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ASYMPTOTIC QUANTIZATION OF EXPONENTIAL
RANDOM GRAPHS
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University of Denver, Carnegie Mellon University and Harvard University

We describe the asymptotic properties of the edge-triangle exponential
random graph model as the natural parameters diverge along straight lines.
We show that as we continuously vary the slopes of these lines, a typical
graph drawn from this model exhibits quantized behavior, jumping from one
complete multipartite graph to another, and the jumps happen precisely at the
normal lines of a polyhedral set with infinitely many facets. As a result, we
provide a complete description of all asymptotic extremal behaviors of the
model.

1. Introduction. Over the last decades, the availability and widespread diffu-
sion of network data on typically very large scales have created the impetus for the
development of new theories and methods for the analysis of large random graphs.
Despite the vast and rapidly growing body of literature on network analysis (see,
e.g., [19, 20, 25, 33, 41] and references therein), the study of the asymptotic be-
havior of network models has proven rather difficult in most cases. As a result,
methodologies for carrying out basic statistical tasks such as parameter estima-
tion, hypothesis and goodness-of-fit testing with provable asymptotic guarantees
have yet to be developed for most network models.

Exponential random graph models [22, 29, 52] form one of the most promi-
nent class of statistical models for random graphs, but also one for which the is-
sue of lack of understanding of their general asymptotic properties is particularly
pressing. These rather generic models are exponential families of probability dis-
tributions over graphs, whereby the natural sufficient statistics are virtually any
functions on the space of graphs that are deemed to capture essential features of
interest. Such statistics may include, for instance, the number of edges or copies of
any finite subgraph, as well as more complex quantities such as the degree distribu-
tion, and combinations thereof. Exponential random graph models are especially
useful when one wants to construct models that resemble observed networks, but
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without specifying an explicit network formation mechanism. They are among the
most widespread models in network analysis, with numerous applications in the
social sciences, statistics, statistical mechanics, economics and other disciplines;
see, for example, [42, 48, 49, 51, 53].

Despite being exponential families with finite support, the large scale properties
of exponential random graph models are neither simple nor standard. In fact, for
random graph models which do not assume independent edges, very little was
known about their asymptotics (but see [3] and [27]) until the work of Chatterjee
and Diaconis [10]. By combining the recent theory of graphons (see, e.g., [36])
with a deep result about large deviations for the Erdős–Rényi model established
by Chatterjee and Varadhan [11], they showed that the limiting properties of many
exponential random graph models can be obtained by solving a certain variational
problem in the graphon space (see Section 2.1 for a summary of these important
results). Such a framework provides a principled way of resolving the large sample
behavior of exponential random graph models and has in fact led to novel and
insightful findings about these models. Still, the variational technique in [10] often
does not admit an explicit solution and additional work is required.

In this article, we advance our understating of the asymptotics of exponential
random graph models by giving a complete characterization of the asymptotic
extremal properties of a simple yet challenging 2-parameter exponential random
graph model. In detail, for n ≥ 2, let Gn denote the set of all simple (i.e., undi-
rected, with no loops or multiple edges) labeled graphs on n nodes. Notice that
|Gn| = 2(n

2). For a graph Gn ∈ Gn and a simple labeled graph H with vertex set
V (H) such that |V (H)| ≤ n, the density homomorphism of H in Gn is

t (H,Gn) = |hom(H,Gn)|
n|V (H)| ,(1.1)

where |hom(H,Gn)| denotes the number of homomorphisms from H into Gn, that
is, edge preserving maps from V (H) to V (Gn). Thus, t (H,Gn) is the probability
that a random mapping from V (H) into V (Gn) is edge-preserving. For each n, we
consider the exponential family {Pn,β, β ∈ R2} of probability distributions on Gn

which assigns to a graph Gn ∈ Gn the probability

Pn,β(Gn) = exp
(
n2(β1t (H1,Gn) + β2t (H2,Gn) − ψn(β)

))
,(1.2)

where β = (β1, β2) are tuning parameters, H1 = K2 is a single edge, H2 is a pre-
chosen finite simple graph (say a triangle, a two-star, etc.), and ψn(β) is the nor-
malizing constant satisfying

exp
(
n2ψn(β)

) = ∑
Gn∈Gn

exp
(
n2(β1t (H1,Gn) + β2t (H2,Gn)

))
.(1.3)

In statistical physics, we refer to β1 as the particle parameter and β2 as the energy
parameter [40, 44]. Correspondingly, the exponential model (1.2) is said to be
“attractive” if β2 is positive and “repulsive” if β2 is negative. Although seemingly



ASYMPTOTIC QUANTIZATION OF ERGMS 3253

simple, this model is well known for its wealth of nontrivial features (see, e.g., [28,
47]) and challenging asymptotics (see [10]).

A natural question to ask is how different values of the parameters β1 and β2
would impact the global structure of a typical random graph Gn drawn from (1.2)
for large n. We will generalize the extremal results of Chatterjee and Diaconis
[10] and complete an exhaustive study of all the extremal properties of (1.2) when
H2 = K3, that is, when H2 is a triangle. Identifying the extremal properties of the
edge-triangle model is not only interesting from a mathematical point of view, but
also provides new insights into the expressive power of the model itself. To that
end, we will generalize the double asymptotic framework of [10] and consider two
limit processes: the network size n grows unbounded and the natural parameters
β diverge along generic straight lines. In our analysis, we will elucidate the re-
lationship between all possible directions along which the natural parameters can
diverge and the way the model tends to place most of its mass on graph configura-
tions that resemble complete multipartite graphs for large enough n. As it turns out,
looking just at straight lines is precisely what is needed to categorize all extremal
behaviors of the model. Especially, when n is large and β2 is large negative, the
edge-triangle model is used in the modeling of the crystalline structure of solids
near the energy ground state. As we continuously vary the slopes of these generic
lines, a progressive transition through finer and finer multipartite structures is re-
vealed. We summarize our contributions as follows.

First, we extend the variational analysis technique of [10] to show that the set
of all extremal (in β) distributions of the edge-triangle model consists of degener-
ate distributions on all Turán graphons when taking the size of the network n as
infinity. We further exhibit a partition of all the possible half-lines or directions in
R2 in the form of a collection of cones with apexes at the origin and disjoint in-
teriors, whereby two sequences of natural parameters β diverging along different
half-lines in the same cone yield the same asymptotic extremal behavior. We re-
fer to this result as an asymptotic quantization of the parameter space. Finally, we
identify a countable set of critical directions along which the extremal behaviors
of the edge-triangle model cannot be resolved.

We then present a different technique of analysis that relies on the notion of
closure of exponential families [2]. In this approach, the extremal properties of the
model correspond to its asymptotic (in n) boundary in the total variation topology.
The main advantage of this method is its ability to resolve the model also along
critical directions. Specifically, we will demonstrate that, along each such direc-
tion, as n grows, the model becomes discontinuous in the natural parametrization
by β , and describe explicitly the points of discontinuity. We remark that this phe-
nomenon is asymptotic: for finite n the natural parametrization by β is always con-
tinuous, even on the boundary of the total variation closure of the model. Unlike
variational techniques, which characterize the properties of the model as a function
of the parameter values β when the network size n is infinite, the approach based
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on the total variation closure considers n finite (but increasing) and lets β tend to
infinity appropriately for each fixed n.

A central ingredient of our analysis is the use of simple yet effective geometric
arguments that combine recent results in asymptotic extremal graph theory [46]
with the theory of graphons [36] and the traditional theory of exponential fami-
lies. Both the quantization of the parameter space and the identification of critical
directions stem from the dual geometric property of a bounded convex polygon
with infinitely many edges, which can be thought of as an asymptotic mean value
parametrization of the edge-triangle exponential model. We expect this framework
to apply more generally to other exponential random graph models.

The rest of this paper is organized as follows. In Section 2, we provide some
basics of graph limit theory, summarize the main results of [10] and introduce
key geometric quantities. In Section 3.1, we investigate the asymptotic behav-
ior of “attractive” 2-parameter exponential random graph models along general
straight lines. In Section 3.2, we analyze the asymptotic structure of “repulsive”
2-parameter exponential random graph models along vertical lines. In Sections 3.3
and 4, we examine the asymptotic feature of the edge-triangle model along general
straight lines. Section 5 shows some illustrative figures and Section 6 is devoted to
further discussions. All the proofs are in the Appendix.

2. Background. Below we will provide some background on the theory of
graph limits and its use in exponential random graph models, focusing in particular
on the edge-triangle model.

2.1. Graph limit theory and graph limits of exponential random graph models.
A series of recent important contributions by mathematicians and physicists have
led to a unified and elegant theory of limits of sequences of dense graphs. See,
for example, [6–8, 35, 38] and the book [36] for a comprehensive account and
references. See also the related work on exchangeable arrays, where some of these
results had already been derived: [1, 14, 30, 32, 34].

