phi(y ; 0,1)\left(2 y-y^{3}\right) d y .
\end{aligned}
$$

Finally, we obtain that (here $\left.\kappa(x)=\mathbb{E}\left[\tilde{\mathcal{H}}_{1} \mid C=x\right] p^{C}(x)\right)$

$$
\begin{aligned}
& \int_{\mathbb{R}^{2}} g\left(\frac{z}{\sqrt{x}}\right) p_{3}(z, x) d z d x \\
&=\int_{\mathbb{R}^{2}} g\left(\frac{z}{\sqrt{x}}\right) d_{z}^{2}[z \phi(z ; 0, x) \kappa(x)] d z d x \\
&=\int_{\mathbb{R}^{2}} x^{-1} g^{\prime \prime}(y) y \phi(y ; 0,1) \kappa(x) d y d x \\
&=\mathbb{E}\left[\tilde{\mathcal{H}}_{1} C^{-1 / 2}\right] \int_{\mathbb{R}} g(y) d_{y}^{2}[y \phi(y ; 0,1)] d y \\
&=\mathbb{E}\left[\tilde{\mathcal{H}}_{1} C^{-1 / 2}\right] \int_{\mathbb{R}} g(y) H_{3}(y) \phi(y ; 0,1) d y .
\end{aligned}
$$

Combining the above results, we deduce the Edgeworth expansion for the density of $Z_{n} / \sqrt{F_{n}}$, which is one of the main statements of the paper.

Corollary 6.1. Assume that the conditions of Theorem 5.2 hold. Then we obtain the expansion

$$
\begin{align*}
p^{Z_{n} / \sqrt{F_{n}}}(y)= & \phi(y ; 0,1)+\Delta_{n}^{1 / 2} \phi(y ; 0,1)\left(y \left\{\mathbb{E}\left[\mathcal{H}_{2} C^{-1 / 2}\right]-\frac{1}{2} \mathbb{E}\left[\mathcal{H}_{5} C^{-3 / 2}\right]\right.\right. \\
& \left.+\frac{3}{4} \mathbb{E}\left[\mathcal{H}_{4} C^{-5 / 2}\right]+\mathbb{E}\left[\tilde{\mathcal{H}}_{3} C^{-1 / 2}\right]-3 \mathbb{E}\left[\tilde{\mathcal{H}}_{1} C^{-1 / 2}\right]\right\} \tag{6.1}\\
& \left.+y^{3}\left\{\mathbb{E}\left[\tilde{\mathcal{H}}_{1} C^{-1 / 2}\right]-\frac{1}{2} \mathbb{E}\left[\tilde{\mathcal{H}}_{3} C^{-1 / 2}\right]\right\}\right) .
\end{align*}
$$

If we consider the quantity M_{n} from (3.2) with $a \equiv 1$ and $\Delta_{n}=n^{-1}$, that is,

$$
M_{n}=n^{-1 / 2} \sum_{i=1}^{n} f\left(\sqrt{n} \Delta_{i}^{n} W\right) \quad \text { with } \mathbb{E}\left[f\left(W_{1}\right)\right]=0
$$

and $F_{n}=C=\mathbb{E}\left[f^{2}\left(W_{1}\right)\right]$, a straightforward application of the formula (6.1) implies the identity

$$
p^{M_{n} / C}=\phi(y ; 0,1)+\frac{\mathbb{E}\left[f^{3}\left(W_{1}\right)\right]}{6 \sqrt{n C^{3}}} \phi(y ; 0,1) H_{3}(y),
$$

where H_{3} denotes the third Hermite polynomial. This identity corresponds to the classical Edgeworth expansion for sums of i.i.d. random variables.

