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MARKOVIAN NASH EQUILIBRIUM IN FINANCIAL MARKETS
WITH ASYMMETRIC INFORMATION AND RELATED

FORWARD–BACKWARD SYSTEMS

BY UMUT ÇETIN AND ALBINA DANILOVA

London School of Economics and Political Science

This paper develops a new methodology for studying continuous-time
Nash equilibrium in a financial market with asymmetrically informed agents.
This approach allows us to lift the restriction of risk neutrality imposed on
market makers by the current literature. It turns out that, when the market
makers are risk averse, the optimal strategies of the agents are solutions
of a forward–backward system of partial and stochastic differential equa-
tions. In particular, the price set by the market makers solves a nonstandard
“quadratic” backward stochastic differential equation. The main result of the
paper is the existence of a Markovian solution to this forward–backward sys-
tem on an arbitrary time interval, which is obtained via a fixed-point argu-
ment on the space of absolutely continuous distribution functions. Moreover,
the equilibrium obtained in this paper is able to explain several stylized facts
which are not captured by the current asymmetric information models.

1. Introduction. In this paper, we address the long-standing open problem1

of existence of an equilibrium in a financial market with asymmetrically informed
traders and risk averse market makers in continuous-time with finite horizon. In
such a market, the price of the traded asset is an equilibrium outcome of a game
between the market makers and an informed trader who possesses superior infor-
mation. Both market makers and the informed trader choose their controls adapted
to their filtrations. We assume that the market makers obtain their information
through their interactions with the traders and have the obligation to absorb the
total demand for the asset. Therefore, their filtration is the one generated by the
total demand process, Y . The informed trader, on the other hand, has the filtration
jointly generated by the market prices and her private information. In this game
the market makers’ control is the price, S, while the control of the informed trader
is her trading strategy, X. Thus, the equilibrium price should satisfy the following
conditions: (i) the informed trader’s optimisation problem has a solution, and (ii)
given this solution, the price S fulfils the market makers’ objectives.2
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The study of this game goes back to [29], which is the canonical model in mar-
ket microstructure theory for the analysis of strategic trading in the presence of
private information (see [3, 14] and [37] for a review of Kyle’s model as well as
a discussion of its relationship with other market microstructure models). Various
extensions of the original model have been studied in the literature; see, among
others, [2, 4, 5, 8, 15, 17–19] and [28].

The original model and all these extensions assume that the market makers are
risk-neutral and compete in a Bertrand fashion for the total demand (see Sec-
tion 12.C of [36] for the definition). This means that, in equilibrium, the utility
of any market maker is a martingale. Since the utility is linear, this in turn implies
that the optimal strategy for the market makers is to set the price to be the con-
ditional expectation of the fundamental value of the asset given their filtration. In
particular, in these models there is always a unique price satisfying the objective
of the market makers for any control of the informed trader. Furthermore, the mar-
tingale property of the price results in the optimal strategy of the informed trader
being inconspicuous in the equilibrium; that is, the law of Y in its own filtration is
the same as that of Y − X in its own filtration.

Whereas the risk-neutrality of the market makers makes the model tractable, it is
not consistent with the observed market behaviour. Indeed, there is a vast empirical
evidence that the market makers are risk averse and exercise their control in a way
that total demand mean reverts around a target level at a speed determined by their
risk aversion (see [24] and [33] for New York Stock Exchange, [23] for London
Stock Exchange, [12] for Foreign Exchange; for a survey of related literature and
results, see Sections 1.2 and 1.3 in [10]).

Although relaxing the assumption of market makers’ risk neutrality is natural
and has been prompted by the empirical evidence, there has been only one attempt
in the literature to investigate the effect of such an extension. Subrahmanyam in
[40] considered a one-period model where market makers with identical exponen-
tial utilities set the price that makes their utilities martingales. This assumption is
the direct analogue of the original Kyle model discussed above in the context of
risk averse market makers. The tractability of the model considered in [40] relies
on the fact that in a one-period setting there exists an optimal response for the
market makers for any strategy of the insider. However, the existence of such re-
sponses is uncertain in a multi-period setting. Indeed, Subrahmanyam noted that an
extension of his model to a multi-period setting is not possible due to the strategic
behaviour of the agents.

