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ESTABLISHING SOME ORDER AMONGST EXACT
APPROXIMATIONS OF MCMCS

BY CHRISTOPHE ANDRIEU1 AND MATTI VIHOLA2

University of Bristol and University of Jyväskylä

Exact approximations of Markov chain Monte Carlo (MCMC) algo-
rithms are a general emerging class of sampling algorithms. One of the main
ideas behind exact approximations consists of replacing intractable quanti-
ties required to run standard MCMC algorithms, such as the target proba-
bility density in a Metropolis–Hastings algorithm, with estimators. Perhaps
surprisingly, such approximations lead to powerful algorithms which are ex-
act in the sense that they are guaranteed to have correct limiting distributions.
In this paper, we discover a general framework which allows one to compare,
or order, performance measures of two implementations of such algorithms.
In particular, we establish an order with respect to the mean acceptance prob-
ability, the first autocorrelation coefficient, the asymptotic variance and the
right spectral gap. The key notion to guarantee the ordering is that of the con-
vex order between estimators used to implement the algorithms. We believe
that our convex order condition is close to optimal, and this is supported by
a counterexample which shows that a weaker variance order is not sufficient.
The convex order plays a central role by allowing us to construct a martingale
coupling which enables the comparison of performance measures of Markov
chain with differing invariant distributions, contrary to existing results. We
detail applications of our result by identifying extremal distributions within
given classes of approximations, by showing that averaging replicas improves
performance in a monotonic fashion and that stratification is guaranteed to
improve performance for the standard implementation of the Approximate
Bayesian Computation (ABC) MCMC method.

1. Introduction. Consider a probability distribution π defined on some mea-
surable space (X,X ) and assume that sampling realisations from this probability
distribution is of interest. A generic and popular way of achieving this consists of
using Markov chain Monte Carlo algorithms (MCMC), of which the Metropolis–
Hastings (MH) algorithm is the main workhorse.

Let {q(x, ·)}x∈X be a family of probability distributions on (X,X ) such that
x �→ q(x,A) is measurable for all A ∈ X ; in other words (x,A) �→ q(x,A) defines
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a kernel. (We assume hereafter implicitly that such a measurability condition is
satisfied by given families of probability measures, and that given functions are
measurable.) For any x, y ∈ X we define the “acceptance ratio” r(x, y) as follows:
for (x, y) ∈ R ⊂ X2 (with R the symmetric set as defined in [46], Proposition 1) we
let r(x, y) be the Radon–Nikodym derivative

0 < r(x, y) := π(dy)q(y,dx)

π(dx)q(x,dy)
< ∞,

and r(x, y) = 0 otherwise. The MH algorithm defines a Markov chain with the
following transition kernel:

P(x,dy) = q(x,dy)min
{
1, r(x, y)

} + δx(dy)ρ(x),(1)

where

ρ(x) := 1 −
∫

min
{
1, r(x, y)

}
q(x,dy),

and δx is the Dirac measure at x ∈ X. It is standard to show that P is reversible
with respect to π and hence leaves π invariant.

In some situations, evaluation of the ratio r(x, y) is either impossible or overly
expensive, therefore, rendering the algorithm nonviable. A canonical example is
when π is the marginal of a probability density, say π(x) = ∫

π̄(x, z)dz for some
latent variables z, where the integral is intractable and the “marginal MCMC” tar-
geting π is therefore not implementable. A classical way of addressing this prob-
lem consists of running an MCMC targeting the joint distribution π̄ , which may
however become prohibitively inefficient in situations where the size of the latent
variable is high—this is for example the case in general state-space models [1].
A powerful alternative which has recently attracted substantial interest consists,
in simple terms, of replacing the value of π(x) with a noisy, but computationally
cheap, measurement whenever it is required in the implementation of the MH al-
gorithm above. Although this idea may at first appear naive, it turns out to lead to
exact algorithms, that is sampling from π is guaranteed at equilibrium under mild
assumptions on the nature of the noise involved.

We now describe in more detail a modification of the “exact”, or marginal, MH
algorithm above, where one replaces the density values π(x) with estimators π̂(x)

for all x ∈ X. The estimators π̂(x) are assumed to be nonnegative and unbiased (up
to a constant), in a sense that there exists C > 0 such that for all x ∈ X, E[π̂(x)] =
C × π(x). To fix ideas we first present the method in an algorithmic form, and
later define precisely the related mathematical construction. We call this method
a pseudo-marginal approximation of P or simply the pseudo-marginal algorithm,
following [3, 4].

ALGORITHM 1 (Pseudo-marginal algorithm). Assume (X0, π̂(X0)) ∈ X ×
(0,∞) are some initial values. Then, for n = 1,2, . . . :
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(a) Propose a transition Yn ∼ q(Xn, ·).
(b) Given Yn, generate a random variable π̂(Yn) ≥ 0 (such that E[π̂(Yn)] =

Cπ(Yn)).
(c) With probability

min
{

1,
π̂(Yn)

π̂(Xn−1)

q(Yn,Xn−1)

q(Xn−1, Yn)

}
,

accept and set (Xn, π̂(Xn)) = (Yn,π̂(Yn)); otherwise reject and set (Xn, π̂(Xn)) =
(Xn−1, π̂(Xn−1)).

For example, in the situation where π(x) = ∫
π̄(x, z)dz one could use an im-

portance sampling estimator of the integral and define

π̂(x) = 1

N

N∑
i=1

π̄(x,Zi)

gx(Zi)
,

where Z1, . . . ,ZN are samples from some instrumental probability density gx .
The algorithm resulting from this choice is known as the grouped independence
Metropolis–Hastings [5] and has proved useful in the context of inference in phy-
logenetic trees. Other important instances of pseudo-marginal algorithms include
approximate Bayesian computation (ABC) MCMC [33] (see also Section 6.2), the
particle marginal MH [1] and algorithms for inference in diffusions [8]. Note that
Algorithm 1 is intact if we multiplied all our estimators by a constant C′ > 0.
Therefore, without loss of generality, we will set C = 1 in the remainder of the
paper for notational simplicity.

We now turn to an abstract representation of the pseudo-marginal algorithm,
used in the remainder of this paper, which has the advantage that it simpli-
fies notation and highlights the key structure and quantities underpinning their
behaviour [3, 4, 42]. The main idea is to introduce the normalised estimator
�(x) := π̂(x)/π(x) and to view this as a multiplicative perturbation, or noise, of
the true density π(x), since then π̂(x) = π(x)�(x). An immediate consequence is
that with Wn−1 := �(Xn−1) and Un := �(Yn) the acceptance ratio in Algorithm
1 takes the form r(Xn−1, Yn)Un/Wn−1 which highlights the structure of this ap-
proximation, a multiplicative perturbation of the acceptance ratio of the exact algo-
rithm, and the fact that {Xn,Wn} is a Markov chain. This leads us to the following
abstract model. Let {Qx}x∈X be a family of probability measures on the nonneg-
ative reals (R+,B(R+)) indexed by x ∈ X and such that

∫
wQx(dw) = 1 for any

x ∈ X. Consider the following probability distribution on (X × R+,X × B(R+))

defined through

π̃(dx × dw) := π(dx)Qx(dw)w.

This formalises the multiplicative perturbation idea and includes the distribution
of the estimators in the target distribution. Now one can check that the Markov
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transition probability P̃ of the pseudo-marginal approximation of the marginal
kernel P is a MH algorithm targeting π̃ and can be written as follows for any
(x,w) ∈ X × (0,∞) [3, 4]

P̃ (x,w;dy × du) := q(x,dy)Qy(du)min
{

1, r(x, y)
u

w

}
(2)

+ δx,w(dy × du)ρ̃(x,w),

with rejection probability

ρ̃(x,w) := 1 −
∫

min
{

1, r(x, y)
u

w

}
q(x,dy)Qy(du).

Note that while the distribution of the normalised estimators Qy(du) appears in
the kernel and the rejection probability, it does not appear explicitly in the algo-
rithm. The fundamental marginal identity π̃(dx ×R+) = π(dx) is important since
it tells us that despite being approximations of P , pseudo-marginal algorithms are
exact in the sense that they sample marginally from the desired distribution π at
equilibrium.

Often in practice there are various possible choices for the estimators in Algo-
rithm 1, or equivalently the family {Qx}x∈X, depending on the specific application.
For example, in case of the simple importance sampling estimator presented above
one may choose between various families of importance sampling distributions
{gx}x∈X, or vary the number of samples N . The ultimate aim of the present work is
to develop simple and general tools for the characterisation of the performance of
pseudo-marginal algorithms as a function of the family {Qx}x∈X, therefore, allow-
ing comparisons. We refer the reader to [4] for other quantitative and qualitative
properties of such algorithms.

We now recall standard performance measures relevant to the MCMC context.
For a generic Markov transition kernel � with invariant distribution μ, both de-
fined on some measurable space (E,E), and any function f : E → R, we define
the asymptotic variance of f for � as follows. Denote Eμ(·) and varμ(·) the ex-
pectation and variance operators corresponding to the Markov chain {�i}i≥0 with
transition kernel � and such that �0 ∼ μ, and denote varμ(f ) := varμ(f (�0)).
Then the asymptotic variance is defined as

var(f,�) := lim
M→∞ varμ

(
M−1/2

M∑
i=1

f (�i)

)
,

where the limit is guaranteed to exist for reversible Markov chains, but may be
infinite (cf. [46]). When finite, the asymptotic variance naturally appears in the
central limit theorem, for example, [26], but it also characterises the finite sample
efficiency of MCMC algorithms; see for instance the finite sample bounds given
in [29, 40]. When � is reversible with respect to μ, the so-called right spectral
gap GapR(�), defined precisely in Section 3, turns out in some scenarios to be an
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indicative criterion of performance. For instance, when � is a positive operator,
the right spectral gap is also the absolute spectral gap, which characterises the
geometric convergence to equilibrium [39].

Before focusing on the comparison of pseudo-marginal algorithms, we briefly
review here what is known about the standard MH algorithm, since the result will
be referred to in several places in this paper and helps to motivate our work. The
result is in its first form due to Peskun [37] and was later extended to more general
setups in [10, 30, 46].

THEOREM 2 (Peskun). Let μ be a probability distribution on some measur-
able space (E,E) and let �1,�2 be two μ-reversible Markov transition kernels.
Assume that for any x ∈ E and any A ∈ E such that x /∈ A, the transitions satisfy
�1(x,A) ≥ �2(x,A).

(a) If f : X →R satisfies varμ(f ) < ∞, then var(f,�1) ≤ var(f,�2).
(b) The right spectral gaps satisfy GapR(�1) ≥ GapR(�2).

In fact, as pointed out by [10], the off-diagonal order �1(x,A) ≥ �2(x,A) is
stronger than needed for Theorem 2 to hold, and a weaker condition is that∫

f (x)f (y)μ(dx)�1(x,dy) ≤
∫

f (x)f (y)μ(dx)�2(x,dy),

for any f such that varμ(f ) < ∞. This condition turns out to be a necessary and
sufficient condition. However, the popularity of Theorem 2 stems from the simplic-
ity of its statement providing a simple and intuitive criterion for the comparison of
performance of algorithms, which can be checked in practice. As we shall see,
Peskun’s result is however not directly relevant to pseudo-marginal algorithms
when the aim is to compare different approximation strategies. This stems from
the fact that changing {Qx}x∈X changes the invariant distribution of the Markov
transition kernel involved.