Here are the basics of this theory. A sequence {Gn}n=1,2,... of graphs, where we
assume Gn ∈ Gn for each n, is said to converge when, for every simple graph H ,
limn→∞ t (H,Gn) = t (H) for some t (H). The main result in [38] is a complete
characterization of all limits of converging graph sequences, which are shown to
correspond to the functional space W of all symmetric measurable functions from
[0,1]2 into [0,1], called graph limits or graphons. Specifically, the graph sequence
{Gn}n=1,2,... converges if and only if there exists a graphon f ∈ W such that, for
every simple graph H with vertex set {1, . . . , k} and edge set E(H),

lim
n→∞ t (H,Gn) = t (H,f ) :=

∫
[0,1]k

∏
{i,j}∈E(H)

f (xi, xj ) dx1 · · · dxk.(2.1)
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Any finite graph Gn can be represented as a graphon of the form

f Gn(x, y) =
{

1, if
(�nx�, �ny�) is an edge in Gn,

0, otherwise,
(2.2)

where �x� denotes the smallest integer no less than x ∈ R. Among the main ad-
vantages of the graphon framework is its ability to represent the limiting prop-
erties of sequences of graphs Gn, which are discrete objects that lie in different
probability spaces, with the unified functional space W . Lovász and Szegedy [38]
showed that convergence of all graph homomorphism densities is equivalent to a
certain cut metric convergence in the quotient graphon space (W̃, δ�), which is ob-
tained after taking into account measure preserving transformations. A sequence
of (possibly random) graph {Gn}n=1,2,... converges to a graphon f if and only if
δ�(f̃ Gn, f̃ ) → 0 in probability as n → ∞, where f Gn is defined in (2.2). It may
be worth emphasizing that graphons described here are tailored to limits of dense
graphs, that is, graphs having order n2 edges. In particular, they cannot discern any
graph property in the sequence that depends on a number of edges of order o(n2).

In a recent important paper, Chatterjee and Diaconis [10] utilized the nice ana-
lytic properties of the metric space (W̃, δ�) and examined the asymptotic behavior
of exponential random graph models. For the purpose of this paper, two results
from [10] are particularly significant. The first result, which is an application of a
deep large deviations result of [11], is Theorem 3.1 in [10]. When applied to the
2-parameter exponential random graph models mentioned above it implies that the
limiting normalizing constant ψ∞(β) = limn→∞ ψn(β) always exists and is given
by

ψ∞(β) = sup
f̃ ∈W̃

(
β1t (H1, f ) + β2t (H2, f ) −

∫ ∫
[0,1]2

I (f ) dx dy

)
,(2.3)

where f is any representative element of the equivalence class f̃ , and

I (u) = 1
2u logu + 1

2(1 − u) log(1 − u).(2.4)

The second result, Theorem 3.2 in [10], is concerned with the solutions of the
above variational optimization problem. In detail, let F̃ ∗(β) be the subset of W̃
where (2.3) is maximized. Then the quotient image f̃ Gn of a random graph Gn

drawn from (1.2) must lie close to F̃ ∗(β) with probability vanishing in n, that is,

δ�
(
f̃ Gn, F̃ ∗(β)

) → 0 in probability as n → ∞.(2.5)

Due to its complicated structure, the variational problem (2.3) is not always
explicitly solvable. So far, major simplification has only been achieved when β2
is positive or negative with small magnitude. For β2 lying in these parameter re-
gions, Chatterjee and Diaconis [10] showed that Gn behaves like an Erdős–Rényi
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graph G(n,u) in the large n limit, where u is picked randomly from the set U of
maximizers of a reduced form of (2.3):

ψ∞(β) = sup
0≤u≤1

(
β1u

e(H1) + β2u
e(H2) − I (u)

)
,(2.6)

where e(Hi) is the number of edges in Hi . (There are also related results in Häg-
gström and Jonasson [27] and Bhamidi et al. [3].) Chatterjee and Diaconis [10] also
studied the case in which H1 = K2 and H2 is arbitrary, β1 is fixed and β2 → −∞,
and showed that a typical graph Gn from (1.2) will be close to a random sub-
graph of a complete multipartite graph with the number of classes depending on
the chromatic number of H2 (see Section 3.2 for the exact statement of this result).

2.2. Edge-triangle exponential random graph model and its asymptotic geome-
try. In this article, we focus almost exclusively on the edge-triangle model, which
is the exponential random graph model obtained by setting in (1.2) H1 = K2 and
H2 = K3. Explicitly, in the edge-triangle model the probability of a graph Gn ∈ Gn

is

Pn,β(Gn) = exp
(
n2(β1t (K2,Gn) + β2t (K3,Gn) − ψn(β)

))
,(2.7)

where ψn(β) is given in (1.3) and there are no restrictions on how the natural
parameters β diverge. Below we describe the asymptotic geometry of this model,
which underpins much of our analysis.

To start off, for any Gn ∈ Gn, the vector of the densities of graph homomor-
phisms of K2 and K3 in Gn takes the form

t (Gn) =
(

t (K2,Gn)

t (K3,Gn)

)
=

⎛⎜⎝
2E(Gn)

n2

6T (Gn)

n3

⎞⎟⎠ ∈ [0,1]2,(2.8)

where E(Gn) and T (Gn) are the number of subgraphs of Gn isomorphic to K2
and K3, respectively. Since every finite graph can be represented as a graphon, we
can extend t to a map from W into [0,1]2 by setting [see (2.1)]

t (f ) =
(

t (K2, f )

t (K3, f )

)
, f ∈ W .(2.9)

As we will see, the asymptotic extremal behaviors of the edge-triangle model
can be fully characterized by the geometry of two compact subsets of [0,1]2. The
first is the set

R = {
t (f ), f ∈ W

}
(2.10)

of all realizable values of the edge and triangle density homomorphisms as f varies
over W . The second set, P , is the convex hull of R, that is,

P = convhull(R).(2.11)

Figures 1 and 2 depict R and P , respectively.
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FIG. 1. The set R of all feasible edge-triangle homomorphism densities, defined in (2.10).

To describe the properties of the sets R and P , we introduce some quantities
that we will use throughout this paper. For k = 0,1, . . . , we set vk = t (f Kk+1),
where f K1 is the identically zero graphon and, for any integer k > 1,

f Kk(x, y) =
{

1, if �xk� 
= �yk�,

0, otherwise,
(x, y) ∈ [0,1]2(2.12)

is the Turán graphon with k classes. Thus,

vk =

⎛⎜⎜⎝
k

k + 1
k(k − 1)

(k + 1)2

⎞⎟⎟⎠ , k = 0,1, . . . .(2.13)

FIG. 2. The set P described in (2.11).
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Note that any graphon f with t (f ) = vk is equivalent to the Turán graphon f Kk+1 .
The name Turán graphon is due to the easily verified fact that

vk = lim
n→∞vk,n for each k = 1,2, . . . ,

with vk,n = t (T (n, k+1)), the homomorphism densities of K2 and K3 in T (n, k+
1), that is, a Turán graph on n nodes with k + 1 classes. Turán graphs are well
known to provide the solutions of many extremal dense graph problems (see, e.g.,
[15]), and will turn out to be the extremal graphs for the edge-triangle model as
well.

The set R is a classic and well studied object in asymptotic extremal graph
theory, even though the precise shape of its boundary was determined only recently
(see, e.g., [5, 21, 26, 37] and the book [36]). Letting e and t denote the coordinate
corresponding to the edge and triangle density homomorphisms, respectively, the
upper boundary curve of R (see Figure 1), is given by the equation t = e3/2, and
can be derived using the Kruskal–Katona theorem (see Section 16.3 of [36]). The
lower boundary curve is trickier. The trivial lower bound of t = 0, corresponding
to the horizontal segment, is attainable at any 0 ≤ e ≤ 1/2 by graphons describing
the (possibly asymptotic) edge density of subgraphs of complete bipartite graphs.
For e ≥ 1/2, the optimal bound was obtained recently by Razborov [46], who
established, using the flag algebra calculus, that for (k − 1)/k ≤ e ≤ k/(k + 1)

with k ≥ 2,

t ≥ (k − 1)(k − 2
√

k(k − e(k + 1)))(k + √
k(k − e(k + 1)))2

k2(k + 1)2 .(2.14)

All the curve segments describing the lower boundary of R are easily seen to be
strictly convex, and the boundary points of these segments are precisely the points
vk , k = 0,1, . . . .

The following Lemma 2.1 is a direct consequence of Theorem 16.8 in [36] (see
page 287 of the same reference for details). Below, cl(A) denotes the topological
closure of the set A ⊂ R2.

LEMMA 2.1. 1. R = cl({(t (Gn),Gn ∈ Gn, n = 1,2, . . .}).
2. The extreme points of P are the points {vk, k = 0,1, . . .} and the point

(1,1) = limk→∞ vk .

The first result of Lemma 2.1 indicates that the set of edge and triangle ho-
momorphism densities of all finite graphs is dense in R. The second result im-
plies that the boundary of P consists of infinitely many segments with end-
points vk , for k = 0,1, . . . , as well as the line segment joining v0 = (0,0) and
(1,1) = limk→∞ vk . For k = 0,1, . . . , let Lk be the segment joining the adjacent
vertices vk and vk+1, and L−1 the segment joining v0 and the point (1,1). Each
such Lk is an exposed face of P of maximal dimension 1, that is, a facet. Notice
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that the length of the segment Lk decreases monotonically to zero as k gets larger.
For any k > 0, the slope of the line passing through Lk is

k(3k + 5)

(k + 1)(k + 2)
,

which increases monotonically to 3 as k → ∞. Simple algebra yields that the facet
Lk is exposed by the vector

ok =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(−1,1), if k = −1,

(0,−1), if k = 0,(
1,−(k + 1)(k + 2)

k(3k + 5)

)
, if k = 1,2, . . . .

(2.15)

The vectors ok will play a key role in determining the asymptotic behavior of
the edge-triangle model, so much so that they deserve their own names.

DEFINITION 2.2. The vectors {ok, k = −1,0,1, . . .} are the critical directions
of the edge-triangle model.

For a set A ⊂ R2, define cone(A) as the set of all conic combinations of points
in A. It follows that the outer normals to the facets of P are given by

cone(ok), k = −1,0,1, . . . ,

that is, by rays in R2 emanating from the origin and going along the direction of ok .
Finally, for k = 0,1, . . . let Ck = cone(ok−1, ok) denote the normal cone to P at vk ,
that is, a 2-dimensional pointed polyhedral cone spanned by ok−1 and ok . Denote
by C◦

k the topological interior of Ck . Then, since P is bounded, for any nonzero x ∈
R2, there exists one k for which either x ∈ cone(ok) or x ∈ C◦

k . The normal cones to
the faces of P form a locally finite polyhedral complex of cones, shown in Figure 3.
As our results will demonstrate, each one of these cones uniquely identifies one of
infinitely many asymptotic extremal behaviors of the edge-triangle model.

