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SHORTEST PATH THROUGH RANDOM POINTS

BY SUNG JIN HWANG∗,1,3, STEVEN B. DAMELIN†,2

AND ALFRED O. HERO III‡,1

Google∗, the American Mathematical Society† and University of Michigan‡

Let (M,g1) be a complete d-dimensional Riemannian manifold for
d > 1. Let Xn be a set of n sample points in M drawn randomly from a
smooth Lebesgue density f supported in M . Let x, y be two points in M . We
prove that the normalized length of the power-weighted shortest path between
x, y through Xn converges almost surely to a constant multiple of the Rie-
mannian distance between x, y under the metric tensor gp = f 2(1−p)/dg1,
where p > 1 is the power parameter.

1. Introduction. The shortest path problem [see, e.g., Cormen et al. (2009),
Dijkstra (1959)] is of interest both in theory and in applications since it naturally
arises in combinatorial optimization problems, such as optimal routing in com-
munication networks, and efficient algorithms exist to solve the problem. In this
paper, we are interested in the shortest paths over random sample points embedded
in Euclidean and Riemannian spaces.

Many graph structures over Euclidean sample points have been studied in the
context of the Beardwood–Halton–Hammersley (BHH) theorem and its exten-
sions. The BHH theorem states that the law of large numbers (LLN) holds for
certain spanning graphs over random samples. Such graph structures include the
travelling salesman path (TSP), the minimal spanning tree (MST) and the nearest
neighbor graphs (k-NNG). See Steele (1997) and Yukich (1998). The BHH theo-
rem applies to graphs that span all of the points in the random sample. This paper
establishes a BHH-type theorem for shortest paths between any two points.

In the last few years, the asymptotic theory for spanning graphs such as the
MST, the k-NNG and the TSP has been extended to the Riemannian case, for ex-
ample, Costa and Hero (2004) extended the MST asymptotics in the context of
entropy and intrinsic dimensionality estimation. More general non-Euclidean ex-
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tensions have been established by Penrose and Yukich (2013). This paper extends
the BHH theorem in a different direction: the shortest path between random points
in a Riemannian manifold.

The asymptotic properties of paths through random Euclidean sample points
have been studied mainly in first-passage percolation (FPP) models [Hammersley
(1966)]. Shortest paths have been studied in FPP models in the context of first
passage time or travel time with lattice models [Kesten (1987)] or (homogeneous)
continuum models [Howard and Newman (1997)]. Under the FPP lattice model,
LaGatta and Wehr (2010) extended these results to the non-Euclidean case where
interpoint distances are determined by a translation-invariant random Riemannian
metric in R

d . This paper makes a contribution in a different direction. We assume
a nonhomogeneous continuum model and establish convergence of the shortest
path lengths to density-dependent deformed Riemannian distances. The conver-
gent limit reduces to the result of Howard and Newman (2001) when specialized
to a homogeneous Euclidean continuum model.

2. Main results. In this paper, a smooth function is an infinitely differen-
tiable function, that is, f ∈ C∞. A smooth manifold means its transition maps
are smooth.

Let (M,g1) be a smooth d-dimensional Riemannian manifold without bound-
ary with Riemannian metric tensor g1 and d > 1. Recall that a Riemannian metric
tensor, often simply called a Riemannian metric, on a manifold is a family of posi-
tive definite inner products on the tangent spaces of the manifold. When M = R

d ,
g1 is the standard Euclidean inner product. The use of the subscript on g1 will
become clear shortly.

Consider a probability space (M,B,P) where P is a probability distribution
over Borel subsets B of the sample space M . Assume that the distribution has a
Lebesgue probability density function (p.d.f.) f with respect to g1. Let X1,X2, . . .

denote an i.i.d. sequence drawn from this density and let the first n samples from
this sequence be denoted by Xn = {X1, . . . ,Xn}. The sequence Xn will be associ-
ated with the nodes in a undirected simple graph whose edges have weight equal
to the power weighted Euclidean distance between pairs of nodes. We will use in-
dexing by n of a generic nonrandom point xn ∈ M . This point is not related in any
way to the random variable Xn. For realizations, we will use the notation Xn(ω)

where ω is an elementary outcome in the sample space.
For p > 1, called the power parameter, define a new metric tensor gp =

f 2(1−p)/dg1. That is, if Zx and Wx are two tangent vectors at a point x ∈ M ,
then gp(Zx,Wx) = f (x)2(1−p)/dg1(Zx,Wx). The deformed metric tensor gp is
well-defined for every x with f (x) > 0, and gp is a Riemannian metric tensor
when f ∈ C∞. In this paper, we assume p > 1 except for a few places where we
compare with the undeformed case p = 1.

The main result of this paper, stated as Theorem 1, establishes an asymptotic
limit of the lengths of the shortest paths through locally finite point processes.
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A subset A ⊂ M is locally finite if A ∩ B is finite for every B ⊂ M of finite
volume. For example, a homogeneous Poisson process in R

d is locally finite with
probability one. For x, y ∈ M and locally finite A ⊂ M , let L(x, y;A) denote
the power-weighted shortest path length from x to y through A ∪ {x, y}. Let the
edge weight between two points u and v be defined as dist1(u, v)p where dist1
denotes the Riemannian distance under the metric tensor g1. A path π through
points x0, . . . , xk has power-weighted length

∑k−1
i=0 dist1(xi, xi+1)

p .
For x ∈ M and r > 0, we denote by B(x; r) the open ball in M of radius r

centered at x, that is, B(x; r) = {u ∈ M: dist1(x, u) < r}.
2.1. Main result. Let distp denote the deformed distance under gp ,

distp(x, y) = inf
γ

∫ 1

0
f (γt )

(1−p)/d
√

g1
(
γ ′
t , γ

′
t

)
dt,(1)

where the infimum is taken over all piecewise smooth curves γ : [0,1] → M such
that γ0 = x and γ1 = y. When a curve achieves the infimum, we call the curve a
gp-geodesic.

The following is the main result of this paper.

THEOREM 1. Assume that M is compact, and that f is continuous with
infM f > 0. There exists a constant C(d,p) > 0, which only depends on d and
p, satisfying the following. Let b > 0 and ε > 0. Then there exists θ0 > 0 such that

P
(

sup
x,y

∣∣∣∣ L(x, y;Xn)

n(1−p)/d distp(x, y)
− C(d,p)

∣∣∣∣ > ε

)
≤ exp

(−θ0n
1/(d+2p)),

for all sufficiently large n, where the supremum is taken over x, y ∈ M with
dist1(x, y) ≥ b.

The constant C(d,p) is fixed throughout this paper [this is the same constant
that is denoted as μ in Howard and Newman (1997, 2001)]. When p = 1, there is
no power-weighting of the edges, and C(d,1) = 1.

The requirement dist1(x, y) ≥ b > 0 can be relaxed. The probability upper
bound exp(−θ0n

1/(d+2p)) can be written as exp(−θ ′
0(nrd

n )1/(d+2p) + O(logn))

where θ ′
0 = θ0b

−d/(d+2p) and where x, y is constrained to satisfy dist1(x, y) ≥ rn
for some positive sequence rn. Therefore, for the probability upper bound to be
nontrivial, nrd

n / logn must go to infinity. The separation requirement dist1(x, y) ≥
b > 0 is one sufficient condition that ensures this property.

A similar convergence result holds when M is complete, but not necessarily
compact, giving the almost sure limit stated below.

THEOREM 2. Assume that M is complete and that f is continuous with
f (u) > 0 for all u ∈ M . Fix x, y ∈ M . Then

lim
n→∞n(p−1)/dL(x, y;Xn) = C(d,p)distp(x, y) a.s.
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The constant C(d,p) is the same constant as in Theorem 1.

REMARK. In the case where the p.d.f. f ∈ C∞, then the deformed metric
tensor gp is a Riemannian metric tensor, and distp is a Riemannian distance.
Theorems 1 and 2 connect an algorithmic quantity, power-weighted shortest path
lengths, to a geometric quantity, Riemannian distances.

2.2. Discussion. We use shorthand notation Lλ(x, y) to denote L(x, y;Hλ)

where Hλ is a homogeneous Poisson point process of intensity λ > 0 in R
d .

Theorems 1 and 2 can be compared to analogous results in the continuum FPP
model of Howard and Newman (2001). The main differences are the following:
(i) The results of Howard and Newman (2001) are restricted to the case of uni-
formly distributed node locations Hλ in Euclidean spaces while our results also
hold for the case of nonuniformly distributed points in compact or complete man-
ifolds; (ii) our convergence rates improve upon those of Howard and Newman
(2001).

Specifically, Howard and Newman [(2001), Theorem 2.2] establish a bound
on the shortest path lengths in a homogeneous Poisson point process. Recall that
Lλ(x, y) denotes the power-weighted shortest path length from x ∈ R

d to y ∈ R
d

through random nodes in a homogeneous Poisson point process Hλ of intensity
λ > 0.

Howard and Newman [(2001), Theorem 2.2] state the following. Let κ1 =
min(1, d/p), κ2 = 1/(4p + 3), and e1 ∈ R

d be a unit vector. For any 0 < b < κ2,
there exists a constant C0 (depending on b) such that for t > 0 and tb ≤ s

√
t ≤

tκ2−b,

P
(∣∣∣∣1

t
L1(0, te1) − C(d,p)

∣∣∣∣ > s

)
≤ exp

(−C0(s
√

t)κ1
)
.(2)

Note that the bound in (2) decays to zero no faster than exp(−C0t
κ1κ2) where

κ1κ2 = tmin(1,d/p)/(4p+3).
On the other hand, for arbitrary (uniform or nonuniform) density, our Theorem 7

implies, after simple Poissonization of the sequence Xn that there exists some θ >

0 such that (see the Appendix)

P
(∣∣∣∣1

t
L1(0, te1) − C(d,p)

∣∣∣∣ > s

)
≤ exp

(−θtd/(d+2p))(3)

for all sufficiently large t . Therefore, the decay is exponential in td/(d+2p). Under
the condition d ≥ 1 and p > 1, the decay rate (3) is faster than the rate (2).

It is interesting to compare Theorem 1 with BHH results. The convergence result
established in this paper differs from previous BHH theorems in two ways. The
first difference is that Theorem 1 specifies a limit of the shortest path through
Xn while BHH theory [Steele (1997), Yukich (1998)] specifies limits of the total
length of a graph spanning Xn, for example, the minimal spanning tree (MST)
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or the solution to the traveling salesman problem (TSP). The second difference is
that the shortest path has fixed anchor points, hence it is not translation-invariant.
This is in contrast to BHH theory developed in Penrose and Yukich (2003, 2013)
where Euclidean functionals are generalized to locally stable functionals while the
translation-invariance requirement is maintained.