REMARK 6.2. In practice, the application of the asymptotic expansion at (6.1) requires the knowledge of the coefficients of the type $b^{\left[k_{1} \cdots k_{d}\right]}$ [cf. (4.9)]. While the volatility related processes $b^{[1]}, b^{[1.1]}, b^{[1.1 .1]}$ can be estimated from high frequency data $X_{t_{i}}$, the drift related processes $b^{[2]}, b^{[2.1]}, b^{[1.2]}$ cannot be consistently estimated on a fixed time span. Thus, the applicability of the Edgeworth expansion at (6.1) relies on the knowledge of the drift related coefficients or their estimation on an infinite time span.

7. Proofs.

7.1. A stochastic expansion. Below, we denote by K a generic positive constant, which may change from line to line. We also write K_{p} if the constant depends on an external parameter p.

Proof of Theorem 4.2. First, we remark that all processes of the type $\left(b_{s}^{\left[k_{1} \cdots k_{m}\right]}\right)_{s \geq 0}\left(k_{j} \in\{1,2\}\right)$, which we consider below, are continuous and so locally bounded. Applying the localization technique described in Section 3 of [2] we can assume w.l.o.g. that these processes are bounded in (ω, s), which we do from now on. We decompose

$$
\Delta_{n}^{-1 / 2}\left(V_{n}(f)-V(f)\right)=M_{n}+R_{n}^{(1)}+R_{n}^{(2)}
$$

with

$$
\begin{aligned}
& R_{n}^{(1)}=\Delta_{n}^{-1 / 2}\left(V_{n}(f)-\Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} f\left(\alpha_{i}^{n}\right)\right), \\
& R_{n}^{(2)}=\Delta_{n}^{-1 / 2}\left(\Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} \rho_{b_{t_{i-1}}^{[1]}}-V(f)\right)
\end{aligned}
$$

We start with the asymptotic expansion of the quantity $R_{n}^{(2)}$. Due to Burkhölder inequality any process Y of the form (3.1) with bounded coefficients $b^{[1]}, b^{[2]}$ satisfies the inequality

$$
\begin{equation*}
\mathbb{E}\left[\left|Y_{t}-Y_{s}\right|^{p}\right] \leq C_{p}|t-s|^{p / 2} \tag{7.1}
\end{equation*}
$$

for any $p \geq 0$. In particular, this inequality holds for the processes $b^{[1]}, b^{[2]}, b^{[2.2]}$, $b^{[2.1]}, b^{[1.2]}, b^{[1.1]}$ as they are diffusion processes (due to Itô formula). Applying (7.1) and the Taylor expansion, we deduce that

$$
\begin{aligned}
R_{n}^{(2)}= & \Delta_{n}^{-1 / 2} \sum_{i=1}^{1 / \Delta_{n}} \int_{t_{i-1}}^{t_{i}}\left\{\rho_{b_{t_{i-1}}^{[1]}}-\rho_{b_{s}^{[1]}}\right\} d s \\
= & \Delta_{n}^{-1 / 2} \sum_{i=1}^{1 / \Delta_{n}} \int_{t_{i-1}}^{t_{i}}\left\{\rho_{b_{t_{i-1}}^{[1]}}^{\prime}\left(b_{t_{i-1}}^{[1]}-b_{s}^{[1]}\right)-\frac{1}{2} \rho_{b_{t_{i-1}}^{[1]}}^{\prime \prime}\left(b_{t_{i-1}}^{[1]}-b_{s}^{[1]}\right)^{2}\right\} d s \\
& +o_{\mathbb{P}}\left(\Delta_{n}^{1 / 2}\right) \\
= & R_{n}^{(2.1)}+R_{n}^{(2.2)}+o_{\mathbb{P}}\left(\Delta_{n}^{1 / 2}\right)
\end{aligned}
$$