More specifically, consider two families of distributions, {Q(1)
x }x∈X and

{Q(2)
x }x∈X leading to two competing pseudo-marginal approximations of P , say

P̃1 and P̃2, with distinct invariant distributions π̃1 and π̃2, respectively. Note that
both algorithms target π(·) marginally and share the same family of proposal dis-
tributions {q(x, ·)}x∈X. In light of Peskun’s result, a natural question is to find
useful conditions on the families {Q(1)

x }x∈X and {Q(2)
x }x∈X which would ensure

that var(f, P̃1) ≤ var(f, P̃2) for certain classes of functions f : X × R+ → R, or
that GapR(P̃1) ≤ GapR(P̃2).

As we shall see, despite the difficulty pointed out earlier, it is possible to prove
such results, assuming a classical convex stochastic order between the unit mean
random variables W

(1)
x ∼ Q

(1)
x and W

(2)
x ∼ Q

(2)
x for x ∈ X (see Theorem 10). Be-

cause the convex order is stronger than the simpler variance order between W
(1)
x

and W
(2)
x , one may wonder whether the variance order could be sufficient to imply
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a similar result. We show, by means of a counterexample, that the variance order
is not sufficient to guarantee such results (see Example 13).

Our framework benefits from a considerable body of work on the convex order
(see [35, 41] for recent reviews) which allows one to import known results and es-
tablish ordering results for pseudo-marginal algorithms with minimal effort. Some
applications are discussed in some detail in Sections 6.1, 6.2 and 6.3. We also point
to a very recent application of our result, behind an interesting reasoning aimed at
deriving a type of quantitative bounds for pseudo-marginal algorithms in some
contexts [9], Theorem 3.

We do not know of earlier works with similar Peskun-type orders for Markov
chains with different invariant distributions. The recent work [32] establishes
Peskun-type orders for inhomogeneous Markov chains, which is applicable to
some algorithms which are discussed in the present work as well. However, we
emphasise that our results are much more general when applied in the context of
pseudo-marginal algorithms.

The remainder of the paper is organised as follows. In Section 2, before em-
barking on the analysis of the pseudo-marginal algorithms described above, we
first focus on related and practically relevant algorithms for which convex order-
ing is pertinent but the comparison is mathematically much simpler. This allows a
gentle and progressive introduction of the material, and helps to explain also why
pseudo-marginal algorithms are much more difficult to analyse. In Section 3, we
formulate our main findings whose proofs are postponed to Section 5. We prepare
the proofs by recording variational bounds for the difference of asymptotic vari-
ances in Section 4 which we could not find formulated elsewhere in the literature.
In Section 5, we develop our main arguments, which rely on an embedding of the
probability distributions involved into a single probability distribution: this is pos-
sible thanks to a martingale coupling which is itself a by-product of the convex
order. In Section 6, we illustrate the usefulness of the framework in practice. We
conclude by discussing other applications and extensions of the present work in
Section 7.

2. Convex order and a simple application. In this section, we briefly review
well-known equivalent characterisations of the convex order which we will use in
the remainder of the paper. We also provide an example of algorithms, related
to pseudo-marginal algorithms but different in an essential manner, for which the
notion of convex order characterises performance without the need of more so-
phisticated mathematical developments.

The convex order is a natural way of comparing the “variability” or “dispersion”
of two random variables or distributions [35, 41].

DEFINITION 3. The random variables W1 ∼ F1 and W2 ∼ F2 are convex or-
dered, denoted W1 ≤cx W2 or F1 ≤cx F2 hereafter, if for any convex function
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φ :R→R,

E
[
φ(W1)

] ≤ E
[
φ(W2)

]
,

whenever the expectations are well-defined.

REMARK 4. For integrable W1 and W2, the convex order W1 ≤cx W2 clearly
implies E[W1] = E[W2] from the convexity of x �→ x and x �→ −x, and if W1 and
W2 are square integrable, then var(W1) ≤ var(W2), since x �→ x2 is convex. The
converse, however, does not generally hold true. This turns out to be an important
point when discussing the characterisation of performance of pseudo-marginal ap-
proximations.

LEMMA 5. Suppose that E[W1] = E[W2] ∈ R. Then W1 ≤cx W2 is equivalent
to:

(a) E[(W1 − t)+] ≤ E[(W2 − t)+] for all t ∈ R, where (·)+ := max{·,0}.
(b) E[min{W1, t}] ≥ E[min{W2, t}] for all t ∈ R.

PROOF. Condition (a) is a characterisation of the increasing convex order
(Definition 3 restricted to nondecreasing convex φ) [41], Theorem 4.A.2, and
the increasing convex order with identical expectations implies the convex order
[41], Theorem 4.A.35. Similarly, (b) implies E[(W1 − t)−] ≥ E[(W2 − t)−] which
is equivalent to the increasing concave order (Definition 3 with nondecreasing
concave functions φ), implying the desired convex order [41], Theorem 4.A.35.

�

REMARK 6. If −∞ ≤ w ≤ w̄ ≤ ∞ are constants such that W1,W2 ∈ [w, w̄]
almost surely, then it is sufficient to consider the conditions in Lemma 5(a) or (b)
with t ∈ [w, w̄] only.

It should be clear by application of Jensen’s inequality that if W1 and W2 are
defined on the same probability space and E[W2|W1] = W1, then W1 ≤cx W2. The
following characterisation of the convex order, often referred to as Strassen’s theo-
rem [44], Theorem 8, establishes the converse, that is, that the convex order implies
the existence of this type of martingale representation. This characterisation turns
out to be central to our analysis as it allows us to eventually “embed” π̃1 and π̃2
into a unique probability distribution and open up the possibility to use Hilbert
space techniques on a common space.

THEOREM 7. Suppose that E[W1] and E[W2] are well-defined. Then W1 ≤cx
W2 if and only if there exists a probability space with random variables W̌1 and
W̌2 coinciding with W1 and W2 in distribution, respectively, such that (W̌1, W̌2) is
a martingale pair, that is, E[W̌2|W̌1] = W̌1 (a.s.).
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Before turning to the study of pseudo-marginal algorithms, we consider first
another class of related algorithms, which are much simpler to analyse, yet practi-
cally relevant [11, 27, 36]. These algorithms are closely related to pseudo-marginal
algorithms in that they use noisy measurements of the acceptance ratio r(x, y)

of P , but the way the approximation is obtained differs in a fundamental way.
For pseudo-marginal algorithms, the approximation of r(x, y) stems at each itera-
tion from a previously sampled, and “recycled”, approximation of π at x ∈ X and a
fresh approximation of π at y ∈ X (see Algorithm 1). In contrast for the algorithms,
we are now concerned with r(x, y) is approximated afresh whenever it is needed.
More precisely, with (X,X ) and π as earlier and using a formalism similar to that
used for pseudo-marginal algorithms, we consider the following Markov transition
probability on (X,X ):

◦
P(x;dy) = q(x,dy)

∫
min

{
1, r(x, y)�

}
Qxy(d�) + δx(dy)

◦
ρ(x),

where {Qxy}(x,y)∈X2 is a family of probability measures on positive reals, r(x, y) is
as in Section 1 and ◦

ρ(x) ∈ [0,1] ensures that this is a Markov transition probability.
We stress again on the fact that while r(x, y) is intractable, the product r(x, y)�

is assumed to be computable. It can be shown that the condition∫
Qxy(d�)� I{� ∈ A} =

∫
Qyx(d�)I

{
1

�
∈ A

}

for all x, y ∈ X and all A ∈ B(R+) ensures that
◦

P is reversible with respect to π ;
Lemma 44 in Appendix B details a slightly more general statement.

EXAMPLE 8. Suppose axy = ayx > 0 for all x, y ∈ X, then the distributions

Qxy(d�) :=
δaxy (d�) + axyδa−1

xy
(d�)

1 + axy

satisfy the condition above. Another more practically relevant case is the log-
normal distribution with suitable parameters, which corresponds to the so-called
penalty method [11].

A fundamental consequence of the fact that the acceptance ratio is approximated
afresh for x, y ∈ X whenever it is needed is that

◦
P is a Markov chain on (X,X ) and

has π as invariant distribution, independently of {Qxy}(x,y)∈X2 . This is in contrast
with pseudo-marginal algorithms, for which {Xn}n≥0 is not a Markov chain, but
{Xn,Wn}n≥0 is, and the invariant distribution of the latter depends on {Qx}x∈X.
As a result, the algorithm corresponding to

◦
P is particularly simple to analyse in

the context of the convex ordering. Indeed, if for some x, y ∈ X we have Q
(1)
xy ≤cx
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Q
(2)
xy then from Lemma 5(b) we have the following inequality for the acceptance

probabilities:∫
min

{
1, r(x, y)�2

}
Q(2)

xy (d�2) ≤
∫

min
{
1, r(x, y)�1

}
Q(1)

xy (d�1).

In the situation where this inequality holds for any x, y ∈ X, we can apply Peskun’s
result stated in Theorem 2 directly. More specifically, if

◦
P1 and

◦
P2 are the algo-

rithms corresponding to {Q(1)
xy }(x,y)∈X2 and {Q(2)

xy }(x,y)∈X2 , the above inequality im-

plies that the probability of leaving any state x ∈ X is larger for
◦

P1 than for
◦

P2 and,
therefore, we conclude that var(f,

◦
P1) ≤ var(f,

◦
P2) and GapR(

◦
P1) ≥ GapR(

◦
P2).

One interest of identifying the convex order as an appropriate concept for the
comparison of the asymptotic properties of such algorithms is that it allows one
to use the wealth of existing results concerning the convex order. For example,
it is direct to establish that the diatomic distribution in Example 8 is the worst
possible distribution among all the probability distributions with support included
in [a−1

xy , axy] and the choice of axy = 1, the “noiseless” algorithm, leads to the best
algorithm; see Section 6.3.

Turning back to the pseudo-marginal algorithms, it will be useful in what fol-
lows to consider the expected (or at equilibrium) acceptance probability and par-
ticularly the conditional expected acceptance probability defined as

α(P̃ ) :=
∫

αxy(P̃ )π(dx)q(x,dy) with

αxy(P̃ ) :=
∫

min
{

1, r(x, y)
u

w

}
Qx(dw)wQy(du),

respectively. It is possible to show directly that if for some x, y ∈ X the orders
Q

(1)
x ≤cx Q

(2)
x and Q

(1)
y ≤cx Q

(2)
y hold, then αxy(P̃1) ≥ αxy(P̃2), where P̃1 and

P̃2 denote pseudo-marginal algorithms with {Q(1)
x }x∈X and {Q(2)

x }x∈X [see also
Theorem 10(a) and Theorem 22 for a proof]. If Q

(1)
x ≤cx Q

(2)
x for all x ∈ X, then

clearly α(P̃1) ≥ α(P̃2).
It is well known that acceptance probabilities are not always a useful perfor-

mance criterion for MH algorithms. They turn out, however, to be a relevant in
the present context. Indeed for a fixed family {q(x, ·)}x∈X a larger value αxy(P̃ )

indicates that at stationarity the transition from x to y is more likely, which is
somewhat reminiscent of the off-diagonal order in Theorem 2. Nevertheless, as
pointed out earlier, Peskun’s result does not apply here since, among other things,
P̃1 and P̃2 do not share the same invariant distribution. In the next section, we in
fact establish that showing Q

(1)
x ≤cx Q

(2)
x for all x ∈ X is sufficient to imply the

desired orders.