3. Main proofs. An obvious but important property of L(x, y;A) for x, y ∈
M and locally finite A ⊂ M is that if A′ ⊂ A then L(x, y;A) ≤ L(x, y;A′). This
property is used in several places in the proofs.

We define the constant α = 1/(d + 2p) that is used throughout the paper.

3.1. Local convergence results. Theorem 1 states a convergence result apply-
ing to random variables in Riemannian manifolds. Theorem 1 is obtained by an
extension of a simpler theorem on Euclidean space.

We first prove an upper bound for shortest path edge lengths.

LEMMA 3. Let z ∈ R
d and R > 0. Assume that Xn is i.i.d. in R

d with p.d.f. f ,
and that fm = inf{f (u):u ∈ B(z;R)} is strictly positive. Fix b > 0.

Define the event Hn(i, j) for each pair 1 ≤ i = j ≤ n as the intersection of the
following events:

(i) both Xi and Xj are in B(z;R),
(ii) |Xi − Xj | > bα(nfm)(α−1)/d , and

(iii) the shortest path from Xi to Xj over Xn contains no sample point Xk other
than Xi and Xj .

Let Fn = ⋂
i,j (Hn(i, j)c), where the superscript c denotes set complement. Then

there exists a constant θ1 > 0 such that

1 − P(Fn) ≤ exp
(−θ1n

α)
for all sufficiently large n.

PROOF. Define h(Xi,Xj ; ·):Rd →R,

h(Xi,Xj ;u) = |Xi − u|p + |Xj − u|p − |Xi − Xj |p,(4)

and let 
(Xi,Xj ) = {u ∈ R
d :h(Xi,Xj ;u) < 0}. Note that if Xk ∈ 
(Xi,Xj ),

then Xi → Xk → Xj is shorter than Xi → Xj as measured by the sum of power-
weighted edge lengths. Note that the volume of 
(Xi,Xj ) is a function of the
distance |Xi − Xj | and that a portion of 
(Xi,Xj ) intersects B(z;R). Therefore,
there exists a constant θ ′

1 = θ ′
1(d,p) > 0 such that the intersection volume is at

least θ ′
1|Xi − Xj |d for all sufficiently large n.

Suppose that event Hn(1,2) occurs. Then the shortest path from X1 to X2 con-
tains no sample point other than X1 and X2, and the intersection of 
(X1,X2)
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and B(z;R) cannot contain any of X3,X4, . . . ,Xn. Since it is assumed that
|X1 − X2| > bα(nfm)(α−1)/d ,

P
(
Hn(1,2)

) ≤ (
1 − θ ′

1
(
nfmbd)α

/n
)n−2

.

There are n(n − 1)/2 ≤ n2 pairs of sample points, hence

1 − P(Fn) = P
(⋃

i<j

Hn(i, j)

)
≤ n2(

1 − θ1n
α/n

)n−2
,

where θ1 = θ ′
1(fmbd)α . �

Next, we provide results on the number of nodes in the shortest paths
(Lemma 4), and the mean convergence of ELn (Proposition 5). We will estab-
lish these results using the theory of Poisson processes in Section 4. Proposition 5
involves the constant C(d,p) in Theorem 1. The definition of this constant will be
given in (44) in the proof of Lemma 12.

LEMMA 4. Let z ∈ R
d , R2 > R1 > 0. Assume that the p.d.f. f is uniform in

B(z;R2), that is, f (u) = f (z) > 0 for all u ∈ B(z;R2), but may have probability
mass outside B(z;R2). Then there exists a constant C∗ > 0, depending only on d

and p, satisfying the following.
For x, y ∈ B(z;R1) with x = y, let #L(x, y;Xn ∩ B(z;R2)) denote the number

of nodes in the shortest path, and let Gn(x, y) denote the event that

#L(x, y;Xn ∩ B(z;R2))

(nf (z))1/d |x − y| ≤ C∗.

For any given b ∈ (0,2R1), there exists θ2 > 0 and n0 > 0 such that if |x − y| ≥ b

and n ≥ n0 then

1 − P
(
Gn(x, y)

) ≤ exp
(−θ2n

1/(d+2p−1)).
PROPOSITION 5. Let z ∈ R

d , R2 > R1 > 0. Assume that the p.d.f. f is uni-
form in B(z;R2) but may have probability mass outside B(z;R2). Fix ε > 0 and
b ∈ (0,2R1). Then there exists n0 > 0 such that for all n ≥ n0 and x, y ∈ B(z;R1)

with |x − y| ≥ b, ∣∣∣∣EL(x, y;Xn ∩ B(z;R2))

(nf (z))(1−p)/d |x − y| − C(d,p)

∣∣∣∣ < ε.

From Lemmas 3, 4 and Proposition 5, we obtain the following local convergence
result.

PROPOSITION 6. Let z ∈ R
d , R2 > R1 > 0. Assume that the p.d.f. f is uni-

form in B(z;R2) but may have probability mass outside. Fix ε > 0 and b ∈
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(0,2R1). Then there exists a constant θ3 > 0 such that for all sufficiently large
n and for all x, y ∈ B(z;R1) with |x − y| ≥ b,

P
(∣∣∣∣L(x, y;Xn ∩ B(z;R2))

(nf (z))(1−p)/d |x − y| − C(d,p)

∣∣∣∣ > ε

)
≤ exp

(−θ3n
α)

.

While it is possible to obtain a weakened form of Proposition 6 from Howard
and Newman (2001), we provide an alternative proof with improved convergence
rate.

In the proof of Proposition 6, Talagrand’s convex distance [see Talagrand
(1995), Section 4.1] is used in the following form. Let ω be an elementary out-
come in the sample space, and let A be a measurable event with respect to n sample
points X1, . . . ,Xn. Define the convex distance dc(ω;A) of ω from A,

dc(ω;A) = sup
s1,...,sn

min
η∈A

∑
i

si1{Xi(ω) =Xi(η)},(5)

where the supremum is taken over s1, . . . , sn ∈ R,
∑

i |si |2 ≤ 1. For t > 0 define
At as the enlargement of A by t ,

At = {
ω:dc(ω;A) ≤ t

}
.(6)

This notation will be used only in the proof of Proposition 6. Talagrand’s concen-
tration inequality Talagrand [(1995), Theorem 4.1.1] is

P(A)
(
1 − P(At )

) ≤ exp
(−1

4 t2)
.(7)

PROOF OF PROPOSITION 6. Our proof is structured similarly to that of Yukich
[(2000), Theorem 1.3] and Talagrand [(1995), Section 7.1]. For convenience, de-
fine τn = b(nf (z))1/d and ζn = τα

n (nf (z))−1/d . Let:

• Fn be the event that all the edges of the shortest path have distances at most ζn

(see Lemma 3 for Fn),
• Gn be the event that #Ln(xn, yn) ≤ C∗τn where the constant C∗ is specified in

Lemma 4,
• Hn be the event that at every point u ∈ B(z;R2), at least one of the sample

points is in B(u; ζn).

All these events occur with high probability. Both 1 − P(Fn) and 1 − P(Gn)

are exponentially small in nα by Lemmas 3 and 4, respectively. The probability
1 − P(Hn) may be shown to be exponentially small as well by an argument similar
to the proof to Lemma 3, which we will outline here. Let {B(wi;2−1ζn,1 ≤ i ≤ m}
be an open cover of B(z;R2) with m = O(n). The probability that at least one of
the open balls comprising the cover does not contain any sample point is bounded
above by m(1 − 4−df (z)Vdζ d

n )n, where Vd denotes the volume of a unit ball. This
upper bound is exponentially small in nf (z)ζ d

n = (nf (z)bd)α , hence exponentially
small in nα as n goes to infinity.
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We use shorthand notation LB
n for L(x, y;Xn ∩ B(z;R2)). For a > 0, define

Wn(a) to be the event that LB
n ≥ a. Let ω ∈ Fn ∩ Gn and η ∈ Hn ∩ Wn(a) be two

elementary outcomes in the sample space. If the shortest path Ln(ω) from x to y

through the realization Xn(ω) = {X1(ω), . . . ,Xn(ω)} is the sequence

xn = π0(ω) → π1(ω) → ·· · → πk+1(ω) = yn,

where k = #LB
n (ω), then we may build a path π(η) from x to y through another re-

alization X1(η), . . . ,Xn(η) as follows. For each i ∈ {1, . . . , k}, let j denote the in-
dex where Xj(ω) = πi(ω). If Xj(ω) = Xj(η), then set πi(η) = πi(ω). Otherwise,
since η ∈ Hn ∩Wn(a) ⊂ Hn, there exists some l such that Xl(η) is in B(z;R2) and
|Xl(η)−πi(ω)| < ζn. Set πi(η) = Xl(η). Then it follows that |πi(η)−πi(ω)| ≤ ζn

for all i = 1, . . . , k. At the same time, |πi(ω) − πi+1(ω)| ≤ ζn for all i = 1, . . . , k

since ω ∈ Fn. It follows from the triangle inequality that∣∣πi(η) − πi+1(η)
∣∣

≤ ∣∣πi(η) − πi(ω)
∣∣ + ∣∣πi(ω) − πi+1(ω)

∣∣ + ∣∣πi+1(ω) − πi+1(η)
∣∣

≤ 3ζn.

Let I be the set of indices i where πi(ω) = πi(η). Then the power-weighted length
of the path π(η) is at most

k∑
i=0

∣∣πi(η) − πi+1(η)
∣∣p ≤

k∑
i=0

∣∣πi(ω) − πi+1(ω)
∣∣p + ∑

i∈I
or i+1∈I

∣∣πi(η) − πi+1(η)
∣∣p

≤ LB
n (ω) + 2|I |(3ζn)

p.

On the other hand, η ∈ Wn(a), that is, LB
n (η) ≥ a. Hence,

a ≤ LB
n (ω) + 2|I |(3ζn)

p.

Let dc(ω;Hn ∩ Wn(a)) be the convex distance as defined in (5). By choosing si
in (5) as

si =
{

1/
√

#LB
n (ω), if Xi is in the path LB

n (ω),
0, otherwise,

there exists η ∈ Hn ∩ Wn(a) such that |I | ≤ dc(ω;Hn ∩ Wn(a))
√

#LB
n (ω). There-

fore,

LB
n (ω) ≥ a − 2 · (3ζn)

p · dc

(
ω;Hn ∩ Wn(a)

)√
#LB

n (ω).

