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DISCREPANCY BOUNDS FOR UNIFORMLY ERGODIC MARKOV
CHAIN QUASI-MONTE CARLO

BY JOSEF DICK∗,1, DANIEL RUDOLF†,2 AND HOUYING ZHU∗,3

University of New South Wales∗ and Universität Jena†

Markov chains can be used to generate samples whose distribution ap-
proximates a given target distribution. The quality of the samples of such
Markov chains can be measured by the discrepancy between the empiri-
cal distribution of the samples and the target distribution. We prove upper
bounds on this discrepancy under the assumption that the Markov chain is
uniformly ergodic and the driver sequence is deterministic rather than inde-
pendent U(0,1) random variables. In particular, we show the existence of
driver sequences for which the discrepancy of the Markov chain from the tar-
get distribution with respect to certain test sets converges with (almost) the
usual Monte Carlo rate of n−1/2.

1. Introduction. Markov chain Monte Carlo (MCMC) algorithms are used
for the approximation of an expected value with respect to the stationary probabil-
ity measure π of the chain. This is done by simulating a Markov chain (Xi)i≥1
and using the sample average 1

n

∑n
i=1 f (Xi) to estimate the mean Eπ(f ) :=∫

G f (x)π(dx), where G is the state space and f is a real-valued function defined
on G. This method is a staple tool in the physical sciences and Bayesian statistics.

A single transition from Xi−1 to Xi of a Markov chain is generated by us-
ing the current state Xi−1 and a random source Ui , usually taken from an i.i.d.
U(0,1) sequence (Ui)i≥1 of random numbers. In contrast, the Markov chain quasi-
Monte Carlo idea is as follows: Substitute the sequence of random numbers by a
deterministically constructed finite sequence of numbers (ui)1≤i≤n in [0,1]s for
all n ∈ N. Numerical experiments suggest that for judiciously chosen determinis-
tic pseudo-random numbers (ui)1≤i≤n this can lead to significant improvements.
Owen and Tribble [25] and Tribble [35] report an improvement by a factor of up
to 103 and a faster convergence rate for a Gibbs sampling problem. There were
also previous attempts which provided evidence that the approach leads to com-
parable results [16, 18, 33]. Another line of research, dealing with the so-called
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array-RQMC method, also combines MCMC with quasi-Monte Carlo [15]. For a
thorough literature review we refer to [6], Section 1.1 (Literature review).

Recently, in the work of Chen, Dick and Owen [6] and Chen [5], the first the-
oretical justification of the Markov chain quasi-Monte Carlo approach on con-
tinuous state spaces was provided. Therein a consistency result is proven if the
random sequence (Ui)i≥1 is substituted by a deterministic “completely uniformly
distributed” (CUD) sequence (ui)i≥1, the Markov chain satisfies a contraction as-
sumption and the integrand f is continuous. For a precise definition of CUD se-
quences, we refer to [6, 7] and for the construction of weakly CUD sequences we
refer to [36]. The consistency result of Markov chain quasi-Monte Carlo corre-
sponds to an ergodic theorem for Markov chain Monte Carlo and can be shown to
be equivalent to the statement that the discrepancy between the empirical distri-
bution and target distribution converges to 0 (this follows directly from [6], Theo-
rem 1). However, from the result in [6], it is not clear how fast the sample average
converges to the desired expectation. The goal of this paper is to investigate the
convergence behavior of such Markov chain quasi-Monte Carlo algorithms. We
describe the setting and main results in the following.

Throughout the paper, we deal with uniformly ergodic Markov chains on a state
space G ⊆ Rd and a probability space (G,B(G),π), where B(G) is the Borel σ -
algebra defined on G and π is the stationary distribution of the Markov chain; for
details see, for example, [21, 27, 30]. We assume that the Markov chain can be
generated by an update function ϕ : G × [0,1]s → G, that is, Xi = ϕ(Xi−1;Ui)

for all i ≥ 1. We fix a starting point x0 = x and replace the random numbers
(Ui)i≥1 by a deterministic sequence (ui)i≥1 to generate the deterministic points
xi = ϕ(xi−1;ui) for i ≥ 1. The convergence behavior of the Markov chain is mea-
sured using a generalized Kolmogorov–Smirnov test between the stationary distri-
bution π and the empirical distribution π̂n(A) := 1

n

∑n
i=1 1xi∈A, where 1xi∈A is the

indicator function of the set A ∈ B(G). The discrepancy is defined by taking the
supremum of |π(A)− π̂n(A)| over all sets in A ⊆ B(G) [since the empirical distri-
bution is based on a finite number of points in G we generally have A �= B(G), see
below for a more detailed description]. Under these assumptions, we prove that,
for each n ∈ N, there exists a finite sequence of numbers (ui)1≤i≤n such that this
discrepancy converges with order O(n−1/2(logn)1/2) as n tends to infinity. This
is roughly the convergence rate which one would expect from MCMC algorithms
based on random inputs.

A drawback of our results is that we are currently not able to give explicit con-
structions of sequences (ui)1≤i≤n for which our discrepancy bounds hold. This
is because our proofs make essential use of probabilistic arguments. Namely, we
use a Hoeffding inequality by Glynn and Ormoneit [11] and some results by Tala-
grand [34] on empirical processes and a result by Haussler [13]. Roughly speaking,
we use the Hoeffding inequality to show that the probability of all (Xi)1≤i≤n with
small discrepancy is bigger than 0, which implies the existence of a Markov chain
with small discrepancy. We do, however, give a criterion (which we call “pull-back
discrepancy”) which the numbers (ui)1≤i≤n need to satisfy such that the point set
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(xi)1≤i≤n has small discrepancy. This is done by showing that the discrepancy of
(xi)1≤i≤n is close to the pull-back discrepancy of the driver sequence (ui)1≤i≤n.
This should eventually lead to explicit constructions of suitable driver sequences.
As a corollary to the relation between the discrepancy of the Markov chain and
the pull-back discrepancy of the driver sequence, we obtain a Koksma–Hlawka in-
equality for Markov chains in terms of the discrepancy of the driver sequence. We
point out that the pull-back discrepancy generally differs from the CUD property
studied in [5] and [6]. Convergence rates beyond the usual Monte Carlo rate of
n−1/2 have previously been shown for Array-RQMC [15] and in [5], Chapter 6. In
both of these instances, a direct simulation is (at least in principle) possible.

Our results on the discrepancy of the points (xi)1≤i≤n can also be understood
as an extension of results on point distributions in the unit cube [0,1]s (see [14])
to uniformly ergodic Markov chains.

We give a brief outline of our work. In the next section, we provide background
information on uniformly ergodic Markov chains, give a relation between the tran-
sition kernel of a Markov chain and their update function and state some exam-
ples which satisfy the convergence properties. We also give some background on
discrepancy and describe our results in more detail. In Section 3, we provide the
notion of discrepancy with respect to the driver sequence and we prove the close re-
lation between the two types of discrepancy for uniformly ergodic Markov chains
from which we deduce a Koksma–Hlawka type inequality. In Section 4, we prove
the main results. The Appendix contains sections on δ-covers, the integration error
and some technical proofs.

2. Background and notation. In this section, we provide the necessary back-
ground on discrepancy and uniformly ergodic Markov chains.

2.1. Discrepancy. The convergence behavior of the Markov chain is ana-
lyzed with respect to a distance measure between the empirical distribution of the
Markov chain and its stationary distribution π . It can be viewed as an extension
of the Kolmogorov–Smirnov test and is a well established concept in numerical
analysis and number theory [9]. We analyze the empirical distribution of the first
n points of the Markov chain X1, . . . ,Xn by assigning each point the same weight
and defining the empirical measure of a set A ∈ B(G) by

π̂n(A) = 1

n

n∑
i=1

1Xi∈A,

where the indicator function is given by

1Xi∈A =
{

1, if Xi ∈ A,
0, otherwise.