Recall that $d b_{t}^{[1]}=b_{t}^{[1.2]} d t+b_{t}^{[1.1]} d W_{t}$. We conclude the identity

$$
\begin{aligned}
R_{n}^{(2.2)} & =-\frac{\Delta_{n}^{-1 / 2}}{2} \sum_{i=1}^{1 / \Delta_{n}} \rho_{b_{t_{i-1}}^{\prime[1]}}^{\prime \prime} \int_{t_{i-1}}^{t_{i}}\left(b_{t_{i-1}}^{[1]}-b_{s}^{[1]}\right)^{2} d s \\
& =-\frac{\Delta_{n}^{-1 / 2}}{2} \sum_{i=1}^{1 / \Delta_{n}} \rho_{b_{t_{i-1}}^{\prime[1]}}^{\prime \prime}\left|b_{t_{i-1}}^{[1.1]}\right|^{2} \int_{t_{i-1}}^{t_{i}}\left(W_{t_{i-1}}-W_{s}\right)^{2} d s+o_{\mathbb{P}}\left(\Delta_{n}^{1 / 2}\right) \\
& =: \Delta_{n}^{1 / 2}\left(N_{n, 4}^{(1)}+o_{\mathbb{P}}(1)\right)
\end{aligned}
$$

For the term $R_{n}^{(2.1)}$, we obtain the decomposition

$$
\begin{aligned}
R_{n}^{(2.1)} & =-\Delta_{n}^{-1 / 2} \sum_{i=1}^{1 / \Delta_{n}} \rho_{b_{t_{i-1}}^{[1]}}^{\prime} \int_{t_{i-1}}^{t_{i}}\left(\int_{t_{i-1}}^{s} b_{u}^{[1.2]} d u+\int_{t_{i-1}}^{s} b_{u}^{[1.1]} d W_{u}\right) d s \\
& =-\Delta_{n}^{-1 / 2} \sum_{i=1}^{1 / \Delta_{n}} \rho_{b_{t_{i-1}}^{[1]}}^{\prime}\left(\frac{\Delta_{n}^{2}}{2} b_{t_{i-1}}^{[1.2]}+b_{t_{i-1}}^{[1.1]} \int_{t_{i-1}}^{t_{i}}\left(W_{s}-W_{t_{i-1}}\right) d s\right)+o_{\mathbb{P}}\left(\Delta_{n}^{1 / 2}\right) \\
& =: \Delta_{n}^{1 / 2}\left(N_{n, 4}^{(2)}+N_{n, 5}+o_{\mathbb{P}}(1)\right)
\end{aligned}
$$

We remark that $N_{n, 4}=N_{n, 4}^{(1)}+N_{n, 4}^{(2)}$. The treatment of the quantity $R_{n}^{(1)}$ is a bit more involved. We apply again (7.1) and Taylor expansion:

$$
\begin{aligned}
R_{n}^{(1)} & =\Delta_{n}^{1 / 2} \sum_{i=1}^{1 / \Delta_{n}}\left(f^{\prime}\left(\alpha_{i}^{n}\right)\left\{\frac{\Delta_{i}^{n} X}{\sqrt{\Delta_{n}}}-\alpha_{i}^{n}\right\}+\frac{1}{2} f^{\prime \prime}\left(\alpha_{i}^{n}\right)\left\{\frac{\Delta_{i}^{n} X}{\sqrt{\Delta_{n}}}-\alpha_{i}^{n}\right\}^{2}\right)+o_{\mathbb{P}}\left(\Delta_{n}^{1 / 2}\right) \\
& =: R_{n}^{(1.1)}+R_{n}^{(1.2)}+o_{\mathbb{P}}\left(\Delta_{n}^{1 / 2}\right)
\end{aligned}
$$