In particular, if LB
n (ω) ≤ a − u for u > 0, then

dc

(
ω;Hn ∩ Wn(a)

) ≥ u

2 · (3ζn)p ·
√

#LB
n (ω)

(8)
≥ u

2 · (3ζn)p · √C∗τn



SHORTEST PATH THROUGH RANDOM POINTS 2799

since ω ∈ Gn. Let t > 0 equal to the right-hand side of (8), and let (Hn ∩ Wn(a))t
denote the enlargement of Hn ∩ Wn(a) as defined in (6), that is, the collection of
all elementary outcomes whose convex distance from Hn ∩ Wn(a) is at most t .
Then (8) implies that

P
({

LB
n ≤ a − u

} ∩ Fn ∩ Gn

) ≤ 1 − P
((

Hn ∩ Wn(a)
)
t

)
.(9)

Let Mn be the median of LB
n . Note that P(Hn ∩ Wn(Mn)) is arbitrarily close to

1/2 for sufficiently large n since P(Wn(Mn)) = P(LB
n ≥ Mn) = 1/2, and P(Hn)

approaches one as n → ∞ by Lemma 3. In particular, for n sufficiently large,
P(Hn ∩ Wn(Mn)) ≥ 1/3. Set a = Mn in (9), and apply Talagrand’s inequality (7)
with A = Hn ∩ Wn(Mn) to obtain

P
(
LB

n ≤ Mn − u
) ≤ 3 exp

(
− C2u

2

ζ
2p
n τn

)
+ (

1 − P(Fn)
) + (

1 − P(Gn)
)
,

for sufficiently large n, where C2 = (2432pC∗)−1.
To obtain an upper bound, set a = Mn + u. From (9), 1 − P((Hn ∩ Wn(a))t ) ≥

1/3 for sufficiently large n since both P(Fn) and P(Gn) converge to one as n → ∞.
Apply Talagrand’s inequality again for A = Hn ∩ Wn(a) = Hn ∩ {LB

n ≥ Mn + u}.
This gives

P
(
LB

n ≥ Mn + u
) ≤ 3 exp

(
− C2u

2

ζ
2p
n τn

)
+ (

1 − P(Hn)
)

for sufficiently large n. Combine the above two inequalities above and |x − y| ≥ b

to obtain

P
( |LB

n − Mn|
(nf (z))(1−p)/d |x − y| > u

)

≤ 6 exp
(−C2

(
nf (z)bd)α

u2) + hn(10)

= 6 exp
(−C3n

αu2) + hn,

where hn = (1 − P(Fn)) + (1 − P(Gn)) + (1 − P(Hn)), and C3 = C2(f (z)bd)α .
The reader can verify the inequality by recalling the definitions τn = b(nf (z))1/d ,
ζn = τα

n (nf (z))−1/d , and α = 1/(d + 2p).
Note that P(|LB

n − Mn| > u) = 0 when u ≥ |x − y|p . Integrate the right-hand
side of (10) for u ≥ 0 to obtain the upper bound

|ELB
n − Mn|

(nf (z))(1−p)/d |x − y| ≤ 6

√
π

C3nα
+ ((

nf (z)
)1/d |x − y|)p−1

hn.

Since P(Fn), P(Gn), and P(Hn) approach one exponentially fast in nα , so does hn.
Furthermore, the convergence rate is independent of the choice x, y. Therefore,

lim
n→∞

|ELB
n − Mn|

(nf (z))(1−p)/d |x − y| = 0.
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By Proposition 5, for all sufficiently large n and |x − y| ≥ b,

P
(∣∣∣∣ LB

n

(nf (z))(1−p)/d |x − y| − C(d,p)

∣∣∣∣ > ε

)
≤ P

( |LB
n − Mn|

(nf (z))(1−p)/d |x − y| >
ε

2

)
.

Thus, the proposition follows from (10), Lemmas 3 and 4. �

THEOREM 7. Let z ∈ R
d , R > 0, and b ∈ (0,R/2). Assume that the p.d.f.

f is uniform in B(z;R) but may have probability mass outside. Choose ε > 0
sufficiently small so that (C(d,p) + ε)/2 < (C(d,p) − ε)5/8.

Denote by En(ε) the event that for all x ∈ B(z;R/4) and u /∈ B(z;R),

L(x,u;Xn)

(nf (z))(1−p)/d
>

(
C(d,p) − ε

) · 5

8
R.(11)

Denote by E′
n(ε) the event that for all x, y ∈ B(z;R/4) with |x − y| ≥ b,

L(x, y;Xn) = L
(
x, y;Xn ∩ B(z;R)

)
,(12)

and ∣∣∣∣ L(x, y;Xn)

(nf (z))(1−p)/d |x − y| − C(d,p)

∣∣∣∣ ≤ ε.(13)

Then there exists θ4 > 0 such that

1 − P
(
En(ε) ∩ E′

n(ε)
) ≤ exp

(−θ4n
α)

for all sufficiently large n.

Theorem 7 asserts that with high probability, for sufficiently large n the shortest
path between the points x, y in the open ball B(z;R/4) does not exit B(z;R). We
first prove a lemma that will be used to prove Theorem 7.

LEMMA 8. Suppose the assumptions in Theorem 7 hold. Let u, v, x, y ∈
B(z;R). If:

C.1: the event Fn from Lemma 3 occurs,
C.2: |x − u| and |y − v| are at most bα(nf (z))(α−1)/d ,
C.3: |x − y| ≥ b, and

C.4: L(u,v;Xn∩B(z;R))

(nf (z))(1−p)/d |u−v| ≤ C(d,p) + ε,

then there exists n0 > 0 independent of the choice u, v, x, y in B(z;R) such that∣∣∣∣L(x, y;Xn ∩ B(z;R))

(nf (z))(1−p)/d |x − y| − L(u, v;Xn ∩ B(z;R))

(nf (z))(1−p)/d |u − v|
∣∣∣∣ <

ε

2
(14)

for all n ≥ n0.
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PROOF. We bound the left-hand side of (14) from above by∣∣∣∣L(x, y;Xn ∩ B(z;R))

(nf (z))(1−p)/d |x − y| − L(u, v;Xn ∩ B(z;R))

(nf (z))(1−p)/d |x − y|
∣∣∣∣

(15)

+
∣∣∣∣L(u, v;Xn ∩ B(z;R))

(nf (z))(1−p)/d |x − y| − L(u, v;Xn ∩ B(z;R))

(nf (z))(1−p)/d |u − v|
∣∣∣∣.

Since the event Fn occurred by C.1, every edge in the shortest path has length at
most bα(nf (z))(α−1)/d . Combining with C.2, the difference between L(x, y;Xn ∩
B(z;R)) and L(u, v;Xn ∩B(z;R)) is at most 2 ·(2bα)p(nf (z))(α−1)p/d . With C.3,
the first term in (15) may be bounded from above as follows:∣∣∣∣L(x, y;Xn ∩ B(z;R))

(nf (z))(1−p)/d |x − y| − L(u, v;Xn ∩ B(z;R))

(nf (z))(1−p)/d |x − y|
∣∣∣∣

≤ 2p+1bαp(nf (z))(α−1)p/d

b(nf (z))(1−p)/d
.

Note that (α − 1)p/d − (1 − p)/d = −(1 − αp)/d < 0. Therefore, there exists
n1 such that the first term in (15) is smaller than ε/4 for all n ≥ n1, and n1 is
independent of the choice u, v, x, y.

Since ||u − v| − |x − y|| < 2bα(nf (z))(α−1)/d by C.2, the second term in (15)
can be bounded from above as follows using C.4:∣∣∣∣L(u, v;Xn ∩ B(z;R))

(nf (z))(1−p)/d |x − y| − L(u, v;Xn ∩ B(z;R))

(nf (z))(1−p)/d |u − v|
∣∣∣∣

≤ L(u, v;Xn ∩ B(z;R))

(nf (z))(1−p)/d |u − v|
∣∣∣∣ |u − v| − |x − y|

|x − y|
∣∣∣∣

≤ (
C(d,p) + ε

)2bα(nf (z))(α−1)/d

b
.

Since (α − 1)/d < 0, there exists n2 such that the second term in (15) is smaller
than ε/4 for all n ≥ n2, and again n2 is independent of the choice u, v, x, y.
Lemma 8 follows by choosing n0 = max(n1, n2). �

PROOF OF THEOREM 7. Let ζn = bα(nf (z))(α−1)/d . For a set of points
{wi}mi=1 in R

d , let {
B(wi; ζn):wi ∈ B(z;R/4),1 ≤ i ≤ m

}
be a finite open cover of B(z;R/4) with m = O(n). Likewise, for a set of points
{vk}�k=1 in R

d , let {
B(vk; ζn):vk ∈ B(z;7R/8),1 ≤ k ≤ �

}
be a finite open cover of the boundary of B(z;7R/8) with � = O(n).
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Suppose that:

D.1: the event Fn from Lemma 3 occurs, and
D.2: | L(wi,vk;Xn∩B(z;R))

(nf (z))(1−p)/d |wi−vk | − C(d,p)| ≤ ε
2 for all wi, vk .

We claim that (11) holds for sufficiently large n, under the assumptions D.1
and D.2.

Let L(x; r;Xn), r > 0, denote the minimal power-weighted path length from x

to the boundary of B(z; r), that is,

L(x; r;Xn) = min|z−y|=r
L(x, y;Xn).

Every path from x ∈ B(z;R/4) to u /∈ B(z;R) crosses the boundary of B(z;
7R/8), therefore L(x,u;Xn) ≥ L(x;7R/8;Xn). It suffices to show that

L(x;7R/8;Xn)

(nf (z))(1−p)/d
≥ (

C(d,p) − ε
)5

8
R(16)

for all x ∈ B(z;R/4) to prove (11).
Note that L(x;7R/8;Xn) = L(x;7R/8;Xn ∩ B(z;R)), that is,

L(x;7R/8;Xn) = min|z−y|=7R/8
L

(
x, y;Xn ∩ B(z;R)

)
.

If the shortest path to the boundary were to reach any point outside B(z;R) ⊃
B(z;7R/8), the path must have already passed through the boundary, which is a
contradiction.

For every x ∈ B(z;R/4), there exists wi such that |x − wi | < ζn, and for every
q on the boundary of B(z;7R/8), there exists vk such that |q − vk| < ζn. Conse-
quently, by Lemma 8 and assumptions D.1 and D.2, for sufficiently large n,

L(x, q;Xn ∩ B(z;R))

(nf (z))(1−p)/d |x − q| ≥ C(d,p) − ε,

for all x ∈ B(z;R/4) and for all q satisfying |z − q| = 7R/8. Use |x − q| ≥ 5R/8,
and we have proved (16), and in turn (11).