3. Main results: Ordering pseudo-marginal MCMC. Our main results are
all based on the following conditional convex order assumption on the weight dis-
tributions.
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DEFINITION 9. Two families of weight distributions {Q(1)
x }x∈X and {Q(2)

x }x∈X

satisfy {Q(1)
x }x∈X ≤cx {Q(2)

x }x∈X if

Q(1)
x ≤cx Q(2)

x for all x ∈ X.

The proofs of our results are based on classical Hilbert space techniques for the
analysis of reversible Markov chains. We recall here related definitions which will
be useful throughout. Let μ be a probability measure and � a μ-reversible Markov
transition kernel on a measurable space (E,F). For any probability measure ν on
(E,F) and any function f : E →R let, whenever the integrals are well-defined,

ν(f ) :=
∫

f (x)ν(dx) and �f (x) :=
∫

f (y)�(x,dy),

and for k ≥ 2, by induction,

�kf (x) :=
∫

�(x,dy)�k−1f (y).

We further denote (ν�k)f := ν(�kf ), which can be interpreted as a probability
measure. Consider next the spaces of square integrable (and centred) functions
defined respectively as

L2(E,μ) := {
f : E →R : μ(

f 2)
< ∞}

,

L2
0(E,μ) := {

f ∈ L2(E,μ) : μ(f ) = 0
}
,

endowed with the inner product defined for any f,g ∈ L2(E,μ) as 〈f,g〉μ :=∫
f (x)g(x)μ(dx), and the associated norm ‖f ‖μ := √[b]〈f,f 〉μ. The Markov

kernel � defines a self-adjoint operator on L2(E,μ). For f ∈ L2(E,μ), we con-
sider the Dirichlet forms of f associated with �

E�(f ) := 〈
f, (I − �)f

〉
μ = 1

2

∫
μ(dx)�(x,dy)

(
f (x) − f (y)

)2
,

where I (x,A) := I{x ∈ A} stands for the identity operator. The (right) spectral
gap of � is the distance between 1 and the upper end of the spectrum of � as an
operator on L2

0(E,μ), and has the following variational representation by means
of the Dirichlet form:

GapR(�) := inf
{
E�(f ) : f ∈ L2

0(E,μ),‖f ‖μ = 1
}
.

Hereafter, for functions f : X →R we will also denote, whenever necessary, by f

the functions from X × R+ → R defined by f (x,w) := f (x). We now state our
main result, whose proof is postponed to Section 5.

THEOREM 10. Let π be a probability distribution on some measurable space
(X,X ) and let P̃1 and P̃2 be two pseudo-marginal approximations of P aim-
ing to sample from π , sharing a common family of marginal proposal proba-
bility distributions {q(x, ·)}x∈X but with distinct weight distributions satisfying
{Q(1)

x }x∈X ≤cx {Q(2)
x }x∈X. Then:
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(a) for any x, y ∈ X, the conditional acceptance rates satisfy αxy(P̃1) ≥
αxy(P̃2),

(b) for any f : X →R, the Dirichlet forms satisfy E
P̃1

(f ) ≥ E
P̃2

(f ),
(c) for any f : X → R with varπ(f ) < ∞, the asymptotic variances satisfy

var(f, P̃1) ≤ var(f, P̃2),
(d) the spectral gaps satisfy GapR(P̃1) ≥ min{GapR(P̃2),1 − ρ̃∗

2 }, where ρ̃∗
2 :=

π̃2 −ess sup(x,w) ρ̃2(x,w), the essential supremum of the rejection probability cor-

responding to P̃2,
(e) if π is not concentrated on points, that is, π({x}) = 0 for all x ∈ X, then

GapR(P̃1) ≥ GapR(P̃2).

REMARK 11. Theorem 10(c) does not assume the finiteness of the asymp-
totic variances, and accommodates the scenarios where either var(f, P̃2) or both
var(f, P̃1) and var(f, P̃2) are infinite. Establishing finiteness is a separate, but prac-
tically important, problem and we now discuss briefly what are in our view the
two most applicable approaches to do so. In the case where P̃2 admits a spectral
gap, then finiteness of var(f, P̃2) is guaranteed, because π(f 2) < ∞ implies that
π̃2(f

2) < ∞. In earlier work [4], Proposition 10, we have shown that if the weight
distributions {Q(2)

x }x∈X are uniformly bounded, and the marginal algorithm ad-
mits a spectral gap, then so does P̃2. There are also several results in the literature
which guarantee geometric convergence, and thus the existence of spectral gaps
for certain classes of Metropolis–Hastings algorithms (e.g., [24, 38]).

In the case where P̃2 is sub-geometrically ergodic and, therefore, does not ad-
mit a spectral gap, then the most successful general technique for guaranteeing the
finiteness of var(f, P̃2) consists of establishing sub-geometric drift and minorisa-
tion conditions [14, 25, 47]. In earlier work, we have shown that such drifts hold
for the pseudo-marginal kernel P̃2 under general moment conditions on {Q(2)

x }x∈X

when the marginal algorithm is strongly uniformly ergodic ([4], Proposition 30
and Corollary 31), and in some more specific scenarios such as the independence
sampler ([4], Corollary 27) and the random-walk Metropolis ([4], Theorems 38
and 45).

REMARK 12. In the context of Algorithm 1, if there are two possible estima-
tors of π(Yn) that could be used, say U

(1)
n and U

(2)
n , then U

(1)
n ≤cx U

(2)
n is equiva-

lent to our assumption {Q(1)
x }x∈X ≤cx {Q(2)

x }x∈X. This is because the convex order
is preserved under scaling.

As pointed out in Remark 4, the convex order W(1) ≤cx W(2) of square-
integrable random variables automatically implies var(W(1)) ≤ var(W(2)), but the
reverse is not true in general. A natural question is then to ask if var(W(1)

x ) ≤
var(W(2)

x ) for all x ∈ X could be sufficient to imply, for example, var(f, P̃2) ≥
var(f, P̃1) for f ∈ L2(X, π)? The following counterexample shows that this is not
the case.
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EXAMPLE 13. Consider the situation where X = {−1,1}, π = (1/2,1/2), and
the marginal algorithm is a “perfect” independent Metropolis–Hastings (IMH) al-
gorithm, that is, q(x,dy) = π(dy), for any x ∈ X. Suppose that the weight distri-
butions are independent of x and given by

Q(dw) := Qx(dw) = b − 1

b − a
δa(dw) + 1 − a

b − a
δb(dw),

for some 0 ≤ a ≤ 1 ≤ b < ∞, and that the function of interest is f (x) = x. In this
case, varQ(f ) = (b−1)(1−a) and because of the simple structure of the problem
(independence with respect to x of Qx and the choice of an IMH) one can find an
explicit expression for the asymptotic variance

var(f, P̃ ) = a(b − 1) + (2b − 1)b(1 − a)

b − a
.

Now one can easily find numerous counterexamples such as the pairs (a(1), b(1)) =
(0.9208,3.0046) and (a(2), b(2)) = (0.6698,1.4620) for which var(W(1)) =
0.1587 ≥ var(W(2)) = 0.1526 but var(f, P̃1) = 1.4577 ≤ var(f, P̃2) = 1.5632.

REMARK 14. Theorem 10(a)–(c) generalise the findings in [4] which state
similar bounds in the special case where P̃1 corresponds to the marginal algorithm,
or equivalently, to the degenerate case Q

(1)
x ≡ δ1. Note also that δ1 is the unique

minimal distribution in the convex order; see Section 6.3.

REMARK 15. In practice, one may be interested in a sequence of estimators
{W(i)

x }, where i ∈ N is an “accuracy parameter” such as a number of estimators
combined by averaging. Suppose that the estimators are increasingly accurate in
the convex order, that is, W

(i+1)
x ≤cx W

(i)
x , then Theorem 10 implies that the fol-

lowing mappings from N to R+ have the monotonicity properties:

(a) i �→ αxy(P̃i) is nondecreasing,
(b) i �→ E

P̃i
(f ) is nondecreasing,

(c) i �→ var(f, P̃i) is nonincreasing.

We suspect that in addition, in scenarios such as those of Section 6.1, the map-
pings i �→ αxy(P̃i) and i �→ E

P̃i
(f ) are concave and i �→ var(f, P̃i) convex, but

we have not yet been able to prove this conjecture. See, however, Proposition 26
for a partial result in that direction.

4. Variational bounds for the asymptotic variance. The first result on our
journey to prove Theorem 10 is a variational bound on the difference of asymp-
totic variances. The result, which is of independent interest, shows that the Dirich-
let forms associated with Peskun’s variance ordering result [37, 46] need not be
ordered for all functions, but only certain subclasses of functions. We note that the
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result, Theorem 17, offers also a more direct proof of, for example, the results in
[4, 46]. We start by stating a powerful variational representation of the quadratic
form of the inverse of a positive self-adjoint operator, attributed to Bellman [7],
and used for example by Caracciolo, Pelissetto and Sokal [10].

LEMMA 16. Let A be a self-adjoint operator on a Hilbert space H, satisfying
〈f,Af 〉 ≥ 0 for all f ∈H and such that the inverse A−1 exists. Then〈

f,A−1f
〉 = sup

g∈H
[
2〈f,g〉 − 〈g,Ag〉],(3)

where the supremum is attained with g = A−1f .

Proof of Lemma 16 is given for the reader’s convenience in Appendix A.
Lemma 16 provides us with a quick route to Peskun type ordering. More im-

portantly, it leads to important quantitative bounds on the difference between the
asymptotic variances of two μ-reversible Markov transition probabilities in terms
of Dirichlet forms. Suppose that � is a Markov kernel on a measurable space
(E,F), reversible with respect to a probability measure μ, and let λ ∈ [0,1) be
any constant. We may introduce the self-adjoint operator (or sub-probability ker-
nel) (λ�)(x,A) := λ�(x,A) and we extend the definition of the asymptotic vari-
ance to this type of (nonprobabilistic) operator as follows. For any f ∈ L2(E,μ),
we let f̄ := f − μ(f ) ∈ L2

0(E,μ) and define

var(f,λ�) := 〈
f̄, (I − λ�)−1(I + λ�)f̄

〉
μ = 2

〈
f̄, (I − λ�)−1f̄

〉
μ − ‖f̄ ‖2

μ,

where the inverse (I − λ�)−1 := ∑∞
k=0 λk�k is a well-defined bounded operator

for any λ ∈ [0,1). From [46], we know that

lim
λ↑1

var(f,λ�) = var(f,�) = lim
M→∞ varμ

(
M−1/2

M∑
i=1

f (�i)

)
,

even in the case where the expression on the right hand side is infinite. Similarly,
we extend the definition of Dirichlet forms to Eλ�(f ) := 〈f, (I − λ�)f 〉μ.