3. Variational analysis. In this section, we characterize the extremal proper-
ties of 2-parameter exponential random graphs and especially of the edge-triangle
model using the variational approach described in Section 2.1. Chatterjee and Di-
aconis [10] showed that a typical graph drawn from a 2-parameter exponential
random graph model with H1 an edge and H2 a fixed graph with chromatic num-
ber χ is a (χ − 1)-equipartite graph when n is large, β1 is fixed, and β2 is large
and negative, that is, when the two parameters trace a vertical line downward.

In the hope of discovering other interesting extremal behaviors, we investigate
the asymptotic structure of 2-parameter exponential random graph models along
general straight lines. In particular, we will study sequences of model parameters
of the form β1 = aβ2 + b, where a and b are constants and |β2| → ∞. Thus, for
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FIG. 3. Cones, that is, rays emanating from the origin, generated by the critical directions o−1, o0
and ok , for k = 1, . . . ,40. The plot also provides an accurate depiction of the locally finite polyhedral
complex comprised by the normal cones to the faces of the set P defined in (2.11).

any β = (β1, β2) ∈ R2, we can regard the quantities F̃ ∗(β) and ψ∞(β), defined in
Section 2.1, as functions of β2 only and, therefore, will write them as F̃ ∗(β2) and
ψ∞(β2) instead.

While we only give partial results for general exponential random graphs, we
are able to provide a nearly complete characterization of the edge-triangle model.
Even more refined results are possible, as will be shown in Section 4.

3.1. Asymptotic behavior of attractive 2-parameter exponential random graph
models along general lines. We will first consider the asymptotic behavior of
“attractive” 2-parameter exponential random graph models as β2 → ∞. We will
show that for H1 an edge and H2 any other finite simple graph, in the large n limit,
a typical graph drawn from the exponential model becomes complete under the
topology induced by the cut distance if a > −1 or a = −1 and b > 0; it becomes
empty if a < −1 or a = −1 and b < 0; while for a = −1 and b = 0, it either looks
like a complete graph or an empty graph. Below, for a nonnegative constant c, we
will write u = c when u is the constant graphon with value c.

THEOREM 3.1. Consider the 2-parameter exponential random graph model
(1.2), with H1 = K2 and H2 a different, arbitrary graph. Let β1 = aβ2 + b. Then

lim
β2→∞ sup

f̃ ∈F̃ ∗(β2)

δ�(f̃ , Ũ ) = 0,(3.1)

where the set U ⊂ W is determined as follows:
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• U = {1} if a > −1 or a = −1 and b > 0,
• U = {0,1} if a = −1 and b = 0 and
• U = {0} if a < −1 or a = −1 and b < 0.

When a = −1 and b = 0, the limit points of the solution set of the varia-
tional problem (2.6) consist of two radically different graphons, one specifying
an asymptotic edge density of 1 and the other of 0. This intriguing behavior was
captured in [45], where it was shown that there is a continuous curve that asymp-
totically approaches the line β1 = −β2, across which the graph transitions from
being very sparse to very dense. Unfortunately, the variational technique used in
the proof of the theorem does not seem to yield a way of deciding whether only
one or both solutions can actually be realized. As we will see next, a similar issue
arises when analyzing the asymptotic extremal behavior of the edge-triangle model
along critical directions (see Theorem 3.3). In Section 4, we describe a different
method of analysis that will allow us to resolve this rather subtle ambiguity within
the edge-triangle model and reveal an asymptotic phase transition phenomenon.
In particular, Theorem 4.4 there can be easily adapted to provide an analogous
resolution of the case a = −1 and b = 0 in Theorem 3.1.

We remark that, using same arguments, it is also possible to handle the case
in which β2 is fixed and β1 diverges along horizontal lines. Then we obtain the
intuitively clear result that, in the large n limit, a typical random graph drawn from
this model becomes complete if β1 → ∞, and empty if β1 → −∞. We omit the
easy proof.

The next two sections deal with the more challenging analysis of the asymp-
totic behavior of “repulsive” 2-parameter exponential models as β2 → −∞. As
mentioned earlier, the asymptotic properties of such models are largely unknown
in this region.

3.2. Asymptotic behavior of repulsive 2-parameter exponential random graph
models along vertical lines. The purpose of this section is to give an alternate
proof of Theorem 7.1 in [10] that uses classic results in extremal graph theory. In
addition, this general result covers the asymptotic extremal behavior of the edge-
triangle model along the vertical critical direction.

Recall that β1 is fixed and we are interested in the asymptotics of F̃ ∗(β2) and
ψ∞(β2) as β2 → −∞. We point out here that the limit process in β2 may also be
interpreted by taking β1 = aβ2 +b with a = 0 and b large negative. The importance
of this latter interpretation will become clear in the next section. Our work here is
inspired by related results of Fadnavis [18] and Radin and Sadun [44] in the case
of H2 being a triangle.

THEOREM 3.2 (Chatterjee–Diaconis). Consider the 2-parameter exponential
random graph model (1.2), with H1 = K2 and H2 a different, arbitrary graph.
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Fix β1. Let r = χ(H2) be the chromatic number of H2. Let p = e2β1/(1 + e2β1).
Then

lim
β2→−∞ sup

f̃ ∈F̃ ∗(β2)

δ�(f̃ , Ũ ) = 0,(3.2)

where the set U ⊂ W is given by U = {pf Kr−1} [see (2.12)].

As explained in [10], the above result can be interpreted as follows: if β2 is
negative and large in magnitude and n is big, then a typical graph Gn drawn from
the 2-parameter exponential model (1.2) looks roughly like a complete (χ(H2) −
1)-equipartite graph with 1 − p fraction of edges randomly deleted, where p =
e2β1/(1 + e2β1).

3.3. Asymptotic quantization of edge-triangle model along general lines. In
this section we conduct a thorough analysis of the asymptotic behavior of the
edge-triangle model as β2 → −∞. As usual, we take β1 = aβ2 + b, where a and
b are fixed constants. The a = 0 situation is a special case of what has been dis-
cussed in the previous section: If n is large, then a typical graph Gn drawn from the
edge-triangle model looks roughly like a complete bipartite graph with 1/(1+e2b)

fraction of edges randomly deleted. It is not too difficult to establish that if a > 0,
then independent of b, a typical graph Gn becomes empty in the large n limit. Intu-
itively, this should be clear: β1 and β2 both large and negative entail that Gn would
have minimal edge and triangle densities. However, the case a < 0 leads to an ar-
ray of nontrivial and intriguing extremal behaviors for the edge-triangle model,
and they are described in our next result. We emphasize that our analysis relies on
the explicit characterization by Razborov [46] of the lower boundary of the set R

of (the closure of) all edge and triangle density homomorphisms [see (2.14)] and
on the fact that the extreme points of P are the points {vk, k = 0,1, . . .}, given in
(2.13).3 Recall that these points correspond to the density homomorphisms of the
Turán graphons f Kk+1 , k = 0,1, . . . , as shown in (2.12).

THEOREM 3.3. Consider the edge-triangle exponential random graph model
(2.7). Let β1 = aβ2 + b with a < 0 and, for k ≥ 0, let ak = − k(3k+5)

(k+1)(k+2)
. Then

lim
β2→−∞ sup

f̃ ∈F̃ ∗(β2)

δ�(f̃ , Ũ ) = 0,(3.3)

where the set U ⊂ W is determined as follows:

3In fact, we do not actually need the exact expressions of the lower boundary of homomorphism
densities (the Razborov curve) to derive our results—all we need is its strict concavity. According to
Bollobás [4, 5], the vertices of the convex hull Pn for K2 and Kn, not just K2 and K3 as in the edge-
triangle case, are given by the limits of complete k-equipartite graphs. More general conjectures of
the limiting object P may be found in [16].
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• U = {f Kk+2} if ak > a > ak+1 or a = ak and b > 0,
• U = {f Kk+1, f Kk+2} if a = ak and b = 0 and
• U = {f Kk+1} if a = ak and b < 0.

REMARK. Notice that the case a = ak and b = 0 corresponds to the critical
direction ok , for k = 1,2, . . . .

The above result says that, if β1 = aβ2 + b with a < 0 and β2 large negative,
then in the large n limit, any graph drawn from the edge-triangle model is indis-
tinguishable in the cut metric topology from a complete (k + 2)-equipartite graph
if ak > a > ak+1 or a = ak and b > 0; it looks like a complete (k + 1)-equipartite
graph if a = ak and b < 0; and for a = ak and b = 0, it either behaves like a
complete (k + 1)-equipartite graph or a complete (k + 2)-equipartite graph. Lastly
it becomes complete if a ≤ limk→∞ ak = −3. Overall, these results describe in
a precise manner the array of all possible asymptotic extremal behaviors of the
edge-triangle model, and link them directly to the geometry of the natural param-
eter space as captured by the polyhedral complex of cones shown in Figure 3.

When a = ak and b = 0, for any k = 0,1, . . . , that is, when the parameters di-
verge along the critical direction ok , Theorem 3.3 suffers from the same ambiguity
as Theorem 3.1: the limit points of the solution set of the variational problem (2.3)
as β2 → −∞ are Turán graphons with k + 1 and k + 2 classes. Though already
quite informative, this result remains somewhat unsatisfactory because it does not
indicate whether both such graphons are actually realizable in the limit and in what
manner. As we remarked in the discussion following Theorem 3.1, our method of
proof, largely based on and inspired by the results in [10], does not seem to sug-
gest a way of clarifying this issue. In the next section, we will present a completely
different asymptotic analysis yielding different types of convergence guarantees.
As in the present section, two limit processes will be considered: the network size
n grows unbounded and the natural parameters β diverge, with the order of limits
interchanged. The two approaches in Sections 3 and 4 produce similar results ex-
cept along critical directions, where the second approach has the added power of
resolving the aforementioned ambiguities.

