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DENSE GRAPH LIMITS UNDER RESPONDENT-DRIVEN
SAMPLING
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Indian Statistical Institute and National University of Singapore

We consider certain respondent-driven sampling procedures on dense
graphs. We show that if the sequence of the vertex-sets is ergodic then the
limiting graph can be expressed in terms of the original dense graph via a
transformation related to the invariant measure of the ergodic sequence. For
specific sampling procedures, we describe the transformation explicitly.

1. Introduction. Respondent-driven sampling (RDS) of social networks has
received a lot of attention since [9] and [10], and many studies have implemented
the procedure in order to obtain estimates about properties of so-called “hidden” or
“hard-to-reach” populations. The basic idea is to start with a convenience sample
of participants, to ask the participants for referrals among their peers and then to
iterate this process. It is intuitively clear that one cannot hope to obtain an unbiased
sample in this manner as individuals with higher connectivity are more likely to
appear in the sample than individuals with lower connectivity. In order to avoid
this bias, one of the key assumptions of [9] is that each individual in the network
has the same degree. Subsequent refinements of the procedure have been proposed
to overcome such restrictions; see [22].

Respondent-driven sampling has also received quite some criticism. Besides
inadequate control of biases for finite samples, another major issue can be the
underestimation of sample variance; see, for example, [7] and [8].

The main purpose of this article is to take a first (and very preliminary) step
in establishing a rigorous theory of RDS on dense graphs in order to understand
the graphs produced under various sampling procedures. Our main contribution is
that the limit of a dense graph sequence obtained through a specific respondent-
driven sampling procedure, where the sequence of the vertex-sets is ergodic, can
be expressed in terms of the original graph limit and a transformation related to
the invariant measure of the ergodic sequence. The transformation, in essence,
confirms the bias toward nodes with larger degrees.

In practice, researchers typically are interested in estimating certain quantities
at population or subpopulation level, such as prevalence of STIs, sexual contact
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frequencies, condom use, etc. Hence, for each node in the network, additional data
is collected, and the main question of RDS becomes how to obtain representa-
tive estimates of those quantities from the RDS sample. In this article, we will
only be interested in the network itself and the question how specific RDS proce-
dures bias the network. However, if, for example, a quantity of interest (such as
STI prevalence) correlates with the degree that a node has in that network, then
it is obviously important to understand the bias in the network itself in order to
understand the resulting bias of that quantity of interest.

It is also important to note that the sampling procedure analysed in this article
is not representative for what is mostly being done in practice. In particular, we
assume that after the referral chain has been sampled (or rather “revealed”), all
yet unknown connections between the subjects in the sample are also revealed. In
other words, if Subject A refers to Subject B and Subject B refers to Subject C,
we assume that, in a second step, the relationship between Subjects A and C be
revealed, also. In practice that last relationship typically remains unknown, unless
either A refers to C or C refers to A.

Our proof is based on subgraph counts convergence and ergodicity of the sam-
pling procedure. Subgraph counts can be written as incomplete U -statistics or gen-
eralised U -statistics, but there does not seem to exist a well-established general
theory that would cover ergodic sequences in the generality needed in this article.
However, noticing that, in our model, the conditional expectation of a subgraph
count, conditioned on the vertex set, is a complete U -statistic, we can resort to
the well-established theory of U -statistics, in particular for ergodic sequences. We
modify the arguments of [1] in order to deal with nonstationary sequences, which
seems a more realistic assumption in the context of RDS.

The rest of the paper is organised in the following manner. We conclude this
section with a focussed review of the dense graph literature. We state the model
and main results in Section 2 and prove them in Section 3. We finally discuss some
applications in Section 4.

1.1. A brief introduction to dense graphs. Dense graph theory has been intro-
duced by [17]. Diaconis and Janson [6] made connections with earlier work of [2].
Let us briefly summarise those parts of dense graph theory which are needed in
this paper; see the monograph [16] and [4, 5] for an in-depth discussion, or [3] for
another introduction with extensions to sparse graphs.

Let (Gn)n≥1 be a sequence of graphs, where for simplicity we assume that the
vertex set of graph Gn is {1, . . . , n}. Assume further that the number of edges
E(Gn) in Gn is of order n2; that is, lim infn→∞(E(Gn)n

−2) > 0. We call (Gn)n≥1
a dense graph sequence.

Subgraph distance. Let Kn be the complete graph on {1, . . . , n}. For any (small)
graph F on k vertices, let XF (G) be the number of copies of F in a (large) graph
G on n vertices. Define the normalised subgraph count

t (F,G) = | inj(F,G)|
(n)k

= XF (G)

XF (Kn)
,
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where inj(F,G) denotes the set of injective graph homomorphisms of F into G,
that is, the functions that map the vertices of F into the vertices of G injectively
such that connected vertices in F remain connected in G. Here, as usual, (n)k =
n(n − 1) · · · (n − k + 1). When |F | > |G|, we define t (F,G) = 0.