The aforementioned difficulty with the existence of an optimal response for the
market makers persists in continuous time. More precisely, given a trading strategy
of the informed trader, the optimal response of the market makers is found via

makers faced with a given demand process. The reader is referred to the recent manuscript of Bank
and Kramkov [6] for an in-depth analysis of this interaction.
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solving the backward stochastic differential equation (BSDE)

dSt = Zt dβt − c

2
YtZ

2
t dt,(1.1)

exp(cY1S1) = E
[
exp(cY1V )|FY

1
]
,(1.2)

where c > 0 is a constant, V is a bounded random variable representing the funda-
mental value of the asset, Y is a given total demand process and β is a Brownian
motion with respect to FY – the filtration of the market makers generated by Y .
A solution to this BSDE is a pair (Z,S) of FY -adapted processes satisfying (1.1)
and (1.2). When this BSDE admits a solution, S is the price that makes the utilities
of the market makers martingales.

Although the terminal condition is unconventional, as Y and V are given, the
right-hand side of (1.2) is a fixed FY

1 -measurable random variable. Thus, we can
rewrite the terminal condition as S1 = ξ , which is bounded due to the boundedness
of V . The form of the driver, on the other hand, poses a real difficulty since the
process Y multiplying Z2 is in general unbounded. This renders the system (1.1)–
(1.2) outside the realm of standard quadratic BSDEs.

The price response of the market makers is only one side of the equilibrium.
To characterise an equilibrium, we also need to find the level of total demand,
Y , implied by the informed agent’s optimal trading strategy. Consistent with the
literature, we assume that the total demand is driven by a Brownian motion and
has a drift which is determined by the informed trader. Hence, an equilibrium
consists of (α,S), where α is the optimal drift given S, and S satisfies the forward–
backward stochastic differential equation (FBSDE)

dYt = dβt + α̂
(
t, (Ys)s≤t

)
dt,(1.3)

dSt = Zt dβt − c

2
YtZ

2
t dt,(1.4)

exp(cY1S1) = E
[
exp(cY1V )|FY

1
]
,(1.5)

where α̂ is the FY -optional projection of α. It is well known that the existence
of a solution for FBSDEs is quite delicate even when the driver is globally Lip-
schitz and satisfies a linear growth condition. Antonelli [1] showed the existence
and uniqueness of a solution over a small time interval via a fixed-point algorithm
on a Banach space of processes. This result has been extended by [22] and [20] to
arbitrary time intervals by pasting solutions obtained for small time intervals. An
alternative technique for solving FBSDEs is the so-called four-step scheme intro-
duced by [31], which requires strong smoothness on the coefficients of the system
and is based on the link between quasi-linear partial differential equations. When
the driver is quadratic, the problem becomes more complicated and only few re-
sults are available. Moreover, since available results originate from the solvability
of quadratic BSDEs, the standard assumption in the current literature is that the
driver is bounded by k(1 + z2) for some constant k (see, e.g., [25]). However, as
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(1.4) does not fit into the current paradigm of quadratic BSDEs, these results are
not applicable to our setting.

Despite these difficulties, we obtain a solution to this system with St = H(t, Yt )

for some smooth function H , when α is the optimal drift of the informed trader
given S. This solution provides a Markovian equilibrium for the model that we
consider. We show that in this case the system (1.3)–(1.5) transforms into

Ht + 1

2
Hyy = 0,(1.6)

dYt = dβt − c

2
YtHy(t, Yt ) dt,(1.7)

V
d= H(1, Y1),(1.8)

provided Y has a smooth transition density, where the last equality is an equality
in distribution. This is still a forward–backward system of a forward SDE and a
backward PDE such that the terminal condition of the PDE depends on the solution
of the SDE, which in turn depends on H . This coupling between the SDE and the
PDE suggests a use of a fixed-point algorithm.