THEOREM 17. Let �1 and �2 be two Markov transition probabilities defined
on some measurable space (E,F) both reversible with respect to the probability
distribution μ, and let f ∈ L2

0(E,μ). Then:

(a) For any λ ∈ [0,1),

Eλ�1

(
f̂ λ

1
) − Eλ�2

(
f̂ λ

1
) ≤ 1

2

[
var(f,λ�2) − var(f,λ�1)

]
≤ Eλ�1

(
f̂ λ

2
) − Eλ�2

(
f̂ λ

2
)
,

where f̂ λ
i := (I − λ�i)

−1f ∈ L2
0(E,μ).
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(b) The function β �→ var(f,β�1 + (1−β)�2) defined for β ∈ [0,1] is convex,
that is, for any β ∈ [0,1],

var
(
f,β�1 + (1 − β)�2

) ≤ β var(f,�1) + (1 − β)var(f,�2).

PROOF. In order to prove the results, we use the variational representation
of the asymptotic variance, as suggested in [10] and obtained by application of
Lemma 16 for i ∈ {1,2},

var(f,λ�i) = 2
〈
f, (I − λ�i)

−1f
〉
μ − ‖f ‖2

μ
(4)

= 2 sup
g∈L2

0(E,μ)

[
2〈f,g〉μ − Eλ�i

(g)
] − ‖f ‖2

μ.

Hereafter, we denote ı̄ = 2 if i = 1 and vice versa. From (4) and Lemma 16 which
states that the supremum above is attained for f̂ λ

i , we have for i ∈ {1,2}
2
[
2
〈
f, f̂ λ

ı̄

〉
μ − Eλ�i

(
f̂ λ

ı̄

)] ≤ var(f,λ�i) + ‖f ‖2
μ = 2

[
2
〈
f, f̂ λ

i

〉
μ − Eλ�i

(
f̂ λ

i

)]
.

We can now conclude (a) by summing the above inequality with i = 1 and with
i = 2 multiplied by −1, and then dividing by 2. For the second item (b), let β ∈
(0,1) and write for any g ∈ L2(E,μ),

2〈f,g〉μ − Eβ�1+(1−β)�2(g)

= β
[
2〈f,g〉μ − E�1(g)

] + (1 − β)
[
2〈f,g〉μ − E�2(g)

]
.

The claim follows by taking the supremum over g ∈ L2(E,μ), separately for the
two terms on the right-hand side. �

5. Proofs by a martingale coupling of pseudo-marginal kernels. We pref-
ace the proof of Theorem 10 with a key result from [31], which ensures that the
conditional convex order implies a conditional martingale coupling of the distri-
butions involved.

THEOREM 18. Assume {Q(1)
x }x∈X ≤cx {Q(2)

x }x∈X, then there exists a probabil-
ity kernel (x,A) �→ Rx(A) from X to R

2+ such that for any x ∈ X:

(a) Rx has marginals Q
(1)
x and Q

(2)
x , that is, Rx(A × R+) = Q

(1)
x (A) and

Rx(R+ × A) = Q
(2)
x (A) for all A ∈ B(R+),

(b) Rx is the distribution of a martingale, that is, for all A ∈ B(R+),
∫

Rx(dw×
dv)vI{w ∈ A} = ∫

Rx(dw × dv)wI{w ∈ A}.

REMARK 19. The property of Rx in Lemma 18(b) holds if and only if
(W,V ) ∼ Rx(·) satisfies E[V |W ] = W almost surely. This means that 
 = V −W

is a martingale difference satisfying E[
|W ] = 0, and that V = W +
 is “noisier”
than W .
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The proof of Theorem 18 given in [31], Theorem 1.3, relies on the fundamen-
tal martingale characterisation due to Strassen [44] restated in Theorem 7, but
involves a nontrivial measurability argument for the case where X is uncountable.

For the rest of this section, we assume that the conditions in Theorem 10 hold,
and we denote by π̃1, π̃2 the invariant distributions of P̃1, P̃2, respectively. Theo-
rem 18 turns out to be the key instrument in the proof of Theorem 10. It will allow
us to circumvent the difficulty of having two distinct invariant distributions π̃1 and
π̃2 for P̃1 and P̃2, which is incompatible with the Hilbert space setting. Instead,
we will be working with two Markov kernels P̆1 and P̆2 equivalent to P̃1 and P̃2

in a sense to be made more precise in Lemma 20. The kernels P̆1 and P̆2 intro-
duced below can be thought of as corresponding to two distinct pseudo-marginal
implementations, where P̆2 uses the “noisiest” approximation.

LEMMA 20. Let Rx be the probability kernel from (X,X ) to (R2+,B(R+)2)

from Theorem 18. Then the following defines a probability distribution on (X ×
(0,∞)2,X ×B((0,∞)2)),

π̆(dx × dw × dv) := π(dx)Rx(dw × dv)v,

and the following define Markov transition probabilities on (X × (0,∞)2,X ×
B((0,∞)2))

P̆1(x,w, v;dy × du × dt) := q(x,dy)Ry(du × dt)
t

u
min

{
1, r(x, y)

u

w

}

+ δx,w,v(dy × du × dt)ρ̃1(x,w),

P̆2(x,w, v;dy × du × dt) := q(x,dy)Ry(du × dt)min
{

1, r(x, y)
t

v

}

+ δx,w,v(dy × du × dt)ρ̃2(x, v),

with the convention t/u = 0 for t = u = 0, and where ρ̃1 and ρ̃2 stand for the rejec-
tion probabilities of P̃1 and P̃2, respectively. The following marginal equivalences
hold between π̆ , P̆1, P̆2 and π̃1, π̃2, P̃1, P̃2,

π̆
(
dx × dw × (0,∞)

) = π̃1(dx × dw),

π̆
(
dx × (0,∞) × dv

) = π̃2(dx × dv),

P̆1
(
x,w,v;dy × du × (0,∞)

) = P̃1(x,w;dy × du),

P̆2
(
x,w,v;dy × (0,∞) × dt

) = P̃2(x, v;dy × dt),

where the latter two equalities hold for all (x,w, v) ∈ X × (0,∞)2. Furthermore,
both P̆1 and P̆2 are reversible with respect to π̆ .
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PROOF. The measure π̆ is positive, and by the properties of Rx ,

π̆
(
X × (0,∞)2) =

∫
X
π(dx)

∫
(0,∞)×R+

Rx(dw × dv)v

(5)
=

∫
X
π(dx)

∫
(0,∞)

Q(1)
x (dw)w = 1,

and the marginal properties follow similarly. The marginal correspondence be-
tween P̆1, P̆2 and P̃1, P̃2 is also immediate. Clearly, P̆2 is a Metropolis–Hastings
algorithm with proposal q(x,dy)Ry(du × dt) targeting π̆ , which implies also the
reversibility.

We then turn to the reversibility of P̆1. We may focus on the off-diagonal part
(cf. [46]) and write for any A,B ∈ X ×B(R+)2 with A,B ⊂ {w > 0, u > 0},∫

π(dx)Rx(dw × dv)vq(x,dy)Ry(du × dt)

× t

u
min

{
1, r(x, y)

u

w

}
I
{
(x,w, v) ∈ A, (y,u, t) ∈ B

}

=
∫

π(dy)q(y,dx)Ry(du × dt)tRx(dw × dv)

× v

w
min

{
w

u
r(y, x),1

}
I
{
(y,u, t) ∈ B, (x,w,v) ∈ A

}
,

which is enough to conclude. �

We next introduce the spaces of square integrable functions which are constant
with respect to the last, the second last and the two last coordinates, respectively,

L2
c2

(
X ×R

2+, π̆
) := {

f : ∃f1 ∈ L2(X ×R+, π̃1), f (x,w, v) = f1(x,w)
}
,

L2
c1

(
X ×R

2+, π̆
) := {

f : ∃f2 ∈ L2(X ×R+, π̃2), f (x,w, v) = f2(x, v)
}
,

L2
c

(
X ×R

2+, π̆
) := {

f : ∃f̄ ∈ L2(X, π), f (x,w, v) = f̄ (x)
}
,

where f ∈ L2(X ×R
2+, π̆) in the definitions. We denote the corresponding classes

of zero-mean functions as L2
0,c∗(X×R

2+, π̆) := {f ∈ L2
c∗(X×R

2+, π̆) : π̆(f ) = 0},
where “∗” is a placeholder. The next corollary of Lemma 20 records properties of
P̆i on the above mentioned classes of functions.

COROLLARY 21. Let f1 ∈ L2(X × R+, π̃1) and f2 ∈ L2(X × R+, π̃2), and
denote g1(x,w, v) := f1(x,w) ∈ L2

c2(X × R
2+, π̆) and g2(x,w, v) := f2(x, v) ∈

L2
c1(X ×R

2+, π̆). Then we have the correspondence for k ≥ 1:

π̆(g1) = π̃1(f1), P̆ k
1 g1(x,w, v) = P̃ k

1 f1(x,w) ∈ L2
c2

(
X ×R

2+, π̆
)
,(6)

π̆(g2) = π̃2(f2), P̆ k
2 g2(x,w, v) = P̃ k

2 f2(x, v) ∈ L2
c1

(
X ×R

2+, π̆
)

(7)



ORDER AMONGST EXACT APPROXIMATIONS OF MCMCS 2677

and as a result for k ≥ 1 the following identities hold:〈
g1, P̆

k
1 g1

〉
π̆ = 〈

f1, P̃
k
1 f1

〉
π̃1

,
〈
g2, P̆

k
2 g2

〉
π̆ = 〈

f2, P̃
k
2 f2

〉
π̃2

,

var(g1, P̆1) = var(f1, P̃1), var(g2, P̆2) = var(f2, P̃2).

PROOF. All the claims are direct, except the last two. Recall that (e.g., [46])
for a generic Markov kernel � reversible with respect to a probability distribution
μ and ψ ∈ L2

0(E,μ) we have

var(ψ,�) = lim
M→∞

1

M

(
M∑
i=1

Eμ

[
ψ2(�i)

] + 2
M∑
i=1

M∑
j=i+1

Eμ

[
ψ(�i)ψ(�j )

])

= μ
(
ψ2) + lim

n→∞
2

M

M∑
i=1

M∑
j=i+1

〈
ψ,�j−iψ

〉
μ.

The last two claims now follow from the correlation equivalences. �

Note that by Corollary 21, L2
c(X × R

2+, π̆) ⊂ L2
c1(X × R

2+, π̆) ∩ L2
c2(X ×

R
2+, π̆) ⊂ L2(X × R

2+, π̆) and the same inclusions hold with centred versions
L0,c∗(X ×R

2+, π̆).
We now state the key result which relates various quantities related to the

pseudo-marginal algorithms P̃1 and P̃2 and their counterparts P̆1 and P̆2.

THEOREM 22. Let π̆ , P̆1 and P̆2 be as defined in Lemma 20. Then:

(a) αxy(P̃1) ≥ αxy(P̃2) for any x, y ∈ X,
(b) E

P̆1
(g) ≥ E

P̆2
(g) for any g ∈ L2

c2(X ×R
2+, π̆),

(c) var(f, P̆1) ≤ var(f, P̆2) for any f ∈ L2
c2(X ×R

2+, π̆),
(d) GapR(P̃1) ≥ GapR(P̆2).