3.4. Probabilistic convergence of sequences of graphs from edge-triangle
model. The results obtained in Sections 3.1, 3.2 and 3.3 characterize the extremal
asymptotic behavior of the edge-triangle model through functional convergence in
the cut topology within the space W̃ . Our explanation of such results though has
more of a probabilistic flavor. Here, we briefly show how this interpretation is jus-
tified. By combining (2.5), established in Theorem 3.2 of [10], with the theorems
in Sections 3.1, 3.2 and 3.3, and a standard diagonal argument, we can deduce
the existence of subsequences of the form {(ni, β2,i)}i=1,2..., where ni → ∞ and
β2,i → ∞ or −∞ as i → ∞, such that the following holds. For fixed a and b,
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let {Gi}i=1,2,... be a sequence of random graphs drawn from the sequence of edge-
triangle models with node sizes {ni} and parameter values {(aβ2,i +b,β2,i)}. Then

δ�
(
f̃ Gi , Ũ

) → 0 in probability as i → ∞,

where the set U ⊂ W , which depends on a and b, is described in Theorems 3.1,
3.2 and 3.3. In Section 4.5, we will obtain a very similar result by entirely different
means.

4. Finite n analysis. In the remainder part of this paper, we will present an
alternative analysis of the asymptotic behavior of the edge-triangle model using
directly the properties of the exponential families and their closure in the finite
n case instead of the variational approach of [10, 44, 45]. Though the results in
this section are seemingly similar to the ones in Section 3, we point out that there
are marked differences. First, while in Section 3 we study convergence in the cut
metric for the quotient space W̃ , here we are concerned instead with convergence
in total variation of the edge and triangle homomorphism densities. Second, the
double asymptotics, in n and in the magnitude of β , are not the same. In Section 3,
the system size n goes to infinity first followed by the divergence of the parameter
β2 to positive or negative infinity. In contrast, here we first let the magnitude of
the natural parameter β diverge to infinity so as to isolate a simpler “restricted”
edge-triangle sub-model, and then study its limiting properties as n grows. Though
both approaches are in fact asymptotic, we characterize the latter as “finite n,” to
highlight the fact that we are not working with a limiting system and because,
even with finite n, the extremal properties already begin to emerge. Despite these
differences, the conclusions we can derive from both types of analysis are rather
similar. Furthermore, they imply a nearly identical convergence in probability in
the cut topology (see Sections 3.4 and 4.5).

Besides giving a rather strong form of asymptotic convergence, one of the ap-
peals of the finite n analysis consists in its ability to provide a more detailed cat-
egorization of the limiting behavior of the model along critical directions using
simple geometric arguments based on the dual geometry of P , the convex hull
of edge-triangle homomorphism densities. Specifically, we will demonstrate that,
asymptotically, the edge-triangle model undergoes phase transitions along critical
directions, where its homomorphism densities will converge in total variation to
the densities of one of two Turán graphons, both of which are realizable. In ad-
dition, we are able to state precise conditions on the natural parameters for such
transitions to occur.

4.1. Exponential families. We begin by reviewing some of the standard theory
of exponential families and their closure in the context of the edge-triangle model.
We refer the readers to Barndorff–Nielsen [2] and Brown [9] for exhaustive treat-
ments of exponential families, and to Csiszár and Matúš [12, 13], Geyer [23] and
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Rinaldo et al. [47] for specialized results on the closure of exponential families
directly relevant to our problem.

Recall that we are interested in the exponential family of probability distribu-
tions on Gn such that, for a given choice of the natural parameters β ∈ R2, the
probability of observing a network Gn ∈ Gn is

Pn,β(Gn) = exp
(
n2(〈β, t (Gn)

〉− ψn(β)
))

, β ∈ R2,(4.1)

where ψn(β) is the normalizing constant and the function t (·) is given in (2.8). We
remark that the above model assigns the same probability to all graphs in Gn that
have the same image under t (·). We let Sn = {t (Gn),Gn ∈ Gn} ⊂ [0,1]2 be the set
of all possible vectors of densities of graph homomorphisms of K2 and K3 over
the set Gn of all simple graphs on n nodes [see (2.8)]. By (4.1), the family on Gn

will induce the exponential family of probability distributions En = {Pn,β, β ∈ R2}
on Sn, such that the probability of observing a point x ∈ Sn is

Pn,β(x) = exp
(
n2(〈β,x〉 − ψn(β)

))
νn(x), β ∈ R2,(4.2)

where νn(x) = |{t−1(x)}| is the measure on Sn induced by the counting measure
on Gn and t (·). For each n, the family En has finite support not contained in any
lower dimensional set (see Lemma 4.1 below) and, therefore, is full and regular
and, in particular, steep.

We will study the limiting behavior of sequences of models of the form
{Pn,β+ro}, where β and o are fixed vectors in R2 and n and r are parameters
both tending to infinity. While it may be tempting to regard n as a surrogate for
an increasing sample size, this would in fact be incorrect. Models parametrized by
different values of n and the same r cannot be embedded (for the edge-triangle
model) in any sequence of consistent probability measures, since the probability
distribution corresponding to the smaller network cannot in general be obtained
from the other by marginalization, for a fixed choice of β . See [50] for details.
We will show that different choices of the direction o will yield different extremal
behaviors of the model and we will categorize the variety of these behaviors as a
function of o and, whenever it matters, of β . A key feature of our analysis is the di-
rect link to the geometric properties of the polyhedral complex {Ck, k = −1,0, . . .}
defined by the set P (see Section 2.2).

Overall, the results of this section are obtained with nontrivial extensions of
techniques described in the exponential families literature. Indeed, for fixed n,
determining the limiting behaviors of the family En along sequences of natural
parameters {β + ro}r→∞ for each unit norm vector o and each β is the main tech-
nical ingredient in computing the total variation closure of En. In particular Geyer
[23] refers to the directions o as the “directions of recession” of the model. The
relevance of the directions of recession to the asymptotic behavior of exponential
random graphs is now well known, as demonstrated in the work of Handcock [28]
and Rinaldo et al. [47].
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4.2. Finite n geometry. As we saw in Section 3, the critical directions are
determined by the limiting object P . For finite n, an analogous role is played by
the convex support of En, which is given by the polytope

Pn = convhull(Sn) ⊂ [0,1]2.

The interior of Pn is equal to all possible expected values of the sufficient statistics
{En,β(t (Gn)), β ∈ R2}, where En,β is the expectation operator with respect to the
measure Pn,β . Thus, it provides a different parametrization of En, known as the
mean-value parametrization (see, e.g., [2, 9]). Unlike the natural parametrization,
the mean value parametrization has explicit geometric properties that turn out to
be particularly convenient in order to describe the closure of En, and, ultimately,
the asymptotics of the model.

The next lemma characterizes the geometric properties of Pn. The most signif-
icant of these properties is that limn Pn = P , an easy result that turns out to be
the key for our analysis. Recall that we denote by T (n, r) any Turán graph on n

nodes with r classes. For k = 0,1, . . . , n−1, set vk,n = t (T (n, k +1)) and let Lk,n

denote the line segment joining vk,n and vk+1,n.

LEMMA 4.1. 1. The polytope Pn is spanned by the points {vk,n, k = 0,1, . . . ,

�n/2� − 1} and vn−1,n.
2. limn Pn = P .
3. If n is a multiple of (k + 1)(k + 2), then vk,n = vk and vk+1,n = vk+1. In

addition, for all such n, Lk,n ∩ Sn = {vk, vk+1}.
Part 2 of Lemma 4.1 implies that for each k, limn vk,n = vk , a fact that will

be used in Theorem 4.2 to describe the asymptotics of the model along generic
(i.e., noncritical directions). This conclusion still holds if the polytopes Pn are the
convex hulls of isomorphism, not homomorphism, densities. In this case, however,
we have that Pn ⊃ P for each n (see [16]). The seemingly inconsequential fact
stated in part 3. is instead of technical significance for our analysis of the phase
transitions along critical directions, as will be described in Theorem 4.3. We take
note that when n is not a multiple of (k+1)(k+2), part 3. does not hold in general.

4.3. Asymptotics along generic directions. Our first result, which gives similar
finding as in Section 3.3 shows that, for large n, if the distribution is parametrized
by a vector with very large norm, then almost all of its mass will concentrate on
the isomorphic class of a Turán graph (possibly the empty or the complete graph).
Which Turán graph it concentrates on will essentially depend on the “direction” of
the parameter vector with respect to the origin. Furthermore, there is an array of
extremal directions that will give the same isomorphic class of a Turán graph.

THEOREM 4.2. Let o and β be vectors in R2 such that o 
= ok for k =
−1,0,1, . . . and let k be such that o ∈ C◦

k . For any 0 < ε < 1 arbitrarily small,
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there exists an n0 = n0(β, ε, o) > 0 such that the following holds: for every n > n0,
there exists an r0 = r0(β, ε, o, n) > 0 such that for all r > r0,

Pn,β+ro(vk,n) > 1 − ε.

REMARK. If in the theorem above we consider only values of n that are multi-
ples of (k + 1)(k + 2) then, by Lemma 4.1, vk,n = vk for all such n, which implies
convergence in total variation to the point mass at vk .