Now let x, y ∈ B(z;R/4) and |x − y| ≥ b. Then there exist wi,wj such that
|wi −x| < ζn and |wj −y| < ζn. Suppose the following condition holds in addition
to D.1 and D.2:

D.3: | L(wi,wj ;Xn∩B(z;R))

(nf (z))(1−p)/d |wi−wj | − C(d,p)| ≤ ε
2 .

We claim that (12) holds.
Assume to the contrary that the path L(x, y;Xn) includes some point out-

side B(z;R). Then the path has crossed the boundary of B(z;7R/8), hence
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L(x;7R/8;Xn) ≤ L(x, y;Xn). We have already seen that (16) holds. Therefore,

(
C(d,p) − ε

)5

8
R ≤ L(x;7R/8;Xn)

(nf (z))(1−p)/d
≤ L(x, y;Xn)

(nf (z))(1−p)/d
.

On the other hand, apply Lemma 8 with D.3 to have

L(x, y;Xn)

(nf (z))(1−p)/d
≤ L(x, y;Xn ∩ B(z;R))

(nf (z))(1−p)/d
≤ (

C(d,p) + ε
)1

2
R

since x, y ∈ B(z;R/4) and |x − y| ≤ R/2. Recall that ε was assumed to be suf-
ficiently small so that (C(d,p) + ε)/2 < (C(d,p) − ε)5/8. Therefore, we have a
contradiction.

We now claim that (13) is true when assumptions D.1, D.2 and D.3 hold. Start
with ∣∣∣∣ L(x, y;Xn)

(nf (z))(1−p)/d |x − y| − C(d,p)

∣∣∣∣
≤

∣∣∣∣ L(x, y;Xn)

(nf (z))(1−p)/d |x − y| − L(wi,wj ;Xn)

(nf (z))(1−p)/d |wi − wj |
∣∣∣∣(17)

+
∣∣∣∣ L(wi,wj ;Xn)

(nf (z))(1−p)/d |wi − wj | − C(d,p)

∣∣∣∣.
From (11) and (12), L(x, y;Xn) and L(wi,wj ;Xn) in the upper bound of (17) can
be replaced by L(x, y;Xn ∩ B(z;R)) and L(wi,wj ;Xn ∩ B(z;R)), respectively.
Therefore, for sufficiently large n, the first term in the upper bound is less than ε/2
by Lemma 8, and the second term is less than ε/2 by D.3. This establishes that
(13) holds.

In summary, we have shown that (11), (12) and (13) hold when events D.1, D.2
and D.3 occur. If the event En(ε) or E′

n(ε) does not occur, either one of D.1, D.2
or D.3 does not occur:

1 − P
(
En(ε) ∩ E′

n(ε)
) ≤ (

1 − P(Fn)
)

+ ∑
wi,vk

P
(∣∣∣∣L(wi, vk;Xn ∩ B(z;R))

(nf (z))(1−p)/d |wi − vk| − C(d,p)

∣∣∣∣ >
ε

2

)

+ ∑
wi,wj

P
(∣∣∣∣L(wi,wj ;Xn ∩ B(z;R))

(nf (z))(1−p)/d |wi − wj | − C(d,p)

∣∣∣∣ >
ε

2

)
.

The first sum is over all pairs wi, vk . The second sum is over all wi,wj with
|wi − wj | ≥ b/2. Theorem 7 now follows from Lemma 3 and Proposition 6 with
R1 = 7R/8 and R2 = R, since the number of summands are of polynomial order
in n. �
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COROLLARY 9. Assume that f is continuous at z ∈ R
d and f (z) > 0. Fix

ε > 0 small enough so that (C(d,p) + ε)/2 < (C(d,p) − ε)5/8. For R > 0 and
b ∈ (0,R/2), let Hn = Hn(z,R, ε, b) denote the event that∣∣∣∣ L(x, y;Xn)

(nf (z))(1−p)/d |x − y| − C(d,p)

∣∣∣∣ ≤ ε,(18)

for all x, y ∈ B(z;R/4) with |x − y| ≥ b, and simultaneously

L(x,u;Xn)

(nf (z))(1−p)/d
≥ (

C(d,p) − ε
)5

8
R,(19)

for all x ∈ B(z;R/4) and u /∈ B(z;R). Then there exists R = R(z) > 0 such that
for all b ∈ (0,R/2) there exists θ5 > 0 for which,

1 − P
(
Hn(z,R, ε, b)

) ≤ exp
(−θ5n

α)
(20)

for all sufficiently large n.

PROOF. Let fm = fm(R) and fM = fM(R) denote the infimum and the supre-
mum of f inside B(z;R), respectively. Since f is continuous at z, we can choose
sufficiently small R = R(z) > 0 such that fm and fM are sufficiently close to f (z)

to satisfy

(
C(d,p) + ε/2

)(f (z)

fm

)(p−1)/d

≤ C(d,p) + ε,(21)

and

(
C(d,p) − ε/2

)(f (z)

fM

)(p−1)/d

≥ C(d,p) − ε.(22)

In addition, shrink R if necessary to ensure fMVdRd ≤ 1 where Vd denotes the
volume of a unit ball. Now choose and fix an arbitrary b ∈ (0,R/2) for the entire
proof.

For each sample point Xi ∈ Xn, let Yi be an arbitrary random point outside
B(z;R), and let Zi be an independent Bernoulli random variable with P(Zi =
1) = fm/f (Xi). Define a new random variable

Xm
i =

{
Xi, if Xi is not in B(z;R),
XiZi + Yi(1 − Zi), if Xi is in B(z;R).

Let Xm
n = {Xm

1 , . . . ,Xm
n }. Xm

n is an i.i.d. sample and its p.d.f. restricted to B(z;R)

is uniform with intensity fm. Define:

E.1: both the events En(ε/2) and E′
n(ε/2) in Theorem 7 occur for Xm

n .

Assume that the event E.1 occurs. Let x, y ∈ B(z;R/4) with |x − y| ≥ b. Since
(Xm

n ∩ B(z;R)) ⊂ (Xn ∩ B(z;R)), we have

L(x, y;Xn) ≤ L
(
x, y;Xn ∩ B(z;R)

) ≤ L
(
x, y;Xm

n ∩ B(z;R)
) = L

(
x, y;Xm

n

)
.
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The last equality comes from (12) for Xm
n . From (13) and (21), we have

L(x, y;Xn)

(nf (z))(1−p)/d |x − y| ≤ L(x, y;Xm
n )

(nfm)(1−p)/d |x − y| ·
(

f (z)

fm

)(p−1)/d

(23)
≤ C(d,p) + ε.

This establishes the upper half of the inequality (18) under E.1.
It remains to establish the lower half of the inequality (18). This is established

in two steps. First, we show that (19) holds assuming an event E.2 analogous to
E.1. Then we show that E.1 and E.2 imply (18).

For each point Xi ∈ Xn, define a new random variable XM
i as follows. Let

σ = ∫
(fM − f (u)) du ≥ 0 where the integral is taken inside B(z;R). By the

assumption fMVdRd ≤ 1, we have 0 ≤ σ ≤ 1. Let Ỹi be a random point inside
B(z;R) with p.d.f. σ−1(fM − f (u)) for u ∈ B(z;R), and let Z̃i be a Bernoulli
random variable with P(Z̃i = 1) = 1 − σ . Define

XM
i =

{
Xi, if Xi is in B(z;R),
XiZ̃i + Ỹi(1 − Z̃i), if Xi is not in B(z;R).

Let XM
n = {XM

1 , . . . ,XM
n }. XM

n is an i.i.d. sample and its p.d.f. restricted to
B(z;R) is uniform with intensity fM . Define:

E.2: both the events En(ε/2) and E′
n(ε/2) in Theorem 7 occur for XM

n .

Assume that the event E.2 occurs. Let x ∈ B(z;R/4) and v = arg miny L(x, y;
Xn) over all |z − y| = R. Then L(x, v;Xn) = L(x, v;Xn ∩ B(z;R)), otherwise
the shortest path from x to v has passed through another point on the boundary
of B(z;R), and this contradicts the choice of v. Since (Xn ∩ B(z;R)) ⊂ (XM

n ∩
B(z;R)),

L(x, v;Xn) = L
(
x, v;Xn ∩ B(z;R)

) ≥ L
(
x, v;XM

n ∩ B(z;R)
) ≥ L

(
x, v;XM

n

)
.

As v /∈ B(z;R), it follows from (22) and (11) for XM
n that

L(x, v;Xn)

(nf (z))(1−p)/d
≥ L(x, v;XM

n )

(nfM)(1−p)/d
·
(

f (z)

fM

)(p−1)/d

≥ (
C(d,p) − ε

)5

8
R.

If u /∈ B(z;R), the path L(x,u;Xn) crosses the boundary of B(z;R) at some point
u′, hence L(x,u;Xn) ≥ L(x,u′;Xn) ≥ L(x, v;Xn) by the minimality of v. This
establishes (19) under E.2.

Now we show that the upper bound of (18) holds under the conditions E.1
and E.2. Let x, y ∈ B(z;R/4). Then L(x, y;Xn) = L(x, y;Xn ∩ B(z;R)). Oth-
erwise, that is, if L(x, y;Xn) reaches some point u /∈ B(z;R), then L(x,u;Xn) ≤
L(x, y;Xn) but this contradicts (19) and (23) since |x − y| ≤ R/2 and ε was as-
sumed to satisfy (C(d,p) + ε)/2 < (C(d,p) − ε)5/8. We can now repeat the
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same argument used to establish that the upper half of the inequality (18) follows
from E.1 to show that

L(x, y;Xn)

(nf (z))(1−p)/d |x − y| ≥ L(x, y;XM
n )

(nfM)(1−p)/d |x − y| ·
(

f (z)

fM

)(p−1)/d

≥ C(d,p) − ε

by (12) and (13) for XM
n , and (22).

Applying Theorem 7 once to Xm
n and once to XM

n asserts that E.1 and E.2 occur
with exponentially small probability, which establishes Corollary 9. �

3.2. Convergence in Riemannian manifolds. We adapt Corollary 9 to the case
when the probability distribution is supported on a Riemannian manifold M in-
stead of on a Euclidean space. For z ∈ M and R > 0, B(z;R) denotes the set
{u ∈ M: dist1(u, z) < R}. Recall that α = 1/(d + 2p).