PROOF. We first consider (a) and (b). Fix x, y ∈ X. Then for any bounded
function h : (X × R+)2 → R+ by the properties of Rx and Ry and by Jensen’s
inequality,∫

Rx(dw × dv)vRy(du × dt)
t

u
min

{
1, r(x, y)

u

w

}
h(x,w,y,u)

=
∫

Rx(dw × dv)Ry(du × dt)min
{
w, r(x, y)u

}
h(x,w,y,u)

≥
∫

Rx(dw × dv)Ry(du × dt)min
{
v, r(x, y)t

}
h(x,w,y,u)

=
∫

Rx(dw × dv)vRy(du × dt)min
{

1, r(x, y)
t

v

}
h(x,w,y,u).
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We deduce (a) with h ≡ 1 and by using the correspondence established in
Lemma 20. We also have, with functions such that h(x,w,x,w) = 0 for all
(x,w) ∈ X × (0,∞),∫

π̆(dx × dw × dv)P̆1(x,w, v;dy × du × dt)h(x,w,y,u)

≥
∫

π̆(dx × dw × dv)P̆2(x,w, v;dy × du × dt)h(x,w,y,u).

Claim (b) is now obtained by letting h(x,w,y,u) = min{m, (g(x,w)−g(y,u))2}
and by monotone convergence as m → ∞.

In (c), we may assume without loss of generality that f ∈ L2
0,c2(X×R

2+, π̆). For

any λ ∈ [0,1), note that by Corollary 21 f̂ λ
1 := (I − λP̆1)

−1f = ∑∞
k=0 λk(P̆1)

kf

satisfies f̂ λ
1 (x,w, v) = f̂ λ

1 (x,w) ∈ L2
0,c2(X ×R

2+, π̆). We may now apply (b) and
Theorem 17 to deduce that

0 ≤ 2λ
[
E

P̆1

(
f̂ λ

1
) − E

P̆2

(
f̂ λ

1
)] = 2

[
E

λP̆1

(
f̂ λ

1
) − E

λP̆2

(
f̂ λ

1
)]

≤ var(f,λP̆2) − var(f,λP̆1).

If var(f, P̆2) is infinite, then the claim holds trivially. Suppose now that var(f, P̆2)

is finite, then taking the limit λ ↑ 1 ensures that var(f, P̆2) ≥ var(f, P̆1).
For (d), by the variational definition of the right spectral gap there exists a se-

quence of functions ψi ∈ L2
0(X ×R+, π̃1) with varπ̃1(ψi) = 1 such that

lim
i→∞E

P̃1
(ψi) = GapR(P̃1).

Notice that denoting ψi(x,w, v) := ψi(x,w) Corollary 21 implies varπ̆ (ψi) =
varπ̃1(ψi) = 1 and P̆1ψi(x,w, v) = P̃1ψi(x,w) and, therefore, E

P̆1
(ψi) = E

P̃1
(ψi).

Now, (b) allows us to conclude that

GapR(P̆2) ≤ lim inf
i→∞ E

P̆2
(ψi) ≤ lim inf

i→∞ E
P̆1

(ψi) = lim
i→∞E

P̃1
(ψi). �

We are now ready to complete the proof of our main result.

PROOF OF THEOREM 10. The acceptance rate order (a) is proved in Theo-
rem 22(a). For what follows, let K1(x, u; ·) and K2(x,w; ·) be (regular) condi-
tional distributions such that

Rx(dw × du) = Q(1)
x (dw)K2(x,w;du),

Rx(dw × du) = Q(2)
x (du)K1(x, u;dw),

and define the following sub-probability kernels corresponding to the acceptance
parts of P̃1 and P̃2,

p̃1(x,w;dy × du) := q(x,dy)Q(1)
y (du)min

{
1, r(x, y)

u

w

}
,
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p̃2(x, v;dy × dt) := q(x,dy)Q(2)
y (dt)min

{
1, r(x, y)

t

v

}
.

With these, we may write

P̆1(x,w, v;dy × du × dt) = p̃1(x,w;dy × du)K2(y, u;dt)
t

u

+ δx,w,v(dy × du × dt)ρ̃1(x,w),

P̆2(x,w, v;dy × du × dt) = p̃2(x, v;dy × dt)K1(y, t;du)

+ δx,w,v(dy × du × dt)ρ̃2(x, v).

In both situations, we are now in the setting of Lemma 45 in Appendix C with
E = X × (0,∞) and S = (0,∞).

Define h(x,w,v) := f (x) and g(x,w) := f (x), then we have from Theo-
rem 22(b) that E

P̃1
(g) = E

P̆1
(h) ≥ E

P̆2
(h) = E

P̃2
(g), which completes the proof

of (b). Claim (c) follows from Theorem 22(c) and Corollary 21. Now recall
that Theorem 22(d) states that GapR(P̃1) ≥ GapR(P̆2), and Lemma 45 reads
GapR(P̆2) ≥ min{GapR(P̃2),1 − ρ̃∗

2 }, which completes the proof of (d). Finally,
(e) is a consequence of Remark 46 in Appendix C. �

We conclude this section by a partial result concerning the convexity and con-
cavity of the expected acceptance rates, the Dirichlet forms and the asymptotic
variances as discussed in Remark 15. We start by stating simple extensions of
Theorem 18 and Lemma 20 to the case of an arbitrary number of distributions,
which may be useful also in other contexts. Note that here the indices are reversed
in comparison to Remark 15; Q

(1)
x corresponds to the least noisy estimate.

LEMMA 23. Suppose that {Q(1)
x }x∈X ≤cx · · · ≤cx {Q(n)

x }x∈X, then there ex-
ists a kernel (x,A) �→ Rx(A) from X to R

n+ such that, with notation w1:i :=
(w1, . . . ,wi):

(a) For all i = 1, . . . , n, Rx(R
i−1+ × A ×R

n−i−1+ ) = Q
(i)
x (A).

(b) For all A ∈ B(Ri−1+ ) and all i = 2, . . . , n,∫
Rx(dw1:n)wiI{w1:i−1 ∈ A} =

∫
Rx(dw1:n)wi−1I{w1:i−1 ∈ A}.

(c) For all i = 3, . . . , n, all A1, . . . ,Ai−1 ∈ B(R+) and all bounded measurable
f :R+ →R, ∫

Rx(dw1:n)f (wi)I{w1 ∈ A1, . . . ,wi−1 ∈ Ai−1}

=
∫

Rx(w1:n)f (wi)I{wi−1 ∈ Ai−1}.
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PROOF. For the existence of Rx , consider Theorem 18 applied to each pair
{Q(i−1)

x }x∈X ≤cx {Q(i)
x }x∈X, resulting in R

(i)
x (dwi−1 × dwi), and let K(i)(x,wi−1;

dwi) be (regular) conditional probabilities such that R
(i)
x (dwi−1 × dwi) =

Q
(i−1)
x (dwi−1)K(x,wi−1;dwi). The claim holds for n = 2 because then Rx =

R
(2)
x . For n ≥ 3, assuming that the claim holds with n − 1, it is straightforward to

check that the extension

Rx(dw1:n) = Rx(dw1:n−1)K
(n)(x,w1:n−1;dwn)

satisfies the required properties. �

REMARK 24. If Ŵ 1:n ∼ Rx , then Ŵ1:n is a Markovian martingale, that is,
E[f (Ŵi)|Ŵ1:i−1] = E[Ŵi |Ŵi−1] and E[Ŵi |Ŵ1:i−1] = Ŵi−1 for i = 2, . . . , n and
all bounded measurable f :R+ →R.

LEMMA 25. Let {Q(1)
x }x∈X ≤cx · · · ≤cx {Q(n)

x }x∈X and let Rx be as in
Lemma 23. Define the probability distribution

π̆(dx × dw1:n) := π(dx)Rx(dw1:n)wn,

and the following Markov transition probabilities on (X × (0,∞)n,X × B((0,

∞)n)):

P̆i(x,w1:n;dy × du1:n) := q(x,dy)Ry(du1:n)
un

ui

min
{

1, r(x, y)
ui

wi

}

+ δx,w1:n(dy × du1:n)ρ̃i(x,wi).

Then the P̆is are reversible with respect to π̆ , and satisfy the marginal correspon-
dence

π̆
(
dx ×R

i−1+ × dwi ×R
n−i−1+

) = π̃i(dx × dwi),

P̆i

(
x,w1:n;dy ×R

i−1+ × dui ×R
n−i−1+

) = P̃ i(x,wi;dy × dui).

The proof is similar to Lemma 20.
We now give our partial result relying on an abstract condition on the Dirichlet

forms of the augmented kernels P̆i defined in Lemma 25.

PROPOSITION 26. Let {Q(1)
x }x∈X ≤cx · · · ≤cx {Q(n)

x }x∈X and let P̆i be as de-
fined in Lemma 25. If for all i = 2, . . . , n and any gi ∈ L2

0(X × R
2+, π̆) such that

gi(x,w1:n) = h(x,wi) ∈ L2(π̃i ,X ×R+) it holds that

E
P̆i−1

(gi) − E
P̆i

(gi) ≤ E
P̆i

(gi) − E
P̆i+1

(gi),

then for any function f ∈ L2(X, π),

var(f, P̃i) − var(f, P̃i−1) ≤ var(f, P̃i+1) − var(f, P̃i),

whenever the quantities above are finite.
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PROOF. Without loss of generality, we may assume f ∈ L2
0(X, π), so that

ĝλ
i := ∑

k≥0 λP̆if ∈ L2
0(X × R

n+, π̆), and ĝλ
i (x,w1:n) depends only on x and wi .

By Theorem 17,(
var(g, λP̆i) − var(g, λP̆i−1)

) ≤ 2
[
E

λP̆i−1

(
ĝλ

i

) − E
λP̆i

(
ĝλ

i

)]
= 2λ

[
E

P̆i−1

(
ĝλ

i

) − E
P̆i

(
ĝλ

i

)]
,

and similarly

2λ
[
E

P̆i

(
ĝλ

i

) − E
P̆i+1

(
ĝλ

i

)] ≤ var(g, λP̆i+1) − var(g, λP̆i).

Because E
P̆i−1

(ĝλ
i ) − E

P̆i
(ĝλ

i ) ≤ E
P̆i

(ĝλ
i ) − E

P̆i+1
(ĝλ

i ), we obtain the desired vari-

ance bound for P̆i−1, P̆i and P̆i+1. Because the variances are equal to those of
P̃i−1, P̃i and P̃i+1 as observed in the proof of Theorem 10, we complete the proof.

�

6. Applications. The convex order is a well-researched topic with a rich and
extensive literature where numerous properties have been established for various
purposes; see, for example, [35, 41] for recent book length overviews. For exam-
ple, the convex order is closed under linear combinations and numerous paramet-
ric families of distributions can be convex ordered in terms of their parameters.
Conditioning improves on convex order, that is, E[W |Z] ≤cx W for some ran-
dom variable Z (see Theorem 3.A.20 for a more general scenario, in [41]), there-
fore, establishing that, as expected, “Rao–Blackwellisation” is beneficial in the
present context. We detail here applications of such properties directly relevant to
the pseudo-marginal context.