The theorem shows that any choice of o ∈ C◦
k will yield the same asymptotic

(in n and r) behavior, captured by the Turán graphon with k + 1 classes. This can
be further strengthened to show that the convergence is uniform in o over compact
subsets of C◦

k . See [47] for details. Interestingly, the initial value of β does not play
any role in determining the asymptotics of Pn,β+ro, which instead depends solely
on which cone Ck contains in its interior the direction o. Altogether, Theorem 4.2
can be interpreted as follows: the interiors of the cones of the infinite polyhedral
complex {Ck, k = −1,0,1, . . .} represent equivalence classes of “extremal direc-
tions” of the model, whereby directions in the same class will parametrize, for
large n and r , the same degenerate distribution on some Turán graph.

4.4. Asymptotics along critical directions. Theorem 4.2 provides a complete
categorization of the asymptotics (in n and r) of probability distributions of the
form Pn,β+ro for any generic direction o other than the critical directions {ok, k =
−1,0,1, . . .}. We now consider the more delicate cases in which o = ok for some k.
Recall that, according to Theorem 3.3, in these instances the typical graph drawn
from the model will converge (as n and r grow and in the cut metric) to a large
Turán graph, whose number of classes is not entirely specified.

Our first result characterizes such behavior along subsequences of the form
n = j (k + 1)(k + 2), for j = 1,2, . . . and k a positive integer. Interestingly, and
in contrast with Theorem 4.2, the limiting behavior along any critical direction ok

depends on β in a discontinuous manner. Before stating the result, we will need
to introduce some additional notation. Let lk ∈ R2 be the unit norm vector span-
ning the one-dimensional linear subspace Lk given by the line through the origin
parallel to Lk , where k > 0, so lk is just a rescaling of the vector(

1,
k(3k + 5)

(k + 1)(k + 2)

)
.

Next, let Hk = {x ∈ R2: 〈x, lk〉 = 0} = L⊥
k be the line through the origin defining

the linear subspace orthogonal to Lk and let

H+
k = {

x ∈ R2: 〈x, lk〉 > 0
}

and H−
k = {

x ∈ R2: 〈x, lk〉 < 0
}

(4.3)

be the positive and negative half-spaces cut out by Hk , respectively. Notice that the
linear subspace L⊥

k is spanned by the vector ok defined in (2.15).
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We will make the simplifying assumption that n is a multiple of (k + 1)(k + 2).
This implies, in particular, that vk,n = vk and vk+1,n = vk+1 are both vertices of Pn

and that the line segment Lk,n = Lk is a facet of Pn whose normal cone is spanned
by the point ok .

THEOREM 4.3. Let k be a positive integer, β ∈ R2 and 0 < ε < 1 be ar-
bitrarily small. Then there exists an n0 = n0(β, ε, k) > 0 such that the follow-
ing holds: for every n > n0 and a multiple of (k + 1)(k + 2) there exists an
r0 = r0(β, ε, k, n) > 0 such that for all r > r0:

• if β ∈ H+
k or β ∈ Hk then Pn,β+rok

(vk+1) > 1 − ε,
• if β ∈ H−

k then Pn,β+rok
(vk) > 1 − ε.

The previous result shows that, for large values of r and n [assumed to be a mul-
tiple of (k + 1)(k + 2)], the probability distribution Pn,β+rok

will be concentrated
almost entirely on either vk or vk+1, depending on which side of Hk the vector β

lies. In particular, the actual value of β does not play any role in the asymptotics:
only its position relative to Hk matters. An interesting consequence of our result
is the discontinuity of the natural parametrization along the line Hk in the limit as
both n and r tend to infinity. This is in stark contrast to the limiting behavior of
the same model when n is infinity and r tends to infinity: in this case the natural
parametrization is a smooth (though nonminimal) parametrization.

We now consider the critical directions o−1 and o0 [see (2.15)], which are not
covered by Theorem 4.3. We will first describe the behavior of En along the direc-
tion of recession o−1,n := (−1, n

n−2). This is the outer normal to the segment join-

ing the vertices v0,n = (0,0) and vn−1,n = (1− 1
n
, (1− 1

n
)(1− 2

n
)) of Pn, represent-

ing the empty and the complete graph, respectively. Notice that o−1,n → o−1 as
n → ∞. In this case, we show that, for n and r large, the probability Pn,β+ron , with
β = (β1, β2), assigns almost all of its mass to the empty graph when β1 + β2 < 0
and to the complete graph when β1 +β2 > 0, and it is uniform over v0,n and vn−1,n

when β1n(n − 1) + β2(n − 1)(n − 2) = 0.

THEOREM 4.4. Let β = (β1, β2) ∈ R2 be a fixed vector and 0 < ε < 1 be ar-
bitrarily small. Then for every n there exists an r0 = r0(β, ε, n) such that, for all
r > r0, the total variation distance between Pn,β+ron and the probability distribu-
tion which assigns to the points v0,n and vn−1,n the probabilities

1

1 + exp(β1n(n − 1) + β2(n − 1)(n − 2))

and
exp(β1n(n − 1) + β2(n − 1)(n − 2))

1 + exp(β1n(n − 1) + β2(n − 1)(n − 2))
,

respectively, is less than ε.
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In the last result of this section, we will turn to the critical direction o0 =
(0,−1), which, for every n ≥ 2, is the outer normal to the horizontal facet of Pn

joining the points (0,0) and

v1,n =
(

2�n/2�(n − �n/2�)
n2 ,0

)
,

which we denote with L0,n. Let Gn,0 denote the subset of Gn consisting of trian-
gle free graphs. For each n, consider the exponential family {Qn,β1, β1 ∈ R} of
probability distributions on L0,n ∩ Sn given by

Qn,β1(x) = exp
(
n2(β1x1 − φn(β1)

))
νn(x), x ∈ Ln,0 ∩ Sn,β1 ∈R,(4.4)

where φn(β1) is the normalizing constant and νn(x) = |{t−1(x)}| is the measure
on L0,n induced by the counting measure on Gn,0 and t (·).

THEOREM 4.5. Let β = (β1, β2) ∈ R2 be a fixed vector and 0 < ε < 1 an
arbitrary number. Then for every n there exists an r0 = r0(β, ε, n) such that for all
r > r0 the total variation distance between Pn,β+ro0 and Qn,β1 is less than ε.

When compared to Theorem 3.2, Theorem 4.5 is less informative, as the class
of triangle-free graphs is larger than the class of subgraphs of the Turán graphs
T (n,2). We conjecture that this gap can indeed be resolved by showing that, for
each β1, Qn,β1 assigns a vanishingly small mass to the set of all triangle-free graphs
that are not subgraphs of some T (n,2) as n → ∞. See [17] for relevant results.

4.5. From convergence in total variation to stochastic convergence in cut dis-
tance. The results presented so far in Section 4 concern convergence in total vari-
ation of the homomorphism densities of edges and triangles to point mass distribu-
tions at points vk,n. They describe a rather different type of asymptotic guarantees
from the one obtained in Section 3, whereby convergence occurs in the functional
space W̃ under the cut metric. Nonetheless, both sets of results are qualitatively
similar and lend themselves to nearly identical interpretations. Here, we sketch
how the total variation convergence results imply convergence in probability in
the cut metric along subsequences. Notice that this is precisely the same type of
conclusions we obtained at the end of the variational analysis, as remarked in Sec-
tion 3.4.

We will let n be of the form j (k + 1)(k + 2) for j = 1,2, . . . . For simplicity,
we consider a direction o in the interior of Ck , for some k. By Theorem 4.2 and
using a standard diagonal argument, there exists a subsequence {(ni, ri)}i=1,2,...

such that the sequence of probability measures {Pni,β+rio}i=1,2,... converges in to-
tal variation to the point mass at vk . Thus, for each ε > 0, there exists an i0 = i0(ε)

such that, for all i > i0, the probability that a random graph Gni
drawn from the

probability distribution Pni,β+rio is such that t (Gi) 
= vk is less than ε. Let Ai be
the event that t (Gi) = vk and for notational convenience denote Pni ,β+rio by Pi .
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Thus, for each i > i0, Pi (Ai ) > 1 − ε. Let H be any finite graph. Then, denot-
ing with Ei the expectation with respect to Pi and with 1Ai

the indicator function
of Ai , we have

Ei

[
t (H,Gi)

] = Ei

[
t (H,Gi)1Ai

]+Ei

[
t (H,Gi)1Ac

i

]
,

where

Ei

[
t (H,Gi)1Ai

] = t
(
H,T (ni, k + 1)

) = t
(
H,f Kk+1

)
,

since, given our assumption on the ni’s, the point in W̃ corresponding to T (ni, k +
1) is f̃ Kk+1 for all i. Thus, using the fact that density homomorphisms are bounded
by 1,

Ei

[
t (H,Gi)

]− t
(
H,f Kk+1

) = Ei

[
t (H,Gi)1Ac

i

] ≤ Pi

(
Ac

i

) = ε

for all i > i0. Thus, we conclude that limi Ei[t (H,Gi)] = t (H,f Kk+1) for each
finite graph H . By Corollary 3.2 in [14], as i → ∞,

δ�
(
f̃ Gi , f̃ Kk+1

) → 0 in probability.

Similar arguments apply to the case in which o = ok for some k > 0. Using
instead Theorem 4.3, we obtain that, if {Gni

}i=1,2... is a sequence of random graphs
drawn from the sequence of probability distributions {Pni,β+rio}, then, as i → ∞,

δ�
(
f̃ Gi , f̃ Kk+2

) → 0 if β ∈ H+
k or β ∈ Hk,

and

δ�
(
f̃ Gi , f̃ Kk+1

) → 0 if β ∈ H−
k

in probability.