Note that 0 ≤ t (F,G) ≤ 1. Let F denote the class of isomorphism classes on
finite graphs and let (Fi)i≥1 be a particular enumeration of F , where each Fi is the
representative of an isomorphism class. We can define a distance function between
graphs by

dsub
(
G,G′) = ∑

i≥1

2−i
∣∣t (Fi,G) − t

(
Fi,G

′)∣∣.
A key feature of dsub is that there is a natural completion of (F, dsub) by standard
kernels. We call any function κ : [0,1]2 → [0,1] that is measurable and symmetric
a standard kernel. For F a graph on k vertices, we can extend the definition of
t (F,G) to kernels by means of

t (F, κ) =
∫
[0,1]k

∏
{i,j}∈E(F)

κ(xi, xj ) dx1 · · ·dxk,

where E(F) is the set of edges in F . One of the key results in dense graph theory
is the following theorem.

THEOREM 1.1. Let (Gn)n≥1 be a dense graph sequence which is Cauchy with
respect to dsub. Then there exists a standard kernel κ such that

dsub(Gn, κ) → 0(1.1)

as n → ∞.

For a proof of the above (see [17]), which uses Szemerédi partitions and the
Martingale convergence theorem, or [6], who show that it can be proved using
results from [12] and [2]. Note that κ above is in general not unique, but this will
not be of importance for what follows; we refer to [4, 5] for a discussion of this
and related questions. We refer to [16], Chapter 11, for a detailed discussion of
convergence of dense graph sequences.

2. Model and main results. A convenient way of “creating” finite (random)
graphs on n vertices from a standard kernel κ is the following model, which we
will denote by G(n,κ). Firstly, let U1, . . . ,Un be i.i.d. with uniform distribution
on [0,1]. Second, for each two vertices i and j , connect them with probability
κ(Ui,Uj ), independently of all the other edges. It is not difficult to prove that

dsub
(
G(n,κ), κ

) → 0(2.1)

almost surely as n → ∞. This is, in some sense, the basic law of large numbers
in dense graph theory. In this article, instead of sampling the labels i.i.d. and uni-
formly from [0,1], we will allow the labels to be sampled in a more general way.
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The random graph G(x, κ). Let x = (x1, . . . , xn) ∈ [0,1]n be fixed. Define the
random graph G(x, κ) by connecting vertices i and j with probability κ(xi, xj )

independently of all other vertices. Clearly, G((U1, . . . ,Un), κ) is equivalent to
G(n,κ). We will show a version of (2.1) for G(X,κ), where—in essence—the
labels X are allowed to come from a general ergodic sequence.

To this end, let κ be a standard kernel and let g : [0,1] → [0,1] be a Lebesgue-
measurable function. Define the g-transformed kernel

κg(x, y) = κ
(
g(x), g(y)

)
.

THEOREM 2.1. Let X(n) = (Xn,1, . . . ,Xn,i, . . . ,Xn,n), n ≥ 1, be a triangular
array of random variables taking values in [0,1]. Assume that there is a probability
measure π on [0,1] such that the following two conditions hold:

(i) for all bounded and measurable functions f , we have

lim
n→∞

1

n

n∑
i=1

f (Xn,i) =
∫ 1

0
f (x) dπ(x)(2.2)

almost surely;
(ii) κ(·, ·) is continuous (π × π)-almost everywhere.

Then

dsub
(
G

(
X(n), κ

)
, κτ−1

) → 0(2.3)

almost surely, where τ(x) = π([0, x]) is the distribution function of π and

τ−1(v) = inf
{
u ∈ [0,1] : τ(u) ≥ v

}
its generalised inverse.

2.1. Respondent driven sampling. The way we think about respondent-driven
sampling in this article is by means of the following two-step procedure. First,
sample a set of subjects X(n) = (Xn,1, . . . ,Xn,n), where new subjects are added by
referrals; each subject i obtains a unique label Xn,i ∈ [0,1] (note that the Xn,i are
just the labels of the nodes, not any additional observation related to that node).
If i referred to j , or j referred to i, an edge between the two nodes is added;
denote the resulting graph by Hn. Second, the remaining relationships are then
revealed by connecting i and j with probability κ(Xn,i,Xn,j ), unless they are
already connected in Hn. We define the model precisely below.