The local discrepancy between the empirical distribution and the stationary distri-
bution is then

�n,A = π̂n(A) − π(A).
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To obtain a measure for the discrepancy, we take the supremum of |�n,A| over
certain sets A. Note that since the empirical measure uses only a finite number
of points the local discrepancy �n,A does not converge to 0 in general if we take
the supremum over all sets in B(G). Thus, we restrict the supremum to a set of
so-called test sets A ⊆ B(G). Now we define the discrepancy.

DEFINITION 1 (Discrepancy). The discrepancy of Pn = {X1, . . . ,Xn} ⊆ G is
given by

D∗
A ,π (Pn) = sup

A∈A
|�n,A|.

This is the measure which we use to analyze the convergence behavior of the
Markov chain as n goes to ∞.

In Appendix C, we provide a relationship between the discrepancy D∗
A ,π (Pn)

and the integration error of functions in a certain function space H1, where the set
of test sets is given by

A = {(−∞, x)G : x ∈ R̄d},
with R̄d = (R∪ {∞,−∞})d and (−∞, x)G := (−∞, x) ∩ G =∏d

j=1(−∞, ξj ) ∩
G for x = (ξ1, . . . , ξd). In particular, if there is at least one i with ξi = −∞, then
(−∞, x)G = ∅, whereas if all ξi = ∞, then (−∞, x)G = G ⊆ Rd . For functions
f ∈ H1, we have ∣∣∣∣∣Eπ(f ) − 1

n

n∑
i=1

f (Xi)

∣∣∣∣∣≤ D∗
A ,π (Pn)‖f ‖H1 .

Inequalities of this form are called Koksma–Hlawka inequalities; see [9], Chap-
ter 2, for more information. See Appendix C for details on the definition of the
space H1 and the proof of the inequality.

2.2. Markov chains. The main assumption on the Markov chain in [5] and
[6] is the existence of a coupling region, or in a weakened version, a contraction
assumption on the update function. Roughly speaking, this means that if one starts
two Markov chains at different starting points but uses the same random numbers
as updates, then the points of the chain coincide or move closer to each other as
the chain progresses. In this paper, we replace this assumption by the assumption
that the Markov chain is uniformly ergodic. The concept of uniform ergodicity
is much closer to the concept of discrepancy, which allows us to obtain stronger
results than previous attempts. We introduce uniformly ergodic Markov chains in
the following.

Let G ⊆ Rd and let B(G) denote the Borel σ -algebra of G. In the following,
we provide the definition of a transition kernel.
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DEFINITION 2. The function K:G×B(G) → [0,1] is called a transition ker-
nel if:

(i) for each x ∈ G the mapping A ∈ B(G) → K(x,A) is a probability measure
on (G,B(G)), and

(ii) for each A ∈ B(G) the mapping x ∈ G → K(x,A) is a B(G)-measurable
real-valued function.

Let K : G × B(G) → [0,1] be a transition kernel. We assume that π is the
unique stationary distribution of the transition kernel K , that is,∫

G
K(x,A)π(dx) = π(A) ∀A ∈ B(G).

The transition kernel K gives rise to a Markov chain X0,X1,X2, . . . ∈ G in the
following way. Let X0 = x with x ∈ G and i ∈ N. Then, for a given Xi−1, we
choose Xi with distribution K(Xi−1, ·), that is, for all A ∈ B(G), the probability
that Xi ∈ A is given by K(Xi−1,A).

DEFINITION 3 (Total variation distance). The total variation distance between
the transition kernel K(x, ·) and the stationary distribution π is defined by∥∥Kj(x, ·) − π

∥∥
tv = sup

A∈B(G)

∣∣Kj(x,A) − π(A)
∣∣.

Note that with K0(x,A) = 1x∈A we have

Kj(x,A) =
∫
G

K(y,A)Kj−1(x,dy) =
∫
G

Kj−1(y,A)K(x,dy).

DEFINITION 4 (Uniform ergodicity). Let α ∈ [0,1) and M ∈ (0,∞). The
transition kernel K is uniformly ergodic with (α,M) iff for any x ∈ G and j ∈ N

we have ∥∥Kj(x, ·) − π
∥∥

tv ≤ αjM.

A Markov chain with transition kernel K is called uniformly ergodic if there exists
an α ∈ [0,1) and M ∈ (0,∞), such that the transition kernel is uniformly ergodic
with (α,M).

REMARK 1. The uniform ergodicity is necessary to apply the Hoeffding in-
equality [11] and it is also used in the estimates of the discrepancy.

For Markov chains that are geometrically ergodic or have a spectral gap (for
definitions, see [28, 30, 31]), one must use other concentration inequalities. The
papers [1, 22, 26] might be useful. However, in those cases we are not aware of
results which allow us to treat Markov chains which start deterministically, as we
consider in this paper.
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Let us state a result which provides an equivalent statement to uniform ergodic-
ity. Let L∞ be the set of all bounded functions f :G →R. Then define the operator
P j :L∞ → L∞ by

P jf (x) =
∫
G

f (y)Kj (x,dy),

and the expectation with respect to π is denoted by Eπ(f ) = ∫G f (y)π(dx). The
following result is well known; for a proof of this fact see, for example, [31],
Proposition 3.23, page 48.

PROPOSITION 1. Let α ∈ [0,1) and M ∈ (0,∞). Then the following state-
ments are equivalent:

(i) The transition kernel K is uniformly ergodic with (α,M).
(ii) The operator P j −Eπ satisfies∥∥P j −Eπ

∥∥
L∞→L∞ ≤ 2Mαj , j ∈ N.

In the following, we introduce update functions ϕ for a given transition kernel
and state some examples.

DEFINITION 5 (Update function). Let ϕ : G × [0,1]s → G be a measurable
function and

B : G ×B(G) → B
([0,1]s),

B(x,A) = {
u ∈ [0,1]s : ϕ(x;u) ∈ A

}
,

where B([0,1]s) is the Borel σ -algebra of [0,1]s . Let λs denote the Lebesgue
measure on Rs . Then the function ϕ is an update function for the transition kernel
K iff

K(x,A) = P
(
ϕ(x;U) ∈ A

)= λs

(
B(x,A)

)
,(1)

where P is the probability measure for the uniform distribution in [0,1]s .

EXAMPLE 1 (Direct simulation). Let us assume that we can sample with re-
spect to π , that is, K(x,A) = π(A) for all x ∈ G. For the moment, let G = [0,1]s
and let π be the uniform distribution on G. In this case, we can choose the simple
update function ϕ(x;u) = u, since then

π(A) = λs

(
B(x,A)

)
for all x ∈ G.

If G is a general subset of Rd and π is a general probability measure, then we need
a generator; see [6]. A generator is a special update function ψ : [0,1]s → G such
that

π(A) = P
(
ψ(U) ∈ A

)
, for all A ∈ B(G).

Note that the transition kernel K(x,A) = π(A) is uniformly ergodic with (α,M)

for α = 0 and M ∈ (0,∞).
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EXAMPLE 2 (Hit-and-run algorithm). Let G ⊂ Rd be a compact convex body
and π be the uniform distribution on G. Let Sd−1 = {x ∈ Rd :‖x‖2 = 〈x, x〉1/2 =
1} be the d − 1-dimensional sphere, where 〈x, y〉 denotes the standard inner prod-
uct in Rd . Let θ ∈ Sd−1 and let L(x, θ) be the chord in G through x and x + θ ,
that is,

L(x, θ) = {x + sθ ∈ Rd | s ∈R
}∩ G.