Indeed, if we are given a continuous distribution for Y1, (1.8) yields a function
H(1, y), which is increasing in y. This allows us to obtain H(t, y) via (1.6), and Y

via (1.7). Hence, this procedure defines a mapping from the space of distributions
into itself. We show in Theorem 4.1, via Schauder’s fixed-point theorem, that this
mapping has a fixed point under the assumption that V = f (η) for some increasing
and bounded f satisfying some mild regularity conditions, and a standard normal
random variable η.

The validity of Schauder’s fixed-point theorem in our setting relies heavily on
the properties of solutions of (1.7) for any given function H satisfying (1.6) with a
bounded and increasing terminal condition. These properties are explored in Lem-
mata 4.1–4.3. In particular, we obtain a remarkable connection between the laws
of Y1 and that of Brownian motion. Namely, we prove that

E
[
(Y1 − x)+

] ≥ E
[(

e−cCB1 − x
)+]

> 0,

E
[
(−x − Y1)

+] ≥ E
[(−x − e−cCB1

)+]
> 0,

for all x > 0, where C is a constant that depends only on the bound on H . We also
show that Y has a smooth transition density.

The existence of solution to the system (1.6)–(1.8) ensures the existence of
a Markovian solution for the price process which makes the utilities of market
makers martingales once the drift of total demand, Y has the form given in equa-
tion (1.7). However, in order for such a drift to appear in equilibrium, it should
be optimal for the insider to choose a drift whose FY -optional projection has this
form.

To this end, we establish in Proposition 3.1 that the sole criterion of optimality
for the insider is that the strategy fulfils the bridge condition H(1, Y1) = V . Thus,
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if Markovian equilibrium exists, the equilibrium pair (H,Y ) solves the system
(1.6)–(1.8) and satisfies H(1, Y1) = V . The existence of such a pair is precisely the
result of Theorem 5.1, which allows us to establish the existence of the equilibrium
in Theorem 5.2.

The paper is structured as follows. Section 2 describes the model we consider
while Section 3 is devoted to the (formal) derivation of the system (1.6)–(1.8) and
characterisation of the optimal strategy of the informed trader. Section 4 estab-
lishes the existence of solution to the system (1.6)–(1.8) and Section 5 proves the
existence of the equilibrium. In Section 6, we discuss the impact of risk aversion
on the market behaviour in the equilibrium and explore the connections to the em-
pirical literature.

2. Market structure. Let (�,F, (Ft )t∈[0,1],P) be a filtered probability space
satisfying the usual conditions of right continuity and P-completeness. We suppose
that F0 is not trivial and there exists an F0-measurable standard normal random
variable, η. Moreover, the filtered probability space also supports a standard Brow-
nian motion, B , with B0 = 0, and thus, B is independent of η. We define V := f (η)

for some bounded and strictly increasing function f with a continuous derivative.
As all the randomness in our model will depend only on V and B , we shall

take F = σ(Ñ , F̃), where F̃ is the minimal σ -field with respect to which V and
(Bt )t∈[0,1] are measurable and Ñ = {E : E ⊂ F for some F ∈ F̃ with P(F ) = 0}.
Moreover, in view of the independence of V and B , we may assume the existence
of a family of probability measures, (Pv) such that the disintegration formula

P(E) =
∫
f (R)

Pv(E)P(V ∈ dv)

holds for all E ∈ F , and for all v ∈ f (R) the measure Pv satisfies Pv(E) =
P(E|V = v). The existence of such a family is easily justified when we consider
� = f (R)×C([0,1],R), where C([0,1],R) is the space of real valued continuous
functions on [0,1].

We consider a market in which the risk free interest rate is set to 0 and a single
risky asset is traded. The fundamental value of this asset equals V , which will be
announced at time t = 1.