The random graph G(x,Hn, κ). Let x = (x1, . . . , xn) ∈ [0,1]n be fixed and
let Hn be a given graph on the vertices {1, . . . , n}. Define the random graph
G(x,Hn, κ) on the same set of vertices as follows:

• if there is an edge between i and j in Hn, then connect vertices i and j in
G(x,Hn, κ);
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• if there is no edge between i and j in Hn, then connect i and j in G(x,Hn, κ)

with probability κ(xi, xj ) independently of all other vertices.

COROLLARY 2.2. Let X(n) = (Xn,i)1≤i≤n, κ and τ be as in Theorem 2.1,
satisfying conditions (i) and (ii). If the number of edges in Hn is o(n2), then

dsub
(
G

(
X(n), κ,Hn

)
, κτ−1

) → 0(2.4)

almost surely.

The above corollary is an easy consequence of Theorem 2.1 and the counting
lemma [16], Lemma 10.22. For completeness sake, we present a proof in the next
section.

2.2. Remarks. Before concluding this section, we discuss some interesting as-
pects around Theorem 2.1.

Reference measure space. Using [0,1] and the Lebesgue measure as reference
is only a matter of convenience and in line with the prevailing literature. However,
in order to shed some light on the main result, let us state Theorem 2.1 in greater
generality; we refer to [16], Chapter 13, for a more in-depth discussion of this
setting.

Let (X ,A,μ) be a probability space, and let κ : X ×X → [0,1] be a symmetric
and (A × A)-measurable function. For any graph F on k vertices, where k ≥ 1,
we can easily generalise the definition of the subgraph density to

tμ(F, κ) =
∫
X k

∏
{i,j}∈E(F)

κ(xi, xj ) dμ(x1) · · · dμ(xk).

Moreover, for U1, . . . ,Un being i.i.d. random elements taking values in X with
common distribution μ, the random graph model G((U1, . . . ,Un), κ) can be de-
fined in a straightforward manner, and one can prove that

dμ,sub
(
G

(
(U1, . . . ,Un), κ

)
, κ

) → 0, n → ∞.

It is important to emphasise that tμ and, as a result, the metric dμ,sub depend on
the reference measure μ.

Now, assume (Xn,i)1≤i≤n is a triangular array of X -valued random elements
such that

lim
n→∞

1

n

n∑
i=1

f (Xn,i) =
∫
X

f (x) dπ(x)

for some probability measure π on (X ,A). Now, assume X is a Polish space. If
there is a function g :X → X such that

g(U1) ∼ π,
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and if κ is continuous (π × π)-almost everywhere, then

dμ,sub
(
G

(
X(n), κ

)
, κg

) → 0, n → ∞.(2.5)

In the case where (�,A,μ) is the interval [0,1] and μ the uniform distribution,
g can be identified as the generalised inverse of the distribution function of π , but
note that, for general spaces X , it is difficult to find such g explicitly.

It is illuminating to consider the following alternative way to state (2.5). From
the proof of Theorem 2.1 [cf. (3.6)], it becomes clear that, by changing the refer-
ence measure from μ to π , (2.5) can also be written as

dπ,sub
(
G

(
X(n), κ

)
, κ

) → 0, n → ∞.(2.6)

Although (2.5) and (2.6) are equivalent, the former statement is more important
in the context of RDS, since we are interested in describing the distortion of the
network through biased sampling.

Necessity of condition (ii). Condition (ii) in Theorem 2.1 can be replaced by
other conditions, but that it cannot be dispensed with entirely can be seen from [1],
Example 4.1. We state the example below with notation as applicable to our case.

Consider the interval (0,1) and define the mapping φ : (0,1) → (0,1) as

φ(x) = 2x (mod 1).

Let X1 ∈ (0,1) fixed, and let Xn = φn(X1). It follows from standard ergodic theory
that X1,X2, . . . is ergodic with the Lebesgue measure as its invariant measure, that
is,

1

n

n∑
i=1

f (Xi) →
∫ 1

0
f (x) dx.

Define the set

L = {
(x1, x2) ∈ (0,1)2 : x1 ∈ (0,1) and x2 = φn(x1) for some n ≥ 1

}
.

So, (2.2) is satisfied with π being the Lebesgue measure; hence τ(x) = x and
τ−1(x) = x. Define the standard kernel κ(x, y) = I[(x, y) ∈ L or (y, x) ∈ L].
Now, on the one hand we have∑n

i=1 κ(Xi,Xj )

n(n − 1)
= 1 for all n ≥ 1.

On the other hand, ∫
κ(x, y) dx dy = 0

since L is the countable union of null sets with respect to the two-dimensional
Lebesgue measure. Thus,

lim
n→∞ t

(
F,G

(
(X1, . . . ,Xn), κ

)) = 1 	= 0 = t (F, κ).