We assume that we have an oracle which gives us a(x, θ), b(x, θ) ∈ G, such that[
a(x, θ), b(x, θ)

]= L(x, θ),

where [a(x, θ), b(x, θ)] = {λa(x, θ) + (1 − λ)b(x, θ):λ ∈ [0,1]}. A transition of
the hit and run algorithm works as follows. First, choose a random direction θ .
Then we sample the next state on [a(x, θ), b(x, θ)] uniformly. Let ψ : [0,1]d−1 →
Sd−1 be a generator for the uniform distribution on the sphere; see, for instance,
[10]. Then we can choose for x ∈ G and u = (υ1, υ2, . . . , υd) ∈ [0,1]d the update
function

ϕ(x,u) = υda
(
x,ψ(υ1 . . . , υd−1)

)+ (1 − υd)b
(
x,ψ(υ1, . . . , υd−1)

)
.

In [32], it is shown that there exists an α ∈ [0,1) and an M ∈ (0,∞), such that the
hit-and-run algorithm is uniformly ergodic with (α,M).

EXAMPLE 3 (Independence Metropolis sampler). Let G = [0,1]d , assume
that a parameter β > 0 and a function H : [0,1]d → R are given. Let πβ be a
probability measure on G, given by

πβ(A) = 1

Zβ

∫
A

exp
(−βH(x)

)
dx, A ∈ B(G),

with normalizing constant Zβ = ∫
G exp(−βH(y))dy. Here, πβ might be inter-

preted as Boltzmann distribution with inverse temperature β and Hamiltonian H .
Now let ū ∈ [0,1]d and

A(x; ū) = min
{
1, exp

(−β
(
H(ū) − H(x)

))}
be the acceptance probability of the Metropolis transition. Then we can choose for
x ∈ [0,1]d and u = (υ1, υ2, . . . , υd+1) ∈ [0,1]d+1 the update function

ϕ(x;u) =
{

(υ1, . . . , υd), υd+1 ≤ A(x;υ1, . . . , υd),
x, υd+1 > A(x;υ1, . . . , υd).

In [20], Theorem 2.1, page 105, it is proven that, if there is a number γ > 0 such
that exp(β infx∈G H(x)) ≥ γ , then the independent Metropolis sampler is uni-
formly ergodic with (1 − γ,1). A local proposal Metropolis algorithm can also
be uniformly ergodic; see, for example, [19].
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Note that the arguments of Example 3 are also valid for a heat-bath sampler. Let
us briefly add some more examples. The slice sampler (for details with respect to
the algorithm and update functions, see [24]) is under additional assumptions uni-
formly ergodic; see [23]. Furthermore, the Gibbs sampler for sampling the uniform
distribution is uniformly ergodic if the boundary of G is smooth enough; see [29].

Above we defined the set B(x,A), which is for x ∈ G and A ∈ B(G) the set of
random numbers u which takes x into the set A using the update function ϕ with
arguments x and u. We now define sets of random numbers which take x to A in
i ∈ N steps. Let ϕ1(x;u) = ϕ(x;u) and for i > 1 let

ϕi : G × [0,1]is → G,

ϕi(x;u1, u2, . . . , ui) = ϕ
(
ϕi−1(x;u1, u2, . . . , ui−1);ui

)
,

that is, ϕi(x;u1, u2, . . . , ui) ∈ G is the point obtained via i updates using
u1, u2, . . . , ui ∈ [0,1]s where the starting point is x ∈ G.

LEMMA 1. Let i, j ∈ N and i ≥ j . For any u1, . . . , ui ∈ [0,1]s and x ∈ G we
have

ϕi(x;u1, . . . , ui) = ϕi−j

(
ϕj (x;u1, . . . , uj );uj+1, . . . , ui

)
.(2)

PROOF. The assertion can be proven by induction over i. �

For i ≥ 1, let

Bi : G ×B(G) → B
([0,1]is),

Bi(x,A) = {
(u1, u2, . . . , ui) ∈ [0,1]is : ϕi(x;u1, u2, . . . , ui) ∈ A

}
.

We therefore have B1(x,A) = B(x,A). Note that Bi(x,A) ⊆ [0,1]is . The next
lemma is important to understand the relation between the update function and the
transition kernel.

LEMMA 2. Let ϕ be an update function for the transition kernel K . Let
n ∈ N and F :Gn → R. The expectation with respect to the joint distribution of
X1, . . . ,Xn from the Markov chain starting at x0 ∈ G is given by

Ex0,K

(
F(X1, . . . ,Xn)

)= ∫
G

· · ·
∫
G︸ ︷︷ ︸

n-times

F(x1, . . . , xn)K(xn−1,dxn) . . .K(x0,dx1).

Then

Ex0,K

(
F(X1, . . . ,Xn)

)
(3)

=
∫
[0,1]ns

F
(
ϕ1(x0, u1), . . . , ϕn(x0, u1, . . . , un)

)
du1 · · ·dun,

whenever one of the integrals exist.
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Note that the right-hand side of (3) is the expectation with respect to the uniform
distribution in [0,1]ns .

PROOF. First, note that by the definition of the update function we obtain for
any π -integrable function f :G →R that∫

G
f (y)K(x,dy) =

∫
[0,1]s

f
(
ϕ(x,u)

)
du.(4)

By the application of Lemma 1 and (4), we obtain∫
[0,1]ns

F
(
ϕ1(x0, u1), . . . , ϕn(x0, u1, . . . , un)

)
du1 · · ·dun

=
∫
[0,1](n−1)s

∫
G

F
(
x1, ϕ1(x1, u2), . . . , ϕn−1(x1, u2, . . . , un)

)
×K(x0,dx1)du2 · · ·dun.

The iteration of this procedure leads to the assertion. �

COROLLARY 1. Let ϕ be an update function for the transition kernel K and
let π be the stationary distribution of K . For any i ∈ N and A ∈ B(G), we have
Ki(x,A) = λis(Bi(x,A)). In particular,∫

G
λis

(
Bi(x,A)

)
π(dx) = π(A).

PROOF. Set for n ≥ i

F (x1, . . . , xn) = 1xi∈A.

Then by Lemma 2, we obtain Ki(x,A) = λis(Bi(x,A)) and by the stationarity of
π the proof is complete. �

3. On the discrepancies of the Markov chain and driver sequence. Recall
that the star-discrepancy of a point set Pn = {x1, x2, . . . , xn} ⊆ G with respect to
the distribution π is given by

D∗
A ,π (Pn) = sup

A∈A

∣∣∣∣∣1n
n∑

i=1

1xi∈A − π(A)

∣∣∣∣∣.
Let us assume that u1, u2, . . . , un ∈ [0,1]s is a finite deterministic sequence. We

call this finite sequence driver sequence. Then let the set Pn = {x1, x2, . . . , xn} ⊆ G

be given by

xi = ϕ(xi−1;ui) = ϕi(x0;u1, . . . , ui), i = 1, . . . , n.(5)

We now define a discrepancy measure on the driver sequence. Below we show
how this discrepancy is related to the discrepancy of the Markov chain.
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DEFINITION 6 (Pull-back discrepancy). Let Un = (u1, u2, . . . , un) ∈ [0,1]ns

and let Bi be defined as above. Define the local discrepancy function by

�loc
n,A,ϕ(x;u1, . . . , un) = 1

n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,A) − λis

(
Bi(x,A)

)]
.

Let A ⊆ B(G) be a set of test sets. Then we define the discrepancy of the driver
sequence by

D∗
A ,ϕ(Un) = sup

A∈A

∣∣�loc
n,A,ϕ(x;u1, . . . , un)

∣∣.
We call D∗

A ,ϕ(Un) the pull-back discrepancy.