We first show in Section 6.1 that the theory of majorisation provides us with a
tool to compare algorithms when averaging a number of independent realisations
of an approximation. As a by-product, we establish that increasing the number of
copies always improves performance. While this result is not entirely surprising,
Example 13 is a reminder that the behaviour of these algorithms can be counter-
intuitive and surprising. In addition, establishing the result directly seems to be far
from obvious while it follows here directly from the convex order. Our second ap-
plication is more interesting in terms of methodology. It is concerned with stratifi-
cation, which is often easy to implement without additional computational cost. In
particular, we establish in Section 6.2 that the standard application of this variance
reduction approach to approximate Bayesian computation (ABC) MCMC always
improves performance in this context. We conclude by considering extremal distri-
butions in Section 6.3 and discuss what information they provide on the efficiency
under certain constraints. We point again to a recent application of our work in [9]
in order to establish quantitative bounds.
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6.1. Averaging and performance monotonicity in the pseudo-marginal algo-
rithm. A simple and practical way to reduce variability of an estimator is to aver-
age multiple independent realisations of this estimator—this is a particularly inter-
esting and relevant strategy given the advent of cheap and widely available parallel
computing architectures; see [16] for a recent application of this idea to pseudo-
marginal algorithms. It is standard to show that for N independent and identical
realisations of an estimator the choice of uniform weights 1/N is optimum in terms
of variance when linear combinations are considered. It is then a consequence that
such equal weight averaging reduces the variance in a monotonic fashion as the
number of copies increases. One may wonder whether averaging always improves
performance of a pseudo-marginal algorithm, especially in the light of Example 13
where we have showed that the variance is not a reliable criterion in this context.
As we shall see, however, the answer to this question is positive, and a direct con-
sequence of the convex order. In fact, we are able to prove this result in a slightly
more general scenario where the copies are only assumed to be exchangeable.

We preface our result with some background. Assume Z(1),Z(2), . . . ,Z(N)

are exchangeable and nonnegative random variables of unit expectation and
denote Z := (Z(1),Z(2), . . . ,Z(N)). We introduce the simplex SN := {λ :=
(λ(1), λ(2), . . . , λ(N)) ∈ [0,1]N : ∑N

i=1 λ(i) = 1}. We consider below convex
combinations of the elements of Z in terms of weights in SN and to that pur-
pose will use for a, b ∈ R

N the notation (a, b) := ∑N
i=1 a(i)b(i). We will also

denote the components of any a ∈ R
N in decreasing order as maxi a(i) = a[1] ≥

a[2] ≥ · · · ≥ a[N ] = mini a(i). We introduce next the notions of Schur concavity
and majorisation [34].

DEFINITION 27 (Majorisation and Schur-concavity). Suppose that λ,μ ∈
R

N :

(a) We say that μ majorises λ, denoted λ ≺ μ, if
∑k

i=1 λ[i] ≤ ∑k
i=1 μ[i] for all

k = 1, . . . ,N.

(b) A function φ :RN →R is said to be Schur concave if λ ≺ μ implies φ(λ) ≥
φ(μ), and φ is Schur convex if λ ≺ μ implies φ(λ) ≤ φ(μ).

We state next a well-known result which establishes that convex combinations
of exchangeable random variables with majorised weights imply a convex order
on convex linear combinations.

THEOREM 28. For any λ,μ ∈ SN such that λ ≺ μ, we have

(λ,Z) ≤cx (μ,Z).

For a proof see, for example, [41], Theorem 3.A.35.
Let then Zx = (Zx(1),Zx(2), . . . ,Zx(N)) for any x ∈ X stand for an exchange-

able vector as above, and let λ,μ ∈ SN . Consider the weights W
(λ)
x := (λ,Zx)
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and W
(μ)
x := (μ,Zx), which are nonnegative and have unit expectation, and let P̃λ

and P̃μ denote the pseudo-marginal algorithms corresponding to {W(λ)
x }x∈X and

{W(μ)
x }x∈X, respectively.

THEOREM 29. Assume that λ,μ ∈ SN satisfy λ ≺ μ. Then, for any x, y ∈ X
and any f ∈ L2(X, π),

αxy(P̃λ) ≥ αxy(P̃μ) and var(f, P̃λ) ≤ var(f, P̃μ),

that is, the expected acceptance probability is Schur concave, while the asymptotic
variance is Schur convex.

Furthermore, if π is not concentrated on points, GapR(P̃λ) ≥ GapR(P̃μ), that
is, the right spectral gap is Schur concave.

PROOF. The proof follows directly from Theorems 10 and 28. �

REMARK 30. It is clear that Theorem 29 can be generalised to incorporate
state dependent weights, λ = {λx}x∈X and μ = {μx}x∈X where λx ,μx ∈ SN and
use W

(λ)
x := (λx,Zx) and W

(λ)
x := (λx,Zx). The result also generalises to infi-

nite exchangeable sequences Zx = (Zx(1),Zx(2), . . .) and λx,μx ∈ S∞ := {λ ∈
[0,1]∞ : ∑∞

i=1 λ(i) = 1} and letting W
(λ)
x := (λx,Zx) := ∑∞

i=1 λx(i)Zx(i).

For any k ∈ {1, . . . ,N} we define uk ∈ SN as the uniform weights uk :=
(1/k, . . . ,1/k,0, . . . ,0), that is, the first k components are nonzero and are all
equal. The next result shows that the optimal weighting of N estimators is the
uniform weighting, and that every extra sample improves performance.

COROLLARY 31. For any λ ∈ SN all x, y ∈ X and f ∈ L2(X, π),

αxy(P̃uN
) ≥ αxy(P̃λ) and var(f, P̃uN

) ≤ var(f, P̃λ),

and the following functions from {1, . . . ,N} to R+ satisfy: k �→ αxy(P̃uk
) is non-

decreasing and k �→ var(g, P̃uk
) is nonincreasing.

Furthermore, if π is not concentrated on points, GapR(P̃uN
) ≥ Gap(P̃λ) and

k �→ GapR(P̃uk
) is nondecreasing.

PROOF. In proof follows from Theorem 29 by observing that uN ≺ λ and that
uk ≺ uk−1. �

REMARK 32. Note that the convex order (uk,Z) ≤cx (uk−1,Z) can be ob-
tained directly by applying [35], Corollary 1.5.24, which is related to the existence
of reverse martingales for U-statistics, but our result is slightly stronger.
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The monotonicity result in Corollary 31 provides us with some justification
for averaging. Because we do not quantify the benefit of increased averaging, we
cannot provide guidelines what the optimal number of samples. Instead, we point
an interested reader to the recent related work of Sherlock, Thiery, Roberts and
Rosenthal [42] and Doucet, Pitt, Deligiannidis and Kohn [15] who give conditions
for optimal acceptance rates in some contexts. We note that when parallel archi-
tectures are available, averaging may be cheap or free, but our result also form the
basis for the justification of validity of adaptive MCMC algorithms which seek for
an optimal number of samples in the spirit of those proposed in a different con-
text [2, 18]. For example, it is possible to consider algorithms which increase or
decrease the number of samples according to some rule, aiming to reach a pre-
defined average acceptance rate.

6.2. Stratification. In the context of Monte Carlo methods, stratification is a
technique which aims to reduce variance of estimators of expectations. It turns out
that stratification can also imply improved performance in terms of convex order.
We refer the reader to very recent and important progress in this area [19, 20], but
we start here with a more specific and immediately applicable result.

Approximate Bayesian computation (ABC) [6, 45] are now popular methods
which are applicable in Bayesian inference involving intractable (or expensive
to evaluate) likelihood function, but where simulation from the model is easy.
Consider some data y∗ ∈ Y and assume that it arises from a family of probabil-
ity distributions with densities {�(·|x), x ∈ X}, with respect to some appropriate
reference measure λ. Instead of the exact likelihood �(y∗|x), an approximate like-
lihood function is constructed. Assume s : Y2 →R+ is a function whose role is to
measure dissimilarity between datasets, and consider for some ε > 0 the modified
ABC likelihood

�ABC
(
y∗|x) :=

∫
�(y|x)I

{
s
(
y, y∗) ≤ ε

}
λ(dy).

This alternative likelihood function is in general intractable, but naturally lends
itself to pseudo-marginal computations [3].

Indeed, for any x ∈ X assume Y1, Y2, . . . , YN ∼ �(y|x)λ(dy) are independent
samples. Then one can construct a nonnegative and unbiased estimator Tx of
�ABC(y∗|x) as follows:

Tx := 1

N

N∑
i=1

I
{
s
(
Yi, y

∗) ≤ ε
}
.(8)

This leads to the unit expectation estimator Wx = Tx/�ABC(y∗|x). In practice, sim-
ulation of the random variables Y on a computer often involves using d (pseudo-)
random numbers uniformly distributed on the unit interval [0,1], which are then
mapped to form one Yi . That is, there is a mapping from the unit cube [0,1]d
to Y, and with an inconsequential abuse of notation, if Ui ∼ U([0,1]d) then
Y(Ui) ∼ �(y|x)λ(dy).



ORDER AMONGST EXACT APPROXIMATIONS OF MCMCS 2685

EXAMPLE 33. An extremely simple illustration of this is the situation where
d = 1 and an inverse c.d.f. method is used, that is Y(U) = F−1(U) where F is
the cumulative distribution function (c.d.f.) of Y . For example, in the case of the
g-and-k distribution the inverse c.d.f. is given by [17]

F−1(u;A,B, c, g, k) = A + B

(
1 + c

1 − exp(−gz(u))

1 + exp(−gz(u))

)(
1 + z(u)2)k

z(u),

where z(u) is the standard normal quantile, and A,B, c, g, k are parameters.

In this context, an easily implementable method to improve performance of the
corresponding pseudo marginal algorithm is as follows. Let A := {A1, . . . ,AN }
be a partition of the unit cube [0,1]d such that P(U1 ∈ Ai) = 1/N , and such that
it is possible to sample uniformly from each Ai . Perhaps the simplest example of
this is when A corresponds to the dyadic sub-cubes of [0,1]d . Let Vi ∼ U(Ai) for
i = 1, . . . ,N be independent. We may now replace the estimator in (8) with

T strat
x := 1

N

N∑
i=1

I
{
s
(
Y(Vi), y

∗) ≤ ε
}
.(9)

It is straightforward to check that this is a nonnegative unbiased estimator of
�ABC(y∗|x) which means that W strat

x := T strat
x /�ABC(y∗|x) has unit expectation

as required. With P̃ the pseudo-marginal approximation corresponding to using
{Wx}x∈X and P̃ strat the approximation corresponding to {W strat

x }x∈X, we have the
following result.

THEOREM 34. For any x ∈ X we have W strat
x ≤cx Wx and, therefore, for any

x, y ∈ X and f ∈ L2(X, π),

αxy

(
P̃ strat) ≥ αxy(P̃ ) and var

(
f, P̃ strat) ≤ var(f, P̃ ).

Furthermore, if π is not concentrated on points, GapR(P̃ strat) ≥ GapR(P̃ ).