There are three types of agents that interact in this market:

(i) Liquidity traders who trade for reasons exogenous to the model and whose
cumulative demand at time t is given by σBt for some constant σ > 0.

(ii) A single informed trader, who knows V from time t = 0 onward, and is
risk neutral. We will call the informed trader insider in what follows and denote her
cumulative demand at time t by Xt . The filtration of the insider, F I , is generated
by observing the price of the risky asset and V . Thus, an insider who has the
information that V = v possesses the minimal right continuous filtration generated
by V and the price process, and completed with the null sets of Pv .
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(iii) Market makers observe only the net demand of the risky asset, Y = X +
σB , thus, their filtration, FM , is the minimal right-continuous filtration generated
by Y and completed with P-null sets. The number of market makers is assumed to
be N ≥ 2.

We also assume that the market makers have identical preferences described by
the common utility function, U(x) = −e−ρx , and compete in a Bertrand fashion
for the net demand of the risky asset. In case of several market makers quoting the
same winning price, we adopt the convention that the total order is equally split
among them.

Similar to [2], we assume that the market makers set the price of risky security,
S, as St = H(t, Yt ) for some function H .

To understand the subtlety of the equilibrium derived later, it is important to ob-
serve that an insider who is given the information that V = v has the probability
measure Pv on (�,F) while the probability measure of the market makers is given
by P, and these measures are singular with respect to each other as Pv(V = v) = 1,
whereas P(V = v) = 0 in our settings.

We now define admissibility of functions H for the market makers (which will
be called pricing rule in what follows) and admissibility of the trading strategy of
the insider. The conditions we impose are standard in the literature and were first
introduced in [2]. The integrability conditions (2.1) and (2.2) prevent the insider
from following doubling strategies (see [2] for the discussion). The absolute con-
tinuity of insider’s strategies is without any loss of generality since strategies with
a martingale component and/or jumps are strictly suboptimal as shown in [2].

DEFINITION 2.1. A function H : R+ ×R �→ R is a pricing rule if H ∈ C1,2,
strictly increasing in y and satisfies

EH 2(1, σB1) < ∞ and E

∫ 1

0
H 2(t, σBt) dt < ∞.(2.1)

The class of such functions is denoted with H.

Note that since any pricing rule is strictly monotone, B is adapted to F I . The
admissible strategies for the insider is defined in the following.

DEFINITION 2.2. An insider strategy, X, is admissible for a given pricing
rule, H , if Xt = ∫ t

0 αs ds for some F I -progressively measurable α such that, for
all v ∈ f (R), we have Pv(

∫ 1
0 |αs |ds < ∞) = 1,

Ev
∫ 1

0
H 2(t,Xt + σBt) dt < ∞,(2.2)

and Ev[min{0,WX
1 }] > −∞, where WX

1 is the terminal wealth of insider given by

WX
1 :=

∫ 1

0
Xs dH(s,Ys) + X1

(
V − H(1, Y1)

) =
∫ 1

0

(
V − H(s,Ys)

)
dXs.(2.3)
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The class of admissible strategies for a given pricing rule H will be denoted by
A(H).

Observe that for any X of finite variation WX
1 is well defined since V −H(s,Xs)

is a continuous process for any pricing rule, Pv-a.s.
The first term in (2.3) corresponds to continuous trading in the risky asset, while

the second term exists due to a potential discontinuity in the asset price when the
value becomes public knowledge at time t = 1. The second expression for the
wealth follows from integration by parts.

Given the definition of a pricing rule and admissible trading strategies, we can
now define an equilibrium as follows.

DEFINITION 2.3. A pair (H ∗,X∗) is an equilibrium if H ∗ ∈ H, X∗ ∈ A(H ∗),
and

(i) given H ∗, the insider’s strategy X∗ solves her optimisation problem:

Ev[
WX∗

1
] = sup

X∈A(H ∗)
Ev[

WX
1

] ∀v ∈ f (R).