The discrepancy of the driver sequence D∗
A ,ϕ(Un) is a “pull-back discrepancy”

since the test sets Bi(x,A) are derived from the test sets A ∈ A from the discrep-
ancy of the Markov chain D∗

A ,π (Pn) via inverting the update function.
The following theorem provides an estimate of the star-discrepancy of Pn with

respect to properties of the driver sequence and the transition kernel.

THEOREM 1. Let K be a transition kernel defined on G ⊆ Rd with sta-
tionary distribution π . Let ϕ be an update function for K . Let x0 = x and let
u1, u2, . . . , un ∈ [0,1]s be the driver sequence, such that Pn is given by (5). Let
A ⊆ B(G) be a set of test sets. Then

∣∣D∗
A ,π (Pn) − D∗

A ,ϕ(Un)
∣∣≤ sup

A∈A

∣∣∣∣∣1n
n∑

i=1

Ki(x,A) − π(A)

∣∣∣∣∣.
PROOF. For any A ∈ A , we have∣∣∣∣∣1n

n∑
i=1

1xi∈A − π(A)

∣∣∣∣∣
=
∣∣∣∣∣1n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,A) − Ki(x,A) + Ki(x,A) − π(A)

]∣∣∣∣∣
≤
∣∣∣∣∣1n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,A) − λis

(
Bi(x,A)

)]∣∣∣∣∣+
∣∣∣∣∣1n

n∑
i=1

Ki(x,A) − π(A)

∣∣∣∣∣.
Note that we used λis(Bi(x,A)) = Ki(x,A) which follows from Corollary 1.
Hence,

D∗
A ,π (Pn) ≤ D∗

A ,ϕ(Un) + sup
A∈A

∣∣∣∣∣1n
n∑

i=1

Ki(x,A) − π(A)

∣∣∣∣∣.
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The inequality

D∗
A ,ϕ(Un) ≤ D∗

A ,π (Pn) + sup
A∈A

∣∣∣∣∣1n
n∑

i=1

Ki(x,A) − π(A)

∣∣∣∣∣
follows by the same arguments. �

COROLLARY 2. Let us assume that the conditions of Theorem 1 are satisfied.
Further, let α ∈ [0,1) and M ∈ (0,∞) and assume that the transition kernel is
uniformly ergodic with (α,M). Then∣∣D∗

A ,π (Pn) − D∗
A ,ϕ(Un)

∣∣≤ αM

n(1 − α)
.

PROOF. By the uniform ergodicity with (α,M), we obtain∣∣∣∣∣1n
n∑

i=1

Ki(x,A) − π(A)

∣∣∣∣∣≤ 1

n

n∑
i=1

∣∣Ki(x,A) − π(A)
∣∣

≤ 1

n

∞∑
i=1

αiM = αM

n(1 − α)
.

Then by Theorem 1 the assertion is proven. �

REMARK 2. In the setting of Example 1, where we assumed that G = [0,1]s
and K(x,A) = π(A) we obtain that α = 0. In this case we get the well-studied
star-discrepancy for the uniform distribution on [0,1]s ; see, for instance, [9].

Theorem 1 gives an estimate of the star-discrepancy in terms of the discrepancy
of the driver sequence and a quantity which depends on the transition kernel. We
have seen in the previous corollary that for uniformly ergodic Markov chains we
can further estimate the difference of the discrepancies D∗

A ,π (Pn) and D∗
A ,ϕ(Un).

Let us mention here that for geometrically ergodic transition kernel one can prove
a similar bound.

In Corollary 5, we state a bound on D∗
A ,π (Pn) of order O(n−1/2(logn)1/2),

and by Corollary 2 we have that the pull-back discrepancy of the driver sequence
satisfies the same convergence order.

From Corollary 2 and Theorem 3 in Appendix C, we now obtain the following
Koksma–Hlawka inequality (cf. [9], Proposition 2.18) in terms of the pull-back
discrepancy.

COROLLARY 3 (Koksma–Hlawka inequality for uniformly ergodic Markov
chains). Let us assume that the conditions of Theorem 1 are satisfied. Further,
let α ∈ [0,1) and M ∈ (0,∞) and assume that the transition kernel is uniformly
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ergodic with (α,M). With a measure ρ on Rd let H1 denote the space of functions
f : G →C permitting the representation

f (x) = f0 +
∫
Rd

1(−∞,z)G(x)f̃ (z)ρ(dz)

for some f0 ∈ C and f̃ ∈ L1(R
d, ρ) with finite

‖f ‖H1 = |f0| +
∫
Rd

∣∣f̃ (z)
∣∣ρ(dz).

Then for all f ∈ H1 we have∣∣∣∣∣
∫
G

f (x)π(dz) − 1

n

n∑
i=1

f (xi)

∣∣∣∣∣≤
(
D∗

A ,ϕ(Un) + αM

n(1 − α)

)
‖f ‖H1 .

Again, in the setting of Example 1 for direct simulation, we have α = 0 and we
obtain the Koksma–Hlawka inequality∣∣∣∣∣

∫
G

f (x)π(dz) − 1

n

n∑
i=1

f (xi)

∣∣∣∣∣≤ D∗
A ,ϕ(Un)‖f ‖H1 .

4. On the existence of good driver sequences. In this section, we show the
existence of finite sequences Un = (u1, u2, . . . , un) ∈ [0,1]ns such that

D∗
A ,ϕ(Un) and D∗

A ,π (Pn)

converge to 0 if the transition kernel is uniformly ergodic and Pn is given by (5).
The main result is proven for D∗

A ,π (Pn). The result with respect to D∗
A ,ϕ(Un)

holds by Theorem 1.
The concept of a δ-cover will be useful (cf. [12] for a discussion of δ-covers,

bracketing numbers and Vapnik–Červonenkis dimension).

DEFINITION 7. Let A ⊆ B(G) be a set of test sets. A finite subset �δ ⊆ A is
called a δ-cover of A with respect to π if for every A ∈ A there are sets C,D ∈ �δ

such that

C ⊆ A ⊆ D

and

π(D \ C) ≤ δ.

REMARK 3. The concept of a δ-cover is motivated by the following result.
Let us assume that �δ is a δ-cover of A . Then, for all {z1, . . . , zn}, the following
discrepancy inequality holds:

sup
A∈A

∣∣∣∣∣1n
n∑

i=1

1zi∈A − π(A)

∣∣∣∣∣≤ max
C∈�δ

∣∣∣∣∣1n
n∑

i=1

1zi∈C − π(C)

∣∣∣∣∣+ δ.
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PROOF. Let A ∈ A and B ⊆ A ⊆ C be such that π(C \ B) ≤ δ. Then

1

n

n∑
i=1

1zi∈A − π(A) ≤ 1

n

n∑
i=1

1zi∈C − π(C) + δ

and

1

n

n∑
i=1

1zi∈A − π(A) ≥ 1

n

n∑
i=1

1zi∈B − π(B) − δ.

Thus, the result follows. �

Let us introduce the notation �n,A,ϕ,x = �loc
n,A,ϕ(x;u1, . . . , un) and note that

�n,A,ϕ,x = �loc
n,A,ϕ(x;u1, . . . , un)

= 1

n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,A) − π(A)

]
(6)

= 1

n

n∑
i=1

[
1ϕi(x;u1,...,ui )∈A − π(A)

]
.