PROOF. Notice that I{s(Y (Ui), y
∗) ≤ ε} is a Bernoulli random variable of

parameter p̄ := P(s(Y (Ui), y
∗) ≤ ε) = P(Ui ∈ H) where H := {u ∈ [0,1]d :

s(Y (u), y∗) ≤ ε}. Similarly, let qi := P(s(Y (Vi), y
∗) ≤ ε) = P(Vi ∈ H) = P(Ui ∈

H ∩ Ai)/P(Ui ∈ Ai). Note that p̄ = ∑N
i=1 qi/N . Denoting q = (q1, . . . , qN)

and p = (p̄, . . . , p̄), we have the majorisation p ≺ q (see Definition 27 in Sec-
tion 6.1). A well-known result ([21] and [28]) tells us that the sum of the corre-
sponding Bernoulli random variables are convex ordered, that is for independent
W1, . . . ,WN ∼ U(0,1),

1

N

N∑
i=1

I{Wi ≤ qi} ≤cx
1

N

N∑
i=1

I{Wi ≤ pi}.
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The random variable on the left coincides in distribution with T strat
x and the random

variable on the right coincides with Tx . Consequently, W strat
x = T strat

x /�ABC(y∗|
x) ≤cx Tx/�ABC(y∗|x) = Wx . �

Naturally some stratification schemes are going to be better than others, and the
majorisation characterisation provides us, in principle, with a criterion for compar-
isons.

REMARK 35. We note that in some contexts, stratification may also open the
possibility for additional computational savings. First, using “early rejection” as
suggested in [43] the values of the summands in (9) can be computed progres-
sively until it is possible to decide whether the sample is accepted or rejected.
Second, in certain scenarios it may be possible to deduce the values of some in-
dicators in (9), before computing them, from realisations of others. For example,
assume d = 1, Ai = [(i − 1)/N, i/N], s(y, y∗) = |y − y∗|, and suppose we use
the inverse c.d.f. method. Then due to the monotonicity of the inverse c.d.f., if
I{s(Y (Vk), y

∗) ≤ ε} = 1 and I{s(Y (Vk+1), y
∗) ≤ ε} = 0, then we know that neces-

sarily I{s(Y (Vi), y
∗) ≤ ε} = 0 for i = k + 2, . . . ,N .

REMARK 36. It has also been suggested in the literature to replace the indica-
tor function in the ABC likelihood with a more general “kernel” K : R+ → [0,1]
effectively leading, with ψ = K ◦ s, to

�
ψ
ABC

(
y∗|x) :=

∫
�(y|x)ψ

(
y, y∗)

λ(dy).

In such a situation, it is still possible to use stratification, but now inter-related con-
ditions on the stratification scheme and the mapping u �→ ψ(Y (u), y∗) are needed.
For example, in the scenario d = 1 and with a monotone partition, the mapping
should be monotone, otherwise the sought convex order may not hold [19].

6.3. Extremal properties. In this section, we investigate upper and lower
bounds on the performance of pseudo-marginal algorithms by establishing a, per-
haps surprising, link to the actuarial science literature in terms of extremal mo-
ments and stop-loss functions [12, 22, 23]. More specifically, we consider unit ex-
pectation distributions Q∗ and Q∗ which are minimal and maximal in the convex
orders, subject to some constraints. We focus particularly on two types of con-
straints: a support constraint or a variance constraint. Other constraints such as a
kurtosis constraint or a modality constraint are possible, and an interested reader
can consult [22].

The link to the actuarial science literature comes from the fact that convex order
of distributions of random variables W and V with EW = EV is determined by the
order of the related stop-loss functions (or integrated survival functions) E[(W −
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t)+] and E[(V − t)+]; see Lemma 5. The stop-loss links directly with the expected
acceptance probability of the algorithm in Example 8 through the identity

min
{
1, r(x, y)�

} = r(x, y)� − max
{
0, r(x, y)� − 1

}
= r(x, y)� − r(x, y)

(
� − r−1(x, y)

)
+.

In the case of the pseudo-marginal algorithm, the above identity with � = u/w

provides a connection; see the proof of Theorem 22.
Let P be some subset of probability distributions on (R,B(R)). Well-

researched questions about stop-losses involve determining extremal elements
Q ∈ P maximising or minimising EQ[(W − t)+] for some or all t ∈ R. We review
some of these results particularly relevant to the present setup and apply them to
our problem.

THEOREM 37. Let μ ∈ R and let P(μ) stand for the probability distributions
Q on R such that the random variable W ∼ Q has expectation EQ[W ] = μ. Then,
for any t ∈ R,

δμ(dw) = arg min
Q∈P(μ)

EQ

[
(W − t)+

]
,

with minimum value (μ − t)+.

THEOREM 38. Let a, b,μ ∈ R with a ≤ μ ≤ b and let P(μ, [a, b]) ⊂ P(μ)

be the set of probability distributions Q on [a, b], that is, satisfying EQ[W ] = μ

and Q([a, b]) = 1. Then for any t ∈R,

b − μ

b − a
δa(dw) + μ − a

b − a
δb(dw) = arg max

Q∈P(μ,[a,b])
EQ

[
(W − t)+

]

with maximum value b−μ
b−a

(a − t)+ + μ−a
b−a

(b − t)+.

The proofs of Theorems 37 and 38 can be found in [12, 22, 23].
We state two direct consequences of these results.

THEOREM 39. Let ax, bx ∈ R+ be such that ax ≤ 1 ≤ bx for all x ∈ X. Con-
sider the class of pseudo-marginal algorithms P̃ such that for any x ∈ X the weight
distribution Qx is concentrated on [ax, bx], that is, Qx ∈ P(1, [ax, bx]). Then, for
any f ∈ L2(X, π),

var(f,P ) ≤ var(f, P̃ ) ≤ var(f, P̃max),

where P̃max is the pseudo-marginal algorithm with noise distributions

Qmax
x (dw) = 1 − ax

bx − ax

δax (dw) + bx − 1

bx − ax

δbx (dw).
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Furthermore,

var(f, P̃max) ≤ sup
x∈X

bx var(f,P ) +
(
sup
x∈X

bx − 1
)

varπ(f ).

PROOF. The first claim is direct from Theorems 37 and 38, Lemma 5 and
Lemma 10. The last claim follows from [4], Corollary 11. �

We next state for completeness a similar result for algorithms
◦

P as discussed
in Section 2. In particular, it is direct to check that the diatomic distributions in
Example 8 of the form, with axy = ayx ≥ 1,

Qxy(d�) = axy

1 + axy

δ
a−1
xy

(d�) + 1

1 + axy

δaxy (d�),

are maximal among those with support on [a−1
xy , axy]. We quote the result without

a proof, as it is a direct consequence of the convex order property and Peskun’s
result.

THEOREM 40. Let axy ∈ [1,∞) be constants such that axy = ayx for all

x, y ∈ X. Consider any algorithm
◦

P as in Section 2 such that Qxy ∈ P(μ =
1, [a−1

xy , axy]) for all x, y ∈ X. Then, for any x, y ∈ X2,

axy

1 + axy

min
{
1, r(x, y)a−1

xy

} + 1

1 + axy

min
{
1, r(x, y)axy

}

≤
∫

Qxy(d�)min
{
1, r(x, y)�

}
≤ min

{
1, r(x, y)

}
,

and for any f ∈ L2(X, π),

var(f,P ) ≤ var(f,
◦

P)

≤ var(f,
◦

Pmax)

≤ sup
x,y∈X2

axy var(f,P ) +
(

sup
x,y∈X2

axy − 1
)

varπ(f ).

We now turn back to pseudo-marginal algorithms. Not surprisingly, it is impos-
sible to find a maximal distribution on P(μ, [a, b]) whenever either a = −∞ or
b = ∞. However, as we shall see, with an additional constraint on the variance
σ 2 < ∞ of the distributions, it is possible to find a supremal distribution even
when b = ∞. More specifically, the stop-loss function can be maximised, but the
corresponding class of distributions is not closed and maximising distribution will
not have a finite variance. We first state the following results which can be found
in [12, 22, 23].
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TABLE 1
Characterisation of the maxima of (10)

EQ∗[(W − t)+] Atoms of Q∗ Range of t

1
2 (μ − t + σμ(t)) t − σμ(t), t + σμ(t) t ≤ c, σμ(t) ≤ t − a

(μ − a)
(μ−t)(μ−a)+σ 2

(μ−a)2+σ 2 a,μ + σ 2

μ−a t ≤ c, σμ(t) ≥ t − a

1
2 (μ − t + σμ(t)) t − σμ(t), t + σμ(t) t ≥ c, σμ(t) ≤ b − t

(b−t)σ 2

(μ−b)2+σ 2 μ − σ 2

b−μ
,b t ≥ c, σμ(t) ≥ b − t

THEOREM 41. Let a, b,μ ∈ R such that a ≤ μ ≤ b and let σ 2 ∈ [0, (μ −
a)(b − μ)]. Define P(μ,σ 2, [a, b]) ⊂ P(μ, [a, b]) be the set of probability dis-
tributions Q such that EQ[W ] = μ, varQ(W) = σ 2 and Q([a, b]) = 1. Denote
σ 2

μ(t) := σ 2 + (μ − t)2 and c := (a + b)/2. Then the maximisation problem

Q∗ := arg max
Q∈P(μ,σ 2,[a,b])

EQ

[
(W − t)+

]
,(10)

has diatomic solutions Q∗ for different values of t , which are given in Table 1.

The following result is a restatement of [35], Theorem 1.5.10(b), and it gives us
a way to extend Theorem 41 to unbounded supports.

THEOREM 42. Suppose φ :R →R is nonincreasing and convex, and satisfies
limt→∞ φ(t) = 0 and limt→−∞ φ(t) = μ ∈ R. Then there exists a random vari-
able X with E[X] = μ such that φ(t) = E[(X − t)+], and the c.d.f. of X can be
written as FX(t) = 1 + φ′(t), where φ′ stands for the right derivative of φ.

EXAMPLE 43. In our case, we are interested in distributions on the positive
real line and with unit mean, for which we notice that

φ(t) := lim
b→∞ sup

P(1,σ 2,[0,b])
E

(
(W − t)+

)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − t) + σ 2

1 + σ 2 , 0 ≤ t ≤ σ 2 + 1

2
,

1

2

(√
σ 2 + (1 − t)2 + 1 − t

)
, t ≥ σ 2 + 1

2
.

It is straightforward to check that φ satisfies the conditions in Theorem 42, so the
“supremal” distribution Q∗

σ 2 on P(1, σ 2, [0,∞)) has the following cumulative



2690 C. ANDRIEU AND M. VIHOLA

distribution function:

Q∗
σ 2

([0, t]) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

σ 2

1 + σ 2 , 0 ≤ t <
σ 2 + 1

2
,

1

2
+ 1

2

t − 1√
σ 2 + (1 − t)2

, t ≥ σ 2 + 1

2
.

Note that Q∗
σ 2 does not belong to P(1, σ 2, [0,∞)) because it has infinite variance,

but the expectation is one, which can be verified by noting that φ(0) = 1.