5. Illustrative figures. We have validated our theoretical findings with sim-
ulations of the edge-triangle model under various specifications on the model pa-
rameters. Figure 4 depicts a typical realization from the model when n = 30 and o

is in C◦
3 . As predicted by Theorem 4.2, the resulting graph is complete equipartite

with 4 classes. Figures 5, 6 and 7 exemplify the results of Theorem 4.3. For these
simulations, we consider the critical direction o1 = (1,−3/4) and again a network
size of n = 30, and then vary the initial values of β . Figures 5 and 7 show respec-
tively the outcome of two typical draws when β is in H−

1 and H+
1 , respectively.

As predicted by our theorem, we obtain a complete bipartite and tripartite graph.
Figure 6 depicts instead the case of β exactly along the hyperplane H1, for which,
according to our theory, a typical realization would again be a complete tripartite
graph.

As a final remark, simulating from the extremal parameter configurations we
described using off-the-shelf MCMC methods (see, e.g., [24, 31] and, for a con-
vergence result, [10]) is quite difficult. This is due to the fact that under these
extremal settings, the model places most of its mass on only one or two types of
Turán graphs, and the chance of a chain being able to explore adequately the space
of graphs using local moves and to eventually reach the configuration of highest
energy is essentially minuscule.
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FIG. 4. A simulated realization of the exponential random graph model on 30 nodes with edges
and triangles as sufficient statistics, where the initial value β = (0,0), r = 80, and the generic
direction o = (1,−1/2) in Co

3 . The structure of the simulated graph matches the predictions of
Theorem 4.2.

FIG. 5. A simulated realization of the exponential random graph model on 30 nodes with edges
and triangles as sufficient statistics, where the initial value β = (20,−80) in H−

1 , r = 40, and the
critical direction o1 = (1,−3/4). The structure of the simulated graph matches the predictions of
Theorem 4.3.
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FIG. 6. A simulated realization of the exponential random graph model on 30 nodes with edges and
triangles as sufficient statistics, where the initial value β = (0,0) in H1, r = 40, and the critical di-
rection o1 = (1,−3/4). The structure of the simulated graph matches the predictions of Theorem 4.3.

6. Further discussions. As shown by Bhamidi et al. [3] and Chatterjee and
Diaconis [10], as n → ∞, when β2 is positive, a typical graph drawn from the
standard edge-triangle exponential random graph model (2.7) has a somewhat triv-

FIG. 7. A simulated realization of the exponential random graph model on 30 nodes with edges
and triangles as sufficient statistics, where the initial value β = (10,−6) in H+

1 , r = 40, and the
critical direction o1 = (1,−3/4). The structure of the simulated graph matches the predictions of
Theorem 4.3.
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ial structure: it always looks like an Erdős–Rényi random graph or a mixture of
Erdős–Rényi random graphs. By raising the triangle density to an exponent γ > 0,
Lubetzky and Zhao [39] proposed a natural generalization:

Pn,β(Gn) = exp
(
n2(β1t (K2,Gn) + β2t (K3,Gn)

γ − ψn(β)
))

,(6.1)

which enabled the model to exhibit a nontrivial structure even when β2 is positive.
This generalized model still features the Erdős–Rényi behavior if γ ≥ 2/3; but for
γ < 2/3, there exist regions of values of (β1, β2) for which a typical graph drawn
from the model has symmetry breaking. We are interested to know how the double
asymptotic framework discussed in the earlier sections would lend itself to this
generalized model.

Below we adapt our first main result for the standard model (Theorem 3.1) to
the generalized model and carry out some explicit calculations. As we will see, it
conforms to the findings in [39] and gives the limiting graphon structure for the
solution of the variational problem. The proof of the theorem offers one explana-
tion for why 2/3 is a separating value for the exponent γ : it is intimately tied to
the upper boundary of the feasible edge-triangle homomorphism densities. Fur-
thermore, the theorem provides convincing evidence that the region of symmetry
breaking for the generalized edge-triangle model is potentially much larger than
the ones depicted on page 5 of [39]. We remark that, using similar arguments, it is
also possible to adapt our other results for the standard model to the generalized
model, but the calculations would be rather involved, especially when they concern
the lower boundary of the feasible edge-triangle homomorphism densities. Recall
that for a nonnegative constant c, we write u = c when u is the constant graphon
with value c.

THEOREM 6.1. Consider the generalized edge-triangle exponential random
graph model (6.1). Let β1 = aβ2 + b. Then

lim
β2→∞ sup

f̃ ∈F̃ ∗(β2)

δ�(f̃ , Ũ ) = 0,(6.2)

where for γ ≥ 2/3, the set U ⊂ W is determined as follows:

• U = {1} if a > −1 or a = −1 and b > 0,
• U = {0,1} if a = −1 and b = 0, and
• U = {0} if a < −1 or a = −1 and b < 0;

and for γ < 2/3, the set U ⊂ W is determined as follows:

• U = {1} if a ≥ −3
2γ , and

• U = {f } if a < −3
2γ ,

where f (x, y) =
⎧⎪⎨⎪⎩1, if 0 ≤ x, y ≤

(
− 2a

3γ

)1/(3γ−2)

,

0, otherwise.
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APPENDIX: PROOFS

PROOF OF THEOREM 3.1. Suppose H2 has p edges. Subject to β1 = aβ2 + b,
the variational problem (2.6) in the Erdős–Rényi region takes the following form:
Find u so that

β2
(
au + up)+ bu − I (u)(A.1)

is maximized. Take an arbitrary sequence β
(i)
2 → ∞. Let ui be a maximizer cor-

responding to β
(i)
2 and u∗ be a limit point of the sequence {ui}. By the bounded-

ness of bu and I (u), we see that u∗ must maximize au + up . For a 
= −1, this
maximizer is unique, but for a = −1, both 0 and 1 are maximizers. In this case,
β2(au + up) = 0, so we check the value of bu − I (u) as well. We conclude that
u∗ = 1 for b > 0, u∗ = 0 for b < 0, and u∗ may be either 1 or 0 for b = 0. �

The following lemma appeared as an exercise in [36].

LEMMA A.1 (Lovász). Let F and G be two simple graphs. Let f be a graphon
such that t (F,G) > 0 and t (G,f ) > 0. Then t (F,f ) > 0.

PROOF. Suppose |V (F)| = m and |V (G)| = n. Since t (G,f ) > 0, there is a
Lebesgue measurable set A ⊆ Rn and |A| 
= 0 such that

∏
{i,j}∈E(G) f (xi, xj ) > 0

for x ∈ A. Since t (F,G) > 0, there exists a graph homomorphism h : V (F) →
V (G). Since F and G are both labeled graphs, this naturally induces a map
h′ : Rm →Rn. If h is one-to-one, take B = (h′)−1(A) ⊆ Rm. Then clearly |B| 
= 0
is Lebesgue measurable and

∏
{i,j}∈E(F) f (yi, yj ) > 0 for y ∈ B . If h is not one-to-

one, identifying B ⊆ Rm with |B| 
= 0 requires treating the vertices of V (F) that
map to the same vertex of V (G) under h as independent coordinates. We illustrate
this procedure through a simple example. Suppose F is a two-star consisting of
edges {1,2} and {1,3} and G is a single edge {1,2}. A graph homomorphism be-
tween the two vertex sets V (F) and V (G) may be given by 1 �→ 1,2 �→ 2,3 �→ 2.
Say we have found a Lebesgue measurable set A = {(x1, x2) : a ≤ x1 ≤ b, c(x1) ≤
x2 ≤ d(x1)} ⊆ R2 such that f (x1, x2) > 0 for x ∈ A. Take B = {(y1, y2, y3) :
a ≤ y1 ≤ b, c(y1) ≤ y2 ≤ d(y1), c(y1) ≤ y3 ≤ d(y1)} ⊆ R3. Then clearly |B| 
= 0
is Lebesgue measurable and f (y1, y2)f (y1, y3) > 0 for y ∈ B . It follows that
t (F,f ) > 0. �

PROOF OF THEOREM 3.2. Take an arbitrary sequence β
(i)
2 → −∞. For each

β
(i)
2 , we examine the corresponding variational problem (2.3). Let f̃i be an element

of F̃ ∗(β(i)
2 ). Let f̃ ∗ be a limit point of f̃i in W̃ (its existence is guaranteed by the

compactness of W̃). Suppose t (H2, f
∗) > 0. Then by the continuity of t (H2, ·)

and the boundedness of t (H1, ·) and
∫∫

[0,1]2 I (·) dx dy, limi→∞ ψ∞(β
(i)
2 ) = −∞.
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But this is impossible since ψ∞(β
(i)
2 ) is uniformly bounded below, as can be easily

seen by considering f Kr−1 as a test function [see (2.12)], where Kr denotes a com-
plete graph on r vertices. Thus, t (H2, f

∗) = 0. Since H2 has chromatic number r ,
t (H2,Kr) > 0, which implies that t (Kr, f

∗) = 0 by Lemma A.1. By the graphon
version of Turán’s theorem for Kr -free graphs [43], the edge density e of f ∗ must
satisfy e = t (H1, f

∗) ≤ (r − 2)/(r − 1). This implies that the measure of the set
{(x, y) ∈ [0,1]2|f ∗(x, y) > 0} is at most (r − 2)/(r − 1). Otherwise, the graphon

f̄ (x, y) =
{

1, f ∗(x, y) > 0,
0, otherwise

would be Kr -free but with edge density greater than (r − 2)/(r − 1), which is
impossible.