LEMMA 3. Let K be a transition kernel with stationary distribution π . Let ϕ

be an update function of K . Let X1,X2, . . . ,Xn be given by a Markov chain with
transition kernel K and X0 = x. Then for any A ∈ B(G) and c > 0, we obtain

P
[|�n,A,ϕ,x | ≥ c

]= Px,K

[∣∣∣∣∣1n
n∑

i=1

1Xi∈A − π(A)

∣∣∣∣∣≥ c

]
,(7)

where P is the probability measure for the uniform distribution in [0,1]ns and Px,K

is the joint probability of X1, . . . ,Xn with X0 = x.

PROOF. Let

J (A, c) =
{
(z1, . . . , zn) ∈ Gn:

∣∣∣∣∣1n
n∑

i=1

1zi∈A − π(A)

∣∣∣∣∣≥ c

}
.

Set

F(x1, . . . , xn) = 1(x1,...,xn)∈J (A,c) =
⎧⎪⎨⎪⎩1,

∣∣∣∣∣1n
n∑

i=1

1xi∈A − π(A)

∣∣∣∣∣≥ c,

0, otherwise.

By

Ex,K

(
F(X1, . . . ,Xn)

)= Px,K

(
J (A, c)

)
,

Lemma 2 and (6) the assertion is proven. �
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The next result follows from [11] and gives us a Hoeffding inequality for uni-
formly ergodic Markov chains. For the convenience of the reader, we provide a
proof in Appendix A.

PROPOSITION 2 (Hoeffding inequality for uniformly ergodic Markov chains).
Assume that the transition kernel K is uniformly ergodic with (α,M). Let
X1,X2, . . . ,Xn be given by a Markov chain with transition kernel K and X0 = x.
Then for any A ∈ B(G) and c > 0, we obtain

Px,K

[∣∣∣∣∣1n
n∑

i=1

1Xi∈A − π(A)

∣∣∣∣∣≥ c

]
(8)

≤ 2 exp
(
−(1 − α)2

M2

(nc − 2M/(1 − α))2

8n

)
,

where n ≥ 4M
(1−α)c

.

4.1. Monte Carlo rate of convergence. We now show that for every starting
point x0 and every n there exists a finite sequence u1, u2, . . . , un ∈ [0,1]s such
that the discrepancy of the corresponding Markov chain converges approximately
with order n−1/2. The main idea to prove the existence result is to use probabilistic
arguments. We apply a Hoeffding inequality for Markov chains to the local dis-
crepancy function for a fixed test set to show that the probability of point sets with
small local discrepancy is large. We then extend this result to the local discrepancy
for all sets in the δ-cover and finally to all test sets. Using Corollary 2, we are also
able to obtain a result for the pull-back discrepancy of the driver sequence. In cases
where there are δ-covers with |�δ| ≤ Cδ−κ for some constants C,κ > 0 indepen-
dent of δ (see Appendix B for an example), the proof of the following theorem
shows, in particular, that if the finite driver sequence is chosen at random from the
uniform distribution, the discrepancy of the induced point set Pn converges with
high probability with almost the Monte Carlo rate.

THEOREM 2. Let K be a transition kernel with stationary distribution π de-
fined on a set G ⊆ Rd . Assume that the transition kernel is uniformly ergodic with
(α,M). Let A ⊆ B(G) be a set of test sets. Assume that for every δ > 0 there ex-
ists a set �δ ⊆ B(G) with |�δ| < ∞ such that �δ is a δ-cover of A with respect to
π . Let ϕ be an update function for K . Then, for any x0 = x there exists a driver
sequence u1, u2, . . . , un ∈ [0,1]s such that Pn = {x1, . . . , xn} given by

xi = ϕ(xi−1;ui) = ϕi(x0;u1, . . . , ui), i = 1, . . . , n

satisfies

D∗
A ,π (Pn) ≤ 8M

1 − α

√
log |�δ|√

n
+ δ.
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PROOF. Let A ∈ A and x0 = x ∈ G. By Lemma 3 and Proposition 2, we
obtain for any cn ≥ 4M

n(1−α)
that

P
[|�x,n,A,ϕ | ≤ cn

]≥ 1 − 2 exp
(
−(1 − α)2

M2

(ncn − 2M/(1 − α))2

8n

)
.(9)

Let

�̂δ = {D \ C : C ⊆ A ⊆ D,C,D ∈ �δ}.
Set m = |�̂δ|. If we have for all A ∈ �̂δ that

P
[|�x,n,A,ϕ| ≤ cn

]
> 1 − 1

m
,(10)

then there exists a finite sequence u1, . . . , un ∈ [0,1]s such that

max
A∈�̂δ

|�x,n,A,ϕ | ≤ cn.(11)

By (9), we obtain for

cn = 4M

1 − α

√
2 log(2m)√

n

that (10) holds and we get the desired result for any A ∈ �̂δ . Now we extend the
result from �̂δ to A . For A ∈ A , there are C,D ∈ �δ such that C ⊆ A ⊆ D and
π(D \ C) ≤ δ, since �δ is a δ-cover. Hence, we get∣∣∣∣∣1n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,A) − π(A)

]∣∣∣∣∣
=
∣∣∣∣∣1n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,D) − π(D)

]

− 1

n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,D\A) − π(D \ A)

]∣∣∣∣∣
≤
∣∣∣∣∣1n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,D) − π(D)

]∣∣∣∣∣
+
∣∣∣∣∣1n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,D\A) − π(D \ A)

]∣∣∣∣∣.
Let

I1 :=
∣∣∣∣∣1n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,D) − π(D)

]∣∣∣∣∣
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and

I2 :=
∣∣∣∣∣1n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,D\A) − π(D \ A)

]∣∣∣∣∣.
By D ∈ �̂δ , we have

I1 ≤ max
A∈�̂δ

|�n,A,ϕ,x | ≤ cn.

Furthermore,

I2 =
∣∣∣∣∣1n

n∑
i=1

1(u1,...,ui )∈Bi(x,D\A) − π(D \ C) + π(D \ C) − π(D \ A)

∣∣∣∣∣
≤
∣∣∣∣∣1n

n∑
i=1

[
1(u1,...,ui )∈Bi(x,D\C) − π(D \ C)

]∣∣∣∣∣+ ∣∣π(D \ C) − π(D \ A)
∣∣

≤ cn + δ.

The last inequality follows by the δ-cover property, (11) and the fact that D \ C ∈
�̂δ . Finally, note that m = |�̂δ| ≤ |�δ|2/2 which completes the proof. �

Using Corollary 2, we can also state Theorem 2 in terms of the driver sequence.

COROLLARY 4. Let K be a transition kernel with stationary distribution π

defined on a set G ⊆ Rd . Assume that the transition kernel is uniformly ergodic
with (α,M). Let A ⊆ B(G) be a set of test sets. Assume that for every δ > 0 there
exists a set �δ ⊆ B(G) with |�δ| < ∞ such that �δ is a δ-cover of A with respect
to π . Let ϕ be an update function for K . Then for any x0 = x there exists a driver
sequence u1, u2, . . . , un ∈ [0,1]s such that

D∗
A ,ϕ(Un) ≤ 8M

1 − α

√
log |�δ|√

n
+ δ + αM

n(1 − α)
.

Let Pn = {x1, . . . , xn} given by

xi = ϕ(xi−1;ui) = ϕi(x0;u1, . . . , ui), i = 1, . . . , n.

Then Pn satisfies

D∗
A ,π (Pn) ≤ 8M

1 − α

√
log |�δ|√

n
+ δ + 2αM

n(1 − α)
.

This corollary has two consequences. One is the existence of a driver sequence
with small pull-back discrepancy. The second is that if one can construct such
a sequence with small pull-back discrepancy, then the Markov chain which one
obtains using this driver sequence also has small discrepancy. Thus, the pull-back
discrepancy is a sufficient criterion for the construction of good driver sequences.