For the term $R_{n}^{(1.2)}$, we obtain the decomposition

$$
\begin{aligned}
R_{n}^{(1.2)}= & \frac{\Delta_{n}^{-1 / 2}}{2} \sum_{i=1}^{1 / \Delta_{n}} f^{\prime \prime}\left(\alpha_{i}^{n}\right)\left(\int_{t_{i-1}}^{t_{i}} b_{s}^{[2]} d s+\int_{t_{i-1}}^{t_{i}} b_{s}^{[1]}-b_{t_{i-1}}^{[1]} d W_{s}\right)^{2} \\
= & \frac{\Delta_{n}^{-1 / 2}}{2} \sum_{i=1}^{1 / \Delta_{n}} f^{\prime \prime}\left(\alpha_{i}^{n}\right)\left(\Delta_{n} b_{t_{i-1}}^{[2]}+b_{t_{i-1}}^{[1.1]} \int_{t_{i-1}}^{t_{i}}\left(W_{s}-W_{t_{i-1}}\right) d W_{s}\right)^{2} \\
& +o_{\mathbb{P}}\left(\Delta_{n}^{1 / 2}\right) \\
= & \frac{\Delta_{n}^{3 / 2}}{2} \sum_{i=1}^{1 / \Delta_{n}} f^{\prime \prime}\left(\alpha_{i}^{n}\right)\left(b_{t_{i-1}}^{[2]}+\frac{1}{2} b_{t_{i-1}}^{[1.1]} H_{2}\left(\frac{\Delta_{i}^{n} W}{\sqrt{\Delta_{n}}}\right)\right)^{2}+o_{\mathbb{P}}\left(\Delta_{n}^{1 / 2}\right) \\
= & \Delta_{n}^{1 / 2}\left(N_{n, 3}+o_{\mathbb{P}}(1)\right) .
\end{aligned}
$$

The quantity $R_{n}^{(1.1)}$ is decomposed as

$$
R_{n}^{(1.1)}=\sum_{i=1}^{1 / \Delta_{n}} f^{\prime}\left(\alpha_{i}^{n}\right)\left(\int_{t_{i-1}}^{t_{i}} b_{s}^{[2]} d s+\int_{t_{i-1}}^{t_{i}}\left\{b_{s}^{[1]}-b_{t_{i-1}}^{[1]}\right\} d W_{s}\right)=: R_{n}^{(1.1 .1)}+R_{n}^{(1.1 .2)}
$$

with

$$
\begin{aligned}
R_{n}^{(1.1 .1)}= & \Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} f^{\prime}\left(\alpha_{i}^{n}\right)\left(b_{t_{i-1}}^{[2]} d s+\frac{1}{2} b_{t_{i-1}}^{[1.1]} H_{2}\left(\frac{\Delta_{i}^{n} W}{\sqrt{\Delta_{n}}}\right)\right) \\
R_{n}^{(1.1 .2)}= & \sum_{i=1}^{1 / \Delta_{n}} f^{\prime}\left(\alpha_{i}^{n}\right)\left(\int_{t_{i-1}}^{t_{i}}\left\{b_{s}^{[2]}-b_{t_{i-1}}^{[2]}\right\} d s\right. \\
& \left.+\int_{t_{i-1}}^{t_{i}}\left(\int_{t_{i-1}}^{s} b_{u}^{[1.2]} d u+\int_{t_{i-1}}^{s}\left\{b_{u}^{[1.1]}-b_{t_{i-1}}^{[1.1]}\right\} d W_{u}\right) d W_{s}\right)
\end{aligned}
$$

We remark that $R_{n}^{(1.1 .1)}=\Delta_{n}^{1 / 2} N_{n, 1}$. Since f^{\prime} is an odd function (because f is even), we deduce that

$$
\begin{aligned}
R_{n}^{(1.1 .2)}= & \sum_{i=1}^{1 / \Delta_{n}} f^{\prime}\left(\alpha_{i}^{n}\right)\left(b_{t_{i-1}}^{[2.1]} \int_{t_{i-1}}^{t_{i}}\left(W_{s}-W_{t_{i-1}}\right) d s+\frac{\Delta_{n}^{3 / 2} b_{t_{i-1}}^{[1.1 .1]}}{6} H_{3}\left(\frac{\Delta_{i}^{n} W}{\sqrt{\Delta_{n}}}\right)\right. \\
& \left.+b_{t_{i-1}}^{[1.2]} \int_{t_{i-1}}^{t_{i}}\left(s-t_{i-1}\right) d W_{s}\right)+o_{\mathbb{P}}\left(\Delta_{n}^{1 / 2}\right) .
\end{aligned}
$$

As $R_{n}^{(1.1 .2)}=\Delta_{n}^{1 / 2}\left(N_{n, 2}+o_{\mathbb{P}}(1)\right)$, we are done.