Take an arbitrary edge density e ≤ (r − 2)/(r − 1). We consider all graphons
f such that t (H1, f ) = e and t (H2, f ) = 0. Subject to these constraints, maxi-
mizing (2.3) is equivalent to minimizing

∫∫
[0,1]2 I (f ) dx dy. Since t (H2, f ) = 0,

as argued above, the set A = {(x, y) ∈ [0,1]2|f (x, y) > 0} has measure at most
(r −2)/(r −1). If the measure of A is less than (r −2)/(r −1), we randomly group
part of the set [0,1]2 −A into A so that the measure of A is exactly (r −2)/(r −1).
We note that ∫ ∫

[0,1]2
I
(
f (x, y)

)
dx dy =

∫ ∫
A

I
(
f (x, y)

)
dx dy.(A.2)

More importantly, since I (·) is convex, by Jensen’s inequality, we have∫ ∫
A

I
(
f (x, y)

)
dx dy ≥ r − 2

r − 1
I

(∫ ∫
A

r − 1

r − 2
f (x, y) dx dy

)
(A.3)

= r − 2

r − 1
I

(
r − 1

r − 2
e

)
,

where the first equality is obtained only when f (x, y) ≡ e(r − 1)/(r − 2) on A.
The variational problem (2.3) is now further reduced to the following: Find

e ≤ (r − 2)/(r − 1) [and hence f (x, y)] so that

β1e − r − 2

r − 1
I

(
r − 1

r − 2
e

)
(A.4)

is maximized. Simple computation yields e = p(r − 2)/(r − 1), where p =
e2β1/(1 + e2β1). Thus, pf Kr−1 is a maximizer for (2.3) as β2 → −∞. We claim
that any other maximizer h (if it exists) must lie in the same equivalence class.
Recall that h must be Kr -free. Also, h is zero on a set of measure 1/(r − 1) and p

on a set of measure (r − 2)/(r − 1). The graphon

h̄(x, y) =
{

1, h(x, y) = p,
0, otherwise
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describes a Kr -free graph with edge density (r − 2)/(r − 1). By the graphon ver-
sion of Turán’s theorem [43], h̄ corresponds to the complete (r − 1)-equipartite
graph, and is thus equivalent to f Kr−1 . Hence, h = ph̄ is equivalent to pf Kr−1 .

�

PROOF OF THEOREM 3.3. Subject to β1 = aβ2 + b, the variational prob-
lem (2.3) takes the following form: Find f (x, y) so that

β2(ae + t) + be −
∫ ∫

[0,1]2
I
(
f (x, y)

)
dx dy(A.5)

is maximized, where e = t (H1, f ) denotes the edge density and t = t (H2, f ) de-
notes the triangle density of f , respectively. Take an arbitrary sequence β

(i)
2 →

−∞. Let f̃i be an element of F̃ ∗(β(i)
2 ). Let f̃ ∗ be a limit point of f̃i in W̃ (its ex-

istence is guaranteed by the compactness of W̃). By the continuity of t (H2, ·) and
the boundedness of t (H1, ·) and

∫∫
[0,1]2 I (·) dx dy, we see that f ∗ must minimize

ae + t . This implies that f ∗ must lie on the Razborov curve (i.e., lower boundary
of the feasible region) (see Figure 1). Note further that ae + t is a linear function,
so f ∗ must minimize over the convex hull P of R (see Figure 2). Since R and P

only intersect at the points vk , k = 1,2, . . . , f ∗ corresponds to a Turán graphon
with k classes.

Consider two adjacent points vk = (ek, tk) and vk+1 = (ek+1, tk+1), where

(ek, tk) =
(

k

k + 1
,
k(k − 1)

(k + 1)2

)
and (ek+1, tk+1) =

(
k + 1

k + 2
,
k(k + 1)

(k + 2)2

)
.(A.6)

Let Lk be the line segment joining these two points. The slope of the line passing
through Lk is

k(3k + 5)

(k + 1)(k + 2)
= −ak.(A.7)

It is clear that ak is a decreasing function of k and ak → −3 as k → ∞. More
importantly, if a > ak , then aek + tk < aek+1 + tk+1; if a = ak , then aek + tk =
aek+1 + tk+1; and if a < ak , then aek + tk > aek+1 + tk+1. Decreasing a thus moves
the location of the minimizer f ∗ upward, with sudden jumps happening at special
angles a = ak , where the sign of b comes into play as in the proof of Theorem 3.1.

�

PROOF OF LEMMA 4.1. For part 1, the proof of Theorem 2 in [4] implies that
any linear functional of the form Lγ (x) = 〈x, c〉, where c = (1, γ )� with γ ∈ R,
is maximized over Pn by some vk,n and, conversely, any point vk,n is such that

vk,n = argmax
x∈Pn

Lγ (x)(A.8)

for some γ ∈ R. Thus, Pn is the convex hull of the points {vk,n, k = 0,1, . . . , n −
1}. Next, if r ≥ �n/2�, the size of the larger class(es) of any T (n, r) is 2 and the
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size of the smaller class(es) (if any) is 1. Thus, the increase in the number of edges
and triangles going from T (n, r) to T (n, r + 1) is 1 and (n − 2), respectively. As
a result, the points {t (T (n, r)), r = �n/2�, . . . , n} are collinear.

To show part 2, notice that, by definition, Pn ⊂ P , so it is enough to show that
for any x ∈ P and ε > 0 there exists an n′ = n′(x, ε) such that infy∈Pn ‖x − y‖ < ε

for all n > n′. But this follows from the fact that, for each fixed k, limn→∞ vk,n =
vk and every x ∈ P is either an extreme point of P or is contained in the convex
hull of a finite number of extreme points of P .

The first claim of part 3 can be directly verified with easy algebra [see (2.8)].
The second claim follows from Theorem 4.1 in [46] and the strict concavity of the
lower boundary of R on each subinterval [(k − 1)/k, k/(k + 1)]. �

The key steps of the proofs of Theorems 4.2 and, in particular, 4.3 rely on a care-
ful analysis of the closure of the exponential family corresponding to the model
under study. For the sake of clarity, we will provide a self-contained treatment. For
details, see [12, 13, 23, 47].

The closure of En. Fix a positive integer k. We first describe the total variation
closure of the family En for n tending to infinity as n = j (k + 1)(k + 2), for j =
1,2, . . . . As a result, for all such n, vk,n = vk and vk+1,n = vk+1, which implies
Lk,n = Lk (see Lemma 4.1).

Let νk,n be the restriction of νn to Lk and consider the exponential family on
Pn ∩Lk,n = {vk, vk+1} generated by νk,n and t , and parametrized by R2, which we
denote with Ek,n. Thus, the probability of observing the point x ∈ {vk, vk+1} is

Pn,k,β(x) = en2〈x,β〉

en2〈vk,β〉νn(vk) + en2〈vk+1,β〉νn(vk+1)
νn(x), β ∈ R2.(A.9)

The new family Ek,n is an element of the closure of En in the topology corre-
sponding to the variation metric. More precisely, the family Ek,n is comprised by
all the limits in total variation of sequences of distributions from En parametrized

by sequences {β(i)} ⊂R2 such that limi ‖β(i)‖ = ∞ and limi
β(i)

‖β(i)‖ = ok‖ok‖ .

PROPOSITION A.2. Let n be fixed and a multiple of (k + 1)(k + 2). For any
β ∈ R2, consider the sequence of parameters {β(i)}i=1,2,... given by β(i) = β +
riok , where {ri}i=1,2,... is a sequence of positive numbers tending to infinity. Then

lim
i
Pn,β(i) (x) =

{
Pn,k,β(x), if x ∈ {vk, vk+1},
0, if x ∈ Sn \ {vk, vk+1}.

In particular, Pn,β(i) converges in total variation to Pn,k,β as i → ∞.

PROOF. The proof can be found in, for example, [12, 47]. We provide it for
completeness.
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Let x∗ ∈ Sn. Then, for any β ∈ R2,

lim
i→∞Pn,β(i)

(
x∗) = en2〈x∗,β〉

limi→∞ en2ψn(β(i))−rin
2〈x∗,ok〉 νn

(
x∗).

First, suppose that x∗ ∈ {vk, vk+1}. Then

en2ψn(β(i))−rin
2〈x∗,ok〉

= ∑
x∈Sn\{vk,vk+1}

en2〈x,β〉+rin
2〈x−x∗,ok〉νn(x) + ∑

x∈{vk,vk+1}
en2〈x,β〉νn(x)

↓ en2〈vk,β〉νn(vk) + en2〈vk+1,β〉νn(vk+1),

as i → ∞, because
∑

x∈Sn\{vk,vk+1} e
n2〈x,β〉+rin

2〈x−x∗,ok〉νn(x) ↓ 0. This follows
easily since the term 〈x − x∗, ok〉 is 0 if x ∈ {vk, vk+1} and is strictly negative
otherwise. Thus, Pn,β(i) (x∗) converges to Pn,k,β(x∗) [see (A.9)].

If x∗ ∈ Sn \ {vk, vk+1}, since Pn is full dimensional, we have instead

en2ψn(β(i))−rin
2〈x∗,ok〉 ≥ ∑

x∈Sn:〈x−x∗,ok〉>0

en2〈x,β〉+rin
2〈x−x∗,ok〉νn(x) → ∞,

as i → ∞. Therefore, Pn,β(i) (x∗) → 0. The proof is now complete. �

The parametrization (A.9) is thus redundant, as it requires two parameters to
represent a distribution whose support lies on a 1-dimensional hyperplane. One
parameter is all that is needed to describe this distribution, a reduction that can
be accomplished by standard arguments. Because such reparametrization is highly
relevant to our problem, we provide the details.