7. Discussion and perspectives. In this paper, we have shown that the convex
(partial) order of distributions is a natural and useful tool in order to compare vari-
ous performance measures of competing implementations of exact approximations
of the Metropolis–Hastings algorithms. As examples of applications of our theory,
we have shown that it is possible to identify extremal behaviours of such algo-
rithms under various distributional constraints. More importantly, from a practical
point of view, we have shown that averaging of independent estimators improves
performance monotonically. Even though averaging may not always be useful in
the context of sequential implementations, it turns out to be particularly relevant
when parallel architectures are available (e.g., [16]). Prompted by our theory and
other recently established results, we have also proposed to use stratification in
ABC MCMC and beyond, which has the advantage to provide better performance
at no additional computational cost.

There are many other results from the stochastic ordering literature relevant to
the present context we have not yet investigated. For example, introducing negative
dependence when averaging two weights could further improve performance. This
is a direct application of the result on positive and negative quadrant dependence
of [13], Lemma 2. Other dependence orders could be exploited, such as the super-
modular order [35] which can be used to characterise the (positive) dependence
order of the components of random vectors of arbitrary length. In this scenario, the
supermodular order(

W
(1)
1 ,W

(1)
2 , . . . ,W

(1)
N

) ≤sm
(
W

(2)
1 ,W

(2)
2 , . . . ,W

(2)
N

)
,

implies the convex order
∑N

i=1 W
(1)
i ≤cx

∑N
i=1 W

(2)
i ; see, for example, the results

in [41], Section 9.A.
We would like to point out here another promising and useful avenue of research

related to the discussion of [1] by Lee and Holmes to which our current theory does
not seem to apply directly. First, we notice that pseudo-marginal algorithms can be
extended to the situation where we can define a joint distribution Qxy(dw × du)

with marginals Qx(dw) and Qy(du) and which satisfies the following symmetry
condition for any x, y ∈ X and A,B ∈ B(R+), Qxy(A × B) = Qyx(B × A). The
proposal distribution used in this algorithm is the corresponding conditional dis-
tribution Qxy(du|w), which now depends on x, y and w, and the acceptance ratio
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remains as in (2). Standard pseudo-marginal algorithms correspond to the choice
Qxy(dw × du) = Qx(dw)Qy(du). This formalism allows one to disentangle the
dependence structure from the variability of the marginal distributions. One can
easily establish that this results in a MH kernel with π̃ as invariant distribution.

Intuitively, inducing positive dependence should reduce the variability of the
acceptance probability and, therefore, lead to better performance—this is the mo-
tivation behind the work of Lee and Holmes. We note, however, that this is
likely to reduce “mixing” on the noise component w. An order which seems
suitable to rank such algorithms is the concordance order, also known as the
correlation order; see [13], which coincides with the upper orthant, concor-
dance and supermodular order in the bivariate scenario [35]. Using, for simplic-
ity, our earlier notation for the present scenario, one can show that if for some
x, y ∈ X (W

(2)
xy ,U

(2)
xy ) ≤c (W

(1)
xy ,U

(1)
xy ) then αxy(P̃

(2)) ≤ αxy(P̃
(1)) and, therefore,

E
P̃ (1) (g) ≥ E

P̃ (2) (g) for any g ∈ L2(X, π). However, we do not know whether or
not this implies var(f, P̃ (1)) ≤ var(f, P̃ (2)) for f ∈ L2(X, π).

APPENDIX A: PROOF OF LEMMA 16

It is easy to see that also A−1 is self-adjoint, and for any g ∈ H,

0 ≤ 〈
A−1f − g,A

(
A−1f − g

)〉 = 〈
f,A−1f

〉 − 2〈f,g〉 + 〈g,Ag〉.
This implies (3) with inequality “≥”. We conclude by taking g = A−1f .

APPENDIX B: PERTURBED METROPOLIS–HASTINGS ALGORITHMS

Assume π , q and r are as defined in Section 1, and assume ◦
πx1(dx2) are

probability distributions on (X2,X2) for all x1 ∈ X, and denote with a slight
abuse of notation the distribution ◦

π(dx1 × dx2) = π(dx1)
◦
πx1(dx2) on (

◦
X,

◦
X ) =

(X × X2,X ×X2). Assume that we are interested in approximating a Metropolis–
Hastings algorithm targeting ◦

π(dx1 ×dx2) using a family of proposal distributions
of the following form, with x := (x1, x2) ∈ ◦

X:
◦
q(x,dy1 × dy2) := q(x1,dy1)

◦
πy1(dy2).

This covers, for example, the algorithm used in [27]. Note that this algorithm is
also of the type discussed in Appendix C.

LEMMA 44. Let {Qxy1(d� ×dy2)}(x,y1)∈
◦
X×X

be a family of probability distri-

butions on ((0,∞) × X2,B((0,∞)) ×X2). Consider the Markov transition kernel◦
P on (

◦
X,

◦
X ) defined through

◦
P(x;dy1 × dy2)

:= q(x1,dy1)

∫
Qxy1(d� × dy2)min

{
1, r(x1, y1)�

} + δx(dy)
◦
ρ(x),
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where the probability of rejection
◦
ρ(x) ∈ [0,1] is such that

◦
P(x, ·) defines a prob-

ability distribution on (
◦
X,

◦
X ) for all x ∈ ◦

X. Assume further that for any x1, y1 ∈ X
and any A,B ∈ X2 and C ∈ B((0,∞)),∫

◦
πx1(dx2)Qxy1(d� × dy2)� I

{
x2 ∈ A,y2 ∈ B,

1

�
∈ C

}

=
∫

◦
πy1(dy2)Qyx1(d� × dx2)I{x2 ∈ A,y2 ∈ B,� ∈ C}.

Then
◦

P is reversible with respect to
◦
π .

PROOF. Let A,B ∈ ◦
X , then we may write, restricting the integrals below to

the set {r(x1, y1) > 0} (see [46]),∫
◦
π(dx)q(x1,dy1)

∫
Qxy1(d� × dy2)min

{
1, r(x1, y1)�

}
I{x ∈ A,y ∈ B}

=
∫

π(dx1)q(x1,dy1)r(x1, y1)

∫
◦
πx1(dx2)Qxy1(d� × dy2)�

× min
{
r(y1, x1)

�
,1

}
I{x2 ∈ Ax1, y2 ∈ By1}

=
∫

π(dy1)q(y1,dx1)

∫
◦
πy1(dy2)Qyx1(d� × dx2)min

{
1, r(y1, x1)�

}
× I{x2 ∈ Ax1, y2 ∈ By1},

where Ax1 := {x2 ∈ X2 : (x1, x2) ∈ A} and By1 := {y2 ∈ X2 : (y1, y2) ∈ B}. We can
now conclude. �

APPENDIX C: SPECTRAL GAPS OF AUGMENTED KERNELS

Recall that the left spectral gap of a μ-reversible Markov kernel � can be de-
fined as

GapL(�) := inf‖f ‖μ=1

〈
f, (I + �ν)f

〉
μ,

and the absolute spectral gap is defined as Gap(�) := min{GapL(�),GapR(�)} ∈
[0,1].

LEMMA 45. Assume � is a Markov kernel on a measurable space (E,F) and
reversible with respect to a probability measure μ. Suppose � has the form

�(x,dy) = p(x,dy) + δx(dy)r(x),
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where p(x,dy) ≥ 0 is a sub-probability kernel and r(x) ∈ [0,1] for all x ∈ E.
Assume ν(x,A) is a probability kernel from (E,F) to another measurable space
(S,S), and define the Markov kernel

�ν(x,w;dy × du) := p(x,dy)ν(y,du) + δx,w(dy × du)r(x).

Then, denoting r∗ := μ − ess supx r(x) and r∗ := μ − ess infx r(x):

(a) �ν is reversible with respect to μν(dx × dw) = μ(dx)ν(x,dw),
(b) E�(f ) = E�ν (f ) for all f ∈ L2(E,μ), with f (x,w) = f (x),
(c) min{GapR(�),1 − r∗} ≤ GapR(�ν) ≤ GapR(�),
(d) min{GapL(�),1 + r∗} ≤ GapL(�ν) ≤ GapL(�).

PROOF. The reversibility (a) follows from (cf. [46])

μν(dx × dw)p(x,dy)ν(y,du) = μν(dy × du)p(y,dx)ν(x,dw).

Consider then a function f ∈ L2(E × S,μν). We write any such f as f = f̄ + f0
where f0(x,w) = f0(x) := ∫

ν(x,dw)f (x,w) and f̄ = f − f0. It is straightfor-
ward to check that �νf0(x,w) = �f0(x) and that �νf = �f0 + rf̄ , implying
�νf̄ (x,w) = rf̄ . These allow us to write

〈f,�νf 〉μν = 〈f0,�νf0〉μν + 〈f̄,�νf̄ 〉μν + 2〈f0,�νf̄ 〉μν

(11)
= 〈f0,�f0〉μ + 〈f̄, rf̄ 〉μν .

For f constant in the second variable, we have f0 = f and f̄ = 0 and ‖f0‖μ =
‖f ‖μν , implying (b).

For the spectral gap bounds, assume ‖f ‖μν = 1 and note that 1 = ‖f ‖2
μν

=
‖f0‖2

μν
+ ‖f̄ ‖2

μν
. This, with (11), allows us to deduce

GapR(�ν) = inf‖f ‖μν =1

〈
f, (I − �ν)f

〉
μν

= inf‖f ‖μν =1
1 − 〈f,�νf 〉μν

= inf‖f ‖μν =1

〈
f0, (I − �)f0

〉
μ + 〈

f̄, (1 − r)f̄
〉
μν

,

where the inf and sup are taken over functions f ∈ L2
0(E × S,μν). The right-

hand side inequality in (c) follows by restricting to functions constant in the sec-
ond variable. For the first inequality, note that 〈f̄, (1 − r)f̄ 〉μν ≥ (1 − r∗)‖f̄ ‖2

μν

and 〈f0, (I − �)f0〉μ ≥ Gap(�)‖f0‖2
μ. The claim follows because ‖f0‖2

μν
+

‖f̄ ‖2
μν

= 1.
Similarly, for the left gap (d),

GapL(�ν) = inf‖f ‖μν =1

〈
f, (I + �ν)f

〉
μν

= inf‖f ‖μν =1

〈
f0, (I + �)f0

〉
μ + 〈

f̄, (1 + r)f̄
〉
μν

,

and 〈f̄, (1 + r)f̄ 〉μν ≥ (1 + r∗)‖f̄ ‖2
μν

. �
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REMARK 46. In the following, special scenarios some of the conclusions of
Lemma 45 take a simpler form:

(a) If μ is not concentrated on points, that is, μ({x}) = 0 for all x ∈ E, then
GapR(�) ≤ 1 − r∗ and, therefore, GapR(�ν) = GapR(�).

(b) If � is positive, that is, 〈g,�g〉μ ≥ 0 for all g ∈ L2(E,μ), then �ν is posi-
tive, and consequently Gap(�) = GapR(�) and Gap(�ν) = GapR(�ν).

Item (a) is a restatement of [4], Theorem 54, and (b) follows because positivity of
� is equivalent to GapL(�) ≥ 1, implying GapL(�ν) ≥ 1.

Acknowledgement. The authors would like to thank Lasse Leskelä for illu-
minating conversations about convex orders and peacock processes.
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