Since L is dense in [0,1], the standard kernel κ is nowhere continuous and does
therefore not satisfy condition (ii).
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3. Proof of Theorem 2.1. We will need a law of large numbers of a particular
U -statistic for the proof of Theorem 2.1. This essentially allows us to go from a
simple ergodic theorem to a higher order ergodic theorem. Toward that we define

μF (x) = 1

(n)k

∑
(i1,...,ik)

TF (xi1, . . . , xik )(3.1)

with

TF (z1, . . . , zk) = ∏
{i,j}∈F

κ(zi, zj ),(3.2)

for x = (x1, . . . , xn) ∈ [0,1]n and zi ∈ [0,1],1 ≤ i ≤ k. Here, the summation∑
(i1,...,ik)

ranges over all vectors (i1, . . . , ik) with mutually different coordinates.
The following result was proved by [1] for ergodic stationary sequences, but we

note that the key assumption is (2.2), so that their proof generalises to nonstation-
ary triangular arrays, which is more appropriate for the applications we have in
mind.

LEMMA 3.1. Let X(n) = (Xn,i)1≤i≤n be a triangular array of random vari-
ables taking values in [0,1] and satisfying (2.2) almost surely. Then, for any fixed
graph F of size k,

lim
n→∞μF

(
X(n)) → ETF (V1, . . . , Vk)

almost surely, where V1, . . . , Vk are i.i.d. random variables with distribution π .

PROOF. Our proof is a close imitation of the proof of [1], Theorem U. Denote
by Ck the set of all functions from [0,1]k to [0,1], continuous π(k)-almost every-
where, where π(k) = ⊗k

i=1 π . For x = (x1, . . . , xn) ∈ [0,1]n and h ∈ Ck , define

νh(x) = 1

nk

∑
1≤i1,...,ik≤n

h(xi1, . . . , xik ).

Let

Pk =
{
h ∈ Ck : ∃h1, . . . , hk ∈ C1 such that h(x) =

k∏
i=1

hi(xi)

}
.

For any h ∈ Pk , we have

νh

(
X(n)) =

k∏
i=1

(
1

n

n∑
j=1

hi(Xn,j )

)
.

So, by (2.2),

νh

(
X(n)) →

k∏
i=1

∫
[0,1]

hi(xi) dπ(xi) = Eh
(
V (k))
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almost surely as n → ∞, where we set V (k) = (V1, . . . , Vk) to shorten formulas. It
is easily seen that the above holds whenever h ∈ span(Pk).

Fix ε > 0 and let h ∈ Ck . As h is continuous π(k)-almost everywhere and π(k)-
integrable, there exist s1, s2 ∈ span(Pk) such that

(a) |h − s1| ≤ s2 π(k)-almost everywhere, (b)
∫

s2 dπ(k) ≤ ε.

As s1, s2 ∈ span(Pk), there exists (random) N such that, for n ≥ N ,∣∣νs1

(
X(n)) −Es1

(
V (k))∣∣ ≤ ε

and

νs2

(
X(n)) ≤ Es2

(
V (k)) + ε ≤ 2ε.

Hence, for n ≥ N ,∣∣νh

(
X(n)) −Eh

(
V (k))∣∣

≤ ∣∣νh

(
X(n)) − νs1

(
X(n))∣∣ + ∣∣νs1

(
X(n)) −Es1

(
V (k))∣∣

+ ∣∣Es1
(
V (k)) −Eh

(
V (k))∣∣

≤ ν|h−s1|
(
X(n)) + ∣∣νs1

(
X(n)) −Es1

(
V (k))∣∣ +Es2

(
V (k))

≤ νs2

(
X(n)) + ∣∣νs1

(
X(n)) −Es1

(
V (k))∣∣ +Es2

(
V (k))

≤ 4ε.

Thus, for all h ∈ Ck ,

lim
n→∞νh

(
X(n)) → Eh

(
V (k))(3.3)

almost surely. Let TF be as in (3.2). As TF is bounded by 1, we see that there exists
c1 > 0 such that∣∣μF

(
X(n)) − νTF

(
X(n))∣∣

=
∣∣∣∣ 1

(n)k

∑
(i1,...,ik)

TF (Xi1, . . . ,Xik ) − 1

nk

∑
1≤i1,...,ik≤n

TF (Xi1, . . . ,Xik )

∣∣∣∣
≤ c1

n
.