PROPOSITION A.3. The family Ek,n is a one-dimensional exponential fam-
ily parametrized by Lk . Equivalently, Ek,n can be parametrized with {〈lk, β〉, β ∈
R2} =R as follows:

Pn,k,β(x) = en2〈x,lk〉·〈lk,β〉

en2〈vk,lk〉·〈lk,β〉νn(vk) + en2〈vk+1,lk〉·〈lk,β〉νn(vk+1)
νn(x),(A.10)

where x ∈ {vk, vk+1}.
PROOF. For an x ∈R2 and a linear subspace S of R2, let 
S(x) be the orthog-

onal projection of x onto S with respect to the Euclidean metric. Set õk = ok‖ok‖ and
let αk ∈ R define the one-dimensional hyperplane (i.e., the line) going through Lk ,
that is, {x ∈ R2: 〈x, õk〉 = αk}. Then for every β ∈ R2 and x ∈ {vk, vk+1}, we have

〈x,β〉 = 〈
Lk
x, β〉 + 〈
L⊥

k
x, β〉 = 〈x, lk〉 · 〈lk, β〉 + αk〈õk, β〉

since αk = 〈vk, õk〉 = 〈vk+1, õk〉. Plugging into (A.9), we obtain (A.10). From that
equation, we see that, for any pair of distinct parameter vectors β and β ′, Pn,k,β =
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Pn,k,β ′ if and only if 〈lk, β〉 = 〈lk, β ′〉, that is, if and only if they project to the same
point in Lk . This proves the claim. �

REMARK. The geometric interpretation of Proposition A.3 is the following:
β and β ′ parametrize the same distribution on Ek,n if and only if the line going
through them is parallel to the line spanned by ok .

Finally, same arguments used in the proof of Proposition A.2 also imply that
the closure of En along generic (i.e., noncritical) directions is comprised of point
masses at the points vk,n. For the next result, we do not need the condition of n

being multiple of (k + 1)(k + 2).

COROLLARY A.4. Let o ∈ R2 be different from oj , j = −1,0,1, . . . and let
k be such that o ∈ C◦

k . There exists an n0 = n0(o) such that, for any fixed n >

n0, and any sequence of parameters {β(i)}i=1,2,... given by β(i) = β + rio, where
{ri}i=1,2,... is a sequence of positive numbers tending to infinity and β is a vector
in R2,

lim
i
Pn,β(i) (x) =

{
1, if x = vk,n,

0, otherwise.

That is, Pn,β(i) converges in total variation to the point mass at vk as i → ∞.

PROOF. We only provide a brief sketch of the proof. From Lemma 4.1, Pn is
the convex hull of the points {vk,n, k = 0,1, . . . , �n/2� − 1} and vn−1,n and, for
each fixed k, vk,n → vk as n → ∞. Therefore, the normal cone to vk,n converges
to Ck . Since by assumption o ∈ C◦

k , there exists an n0, which depends on o (and
hence also on k), such that, for all n > n0, o is in the interior of the normal cone to
vk,n. The arguments used in the proof of Proposition A.2 yield the desired claim.

�

Asymptotics of the closure of En. We now study the asymptotic properties of
the families Ek,n for fixed k and as n = j (k + 1)(k + 2) for j = 1,2, . . . tends to
infinity.

THEOREM A.5. Let {nj }j=1,2,... be the sequence nj = j (k + 1)(k + 2). Then

lim
j→∞

Pnj ,k,β(vk+1)

Pnj ,k,β(vk)
→

{∞, if β ∈ H+
k or β ∈ Hk ,

0, if β ∈ H−
k .

REMARK. The proof further shows that the ratio of probabilities diverges or
vanishes at a rate exponential in n2

j .
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PROOF OF THEOREM A.5. We can write
Pnj ,k,β(vk+1)

Pnj ,k,β(vk)
= en2〈lk,β〉〈vk+1−vk,lk〉 νn(vk+1)

νn(vk)
.

We will first analyze the limiting behavior of the dominating measure νn. We
will show that, as n → ∞, the number of Turán graphs with r + 1 classes is larger
than the number of Turán graphs with r classes by a multiplicative factor that is
exponential in n.

LEMMA A.6. Consider the sequence of integers n = j (k + 1)(k + 2), where
k ≥ 1 is a fixed integer and j = 1,2, . . . . Then, as n → ∞,

νn(vk+1)

νn(vk)
�

√
1

n

(
k + 2

k + 1

)n

.

PROOF. Recall that νn(vk) is the number of (simple, labeled) graphs on n

nodes isomorphic to a Turán graph with (k + 1) classes each of size j (k + 2), and
that νn(vk+1) is the number of (simple, labeled) graphs on n nodes isomorphic to
a Turán graph with (k + 2) classes each of size j (k + 1). Thus,

νn(vk) = 1

(k + 1)!
n!

[(j (k + 2))!]k+1

and

νn(vk+1) = 1

(k + 2)!
n!

[(j (k + 1))!]k+2 .

Next, since n = j (k + 1)(k + 2), using Stirling’s approximation we have that((
j (k + 2)

)!)k+1 ∼ (
2πj (k + 2)

)(k+1)/2
e−j (k+2)(k+1)(j (k + 2)

)j (k+2)(k+1)

= (
2πj (k + 2)

)(k+1)/2
e−n(j (k + 2)

)n
and, similarly,((

j (k + 1)
)!)k+2 ∼ (

2πj (k + 1)
)(k+2)/2

e−j (k+1)(k+2)(j (k + 1)
)j (k+1)(k+2)

= (
2πj (k + 1)

)(k+2)/2
e−n(j (k + 1)

)n
.

Therefore,

νn(vk+1)

νn(vk)
∼ (k + 1)!

(k + 2)!
(2π)(k+1)/2

(2π)(k+2)/2

(j (k + 2))(k+1)/2

(j (k + 1))(k+2)/2

(j (k + 2))n

(j (k + 1))n

=
[
(k + 1)!
(k + 2)!

(2π)(k+1)/2

(2π)(k+2)/2

(
k + 2

k + 1

)(k+1)/2√
k + 2

]√
1

n

(
k + 2

k + 1

)n

,

where we have used the fact that j = n
(k+1)(k+2)

for each n. �
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Basic geometry considerations yield that, for any β ∈ R2,

〈lk, β〉
⎧⎪⎨⎪⎩

> 0, if β ∈ H+
k ,

< 0, if β ∈ H−
k ,

= 0, if β ∈ Hk .

Next, we have that

〈vk+1 − vk, lk〉 > 0,

since

lk = 1√
1 + ( k(3k+5)

(k+1)(k+2)
)2

⎛⎝ 1
k(3k + 5)

(k + 1)(k + 2)

⎞⎠ and

vk+1 − vk =

⎛⎜⎜⎝
1

(k + 1)(k + 2)

k(3k + 5)

(k + 1)2(k + 2)2

⎞⎟⎟⎠
are parallel vectors with positive entries.

By Lemma A.6, we finally conclude that

Pnj ,k,β(vk+1)

Pnj ,k,β(vk)
� en2Ck(β)

√
1

n

(
k + 2

k + 1

)n

,

where Ck(β) = 〈lk, β〉〈vk+1 − vk, lk〉. The result now follows since the term
en2Ck(β) dominates the other term and sign(Ck(β)) = sign(〈lk, β〉). �

PROOFS OF THEOREMS 4.2, 4.3, 4.4 AND 4.5. We first consider Theorem 4.3.
Assume that β ∈ H+

k or β ∈ Hk . Then by Theorem A.5, there exists an n0 =
n0(β, ε, k) such that, for all n > n0 and a multiple of (k+1)(k+2), Pn,k,β(vk+1) >

1 − ε/2 [recall that, by Proposition A.3, Pn,k,β(vk+1) + Pn,k,β(vk) = 1]. Let n be
an integer larger than n0 and a multiple of (k + 1)(k + 2). By Proposition A.2,
there exists an r0 = r0(β, ε, k, n) such that, for all r > r0, Pn,β+rok

(vk+1) >

Pn,k,β(vk+1) − ε/2. Thus, for these values of n and r ,

Pn,β+rok
(vk+1) > Pn,k,β(vk+1) − ε/2 > 1 − ε/2 − ε/2 = 1 − ε,

as claimed. The case of β ∈ H−
k is proved in the same way.

For Theorem 4.2, we use Corollary A.4, which guarantees that there exists an
integer n0 = n0(β, ε, o) such that, for any integer n > n0, there exists an r0 =
r0(β, ε, o, n) such that for any r > r0,

Pn,β+ro(vk,n) > 1 − ε.

Theorem 4.4 is proved as a direct corollary of Proposition A.3 along with simple
algebra. Finally, Theorem 4.5 follows from similar arguments used in the proof of
Proposition A.3. �
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PROOF OF THEOREM 6.1. Subject to β1 = aβ2 + b, the variational problem
takes the following form: Find f (x, y) so that

β2
(
ae + tγ

)+ be −
∫ ∫

[0,1]2
I
(
f (x, y)

)
dx dy(A.11)

is maximized, where e = t (H1, f ) denotes the edge density and t = t (H2, f ) de-
notes the triangle density of f , respectively. As in the proof of Theorem 3.1, we
see that as β2 → ∞, the limiting optimizer f ∗ must maximize ae + tγ . This im-
plies that f ∗ must lie on the curve t = e3/2 (i.e., upper boundary of the feasible
region) (see Figure 1). Consider g(e) = ae+e(3/2)γ . It is clear that if γ ≥ 2/3, then
g′′(e) ≥ 0 for e ∈ (0,1), which implies that the maximizer f ∗ is attained at either
the empty graph or the complete graph. Further investigations show that same con-
clusions hold as in the standard model where γ = 1. When γ < 2/3, there are two
situations. If a ≥ −3

2γ , then g′(e) ≥ 0 on (0,1) always and the maximizer f ∗ is
given by the complete graph. If a < −3

2γ , then g(e) is first increasing and then de-
creasing on (0,1), and the optimal edge density e∗ satisfies (e∗)(3/2)γ−1 = − 2a

3γ
.

This says that the maximizer f ∗ has a nontrivial structure. It represents a complete
subgraph coupled with isolated vertices, and the size of the complete subgraph is
determined by e∗ [36]. We note that as a decays from −3

2γ to −∞, the nontrivial
graph transitions from being almost complete to almost empty. �
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