LEMMA 10. Let (M,g1) be a Riemannian manifold equipped with metric ten-
sor g1. Let z ∈ M be a point, and let ε > 0 be a fixed constant. For R > 0 and
b ∈ (0,2R), we denote by En(B(z;R), ε, b) the event that:

(i) if a shortest path passes through B(z;R) then its edges in B(z;R) have
dist1-lengths at most bα(nf (z))(α−1)/d , and

(ii) for every pair x, y ∈ B(z;R) with dist1(x, y) ≥ b,∣∣∣∣ L(x, y;Xn)

n(1−p)/d distp(x, y)
− C(d,p)

∣∣∣∣ ≤ ε.(24)

Assume that f (z) > 0 and that f is continuous at z. Then there exists R =
R(z) > 0 such that for all b ∈ (0,2R) there exists θ6 > 0 for which,

1 − P
(
En

(
B(z;R), ε, b

)) ≤ exp
(−θ6n

α)
(25)

for all sufficiently large n.

In (i), a shortest path edge between two sample points is contained in B(z;R)

when a g1-geodesic between these points is contained in B(z;R).

PROOF OF LEMMA 10. We prove this lemma by showing that both the events
(i) and (ii) satisfy the probability tail bound as in (25). That the statement (25)
holds for the event (i) follows from similar arguments as used in Lemma 3. We
focus on the event (ii).

Choose δ > 0 small enough to ensure that

2(1 + δ)p ≤ 5
2(1 − δ)p,(26) (

(1 + δ)/(1 − δ)
)p(

C(d,p) + ε/2
) ≤ C(d,p) + ε, and

(27) (
(1 − δ)/(1 + δ)

)p(
C(d,p) − ε/2

) ≥ C(d,p) − ε.
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Define U = B(z;4R) = {u ∈ M: dist1(u, z) < 4R} for R > 0. Since f is continu-
ous, we may choose R > 0 small enough so that there exists a normal chart map
ϕ:U ⊂ M → V ⊂ R

d such that the event Hn = Hn(ϕ(z),4R,2−1ε, (1 + δ)−1b)

from Corollary 9 satisfies (20), and that

(1 − δ)d sup
U

f ≤ f (z) = f
(
ϕ(z)

) ≤ (1 + δ)d inf
U

f,(28)

1 − δ ≤ dist1(u, v)

|ϕ(u) − ϕ(v)| ≤ 1 + δ,(29)

for all u, v ∈ U with u = v. Recall that f (z) = f (ϕ(z)) follows from the ba-
sic properties of normal coordinates at z ∈ M . See, for example, O’Neill (1983),
page 73. The denominator in (29) is a Euclidean distance.

We claim that (ii) is true when the event Hn(ϕ(z),4R,2−1ε, (1+δ)−1b) occurs.
Then (25) would follow from Corollary 9. In the remainder of this proof, we prove
this claim.

Let x, y ∈ B(z;R) ⊂ U . Then a g1-geodesic curve from x to y is contained in
U by the triangle inequality. It follows from the definition of distp in (1) that

distp(x, y) ≤ dist1(x, y)
(
inf
U

f
)(1−p)/d

.(30)

Furthermore, if a gp-geodesic curve from x to y were contained in U , then

distp(x, y) ≥ dist1(x, y)
(
sup
U

f
)(1−p)/d

.(31)

If a gp-geodesic curve from x to y exits U , then distp(x, y) must be at least
(3R)(supR f )(1−p)/d by the assumptions dist1(x, z) < R and U = B(z;4R). On
the other hand, it follows from (26), (28) and (30) that

distp(x, y) ≤ dist1(x, y)
(
inf
U

f
)(1−p)/d

≤ (2R)
(
sup
U

f
)(1−p)/d

(
1 + δ

1 − δ

)p−1

<
5

2
R

(
sup
U

f
)(1−p)/d

,

and this is a contradiction. Therefore, a gp-geodesic curve from x to y does not
exit U , hence (31) holds.

Next, we show that L(x, y;Xn) = L(x, y;Xn ∩ U), that is, the shortest path
between x, y ∈ B(z;R) is contained in U , when Hn(ϕ(z),4R,2−1ε, (1 + δ)−1b)

occurs. Assume to the contrary that the path L(x, y;Xn) from x exits U . Then
the corresponding path in V starts from ϕ(x) and exits V , and its power-
weighted length is at least (C(d,p) − ε)5R/2. Note that in this proof Corol-
lary 9 was applied with R replaced by 4R. By (29) and (19), it implies that
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L(x, y;Xn)/(nf (z))(1−p)/d is at least (C(d,p) − ε)(1 − δ)p5R/2. On the other
hand, by (29) and (18), L(x, y;Xn ∩ U)/(nf (z))(1−p)/d is at most (C(d,p) +
ε)(1 + δ)p2R. This is a contradiction by (26), so we conclude L(x, y;Xn) =
L(x, y;Xn ∩ U).

Let L(ϕ(x),ϕ(y);ϕ(Xn ∩ U)) denote the shortest path length between ϕ(x),
ϕ(y) ∈ V in Euclidean space R

d . Then

L(x, y;Xn)

n(1−p)/d distp(x, y)
≤ L(x, y;Xn)

(n supU f )(1−p)/d dist1(x, y)

≤
(

1 + δ

1 − δ

)p L(ϕ(x),ϕ(y);ϕ(Xn ∩ U))

(nf (ϕ(z)))(1−p)/d |ϕ(x) − ϕ(y)|
≤ C(d,p) + ε.

The first inequality follows from (31), the second one follows from (28) and (29)
and the third one follows from (27) and the assumption that Hn(ϕ(z),4R,2−1ε,

(1 + δ)−1b) occurred. Repeat the same argument for the lower bound to obtain

L(x, y;Xn)

n(1−p)/d distp(x, y)
≥ C(d,p) − ε.

The last two inequalities imply (24). �

Our main result Theorem 1 can now be obtained by applying Lemma 10 to a
finite open cover of the compact manifold M .

PROOF OF THEOREM 1. The crux of the proof is that the shortest path length
has near sub- and super-additivity with high probability. We will show that if
Lemma 10 holds locally at every point of M , then the local convergences may
be assembled together to yield global convergence of the curve length.

For convenience, define Ln(x, y) = L(x, y;Xn) in this proof.
For each w ∈ M , we may associate positive R(w) > 0 such that Lemma 10

holds within open ball V (w) = B(w;3R(w)) with error 2−1ε, that is, the event
En(V (w),2−1ε, b′), defined in Lemma 10, satisfies (25) with any b′ ∈ (0,6R(w)).
Let U(w) = B(w;R(w)). By compactness, there exists a finite m > 0, {wi ∈
M}mi=1 such that the collection {U(wi)}mi=1 is a finite open cover of M . Define
Ri = R(wi), Ui = U(wi), and Vi = V (wi) for i = 1, . . . ,m.

Reorder the indices if necessary so that x ∈ U1. Define z1 = x. If Ln(x, y) ever
exits V1, then a point z2 ∈ V1 on the shortest path may be chosen such that z2 /∈ U1
and dist1(z1, z2) ≥ R1. Note that shortest paths are piece-wise g1-geodesics, and
z2 ∈ M need not be in Xn. Reorder the indices of the open cover again if nec-
essary so that z2 is in U2. Repeat the procedure until Ln(x, y) ends at y in an
open ball, say, Vk . Set zk+1 = y. Then points x = z1, z2, . . . , zk, zk+1 = y satisfy
the conditions zi, zi+1 ∈ Vi for i = 1,2, . . . , k, and dist1(zi, zi+1) ≥ Ri ≥ R for
i = 1,2, . . . , k − 1, where R = mini Ri . The last edge length dist1(zk, zk+1) may
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z1

U1

V1

z2

U2

V2

z3

U3

V3

z4

FIG. 1. Path division procedure described in the proof of Theorem 1. Here k = 4. Note that zi ∈ Ui

and zi+1 ∈ Vi for i = 1,2,3. Shortest path is depicted as a smooth curve for illustration purpose
only and it is actually piecewise smooth.

be less than R. However, note that zk−1 ∈ Uk−1 and y = zk+1 /∈ Vk−1 by defini-
tion, hence dist1(zk−1, zk+1) > 2Rk−1 ≥ 2R. Therefore, zk may be adjusted so that
dist1(zk, zk+1) ≥ R as well and zk ∈ Vk . See Figure 1 for illustration.

Suppose that(
C(d,p) − ε

)
distp(zi, zi+1) ≤ n(p−1)/dLn(zi, zi+1),(32)

holds for all i = 1,2, . . . , k. Then by the triangle inequality and the property νp +
ωp ≤ (ν + ω)p for ν,ω ≥ 0 and p ≥ 1,

(
C(d,p) − ε

)
distp(x, y) ≤ (

C(d,p) − ε
) k∑

i=1

distp(zi, zi+1)

≤
k∑

i=1

n(p−1)/dLn(zi, zi+1)

≤ n(p−1)/dLn(x, y).

Since m is finite and the event En(Vi,2−1ε,min{R,b}) from Lemma 10 satisfies
(25), for i = 1, . . . ,m, we have

P
(

inf
x,y

Ln(x, y)

n(1−p)/d distp(x, y)
< C(d,p) − ε

)
≤ m exp

(−θ6n
α)

for all sufficiently large n.
For the upper tail, we follow a similar strategy to Bernstein et al. (2000). Recall

that α = 1/(d + 2p). If z1 = x, zk+1 = y, and zi are points on a gp-geodesic curve
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from x to y, then distp(x, y) = ∑k
i=1 distp(zi, zi+1). We showed above that the

points may be chosen and indices of the open cover may be rearranged such that
zi, zi+1 ∈ Vi and dist1(zi, zi+1) ≥ R for all i = 1,2, . . . , k. The shortest path from
zi−1 to zi and another shortest path from zi to zi+1 may be pasted together to create
a path from zi−1 to zi+1 by removing zi and connecting two nodes that were inci-
dent to zi . This pasting procedure can be repeated to create a path from x = z1 to
y = zk+1. Since Lemma 10 applies in V1, . . . , Vm, every edge length of the shortest
path from zi to zi+1 is at most bα(n inff )(α−1)/d for i = 1, . . . , k. Therefore, each
pasting procedure may incur an additional cost of at most (2bα)p(n inff )(α−1)p/d

so that

Ln(x, y) ≤
k∑

i=1

Ln(zi, zi+1) + k
(
2bα)p

(n inff )(α−1)p/d .(33)

Therefore, if event En(Vi,2−1ε,min{R,b}) in Lemma 10 holds for V1,V2, . . . ,

Vm, then

n(p−1)/dLn(x, y)

≤ distp(x, y)

(
C(d,p) + ε

2

)
+ k

(
2bα)p

n(p−1)/d(n inff )(α−1)p/d

since distp(x, y) ≤ dist1(x, y)(inff )(1−p)/d . For sufficiently large n, we have
n(p−1)/dLn(x, y) ≤ (C(d,p) + ε)distp(x, y) since nαp−1 shrinks to zero as
n → ∞. Therefore, Theorem 1 is established by applications of Lemma 10 to
V1,V2, . . . , Vm. �

We turn to the proof of Theorem 2. Note that when M is complete, for every
x, y ∈ M there exists a geodesic path γ between x, y in M by the Hopf–Rinow
theorem [O’Neill (1983), Theorem 5.21, page 138].