APPENDIX

In this subsection, we present a law of large numbers and a multivariate functional stable convergence theorem, which is frequently used in this paper. For any $k=1, \ldots, d$, let $g^{k}: C([0,1]) \rightarrow \mathbb{R}$ be a measurable function with polynomial growth, that is,

$$
\left|g^{k}(x)\right| \leq K\left(1+\|x\|_{\infty}^{p}\right),
$$

for some $K>0, p>0$ and $\|x\|_{\infty}=\sup _{z \in[0,1]}|x(z)|$. In most cases, g^{k} will be a function of $x(1)$; the path-dependent version is only required to account for the asymptotic behavior of the functional C_{n}. Let $\left(a_{s}\right)_{s \geq 0}$ be an \mathbb{R}^{d}-valued, $\left(\mathcal{F}_{s}\right)$ adapted, continuous and bounded stochastic process. Our first result is the following theorem.

THEOREM A.1. Let $g: \mathbb{R}^{d} \times C([0,1]) \rightarrow \mathbb{R}$ be a measurable function with polynomial growth in the last variable and $a=\left(a_{1}, \ldots, a_{d}\right)$. Then it holds that

$$
\Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} g\left(a_{t_{i-1}}, \Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right) \xrightarrow{\mathbb{P}} \int_{0}^{1} \rho\left(a_{s}, g\right) d s
$$

with $\rho(z, g):=\mathbb{E}\left[g\left(z,\left\{W_{s}\right\}_{0 \leq s \leq 1}\right)\right], z \in \mathbb{R}^{d}$.
PROOF. Since $\Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1} \stackrel{d}{=}\left\{W_{s}\right\}_{0 \leq s \leq 1}$, we obtain that

$$
\begin{aligned}
& \Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} \mathbb{E}\left[g\left(a_{t_{i-1}}, \Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right) \mid \mathcal{F}_{t_{i-1}}\right] \\
& \quad=\Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} \rho\left(a_{t_{i-1}}, g\right) \xrightarrow{\mathbb{P}} \int_{0}^{1} \rho\left(a_{s}, g\right) d s .
\end{aligned}
$$

On the other hand, we deduce that

$$
\begin{aligned}
& \Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} g\left(a_{t_{i-1}}, \Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right) \\
& \quad-\Delta_{n} \sum_{i=1}^{1 / \Delta_{n}} \mathbb{E}\left[g\left(a_{t_{i-1}}, \Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right) \mid \mathcal{F}_{t_{i-1}}\right] \xrightarrow{\mathbb{P}} 0,
\end{aligned}
$$

because

$$
\Delta_{n}^{2} \sum_{i=1}^{1 / \Delta_{n}} \mathbb{E}\left[g^{2}\left(a_{t_{i-1}}, \Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right) \mid \mathcal{F}_{t_{i-1}}\right] \xrightarrow{\mathbb{P}} 0
$$

This completes the proof.
Next, we consider a sequence of d-dimensional processes $Y_{t}^{n}=\left(Y_{1, t}^{n}, \ldots, Y_{d, t}^{n}\right)$ defined via

$$
\begin{aligned}
Y_{k, t}^{n}= & \Delta_{n}^{1 / 2} \sum_{i=1}^{\left[t / \Delta_{n}\right]} a_{t_{i-1}}^{k}\left[g^{k}\left(\Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right)\right. \\
& \left.-\mathbb{E} g^{k}\left(\Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right)\right], \quad k=1, \ldots, d,
\end{aligned}
$$

where the functions g^{k} satisfy the assumption of Theorem A.1. The stable convergence of Y^{n} is as follows.