As TF ∈ Ck , the result follows. �

PROOF OF THEOREM 2.1. It is enough to show that, for every graph F ,

lim
n→∞

∣∣t(F,G
(
X(n), κ

)) − t (F, κτ−1)
∣∣ = 0(3.4)
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almost surely. Using the triangle inequality,∣∣t(F,G
(
X(n), κ

)) − t (F, κτ−1)
∣∣

(3.5)
≤ ∣∣t(F,G

(
X(n), κ

)) − μF

(
X(n))∣∣ + ∣∣μF

(
X(n)) − t (F, κτ−1)

∣∣.
By definition of τ−1, Vi has the same distribution as τ−1(Ui), so that

ETF (V1, . . . , Vk) = ETF

(
τ−1(U1), . . . , τ

−1(Uk)
) = t (F, κτ−1)(3.6)

is immediate. Hence, Lemma 3.1 implies that the second term in (3.5) approaches
0 as n → ∞.

We will use the main result of [18] to show that the first term in (3.5) also
vanishes. If f is a function in N arguments such that changing the ith coordinate
will change the value of f by at most ci and if Y = (Y1, . . . , YN) are independent
random variables, then

P
[∣∣f (Y ) −Ef (Y )

∣∣ ≥ ε
] ≤ 2 exp

(
− 2ε2∑N

i=1 c2
i

)
.(3.7)

Note now that, if G is a graph with n vertices, then t (F,G) changes by at most
k(k−1)
n(n−1)

if one edge is changed. Applying McDiarmid’s concentration inequality to
t (F,G(x, κ)) [with f being a function of the N = (n

2

)
random edges], we therefore

have that, for every fixed x ∈ [0,1]n,

P
[∣∣t(F,G(x, κ)

) − μF (x)
∣∣ > ε

] ≤ 2 exp
(
− 2ε2(n

2

)
(k(k − 1)/(n(n − 1)))2

)
.(3.8)

Using Borel–Cantelli, we can conclude that∣∣t(F,G
(
X(n), κ

)) − μF

(
X(n)) → 0

∣∣(3.9)

almost surely as n → ∞. This proves the claim. �

PROOF OF COROLLARY 2.2. We can essentially imitate the proof of Theo-
rem 2.1 to obtain this result; the one difference being that we have to control∣∣t(F,G

(
X(n),Hn, κ

)) − μF

(
X(n))∣∣.

We need to be bit careful at (3.8) because of the dependencies introduced by Hn.
Suppose E(Hn) = mn ≡ m. Applying McDiarmid’s concentration inequality to
t (F,G(x,Hn, κ)) [with f being a function of the N = (n

2

)−m random edges], we
therefore have, with G = G(x,Hn, κ),

P
[∣∣t (F,G) − μF (x)

∣∣ > ε
]

≤ P
[∣∣t (F,G) −Et (F,G)

∣∣ > ε − ∣∣μF (x) −Et (F,G)
∣∣]

≤ 2 exp
(
− 2(ε − m(k(k − 1)/(n(n − 1))))2

(
(n

2

) − m)(k(k − 1)/(n(n − 1)))2

)
.

As m = o(n2), it follows from Borel–Cantelli that∣∣t(F,G
(
X(n),Hn, κ

)) − μF

(
X(n))∣∣ → 0. �
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4. Applications. In this section, we will discuss two different sampling
schemes, namely a Markov chain model, where each respondent gives exactly one
referral, and a Poisson branching process model, where each respondent gives a
Poisson number of referrals (and thus, allowing for no referrals). For both pro-
cedures, we essentially need to establish (2.2). Once this is done, Theorem 2.1
automatically yields the corresponding convergence provided κ is continuous. We
compare the two procedures for a concrete parametrised standard kernel under
different parameter values.

In order to avoid that the standard kernel decomposes into two or more discon-
nected parts, it is natural to impose an irreducibility condition. We follow [15].
Denote by Vol(A) the Lebesgue measure of A ⊂ [0,1] and let Ac = [0,1] \ A. We
say that a standard kernel is connected, if 0 < Vol(A) < 1 implies∫

A

∫
Ac

κ(x, y) dx dy > 0.(4.1)

Loosely speaking, this condition guarantees that there can be links from any set A

into its complement, so that no area can remain disconnected from the rest of the
graph [at least as n → ∞; for a finite realisation of G(n,κ), it may of course hap-
pen that the graph consists of disconnected components]. Note that (4.1) implies
in particular that

∫
A

∫ 1

0
κ(x, y) dy > 0

for all A with Vol(A) > 0. This only guarantees that almost all x have positive
degree. In order to avoid technicalities, we shall assume that all x have positive
degree, that is,

∫ 1

0
κ(x, y) dy > 0 for all x ∈ [0,1].(4.2)

If (4.2) is satisfied, we say that a standard kernel is positive.