PROOF OF THEOREM 2. Define Ln(x, y) = L(x, y;Xn). Let 0 < ε <

C(d,p). Define

A = {
u ∈ M:

(
C(d,p) − ε

)
distp(x,u) ≤ (

C(d,p) + ε
)

distp(x, y)
}
.

A is compact by the Hopf–Rinow theorem.
The proof of Theorem 2 is similar to the proof of Theorem 1, with M replaced

by A. Let V1, . . . , Vm be an open cover of A chosen as in the previous proof for
compact M .

Suppose that the event En(Vi,2−1ε,min{R1, . . . ,Rm,b}) from Lemma 10
holds for i = 1, . . . ,m. By the construction of A, gp-geodesics from x to y is
contained in A. Repeat the same argument used in the proof of Theorem 1 to ob-
tain

n(p−1)/dLn(x, y) ≤ (
C(d,p) + ε

)
distp(x, y).(34)
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Similarly, if the shortest path Ln(x, y) does not exit A, then

n(p−1)/dLn(x, y) ≥ (
C(d,p) − ε

)
distp(x, y).(35)

We claim that the shortest path Ln(x, y) does not exit A, so that (35) is true.
Assume to the contrary that the path Ln(x, y) exits A. Let u = arg minu′ Ln(x,u′)
where u′ is over all boundary points of A. Since the path Ln(x, y) exits A, we
have Ln(x, y) > Ln(x,u). Since the path Ln(x,u) is contained in A, (35) holds
with u in place of y. Since u is a point on the boundary of A, we have (C(d,p) −
ε)distp(x,u) = (C(d,p) + ε)distp(x, y). Combine these with (34) to obtain(

C(d,p) + ε
)

distp(x, y) ≥ n(p−1)/dLn(x, y) > n(p−1)/dLn(x,u)

≥ (
C(d,p) − ε

)
distp(x,u)

= (
C(d,p) + ε

)
distp(x, y),

and we have a contradiction. We have shown that (35) holds.
Combine Lemma 10 with (34) and (35) to obtain that

P
(∣∣∣∣ Ln(x, y)

n(1−p)/d distp(x, y)
− C(d,p)

∣∣∣∣ > ε

)

has exponential decay in nα = n1/(d+2p). Almost-sure convergence, and the limit
stated in Theorem 2, follow by the Borel–Cantelli lemma. �

4. Mean convergence and node cardinality. In this section, we prove
Lemma 4 and Proposition 5. Since they were stated for sequences Xn in a Eu-
clidean space, we return to the Euclidean case M = R

d . We introduce a few addi-
tional notations used in this section.

The proofs in this section use Poissonization arguments. We denote by Hλ a
homogeneous Poisson point process in R

d of constant intensity λ > 0. Specif-
ically, for any Borel set B of Lebesgue measure ν(B) the cardinality NB of
Hλ ∩ B is a Poisson random variable with mean λν(B) and, conditioned on
NB , the points Hλ ∩ B are i.i.d. uniform over B . We use a shorthand notation
Lλ(x, y) = L(x, y;Hλ).

Let e1 = (1,0, . . . ,0) ∈ R
d denote the unit vector. By the translation and rota-

tion invariance of Hλ, the distribution of Lλ(x, y) for x, y ∈ R
d is the same as the

distribution of Lλ(0, te1) where t = |x − y|. This observation is used frequently in
this section.

Let T (u, v;b) for u, v ∈ R
d , b > 0, denote the set

T (u, v;b) = ⋃
0≤s≤1

B
(
su + (1 − s)v;b)

.(36)

Note that
⋃

b>0 T (u, v;b) = R
d . For convenience, define

Lλ(u, v;b) = L
(
u, v;Hλ ∩ T (u, v;b)

)
.(37)
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4.1. Percolation lemma. The following lemma on percolation will be used in
the proof of Lemma 4.

LEMMA 11. Let π be a graph path in Hλ starting at 0 ∈ R
d . Suppose that π

has power-weighted path length at most c0λ
(1−p)/d and has at least c1λ

1/d nodes
for some c0, c1 > 0. Then there exists a constant ρ0 > 0, dependent on d and p,
such that if c1 > ρ0c0 then the probability that such path π exists is exponentially
small in c1λ

1/d .

PROOF. The structure of the proof is similar to that of Meester and Roy
(1996), Theorem 6.1. We first define a Galton–Watson process Xn. Let X0 = {x0 =
0 ∈ R

d} be the ancestor of the family, and associate with it the parameter r0 > 0.
Then define the offspring X1(r0) to be Hλ ∩B(x0; r1/p

0 ). X1(r0) is the set of points
in Hλ that may be reached from x0 with a single edge with path length at most r0

in power-weighted sense. Note that E|X1(r0)| = λVdr
d/p
0 where |X1(r0)| denotes

the cardinality of X1(r0), and Vd denotes the volume of B(0;1).
For each offspring x1,k ∈ X1(r0), we associate the parameter r1,k = r0 − |x1,k −

x0|p . Then Hλ in the union of B(x1,k; r1/p
1,k )−{x1,k} over k is the set of points that

may be reached from x0 with exactly two edges, while the power-weighted path
length is at most r0. Define X2(r0) to be the collection of all the second generation
offspring, and define recursively the nth generation offspring Xn(r0). Then Xn(r0)

is the set of all the points that may be reached in n hops from the ancestor x0 within
path length r0. See Figure 2. We prove by induction that

E
∣∣Xn(r0)

∣∣ ≤ (
λVdr

d/p
0

)n �(1 + d/p)n

�(1 + nd/p)
.(38)

We mentioned above that E|X1(r0)| = λVdr
d/p
0 , and (38) is true for n = 1. For

general n, apply the Campbell–Mecke formula [Baddeley (2007), Theorem 3.2,
page 48] to see that

E
∣∣Xn(r0)

∣∣ ≤ λ

∫
B(x0;r1/p

0 )
E

∣∣Xn−1
(
r0 − |x − x0|p)∣∣dx

≤ λnV n−1
d

�(1 + d/p)n−1

�(1 + (n − 1)d/p)
(39)

×
∫
B(x0;r1/p

0 )

(
r0 − |x − x0|p)(n−1)d/p

dx.

The last integral evaluates to∫
B(x0;r1/p

0 )

(
r0 − |x − x0|p)(n−1)d/p

dx

= Vdr
(n−1)d/p
0 d

∫ r
1/p
0

0

(
1 − up

r0

)(n−1)d/p

ud−1 du



SHORTEST PATH THROUGH RANDOM POINTS 2813

x0

x1,1

x2,1
x3,1

x4,1

FIG. 2. A run through the family tree generated by Xn with p = 2. The point x0 is the an-
cestor with parameter r0 = 9. This means that all the runs through the family tree are paths

with power-weighted length less than r
1/p
0 = 3. Here, x1,1 ∈ X1 is among the first generations

since it is within B(x0; r1/p
0 ), and x2,1 ∈ X2 is among the second generations since it is within

the balls centered at the first generation offsprings, for example, x1,1. This particular run ends
at x4,1 as there is no point in the vicinity. In this example, the power-weighted path length is√

12 + 22 + 1.52 + 12 = √
8.25 < 3. Note that x2,1 is also in the ball centered at x0, so it is also a

first generation offspring. Some other runs through the family tree will have the point x2,1 as a first
generation offspring.

= Vdr
nd/p
0

d

p

∫ 1

0
(1 − v)(n−1)d/pvd/p−1 dv

= Vdr
nd/p
0

�(1 + d/p)�(1 + (n − 1)d/p)

�(1 + nd/p)
.

Note that a spherical coordinate transformation was used in the first equality,
a transformation v = up/r0 was used in the second equality, and the third equality
was obtained by properties of the beta function. Substituting the expression in the
last line into (39) establishes (38).

Using the Markov inequality and Stirling’s approximation, we have

log P
(
Xn(r0) = ∅

) ≤ n log
(
Vd�

(
1 + d

p

)(
c0

c1
· pe

d

)d/p)
+ O(logn)

as n → ∞. Note that if a path starting at x passes through more than n ≥ c1λ
1/d

nodes and has path length less than r0 ≤ c0λ
(1−p)/d , then the nth generation set

Xn(r0) will not be empty. Lemma 11 follows since, if the ratio c1/c0 is sufficiently
large, the logarithm term above is negative. �
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4.2. Mean convergence for Poisson point processes.

LEMMA 12. Consider the shortest path length L1(0, te1) from 0 ∈ R
d to te1 ∈

R
d in H1 for t > 0. Then the limit

lim
t→∞

1

t
EL1(0, te1) = C(d,p)(40)

exists.
In addition, if b = bt is a function of t satisfying lim inft bt = ∞, then

lim
t→∞

1

t
EL1(0, te1;bt ) = C(d,p).(41)

Recall that L1(0, te1;bt ) denotes L(0, te1;H1 ∩ T (0, te1;bt )) from (36)
and (37).

When T (0, te1;b) = R
d , that is, b = +∞, (40) is a consequence of, for exam-

ple, Howard and Newman (2001), Section 4. The main difference is the case when
b < +∞. Howard and Newman [(2001), Theorem 2.4] states that the probability
that L1(0, te1) = L1(0, te1;bt ) is exponentially small of order at least t3pε/4 when
bt ≥ t3/4+ε for some ε > 0. Lemma 12 is weaker in the sense that it only asserts
closeness in the mean. On the other hand, Lemma 12 is stronger in the sense that
the assumption on bt is relaxed so that bt need only diverge to infinity, and the rate
of growth may even be sub-polynomial.