(ii) Given X∗, the pricing rule H ∗ is such that the market makers’ wealth satis-
fies zero-utility gain condition, that is, U(G) is a (FM,P)-martingale, where

Gt := − 1

N

∫ t

0
Y ∗

s dH ∗(
s, Y ∗

s

) + 1t=1
Y ∗

1

N

(
H ∗(

Y ∗
1 ,1

) − V
)
.(2.4)

The above is the formulation of a Markovian Nash equilibrium in our model.
The condition for the optimality of insider’s strategy is a straightforward descrip-
tion of the best response of the insider for a given pricing rule. The market makers’
optimality condition follows the tradition of Kyle models where each market mak-
ers’ utility remains a martingale due to the Bertrand competition among them. In-
deed, suppose that one of the market makers, say MMi , decides to deviate at some
time t from this pricing rule by, for example, selling at a higher price than H would
suggest in order to achieve a positive utility gain. However, the other market mak-
ers could then offer to sell at a slightly lower price which would still allow them
to make a positive utility gain. Moreover, as this lower price is more favourable to
the traders, no one will trade with MMi eliminating any opportunities for a utility
gain. Deviation from the zero-utility gain condition by buying at a lower price is
also suboptimal for a similar reason. Clearly, buying (resp., selling) at a higher
(resp., lower) price is suboptimal since it leads to a loss in the utility. Thus, a pric-
ing rule satisfying the zero-utility gain condition is the best response of the market
makers. The zero-utility gain condition is also a direct continuous-time analogue
of the concept of autarky utility defining the equilibrium in the one-period Kyle
model of [40] studying the effects of the risk aversion of market makers on equi-
librium. Recall that the market makers are identical by assumption and, therefore,
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they offer the same price quotes in equilibrium and the order is split equally among
them due to our order splitting convention when there are more than one winning
quote.

3. Characterisation of equilibrium. In this section, we show that a Marko-
vian equilibrium of this game is described by a forward–backward system of
stochastic and partial differential equations given by (1.6)–(1.8) by first study-
ing the optimal response of the market makers for a given strategy of the insider,
and then characterising the profit maximising strategies for the insider. The heuris-
tic arguments below which are used to characterise the equilibrium will be made
rigorous in subsequent sections.

Suppose that X is an admissible trading strategy of the insider so that Y in its
own filtration satisfies

dYt = σ dBY
t + α̂t dt,

where BY is an FM -Brownian motion and α̂ is the FM -optional projection of α.
The best response of the market makers is to choose a price, S, that will satisfy the
zero-utility gain condition. Let price S follow

dSt = Zt dBY
t + μt dt,

for some predictable process Z and an optional process μ that are to be determined
by the market makers. As there is a potential discrepancy between S1 and V , there
is a possibility of a jump in the market makers’ wealth at time 1. More precisely,

	G1 = Y1

N
(S1 − V ).

However, the zero-utility gain condition implies

1 = E

[
exp

(
−ρY1

N
(S1 − V )

)∣∣∣FM
1

]
,

which is equivalent to

E

[
exp

(
ρY1

N
V

)∣∣∣FM
1

]
= exp

(
ρY1

N
S1

)
.(3.1)

On the other hand, if we compute the dynamics of U(G) for t < 1 by Itô’s formula,
we obtain

dU(Gt) = U(Gt)
ρ

N
Yt

{
σt dBY

t +
(
μt + ρ

2N
Ytσ

2
t

)
dt

}
.

Reiterating the zero-utility gain condition for t < 1 shows that we must have

μt = − ρ

2N
YtZ

2
t .
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Therefore, the zero-utility gain condition stipulates that the price S follows

dSt = Zt dBY
t − ρ

2N
YtZ

2
t dt,(3.2)

and the market makers’ problem is to find (Z,S) to solve (3.2) with the terminal
condition (3.1) given the total demand process Y .