4.1. One-referral Markov chain sampling. The first model is a procedure
where each respondent is asked (or rather “forced”) to give exactly one referral,
resulting in one single chain of referrals. We assume that these referrals happen in
a Markovian way, and a respondent of type x chooses the referral proportional to
κ(x, y) dy. More rigorously, define the Markov kernel

Kκ(x, dy) := κ(x, y) dy∫ 1
0 κ(x, v) dv

.(4.3)

Under (4.2), the kernel is well defined.
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PROPOSITION 4.1. Let κ be a positive and connected standard kernel, and
let X = (X1,X2, . . .) be a Markov chain with Markov kernel Kκ . Then X has a
unique invariant probability measure π given by

π(dx)

dx
=

∫ 1
0 κ(x, v) dv∫ 1

0
∫ 1

0 κ(u, v) dudv
.(4.4)

Furthermore, for every measurable and bounded function f and for almost every
x ∈ [0,1] we have

lim
n→∞

1

n

n∑
i=1

f (Xi) =
∫ 1

0
f (x)π(dx)(4.5)

P[·|X1 = x]-almost surely.

PROOF. Let us first prove that Kκ does not have any invariant measures with
atoms. Assume that ρ is an invariant measure. Write ρ = ρ∗ + ρ′, where ρ∗ is
the atomic and ρ′ is the nonatomic parts, and assume that ρ∗ is not the zero mea-
sure. Let A∗ be the support of ρ∗; note that A∗ is countable and that ρ(A∗) > 0.
However, K(x,A∗) = 0 for all x ∈ [0,1] due to (4.3) and, therefore,

ρ
(
A∗) =

∫
Kκ

(
x,A∗)

dρ(x) = 0,

which is a contradiction.
We now use Yosida’s ergodic decomposition to prove that π is the only invariant

probability measure with respect to Kk and that (4.5) holds; see [23] and [11].
Recall that an invariant set is a set A such that Kκ(x,A) = 1 for all x ∈ A, that

is, ∫
A

κ(x, y) dy =
∫ 1

0
κ(x, y) dy for all x ∈ A.(4.6)

Hence, we must have
∫
Ac κ(x, y) dy = 0 for all x ∈ A. This implies that∫

A

∫
Ac κ(x, y) dy dx = 0, which by symmetry of κ and (4.1), implies that Vol(A) =

0 or Vol(A) = 1. The case Vol(A) = 0 can be excluded since the right-hand side of
(4.6) is positive by (4.2). By the definition of π , it follows that, for every such in-
variant set A, we have π(A) = 1. Therefore, π is an ergodic measure in the Yosida
sense. Now, Lemma 4.2 of [11] implies that π is unique on the invariant sets up to
π -null sets, but since π cannot have any atoms, π is unique on [0,1]; (4.5) now
follows from Theorem 6.1(b) of [11]. �

It is worthwhile mentioning that (4.5) holds even if the Markov chain exhibits
certain periodic behaviour. For example, if κ is such that the resulting graph is bi-
partite, the resulting Markov chain does not converge to its stationary distribution,
but it is still ergodic.
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4.2. A Poisson branching process model. Let us consider a continuous-time,
multi-type Galton–Watson branching process with type space [0,1] as follows.
A particle of type x ∈ [0,1] is assumed to have a standard exponential lifetime
and during that time it will give birth to new particles of type y at rate λκ(x, y) dy

for some λ > 0 independently of all else. Let Tt be the random point measure on
[0,1] given by all particles ever born up to and including time t . We denote by δx

the point unit measure at x ∈ [0,1] and we write Px[·] = P[·|T0 = δx]. Note that
Tt [0,1] the total number of points in Tt .

In order to push all arguments through as easily as possible, we will not only
assume that the standard kernel positive and connected, but make the (most likely
unnecessarily) strong assumption that

inf
0≤x,y≤1

κ(x, y) > 0.(4.7)

It is clear that (4.7) implies that κ is both, connected and positive.

PROPOSITION 4.2. Let λ > 0, let κ be a standard kernel satisfying (4.7), and
let Tt be the resulting branching process. Then there exists α∗ and a unique prob-
ability measure π on [0,1] satisfying

π(dx)

dx
= λ

1 + α∗
∫ 1

0
κ(x,u)π(du).(4.8)

Furthermore, if α∗ > 0, then Px[|Tt | → ∞] > 0, and, for any measurable and
bounded function f and for almost all x ∈ [0,1],

lim
t→∞

1

|Tt |
∫ 1

0
f (y)Tt (dy) =

∫ 1

0
f (y)π(dy)(4.9)

Px[·||Tt | → ∞]-almost surely.