PROOF OF LEMMA 12. Initially, we let b > 0 be a constant instead of a func-
tion of t . This assumption is removed later in the proof. Recall the definition of
function h in (4),

h(x, y;u) = |x − u|p + |u − y|p − |x − y|p.

Let

T (b) = ⋃
s>0

T (−se1,+se1;b),

and let

ξt (λ, b) = sup
{|u − te1|:u ∈ T (b),h(u, te1;v) ≥ 0 for all v ∈ Hλ ∩ T (b)

}
.

In other words, ξt (λ, b) denotes an upper bound distance of u ∈ T (b) from te1 such
that the shortest path from te1 to u is the direct path te1 → u. From the continuity
of function h, it is not difficult to show that there exist constants A,δ > 0 and
constant integers k,m > 0, all independent of b and λ, such that for all t ∈ R,

Eξt (λ, b)p ≤ k�(1 + p/d)

(λA)p/d
+ m2p�(1 + p)

λp(δb)p(d−1)
.(42)
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0

γ−

se1 = γ0

γ+

(s + t)e1

FIG. 3. An illustration of the path pasting procedure. A new path from 0 to (s + t)e1 is created by
removing se1 = γ0 and joining γ− and γ+. Only the end points are fixed points in the new path.

It is not surprising that the upper bound does not depend on t since Hλ is homoge-
neous. For a simple proof of this, see Hwang (2012), Lemma 2.5, equation (2.14).

Let s, t > 0. Consider the shortest path L1(0, se1;b) between 0 and se1, and let
γ− denote the node that directly connects to se1. Similarly, consider the shortest
path for L1(se1, (s + t)e1;b) and let γ+ denote the node that directly connects to
se1. Therefore, γ− and γ+ are Poisson sample points incident to se1. For conve-
nience let γ0 = se1. Remove γ0 = se1 in the two paths, and join the nodes γ− and
γ+ so that we have a new path connecting 0 and (s + t)e1, as indicated in Figure 3.
This new path has length that is an upper bound on L1(0, (s + t)e1;b),

L1
(
0, (s + t)e1;b) ≤ L1(0, se1;b) +L1

(
se1; (s + t)e1;b)

+ (|γ0 − γ−| + |γ+ − γ0|)p.

Note that both |γ0 − γ−| and |γ+ − γ0| are bounded above by ξs(1, b), and
Eξs(1, b)p is finite by (42). Therefore, EL1(0, (s + t)e1;b) is bounded above by

EL1(0, se1;b) +EL1
(
se1; (s + t)e1;b) +E

(
2ξs(1, b)

)p
= EL1(0, se1;b) +EL1(0; te1;b) +E

(
2ξ0(1, b)

)p
.

The equality holds by the translation invariant property of the distribution of H1.
Therefore, EL1(0, te1;b) + E(2ξ0(1, b))p is a sub-additive function of t . Note
that EL1(0, te1;b) ≤ tp . A standard proof of Fekete’s lemma [see, e.g., Steele
(1997), Lemma 1.2.1] may be easily adapted to sub-additive functions that are
bounded in bounded intervals. Apply Fekete’s lemma to the sub-additive function
EL1(0, te1;b) +E(2ξ0(1, b))p , then

lim
t→∞

EL1(0, te1;b) +E(2ξ0(1, b))p

t
(43)

= inf
t>0

EL1(0, te1;b) +E(2ξ0(1, b))p

t
,

and we denote the limit by κ(d,p;b). Note that Eξ0(1, b)p does not depend on t ,
hence (43) implies that limt t

−1
EL1(0, te1;b) = κ(d,p;b).



2816 S.-J. HWANG, S. B. DAMELIN AND A. O. HERO III

Define

C(d,p) = lim
t→∞

EL1(0, te1)

t
.(44)

We now show that κ(d,p;b) converges to C(d,p) when b → ∞. Choose an
arbitrary ε > 0. By (42) and by the fact that C(d,p) is the limit of t−1

EL1(0, te1),
there exists T > 0 such that

1

T
EL1(0, T e1) < C(d,p) + ε

3
,

and

1

T
E

(
2ξ0(1, b)

)p
<

ε

3
,

for all b > 1. For this fixed T , note that limb→∞L1(0, T e1;b) = L1(0, T e1)

monotonically from above almost surely, and by the monotone convergence theo-
rem, there exists B > 1 such that for all b > B and fixed T ,

1

T
EL1(0, T e1;b) ≤ 1

T
EL1(0, T e1) + ε

3
.

Combining the three inequalities above with (43), we obtain

κ(d,p;b) ≤ 1

T

(
EL1(0, T e1;b) +E

(
2ξ0(1, b)

)p) ≤ C(d,p) + ε,

for all b > B . Therefore, κ(d,p;b) converges to C(d,p) as b → ∞.
Finally, suppose b = bt is a function of t rather than a constant. If lim inft bt =

∞, then

C(d,p) ≤ lim
t→∞

1

t
EL1(0, te1;bt )

≤ lim
t→∞

1

t
EL1(0, te1;B) = κ(d,p;B),

for any fixed B > 0. (41) follows as B → ∞ on the right-hand side. �

For the readers’ benefit, we establish two use cases of Lemma 12.

COROLLARY 13. The following two cases follow from Lemma 12:

(i) For every ε > 0 there exists a constant t0 > 0 such that for all λ > 0 and
r > 0 satisfying λ1/dr > t0,∣∣∣∣ELλ(0, re1; r)

rλ(1−p)/d
− C(d,p)

∣∣∣∣ < ε.
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(ii) Let z ∈ R
d and R2 > R1 > 0. Let b > 0 and ε > 0. Then there exists λ0 > 0

such that for all λ ≥ λ0 and x, y ∈ B(z;R1) with |x − y| ≥ b, we have∣∣∣∣EL(x, y;Hλ ∩ B(z;R2))

λ(1−p)/d |x − y| − C(d,p)

∣∣∣∣ < ε.

PROOF. H1 scaled by factor of λ−1/d has identical distribution to Hλ. At the
same time, power-weighted shortest path lengths are scaled by factor of λ−p/d .
From (41), we have

ELλ(0, λ−1/d te1;λ−1/dbt )

λ(1−p)/dλ−1/d t
= 1

t
EL1(0, te1;bt ).(45)

Choose bt = t and t = λ1/dr to obtain (i) from Lemma 12.
For (ii), note that

Lλ(x, y) ≤ L
(
x, y;Hλ ∩ B(z;R2)

) ≤ Lλ(x, y;R2 − R1)

since x, y ∈ B(z;R1). By translation- and rotation-invariance of Hλ,

ELλ

(
0, |x − y|e1

) ≤ EL
(
x, y;Hλ ∩ B(z;R2)

) ≤ ELλ

(
0, |x − y|e1;R2 − R1

)
.

Choose t = λ1/d |x − y| and bt = λ1/d(R2 − R1) for (45). Then (ii) follows from
Lemma 12. �

4.3. Shortest path size. In order to prove Lemma 4, we need an upper bound
for shortest path lengths in Hλ.

LEMMA 14. Let z ∈ R
d , R2 > R1 > 0. Let b > 0 and ε > 0. For every x, y ∈

B(z;R1), let Eλ(x, y, ε) denote the event that

L(x, y;Hλ ∩ B(z;R2))

λ(1−p)/d |x − y| ≤ C(d,p) + ε.(46)

Then there exist λ0 > 0 and θ7 > 0 such that for all λ ≥ λ0 and |x − y| ≥ b,

1 − P
(
Eλ(x, y, ε)

) ≤ exp
(−θ7λ

1/(d+2p−1)).(47)

PROOF. Let 0 < r < R2 − R1. Recall the notation T (x, y; r) and Lλ(x, y; r)
from (36) and (37). Since x, y ∈ B(z;R1) and r < R2 − R1,

Hλ ∩ T (x, y; r) ⊂ Hλ ∩ B(z;R2),

and hence

L
(
x, y;Hλ ∩ B(z;R2)

) ≤ Lλ(x, y; r).
Let E′

λ(x, y, ε) denote the event that (46) holds with Lλ(x, y; r) in place of
L(x, y;Hλ ∩ B(z;R2)). By the inequality above, if E′

λ(x, y, ε) occurs then
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Eλ(x, y, ε) occurs, hence P(E′
λ(x, y, ε)) ≤ P(Eλ(x, y, ε)). Therefore, it is suffi-

cient to show that (47) holds with 1−P(E′
λ(x, y, ε)) in place of 1−P(Eλ(x, y, ε)).

As in Lemma 12, by the convex property of the power functions, Lλ(0,2re1; r)
may be bounded above by Lλ(0, re1; r)+Lλ(re1,2re1; r)+(2p−1 −1)(Z

p
1 +Y

p
0 ),

where Zk and Yk are the first and the last edge lengths in Lλ(kre1, (k + 1)re1; r),
respectively. In Figure 3, when s = r and s + t = 2r , Z1 and Y0 correspond to
|γ+ − γ0| and |γ0 − γ−|, respectively.

Note that the shortest path for Lλ(kre1, (k + 1)re1; r) is not likely to be the
direct path kre1 → (k + 1)re1. That is, if it were the direct path, then as in the
proof of Lemma 3, there exists δ > 0 such that Hλ is empty in the open ball of
radius δr centered at the middle of kre1 and (k + 1)re1. Such event happens with
probability at most exp(−λθ ′rd), where θ ′ denotes the volume of an open ball of
radius δ. If none of the shortest paths for Lλ(kre1, (k + 1)re1; r) is a direct path,
then the previous pasting procedure used in Lemma 12 may be repeated so that

Lλ(0,mre1; r)
(48)

≤
m−1∑
k=0

(
Lλ

(
kre1, (k + 1)re1; r) + (

2p−1 − 1
)(

Z
p
k + Y

p
k

))
,

with probability at least 1 − m exp(−λθ ′rd).
If k, l are integers and l − k ≥ 3, then T (kre1, (k + 1)re1; r) and T (lre1, (l +

1)re1; r) are disjoint, hence Lλ(kre1, (k+1)re1; r) and Lλ(lre1, (l +1)re1; r) are
mutually independent, and so are Zk and Zl , as well as Yk and Yl . Then the sum
in (48) may split into K ≥ 3 sums of independent variables, and each sum has at
least �m/K� summands. Note that each summand is almost surely bounded since
Z

p
k + Y

p
k ≤ Lλ(kre1, (k + 1)re1; r) ≤ rp . Apply Azuma–Hoeffding’s inequality

[Azuma (1967)] for K = 4 separate sequences to obtain

P
(Lλ(0,mre1; r)

λ(1−p)/dmr
≥ μr + ε

)
(49)

≤ m exp
(−λθ ′rd) + 4 exp

(
− (m − 3)ε2

21+2p(λ1/dr)2(p−1)

)
,

where

μr = ELλ(0, re1; r) + (2p−1 − 1)(EZ
p
0 +EY

p
0 )

rλ(1−p)/d
.