Theorem 2 and Corollary 4 depend on δ and the size of the δ-cover �δ . For a
certain set of test sets, we have the following result.
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COROLLARY 5. Let K be a transition kernel with stationary distribution π

defined on a set G ⊆ Rd . Assume that the transition kernel is uniformly ergodic
with (α,M). Let the set of test sets A ⊆ B(G) be given by

A = {(−∞, x) ∩ G | x ∈ R̄d},
where R̄d = (R ∪ {∞,−∞})d . Let ϕ be an update function for K . Then for any
x0 = x there exists a driver sequence u1, u2, . . . , un ∈ [0,1]s and an absolute con-
stant c > 0 such that

D∗
A ,ϕ(Un) ≤ 8M

1 − α

√
d log(3 + 4c2n)√

n
+

√
d√
n

+ αM

n(1 − α)
.

Let Pn = {x1, . . . , xn} given by

xi = ϕ(xi−1;ui) = ϕi(x0;u1, . . . , ui), i = 1, . . . , n.

Then Pn satisfies

D∗
A ,π (Pn) ≤ 8M

1 − α

√
d log(3 + 4c2n)√

n
+

√
d√
n

+ 2αM

n(1 − α)
.

PROOF. The result follows by Lemma 4 in Appendix B, which shows the ex-
istence of δ-covers with

|�δ| ≤ (4 + 3c2dδ−2)d,

and Corollary 4. �

4.2. Optimality of the Monte Carlo rate. We now show that the exponent
−1/2 of n in Theorem 2 cannot be improved in general. We do so by specializing
Theorem 2 to the sphere Sd . Recall that Sd = {x ∈ Rd+1 : ‖x‖2 = 〈x, x〉1/2 = 1},
where 〈x, y〉 denotes the standard inner product in Rd+1. A spherical cap C(x, t) ⊆
Sd with center x ∈ Sd and −1 ≤ t ≤ 1 is given by

C(x, t) = {y ∈ Sd : 〈x, y〉 > t
}
.

Let C = {C(x, t) : x ∈ Sd,−1 ≤ t ≤ 1} be the test set of spherical caps of Sd . The
normalized area of a spherical cap C(x, t) for 0 ≤ t ≤ 1 is given by

π
(
C(x, t)

)= 1

2

B(1 − t2;d/2,1/2)

B(1;d/2,1/2)
,

where B is the incomplete beta function

B
(
1 − t2;d/2,1/2

)= ∫ 1−t2

0
zd/2−1(1 − z)−1/2 dz.
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Then the spherical cap discrepancy of a point set Pn = {x1, x2, . . . , xn} ⊆ Sd is
given by

D∗
Sd ,C(Pn) = sup

C∈C

∣∣∣∣∣1n
n∑

i=1

1xi∈C − π(C)

∣∣∣∣∣.
The following result is an application of Theorem 2. For a proof of the corollary,

we refer to Appendix D.

COROLLARY 6. There exists an absolute constant c > 0 independent of n and
d such that for each n and d there exists a set of points Pn = {x1, x2, . . . , xn} ⊆ Sd

such that the spherical cap discrepancy satisfies

D∗
Sd ,C(Pn) ≤ c

√
d + √

(d + 1) logn√
n

.

We have shown the existence of points on Sd for which the spherical cap dis-

crepancy is of order
√

logn
n

. Since this result follows by specializing Theorem 2
to the sphere, any improvement of the exponent −1/2 of n in Theorem 2 would
yield an improvement of the exponent of n in Corollary 6. However, it is known
that the spherical cap discrepancy of any point set is at least n−1/2−1/(2d); see [3].
Thus, an exponent smaller than −1/2 in Corollary 6 would yield a contradiction
to the lower bound on the spherical cap discrepancy for large enough d . Thus, at
this level of generality, the exponent of n in Theorem 2 cannot be improved.

We point out that a bound on the spherical cap discrepancy can also be deduced
from [14], Theorem 4, by using a bound on the Vapnik–Červonenkis dimension
for C.

APPENDIX A: PROOF OF PROPOSITION 2

Since the statement and the assumptions in Proposition 2 are slightly differ-
ent from those in [11], Theorem 2, we prove the desired Hoeffding inequality by
following the arguments in [11]. We set f (x) = 1x∈A − π(A) and obtain by the
uniform ergodicity

P nf (x) = Kn(x,A) − π(A) ≤ min
{
1, αnM

}
.

Let g(x) =∑∞
n=0 P nf (x) and note that ‖g‖∞ ≤ M/(1 − α). Here, let us mention

that even

‖g‖∞ ≤ 1 + (1 − α)−1 + logM

logα−1 ,
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which improves upon the dependence of M . We have g(x)−Pg(x) = f (x) for all
x ∈ G. Let D(Xj−1,Xj ) = g(Xj ) − Pg(Xj−1) for j = 2, . . . , n + 1, then

n∑
j=1

1Xj∈A − n · π(A) =
n∑

j=1

f (Xj ) =
n∑

j=1

(
g(Xj ) − Pg(Xj )

)

= g(X1) − g(Xn+1) +
n+1∑
j=2

D(Xj−1,Xj )

≤ 2‖g‖∞ +
n+1∑
j=2

D(Xj−1,Xj ).

Thus, for θ > 0 we obtain

Ex,K

[
exp

(
θ

n∑
j=1

1Xj∈A − θn · π(A)

)]

≤ exp
(
2θ‖g‖∞

)
Ex,K

[
exp

(
θ

n+1∑
j=2

D(Xj−1,Xj )

)]

and

Ex,K

[
exp

(
θ

n+1∑
j=2

D(Xj−1,Xj )

)]

= Ex,K

[
exp

(
θ

n∑
j=2

D(Xj−1,Xj )

)

×Ex,K

(
exp
(
θD(Xn,Xn+1)

) ∣∣∣X1, . . . ,Xn

)]
.

By virtue of [8], Lemma 8.1 (see also [11], equation (5)), we obtain

Ex,K

(
exp
(
θD(Xn,Xn+1)

) | X1, . . . ,Xn

)≤ exp
(
θ2‖g‖2∞/2

)
.(12)

This can be repeated iteratively so that

Ex,K

[
exp

(
θ

n∑
j=1

1Xj∈A − θn · π(A)

)]
≤ exp

(
2θ‖g‖∞ + nθ2‖g‖2∞/2

)
.

Markov’s inequality leads to

Px,K

[
1

n

n∑
j=1

1Xj∈A − π(A) ≥ c

]
≤ exp

(−θnc + 2θ‖g‖∞ + nθ2‖g‖2∞/2
)
.
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The bound is best possible for

θ = nc − 2‖g‖∞
n‖g‖2∞

.

Finally, by ‖g‖∞ ≤ M/(1 − α) and by repeating this analysis with f = π(A) −
1x∈A we obtain the assertion.

APPENDIX B: DELTA-COVERS

We need a deep result of the theory of empirical processes which follows from
Talagrand [34], Theorem 6.6 and Haussler [13], Corollary 1. For a more general
version, see also [14], Theorem 4.

PROPOSITION 3. There exists an absolute constant c > 0 such that for each
cumulative distribution function L on (G,B(G)) the following holds: For all r ∈ N

there exist y1, . . . , yr ∈ G with

sup
x∈Qd

∣∣∣∣∣L(x) − 1

r

r∑
i=1

1yi∈(−∞,x)G

∣∣∣∣∣≤ c
√

dr−1/2.

In this subsection, we study δ-covers in G with respect to the probability mea-
sure π .