PROOF. We follow the setup of [14]; see also [13]. Define the reproduction
kernel

μ(x, dy × dt) = e−t λκ(x, y) dy dt,

which, loosely speaking, is the expected number of offspring of type y that a par-
ticle of type x, born at time 0, produces at time t (the prefactor e−t is simply
the probability that the x-particle survives until time t). Furthermore, define the
transition kernel

μ̂α(x, dy) =
∫ ∞

0
e−αtμ(x, dy × dt) = λ

1 + α
κ(x, y) dy.

It is not difficult to see that (4.7) implies that the kernel μ̂0 is irreducible with
respect to the Lebesgue measure on [0,1] (cf. [21], Example 2.1(b), page 11).
Hence, there is a number α∗ such that the kernel μα has convergence radius 1
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(cf. [20], Proposition 2.1). The parameter α∗ is commonly called the Malthusian
parameter. Moreover, (4.7) also implies that μα is recurrent (cf. [19], Lemma 2.3).
Hence, there is a σ -finite measure π and a strictly positive function h defined on
[0,1] (cf. [14], page 42 and [21], Theorem 5.1) such that∫ 1

0
μ̂α∗(x, dy)π(dx) = π(dy)(4.10)

and ∫ 1

0
h(y)μ̂α∗(x, dy) = h(x).

Note that (4.10) is just (4.8). It is also straightforward to show that μ is positive
recurrent (cf. [14], page 43). Since

h(x) =
∫ 1

0
h(y)

λ

1 + α∗ κ(x, y) dy ≥ λ

1 + α∗ inf
x,y

κ(x, y)

∫ 1

0
h(y) dy,

it is clear that infh(x) > 0. This implies that π is finite an can be normed to a
probability measure (cf. [14], page 43) and h can be chosen so that

∫
h(x)π(dx) =

1. Finally, it is clear that μ is nonlattice and that there is ε > 0 such that

sup
x

μ
(
x, [0,1] × [0, ε]) < 1.

These conditions are summarised as μ being nonlattice and strictly Malthusian.
Note that, since κ ≤ 1, |Tt | can be dominated by a unitype branching process

where each particle has standard exponential lifetime and produces offspring at
rate λ. Therefore, for fixed t , |Tt | is uniformly integrable in the type of the starting
particle. Moreover, the usual “x logx” condition follows easily from the fact that
the dominating branching process has finite variance. Applying [14], Theorem 2,
it follows that, for almost all x and for A ⊂ [0,1],

e−α∗t Tt (A) → π(A)

α∗β
W(4.11)

Px-almost surely for some nonnegative random variable W that satisfies ExW =
h(x), and for some β (which is explicit, but not of interest here). Note that clearly
{W > 0} ⊂ {|Tt | → ∞}, but it is not immediate that the two sets are equal. In order
to make statements about (4.11) with e−α∗t replaced by 1/|Tt |, we need that

inf
x
Px[W > 0] > 0,(4.12)

which guarantees that {W > 0} = {|Tt | → ∞} by [14], Lemma 1.
In order to prove (4.12), note that there must be a set A with Vol(A) > 0 such

that pA := infx∈A Px[W > 0] > 0, for otherwise we would have Px[W > 0] = 0
for almost all x which is in contradiction to ExW = h(x) > 0 for almost all x. Let
M = infx,y κ(x, y), which by (4.7) is positive, and

EA = {1st particle has exactly one child of some type y ∈ A}.
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Now,

Px[W > 0] ≥ Px[W > 0,EA]
= Px[W > 0|EA]Px[EA]
≥ pA

∫ ∞
0

e−t λM Vol(A)te−λM Vol(A)t dt,

which is a positive lower bound independent of x. Hence, (4.12) follows.
From [14], Corollary 4, we have for almost all x that

Tt (A)

|Tt | → π(A)

Px[·||Tt | → ∞]-almost surely for any measurable A ⊂ [0,1]. Since π is finite, it
is easy to extend this to (4.9) for bounded f . �

4.3. A concrete standard kernel. In this section, we consider a particular stan-
dard kernel κ : [0,1]2 → [0,1] given as

κ(x, y) =
⎧⎨
⎩

α, if 0 ≤ x ≤ γ and 0 ≤ y ≤ γ ,
β, if γ < x ≤ 1 and γ < y ≤ 1,
δ, otherwise,

(4.13)

where 0 < α,γ, δ,β < 1.
One could think of κ as a graph between two groups of vertices. The internal

connections between a primary group A (say) are specified by α and a secondary
group B (specified) by β . The inter-connections between the groups of vertices
are specified by δ. If we sample the vertices ergodically with invariant measure π ,
then Theorem 2.1 specifies that our limit graph will be governed by

κτ−1(x, y) =
⎧⎨
⎩

α, if 0 ≤ x ≤ τ(γ ) and 0 ≤ y ≤ τ(γ ),
β, if τ(γ ) < x ≤ 1 and τ(γ ) < y ≤ 1,
δ, otherwise,

where τ(x) = π([0, x]); see Figure 1 for a graphical representation of the distor-
tion in κ .