Theorem A.2. It holds that

$$
Y_{t}^{n} \xrightarrow{d_{\mathrm{st}}} Y_{t}=\int_{0}^{t} v_{s} d W_{s}+\int_{0}^{t}\left(w_{s}-v_{s} v_{s}^{\star}\right)^{1 / 2} d W_{s}^{\prime},
$$

where the functional convergence is stable in law, W^{\prime} is a d-dimensional Brownian motion independent of \mathcal{F}, and the processes $\left(v_{s}\right)_{s \geq 0}$ in \mathbb{R}^{d} and $\left(w_{s}\right)_{s \geq 0}$ in $\mathbb{R}^{d \times d}$ are defined as

$$
\begin{aligned}
v_{s}^{k} & =a_{s}^{k} \mathbb{E}\left[g^{k}\left(\left\{W_{s}\right\}_{0 \leq s \leq 1}\right) W_{1}\right], \\
w_{s}^{k l} & =a_{s}^{k} a_{s}^{l} \operatorname{Cov}\left[g^{k}\left(\left\{W_{s}\right\}_{0 \leq s \leq 1}\right), g_{l}\left(\left\{W_{s}\right\}_{0 \leq s \leq 1}\right)\right],
\end{aligned}
$$

with $1 \leq k, l \leq d$. In particular, it holds that $\int_{0}^{t} w_{s}^{1 / 2} d W_{s}^{\prime} \sim M N\left(0, \int_{0}^{t} w_{s} d s\right)$.
PROOF. We write $Y_{t}^{n}=\sum_{i=1}^{\left[t / \Delta_{n}\right]} \chi_{i}^{n}$ with

$$
\begin{aligned}
\chi_{i, k}^{n}= & \Delta_{n}^{1 / 2} a_{t_{i-1}}^{k}\left[g^{k}\left(\Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right)\right. \\
& \left.-\mathbb{E} g^{k}\left(\Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right)\right], \quad k=1, \ldots, d .
\end{aligned}
$$

According to Theorem IX.7.28 of [13], we need to show that

$$
\begin{equation*}
\sum_{i=1}^{\left[t / \Delta_{n}\right]} \mathbb{E}\left[\chi_{i, k}^{n} \chi_{i, l}^{n} \mid \mathcal{F}_{t_{i-1}}\right] \xrightarrow{\mathbb{P}} \int_{0}^{t} w_{s}^{k l} d s \tag{A.1}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{\left[t / \Delta_{n}\right]} \mathbb{E}\left[\chi_{i, k}^{n} \Delta_{i}^{n} W \mid \mathcal{F}_{t_{i-1}}\right] \xrightarrow{\mathbb{P}} \int_{0}^{t} v_{s}^{k} d s \tag{A.2}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{\left[t / \Delta_{n}\right]} \mathbb{E}\left[\left|\chi_{i, k}^{n}\right|^{2} 1_{\left\{\left|\chi_{i, k}^{n}\right|>\epsilon\right\}} \mid \mathcal{F}_{t_{i-1}}\right] \xrightarrow{\mathbb{P}} 0 \quad \forall \epsilon>0, \tag{A.3}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i=1}^{\left[t / \Delta_{n}\right]} \mathbb{E}\left[\chi_{i, k}^{n} \Delta_{i}^{n} Q \mid \mathcal{F}_{t_{i-1}}\right] \xrightarrow{\mathbb{P}} 0 \tag{A.4}
\end{equation*}
$$

where $1 \leq k, l \leq d$ and the last condition must hold for all bounded continuous martingales Q with [W, Q] $=0$. Conditions (A.1) and (A.2) are obvious since

$$
\Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1} \stackrel{d}{=}\left\{W_{s}\right\}_{0 \leq s \leq 1}
$$