LEMMA 4. Let G ⊆ Rd and let (G,B(G),π) be a probability space where
B(G) is the Borel σ -algebra of G. Assume that π is absolutely continuous with
respect to the Lebesgue measure. Define the set A ⊆ B(G) of test sets by

A = {(−∞, x)G : x ∈ R̄d}.
Then for any δ > 0 there exists a δ-cover �δ of A with

|�δ| ≤ (3 + 4c2dδ−2)d,

where c > 0 is an absolute constant.

PROOF. Let δ > 0 be given and let r ∈ N be the smallest integer such that
2c

√
dr−1/2 ≤ δ. By Proposition 3, there are points y1, . . . , yr ∈ G such that

sup
x∈R̄d

∣∣∣∣∣π((−∞, x)G
)− 1

r

r∑
i=1

1yi∈(−∞,x)G

∣∣∣∣∣≤ c
√

dr−1/2 ≤ δ

2
.(13)

Let yi = (ηi,1, . . . , ηi,d). We now define the set

�δ =
{

d∏
j=1

(−∞, zj ) ∩ G : zj ∈ {−∞,∞, η1,j , η2,j , . . . , ηr,j } for 1 ≤ j ≤ d

}
.
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The cardinality of �δ satisfies

|�δ| = (2 + r)d ≤ (3 + 4c2dδ−2)d .

It remains to show that �δ is a δ-cover of A .
Let z ∈ R̄d be arbitrary. Then there exist (−∞, x)G, (−∞, y)G ∈ �δ such that

(−∞, x]G ⊆ (−∞, z)G ⊆ (−∞, y)G

and

(−∞, x]G ∩ {y1, . . . , yr} = (−∞, z)G ∩ {y1, . . . , yr}
= (−∞, y)G ∩ {y1, . . . , yr}.

Using (13), we obtain

π
(
(−∞, y)G \ (−∞, x)G

)
≤
∣∣∣∣∣π((−∞, y)G

)− 1

r

r∑
i=1

1yi∈(−∞,y)G

∣∣∣∣∣
+
∣∣∣∣∣π((−∞, x]G)− 1

r

r∑
i=1

1yi∈(−∞,x]G

∣∣∣∣∣
≤ δ.

Thus, �δ is a δ-cover. �

APPENDIX C: INTEGRATION ERROR

In Appendix B, we considered test sets which are intersections of boxes with
the state space G. We define a reproducing kernel Q by

Q(x,y) = 1 +
∫
Rd

1(−∞,z)G(x)1(−∞,z)G(y)ρ(dz),

where ρ is a measure on Rd with
∫
Rd ρ(dz) < ∞. The function Q is symmetric

Q(x,y) = Q(y,x) and positive semi-definite, that is, for any x1, . . . , xn ∈ G and
complex numbers b1, . . . , bn ∈ C we have

n∑
k,�=1

bkb�Q(xk, x�) =
∣∣∣∣∣

n∑
k=1

bk

∣∣∣∣∣
2

+
∫
Rd

∣∣∣∣∣
n∑

k=1

bk1(−∞,z)G(xk)

∣∣∣∣∣
2

ρ(dz) ≥ 0,

where b� denotes the complex conjugate of b�. Thus, Q uniquely defines a repro-
ducing kernel Hilbert space H2 = H2(Q) of functions defined on G. See [2] for
more information on reproducing kernels and reproducing kernel Hilbert spaces.
In fact, the functions f in H2 permit the representation

f (x) = f0 +
∫
Rd

1(−∞,z)G(x)f̃ (z)ρ(dz),(14)



UNIFORMLY ERGODIC MARKOV CHAIN QUASI-MONTE CARLO 3199

for some f0 ∈ C and function f̃ ∈ L2(R
d, ρ), which can for instance be shown

using the same arguments as in [4], Appendix A. The inner product in H2 is given
by

〈f,g〉 = f0g0 +
∫
Rd

f̃ (z)g̃(z)ρ(dz).

With these definitions, we have the reproducing property〈
f,Q(·, y)

〉= f0 +
∫
Rd

f̃ (z)1(−∞,z)G(y)ρ(dz) = f (y).

For 1 ≤ q ≤ ∞, we also define the space Hq of functions of the form (14) for
which f̃ ∈ Lq(Rd, ρ), with norm

‖f ‖Hq =
(
|f0|q +

∫
Rd

∣∣f̃ (z)
∣∣qρ(dz)

)1/q

.

We provide a simple example.

EXAMPLE 4. Let G = [0,1] and let ρ be the Lebesgue measure, then

Q(x,y) = 1 +
∫ 1

0
1[0,z)(x)1[0,z)(y)dz = 1 + min{1 − x,1 − y}.

The function f̃ = −f ′, where f ′ is the usual derivative of f , and (14) is then
f (x) = f0 + ∫ 1

0 1[0,z)(x)f̃ (z)dz = f0 − ∫ 1
x f ′(z)dz = f0 + f (x) − f (1). Thus,

f (1) = f0 and Hq is the space of all absolutely continuous functions f for which
f ′ ∈ Lq([0,1], ρ).

We have the following result concerning the integration error in Hq .

THEOREM 3. Let G ⊆ Rd and π be a probability measure on G. Further, let
A = {(−∞, x)G : x ∈ G}. We assume that 1 ≤ p,q ≤ ∞ with 1/p + 1/q = 1.
Then for Pn = {x1, x2, . . . , xn} ⊆ G and for all f ∈ Hq we have∣∣∣∣∣

∫
G

f (z)π(dz) − 1

n

n∑
i=1

f (xi)

∣∣∣∣∣≤ ‖f ‖HqD
∗
p,A ,π (Pn),

where

D∗
p,A ,π (Pn) =

(∫
Rd

∣∣∣∣∣
∫
G

1(−∞,z)G(y)π(dy) − 1

n

n∑
i=1

1(−∞,z)G(xi)

∣∣∣∣∣
p

ρ(dz)

)1/p

,

and for p = ∞ let

D∗
A ,π (Pn) := D∗∞,A ,π (Pn) = sup

z∈G

∣∣∣∣∣
∫
G

1(−∞,z)G(y)π(dy) − 1

n

n∑
i=1

1(−∞,z)G(xi)

∣∣∣∣∣.
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PROOF. Let

e(f,Pn) =
∫
G

f (z)π(dz) − 1

n

n∑
i=1

f (xi)

denote the quadrature error when approximating the integral
∫
G f (z)π(dz) by

1
n

∑n
i=1 f (xi) where Pn = {x1, x2, . . . , xn}.

Let h(x) = ∫G Q(x, y)π(dy) − 1
n

∑n
i=1 Q(x,xi), then we have

h(x) =
∫
Rd

1(−∞,z)G(x)

(∫
G

1(−∞,z)G(y)π(dy) − 1

n

n∑
i=1

1(−∞,z)G(xi)

)
ρ(dz)

and, therefore, h ∈ Hp for any 1 ≤ p ≤ ∞. Let

h̃(z) =
∫
G

1(−∞,z)G(y)π(dy) − 1

n

n∑
i=1

1(−∞,z)G(xi).

Further, for f ∈ Hq we have f̃ ∈ Lq(R
d, ρ), and thus

e(f,Pn) =
∫
Rd

f̃ (z)h̃(z)ρ(dz).

Using Hölder’s inequality, we have∣∣e(f,Pn)
∣∣≤ ∫

Rd

∣∣f̃ (z)
∣∣∣∣h̃(z)

∣∣ρ(dz)

≤
(∫

Rd

∣∣f̃ (z)
∣∣qρ(dz)

)1/q(∫
Rd

∣∣h̃(z)
∣∣pρ(dz)

)1/p

,

where 1 ≤ p,q ≤ ∞ are Hölder conjugates 1/p +1/q = 1, with the obvious mod-
ifications for p,q = ∞. Thus, the result follows. �

Thus, we can use the bounds from the theorems above to obtain a bound on the
integration error |e(f,Pn)|, where Pn is the set of points from the Markov chain,
for functions f with representation (14) and ‖f ‖H1 < ∞.