Let β = 1/(d + 2p − 1). Set mr = |x − y| and m = �(λ1/d |x − y|)1−β�. Note
that r = |x − y|/m ≤ 2R1/m is less than R2 − R1 when λ1/d |x − y| is sufficiently
large. By the definition, both EZ

p
k and EY

p
k−1 are bounded above by Eξkb(λ, r)p =

Eξ0(λ, r)p in (42), and a direct computation with (42) shows that Eξ0(λ, r)p di-
vided by λ(1−p)/dr shrinks to zero when λ1/dr ≥ (λ1/d |x−y|)β → ∞. See Hwang
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[(2012), Lemma 2.5] for more details. Apply Corollary 13 to see that μr converges
to C(d,p) as λ1/dr → ∞. Then (49) becomes

P
( Lλ(x, y; r)

λ(1−p)/d |x − y| ≥ C(d,p) + 2ε

)

≤ (
λ|x − y|d)(1−β)/d exp

(−θ ′(λ|x − y|d)β) + 4 exp
(
−(λ|x − y|d)β

22(p+1)
ε2

)

≤ (
λ(2R1)

d)(1−β)/d exp
(−θ ′(λbd)β) + 4 exp

(
− (λbd)β

22(p+1)
ε2

)
,

for all sufficiently large λ. �

PROOF OF LEMMA 4. Fix constants A > 1 and 0 < A′ < 1. Let N and N ′ be
independent Poisson variables with mean nA and nA′, respectively. Let a = Af (z)

and a′ = A′f (z). Let Hn denote the event that N ≥ n and N ′ ≤ n. Let Kn denote
the event that

L(x, y;Hna′ ∩ B(z;R2))

(na′)(1−p)/d |x − y| ≤ C(d,p) + ε

2
.(50)

We first show that if both Hn and Kn occur, then the following conditions are
satisfied:

(i) L(x, y;Xn ∩ B(z;R2)) is a path in Hna .
(ii) L(x, y;Xn ∩ B(z;R2)) ≤ (C(d,p) + ε/2)(na′)(1−p)/d |x − y|.
Note that restriction of Hna to B(z;R2) may be realized as XN ∩ B(z;R2)

since EN = nA. Since Hn is assumed to occur, it follows that N ≥ n, and Xn ∩
B(z;R2) ⊂ XN ∩ B(z;R2) =Hna ∩ B(z;R2) ⊂ Hna . Therefore, (i) holds.

For condition (ii), Hn is assumed to occur, so we have N ′ ≤ n. Then similar to
the previous argument, Hna′ ∩ B(z;R2) = XN ′ ∩ B(z;R2) ⊂ Xn ∩ B(z;R2) and
it follows that L(x, y;Xn ∩ B(z;R2)) ≤ L(x, y;Hna′ ∩ B(z;R2)). Condition (ii)
follows by (50).

Recall that Gn = Gn(x, y) denotes the event #L(x, y;Xn ∩ B(z;R2)) is less
than or equal to C∗(nf (z))1/d |x − y|. We have shown that when Hn and Kn occur,
(i) and (ii) hold, and an application of Lemma 11 shows that

1 − P(Gn | Hn ∩ Kn) ≤ exp
(−C

(
nf (z)

)1/d |x − y|) ≤ exp
(−C′n1/d)

for some C,C′ > 0 when C∗ > (C(d,p) + ε/2)Ap/dA′(1−p)/dρ0. See Lemma 11
for the constant ρ0.

By Lemma 14, 1 − P(Kn) is bounded above by exp(−θ7(na′)1/(d+2p−1)) for
sufficiently large n, since a′ > 0 is a fixed constant. By the Chernoff bound
[Billingsley (1995), Theorem 9.3], 1 − P(Hn), that is, the probability that either
N < n or N ′ > n, is exponentially small in n.
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Note that 1 − P(Gn) is bounded above by the sum of (1 − P(Gn | Hn ∩ Kn)),
(1 − P(Hn)), and (1 − P(Kn)). The lemma follows from the observation that the
overall decay is determined by the summand with slowest decay rate, and it is
(1 − P(Kn)), which is exponentially small in n1/(d+2p−1). �

4.4. Mean convergence in i.i.d. cases: de-Poissonization.

PROOF OF PROPOSITION 5. For convenience, let Lk denote L(x, y;Xk ∩
B(z;R2)) for all k ≥ 0. Recall that α = 1/(d + 2p). Let τk = (kf (z))1/d |x − y|,
and ζk = (kf (z))(α−1)/d |x − y|α .

Let C∗ > 0 as in Lemma 4 and suppose that the number of nodes #Lk in
the shortest path Lk is less than C∗τk . Suppose that the event Fk(|x − y|) from
Lemma 3 occurred so that all the shortest path edge lengths are at most ζk . When a
sample point from Xk is discarded, Lk−1 remains the same as Lk if the discarded
sample point were not a node in Lk . Furthermore, since edge lengths are at most
ζk , Lk−1 and Lk may differ at most by (2ζk)

p . Therefore,

ELk−1 −ELk ≤ C∗τk

k
(2ζk)

p + hkEL0,(51)

where hk denotes the probability that either #Lk > C∗τk , or the event Fk(|x − y|)
does not occur. EL0 in the last term is chosen because ELk ≤ EL0 for all k > 0.

Let N be a Poisson variable with mean n. Write

ELN = ∑
k≥0

ELkP(N = k).

The difference |ELn −ELN | is bounded above by∑
k≥0

|ELn −ELk|P(N = k)

≤ EL0P
(
N <

n

2

)
+ ∑

k≥2−1n

|ELn −ELk|P(N = k).

Note that the first term on the right of (51) is monotonically decreasing in k, since
both τk/k and ζk monotonically decrease in k for fixed n. Therefore, for k ≥ 2−1n,

|ELn −ELk| ≤ C∗τk

2−1n
· (2ζk)

p|n − k| +EL0
∑

l>2−1n

hl.

Since E|N − n| ≤ √
n and EL0 = |x − y|p , after expanding τk and ζk we have

|ELn −ELN |
(nf (z))(1−p)/d |x − y|

≤ O

(
((nf (z))1/d |x − y|)αp

√
n

)
+ P(N < 2−1n) + ∑

hl

((nf (z))1/d |xn − yn|)1−p
,
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where the summation
∑

hl is still for l > 2−1n. The first term on the right de-
cays to zero since nαp/d <

√
n and |x − y| < 2R1. The second term also de-

cays to zero since, while the denominator has at most polynomial decay in n,∑
hl in the numerator has exponential decay in nα by Lemmas 3 and 4, and

P(N < 2−1n) in the numerator has exponential decay in n by the Chernoff bound
[Billingsley (1995), Theorem 9.3]. Note that XN ∩ B(z;R2) is identically dis-
tributed as Hnf (z) ∩ B(z;R2), and the proposition follows since the difference of
ELN = EL(x, y;Hnf (z) ∩ B(z;R2)) from C(d,p) is less than ε for sufficiently
large n by Corollary 13. �

APPENDIX

Here, we show how (3) can be derived from Theorem 7.
As we did in the proof of Corollary 13, scale the space by factor of λ−1/d with

choice λ = td to obtain

P
(∣∣∣∣1

t
L1(0, te1) − C(d,p)

∣∣∣∣ > s

)
= P

(∣∣∣∣Lλ(0, e1)

λ(1−p)/d
− C(d,p)

∣∣∣∣ > s

)
.(52)

Let N be a Poisson random variable with mean λVdRd , where Vd denotes the
volume of a unit ball. Fix 0 < δ < 1 and 0 < ε < C(d,p). Suppose that:

(i) (1 − δ)EN ≤ N ≤ (1 + δ)EN , and
(ii) the events En(ε) from Theorem 7 occur for all n in the range (1 − δ)EN ≤

n ≤ (1 + δ)EN .

For Theorem 7, choose z = 0 ∈ R
d , b = 0, and pick R so that R > 8(C(d,p) +

ε)/5(C(d,p) − ε) and R > 4 so that e1 ∈ B(z;R/4).
Note that Hλ ∩ B(z;R) may be realized as XN where X1,X2, . . . are uni-

form i.i.d. random variables in B(z;R), and thus L(0, e1;Hλ ∩ B(z;R)) =
L(0, e1;XN). Therefore, under the assumptions (i) and (ii), we have∣∣∣∣L(0, e1;Hλ ∩ B(z;R))

(Nf (z))(1−p)/d
− C(d,p)

∣∣∣∣ ≤ ε,

and
L(0, u;Hλ ∩ B(z;R))

(Nf (z))(1−p)/d
≥ 5

8
R

(
C(d,p) − ε

)
> C(d,p) + ε

for all u /∈ B(0;R) by the choice of R. Therefore, the path Lλ(0, e1) = L(0, e1;
Hλ) is contained in B(z;R) and∣∣∣∣ Lλ(0, e1)

(Nf (z))(1−p)/d
− C(d,p)

∣∣∣∣ ≤ ε.

Note that f (z) = (VdRd)−1. Using the condition (i) and EN = λVdRd , we have

C(d,p) − ε

(1 + δ)(p−1)/d
≤ Lλ(0, e1)

λ(1−p)/d
≤ C(d,p) + ε

(1 − δ)(p−1)/d
.
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We can choose ε and δ small enough so that∣∣∣∣Lλ(0, e1)

λ(1−p)/d
− C(d,p)

∣∣∣∣ ≤ s.

In summary, the probability in (52) is bounded above by the probability that
either (i) or (ii) does not occur.

From Theorem 7, there exists a constant θ4 > 0 such that 1 − P(En(ε)) ≤
exp(−θ4(nf (z))α) for all sufficiently large n. By (ii), nf (z) ≥ (1 − δ)λ. Denote
by Hn the event of (i). Then for sufficiently large λ = td , (52) is bounded above by(

1 − P(Hn)
) + 2δλVdRd exp

(−θ4
(
(1 − δ)λ

)α)
= (

1 − P(Hn)
) + exp

(−θ4(1 − δ)αtd/(d+2p) + O(log t)
)
.

Note that 1−P(Hn) is exponentially small in n by the Chernoff bound [Billingsley
(1995), Theorem 9.3], so that the tail is dominated by the second term.
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