Condition (A.3) follows from

$$
\sum_{i=1}^{\left[t / \Delta_{n}\right]} \mathbb{E}\left[\left|\chi_{i, k}^{n}\right|^{2} 1_{\left\{\left|\chi_{i, k}^{n}\right|>\epsilon\right\}} \mid \mathcal{F}_{t_{i-1}}\right] \leq \epsilon^{-2} \sum_{i=1}^{\left[t / \Delta_{n}\right]} \mathbb{E}\left[\left|\chi_{i, k}^{n}\right|^{4} \mid \mathcal{F}_{t_{i-1}}\right] \leq K \Delta_{n} \rightarrow 0
$$

which holds since the process a is bounded and g^{k} is of polynomial growth. In order to prove the last condition, we use the Itô-Clark representation theorem

$$
\begin{aligned}
& g^{k}\left(\Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right)-\mathbb{E} g^{k}\left(\Delta_{n}^{-1 / 2}\left\{W_{t_{i-1}+s \Delta_{n}}-W_{t_{i-1}}\right\}_{0 \leq s \leq 1}\right) \\
& \quad=\int_{t_{i-1}}^{t_{i}} \eta_{k, s}^{n} d W_{s}
\end{aligned}
$$

for some predictable process η_{k}^{n}. Itô isometry implies the identity

$$
\mathbb{E}\left[\chi_{i, k}^{n} \Delta_{i}^{n} Q \mid \mathcal{F}_{t_{i-1}}\right]=\Delta_{n}^{1 / 2} a_{t_{i-1}}^{k} \mathbb{E}\left[\int_{t_{i-1}}^{t_{i}} \eta_{k, s}^{n} d[W, Q]_{s} \mid \mathcal{F}_{t_{i-1}}\right]=0
$$

This completes the proof of Theorem A.2.

Acknowledgments. Both authors would like to thank Bezirgen Veliyev for helpful comments on the earlier version of this paper.