We shall now compare κτ−1 in the sampling procedures discussed in Sections
4.1 and 4.2. In the procedure discussed in Section 4.1, we have π given by (4.4)
and a routine calculation gives us that the value of the distortion, denoted by τM ,
at γ is given by

τM(γ ) = (αγ − δγ + δ)γ

αγ 2 − 2γ 2δ + βγ 2 + 2δγ − 2βγ + β
.(4.14)

In the procedure discussed in Section 2, we need to find π(dx)/dx = ν(x), which
satisfies

ν(x) = λ

1 + α∗
∫ 1

0
κ(x, y)ν(y) dy,

∫ 1

0
ν(x) dx = 1.
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FIG. 1. Above is a pictorial representation of κ (left), κτ−1 when τ (γ ) > γ (middle), and κτ−1

when τ (γ ) < γ (right).

In the case of (4.13), this is equivalent to finding the largest eigenvalue and corre-
sponding eigenvector of a (2 × 2)-matrix. A standard calculation then shows that
the value of the distortion, denoted by τP , at γ is given by

τP (γ ) = (α + β)γ − β + s

2δ + γ (α − 2δ + β) − β + s
,(4.15)

where

s =
√

γ 2
(
(α + β)2 − 4δ2

) + 2γ
(
2δ2 − αβ − β2

) + β2.

In general, the formulae (4.14) and (4.15) do not compare in an obvious man-
ner with themselves or with the unbiased sampling [τ(γ ) = γ ]. In the one-referral
Markov chain sampling model, a new vertex is chosen proportional to the val-
ues of κ , with the proportionality constant being the volume measure under κ . In
contrast, in the Poisson branching process model, due to the branching effect, the
offspring of a vertex will be from the regions governed by the sectional area of κ

at the vertex. Thus, it is natural to expect differences in bias between the two pro-
cedures. We illustrate this via three examples of α,β, δ to illustrate the differences
in distortion between the two sampling procedures.

The first example we consider is when α = 1/5, δ = 1/200, β = 1/5. In Fig-
ure 2, we plot τ(γ ) as a function of γ . One can quickly observe that for γ = 0.5
there is no distortion in either sampling scheme as expected with τM(0.5) =
τP (0.5) = 0.5. One observes that when γ < 0.5 then τP (γ ) < τM(γ ) < γ and
when γ > 0.5 then γ < τM(γ ) < τP (γ ). This indicates that the Poisson branching
process model will result in a larger bias toward the larger group (the secondary
group B when γ < 0.5 and the primary group A when γ > 0.5). This is expected
as both the primary group A and secondary group B are similarly well connected
internally, but a small δ implies that they are poorly interconnected.

In the second example (see Figure 3), we consider α = 1/5, δ = 1/5 and β =
1/200. Group A has a fair number of connections within itself, and there are fair
number of connections between the Groups A and B, but with a small β , Group
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FIG. 2. Distortion plot for two large groups that are internally well connected, but where there are
not many connections between the groups (α = 1/5, δ = 1/200, β = 1/5).

B has a smaller number of connections within itself. Note that for all 0 < γ < 1,
γ < τP (γ ) < τM(γ ), indicating a larger bias in the one-referral Markov chain
sampling procedure.

Finally, we consider the case α = 1/5, δ = 1/200, β = 1/200 (see Figure 4).
With interconnection probability and within Group B connection probabilities be-
ing small this time there is a strong bias toward selecting vertices from the primary
Group A. In plot shown in Figure 4, we can see that the bias is more pronounced
this time in the Poisson branching process sampling procedure.

FIG. 3. Distortion plot for a graph where the primary group is well connected to itself and to
a secondary group, but where the secondary group is not well connected within itself (α = 1/5,
δ = 1/5, β = 1/200).



DENSE GRAPH LIMITS UNDER RESPONDENT-DRIVEN SAMPLING 2209

FIG. 4. Distortion plot for a graph where the primary group is well connected to itself, and where
the secondary group is neither well connected to the primary group nor within itself (α = 1/5,
δ = 1/200, β = 1/200).

In conclusion, depending on the size, connectedness of the groups and inter-
connections between them, the sampling scheme has to be chosen appropriately to
control the bias.
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