APPENDIX D: DELTA-COVERS FOR THE SPHERE

We use Theorem 2 where π is the normalized Lebesgue surface measure on the
sphere Sd . Let ψ : [0,1]d → Sd be an area-preserving mapping from [0,1]d to Sd

(i.e., a generator function) (see [10]), and let the update function ϕ : Sd ×[0,1]d →
Sd be given by

ϕ(x,u) = ψ(u).

The transition kernel is given by K(x,A) = π(A) which is uniformly ergodic with
(α,M) for α = 0 and M = 1.

In order to obtain a bound on the spherical cap discrepancy using Theorem 2,
it remains to construct a δ-cover on Sd of suitable size. We construct a δ-cover �δ

by specifying a set of centers and heights in the following.
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LEMMA 5. Let Sd ⊆ Rd+1 denote the d-dimensional sphere. Let C =
{C(x, t) : x ∈ Sd,−1 ≤ t ≤ 1} denote the set of spherical caps of Sd . Then for
any δ > 0 there exists a δ-cover �δ of C with respect to the normalized surface
Lebesgue measure on Sd with |�δ| ≤ cdd+1δ−2(d+1), where c > 0 is a constant
independent of d and δ.

The result of Corollary 6 follows now from Theorem 2 and Lemma 5 by setting
δ = d1/2n−1/2. The remainder of this subsection is concerned with the proof of
Lemma 5.

Let y1, y2, . . . , yN ∈ Sd be given such that

sup
x∈Sd

min
1≤i≤N

‖x − yi‖2 ≤ cdN−1/d,(15)

where cd > 0 is a constant depending only on d . The existence of such point sets
follows, for instance, from [17]. Therein an equal area partition of Sd into N parts
was shown with diameter bounded by cdN−1/d . Thus, by taking one point in each
partition we obtain (15). Indeed, from the proof of [17], Theorem 2.6, we obtain
that the constant cd can be chosen as

cd = 8
(

d
√

π�(d/2)

�((d + 1)/2)

)1/d

≤ 8d1/dπ1/(2d) ≤ 8 · 31/3√π < 21,

where �(x) = ∫∞
0 tx−1e−t dt denotes the Gamma function. For x, y ∈ Sd , we have

‖x − y‖2
2 = 2(1 − 〈x, y〉).

Let v = 〈x, y〉. Then we obtain the following result.

LEMMA 6. We have C(x, t) ⊆ C(y,u) if and only if v = 〈x, y〉 > u and

t2 + u2 + v2 − 2tuv > 1.(16)

PROOF. The condition v > u ensures that x ∈ C(y,u). Let z ∈ C(x, t), that is,
〈z, x〉 > t . Then z ∈ C(y,u) if and only if 〈z, y〉 > u. The point z is furthest from
y (as measured by the Euclidean distance) if it lies on the great circle containing x

and y. Assuming that x, y, z all lie on the same great circle such that x is between
y and z, we have

‖y − z‖ = 2 sin
(

arcsin
‖x − y‖

2
+ arcsin

‖x − z‖
2

)
= ‖x − y‖

√
1 − ‖x − z‖2/4 + ‖x − z‖

√
1 − ‖x − y‖2/4.

The result now follows by using ‖x − y‖2 = 2(1 − v) and ‖x − z‖2 < 2(1 − t).
�

The next lemma gives us a δ-cover of C with respect to π .



3202 J. DICK, D. RUDOLF AND H. ZHU

LEMMA 7. Let

N =
⌈

35dcd
d

B2d(1;d/2,1/2)δ2d

⌉
.

Let M = �N1/d/cd� and T = {−1 + k/M : k = 0,1, . . . ,2M}. Then the set

�δ = {C(yi, t) : 1 ≤ i ≤ N, t ∈ T
}

is a δ-cover of C with respect to π .

PROOF. Let C(x, t) ∈ C be an arbitrary spherical cap. Let yi be such that ‖x −
yi‖2 ≤ CdN−1/d ≤ 1/M , thus

〈x, yi〉 > 1 − 1

2M2 .

Let u,w ∈ T be such that u + 2/M ≤ t ≤ w − 2/M and w − u ≤ 5/M .
We now show that for this choice we have C(x, t) ⊆ C(yi, u). First, assume that

u ≥ 0. Then using (16) with v > 1 − 1/(2M2) and t − u ≥ 2/M we obtain

t2 + u2 + v2 − 2tuv ≥ t2 − 2tu + u2 + v2

≥ (t − u)2 + (1 − 1/
(
2M2))2

≥ 4/M2 + 1 − 1/M2 + 1/
(
4M4)> 1.

Now assume that u < 0. Then

t2 + u2 + v2 − 2tuv ≥ t2 − 2tu + u2 + v2 − tu/M2

≥ (t − u)2 + (1 − 1/
(
2M2))2 − 1/M2

≥ 4/M2 + 1 − 1/M2 + 1/
(
4M4)− 1/M2 > 1.

Thus, C(x, t) ⊆ C(yi, u). We now show that C(yi,w) ⊆ C(x, t). If w = 1, we
have C(yi,w) = ∅ in which case the result holds trivially. Thus, we can assume
that t < 1 − 2/M , which implies that yi ∈ C(x, t). We use (16) again with v >

1 − 1/(2M2) and |u − t | ≥ 1/M . Thus, the result follows by the same arguments
as in the previous case.

Thus, we have C(yi,w) ⊆ C(x, t) ⊆ C(yi, u) with w−u ≤ 5/M . For w,u ≥ 0,
we have

2B(1;d/2,1/2)π
(
C(yi, u) \ C(yi,w)

)
=
∫ 1−u2

1−w2
zd/2−1(1 − z)−1/2 dz

≤
∫ 1−u2

max{0,1−u2−10u/M−25/M2}
zd/2−1(1 − z)−1/2 dz
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≤ sup
10/M+25/M2≤r≤1

∫ r

r−10/M−25/M2
zd/2−1(1 − z)−1/2 dz

≤
∫ 1

1−10/M−25/M2
(1 − z)−1/2 dz

≤
√

10/M + 25/M2 ≤
√

35/M.

Thus, in general we have

π
(
C(yi, u) \ C(yi,w)

)≤ √
35/M

B(1;d/2,1/2)
≤

√
35

B(1;d/2,1/2)

√
cd

N1/(2d)
.

The last expression is bounded by δ for

N =
⌈

35dcd
d

B2d(1;d/2,1/2)δ2d

⌉
. �

LEMMA 8. Assume that N1/d/cd > 1/2 [otherwise (15) is trivial]. Then we
have for δ = d1/2n−1/2 that there exists an absolute constant c > 0, such that

|�δ| ≤ cnd+1.

PROOF. We have

|�δ| ≤ N(2M + 1)

≤ N
(
2N1/d/cd + 1

)
≤ 4N1+1/d/cd

≤ 8 · 35d+1cd
d

B2(d+1)(1;d/2,1/2)δ2(d+1)
.

Thus, for δ = d1/2n−1/2 we obtain

|�δ| ≤ nd+1

dd+1

8 · 35d+1cd
d

B2(d+1)(1;d/2,1/2)
≤ nd+1

dd+1

280 · 735d(�((d + 1)/2))2(d+1)

(�(d/2)�(1/2))2(d+1)
,

where � is the Gamma function. Using Stirling’s formula for the Gamma function,

�(z) =
√

2π

z

(
z

e

)z(
1 +O

(
z−1))

we obtain that there is an absolute constant c > 0 such that |�δ| ≤ cnd+1. �
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