REFERENCES

[1] AÏT-SAhalia, Y. and Jacod, J. (2009). Testing for jumps in a discretely observed process. Ann. Statist. 37 184-222. MR2488349
[2] Barndorff-Nielsen, O. E., Graversen, S. E., Jacod, J., Podolskij, M. and ShepHARD, N. (2006). A central limit theorem for realised power and bipower variations of continuous semimartingales. In From Stochastic Calculus to Mathematical Finance (Yu. Kabanov, R. Liptser and J. Stoyanov, eds.) 33-68. Springer, Berlin. MR2233534
[3] Barndorff-Nielsen, O. E. and Shephard, N. (2004). Power and bipower variation with stochastic volatility and jumps (with discussion). J. Financ. Econom. 2 1-48.
[4] Bhattacharya, R. N. and Ranga Rao, R. (1986). Normal Approximation and Asymptotic Expansions. Robert E. Krieger, Melbourne, FL. MR0855460
[5] Dalalyan, A. and Yoshida, N. (2011). Second-order asymptotic expansion for a nonsynchronous covariation estimator. Ann. Inst. Henri Poincaré Probab. Stat. 47 748-789. MR2841074
[6] Dette, H., Podolskij, M. and Vetter, M. (2006). Estimation of integrated volatility in continuous-time financial models with applications to goodness-of-fit testing. Scand. J. Stat. 33 259-278. MR2279642
[7] GöTZE, F. and Hipp, C. (1983). Asymptotic expansions for sums of weakly dependent random vectors. Z. Wahrsch. Verw. Gebiete 64 211-239. MR0714144
[8] Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York. MR1145237
[9] Ikeda, N. and Watanabe, S. (1989). Stochastic Differential Equations and Diffusion Processes, 2nd ed. North-Holland Mathematical Library 24. North-Holland, Amsterdam. MR1011252
[10] JACOD, J. (1997). On continuous conditional Gaussian martingales and stable convergence in law. In Séminaire de Probabilités, XXXI. Lecture Notes in Math. 1655 232-246. Springer, Berlin. MR1478732
[11] JACOD, J. (2008). Asymptotic properties of realized power variations and related functionals of semimartingales. Stochastic Process. Appl. 118 517-559. MR2394762
[12] JACOD, J. and Protter, P. (1998). Asymptotic error distributions for the Euler method for stochastic differential equations. Ann. Probab. 26 267-307. MR1617049
[13] Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd ed. Springer, Berlin. MR1943877
[14] Kinnebrock, S. and PodolskiJ, M. (2008). A note on the central limit theorem for bipower variation of general functions. Stochastic Process. Appl. 118 1056-1070. MR2418258
[15] Kusuoka, S. and Stroock, D. (1984). Applications of the Malliavin calculus. I. In Stochastic Analysis (Katata/Kyoto, 1982). North-Holland Math. Library 32 271-306. NorthHolland, Amsterdam. MR0780762
[16] Kusuoka, S. and Stroock, D. (1985). Applications of the Malliavin calculus. II. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 32 1-76. MR0783181
[17] Lahiri, S. N. (2003). Resampling Methods for Dependent Data. Springer, New York. MR2001447
[18] Mancini, C. (2001). Disentangling the jumps of the diffusion in a geometric jumping Brownian motion. Giornale DelliInstituto Italiano degli Attuari LXIV 19-47.
[19] MyKland, P. A. (1992). Asymptotic expansions and bootstrapping distributions for dependent variables: A martingale approach. Ann. Statist. 20 623-654. MR1165585
[20] Nualart, D. (2006). The Malliavin Calculus and Related Topics, 2nd ed. Probability and Its Applications (New York). Springer, Berlin. MR2200233
[21] Rényi, A. (1963). On stable sequences of events. Sankhyā Ser. A 25 293-302. MR0170385
[22] Yoshida, N. (1997). Malliavin calculus and asymptotic expansion for martingales. Probab. Theory Related Fields 109 301-342. MR1481124
[23] Yoshida, N. (2001). Malliavin calculus and martingale expansion. Bull. Sci. Math. 125 431456. MR1869987
[24] Yoshida, N. (2012). Asymptotic expansion for the quadratic form of the diffusion process. Preprint. Available at arXiv:1212.5845.
[25] Yoshida, N. (2013). Martingale expansion in mixed normal limit. Stochastic Process. Appl. 123 887-933. MR3005009

Department of Mathematics
Aarhus University
Ny Munkegade 118
8000 Aarhus
Denmark
E-MAIL: mpodolskij@math.au.dk

CREST Japan Science and Technology Agency K's Gobancho 6F, 7, Gobancho
Chiyoda-ku, TOKyo, 102-0076
AND
The Institute of Statistical Mathematics
10-3 Midori-cho
TACHIKAWA, TOKyo 190-8562
JAPAN
AND
Graduate School of Mathematical Science 3-8-1 Komaba
Meguro-ku, Tokyo 153
Japan
E-MAIL: nakahiro@ms.u-tokyo.ac.jp

[^0]: Received November 2013; revised May 2015.
 ${ }^{1}$ Support from the project "Ambit fields: Probabilistic properties and statistical inference" funded by Villum Fonden and CREATES funded by the Danish National Research Foundation.
 ${ }^{2}$ Supported in part by CREST Japan Science and Technology Agency, Grants-in-Aid for Scientific Research No. 19340021, No. 24340015 (Scientific Research), No. 24650148, No. 26540011 (Challenging Exploratory Research); the Global COE program "The Research and Training Center for New Development in Mathematics" of the Graduate School of Mathematical Sciences, University of Tokyo; Cooperative Research Program of the Institute of Statistical Mathematics; and by NS Solutions Corporation.

 MSC2010 subject classifications. Primary 62M09, 60F05, 62H12; secondary 62G20, 60G44.
 Key words and phrases. Diffusion processes, Edgeworth expansion, high frequency observations, power variation.