The BSDE in (3.2) is reminiscent of the quadratic BSDEs, which have been
studied extensively, and the connection of which to problems arising in mathemat-
ical finance is well established (see, e.g., [7, 13, 27] and the references therein).
The essential deviation of (3.2) from the BSDEs considered in these papers is that
the coefficient of Z2

t in (3.2) is ρ
2N

Yt , which is in general unbounded. This makes
the direct application of the results contained in the current literature for quadratic
BSDEs to (3.2) impossible.

However, if we turn to a Markovian equilibrium, that is, consider St = H(t, Yt ),
it is natural to expect that in equilibrium α̂t = α̂t (t, Yt , St ,Zt ) for some determin-
istic function α̂ so that

dYt = σ dBY
t + α̂(t, Yt , St ,Zt ) dt.(3.3)

Thus, if a Markovian equilibrium can be attained it will provide a Markovian so-
lution to the FBSDE defined by (3.1)–(3.3), where α̂ is the optimal drift chosen by
the insider.

We now turn to the optimisation problem for the insider when St = H(t, Yt ) for
an admissible pricing rule H . Observe that from the point of view of the insider
the total demand process follows

dYt = σ dBt + αt dt,

for a given insider’s strategy Xt = ∫ t
0 αs ds. And the value function, 
 , can be

defined as


(t, y) = sup
X∈A(H)

Ev

[∫ 1

t

(
V − H(s,Ys)

)
αs ds

∣∣∣Yt = y

]
.

Then, a formal application of the dynamic programming principle leads to the HJB
equation


t + σ 2

2

yy + sup

α

{
α(
y + V − H)

} = 0.

Since the term to be maximised is linear in α, the only way to ensure the finiteness
of solution is to set


y = H − V,

which yields 
t + σ 2

2 
yy = 0. Then, by straightforward calculations we see that
H must satisfy a backward heat equation

Ht + σ 2

2
Hyy = 0,



ASYMMETRIC INFORMATION AND FORWARD–BACKWARD SYSTEMS 2005

and, therefore, Itô’s formula will yield that S should satisfy

dSt = σHy(t, Yt ) dYt .

Combining this with (3.2) and (3.3) implies

z

σ
α̂(t, y, s, z) = − ρ

2N
yz2,

that is,

α̂(t, y, s, z) = −ρσ

2N
yz(3.4)

as soon as we note that z = σHy(t, y) by the choice of S.
The above form of α̂ is necessary in order for the market makers to quote a

Markovian pricing rule. However, in order for such α̂ to appear in equilibrium, it
should be optimal for the insider to choose a drift whose FM -optional projection
has this form. In Proposition 3.1, we will show that the sole criterion of optimality
for the insider is that the strategy fulfils the bridge condition H(1, Y1) = V . Thus,
if a Markovian equilibrium exists,

dYt = σ dBY
t − σ 2ρ

2N
YtHy(t, Yt ),(3.5)

and H solves the backward heat equation above and satisfies H(1, Y1) = V .
As we show in Sections 4 and 3 a pair (H,Y ) satisfying the above conditions

exists for some admissible insider trading strategy and that it indeed constitutes an
equilibrium. In order to see that this equilibrium is indeed feasible, suppose that
we have a pair (H,Y ) which solves the following system of equations:

Ht + 1

2
σ 2Hyy = 0,(3.6)

dYt = σ dβt − σ 2ρ

2N
YtHy(t, Yt ) dt,(3.7)

V
d= H(1, Y1),(3.8)

with Y0 = 0 where β is a Brownian motion on some given probability space and
Y is understood to be a strong solution of the forward SDE. Further assume that
the transition probability of Y possesses a smooth density, p. Then the theory of
filtration enlargements gives us (see Theorem 1.6 in [34]) that Y solves the SDE

dYt = σ dβ̃t +
{
σ 2 py

p
(t, Yt ;1, Y1) − σ 2ρ

2N
YtHy(t, Yt )

}
dt,(3.9)

where β̃ is a Brownian motion with respect to the natural filtration of Y initially
enlarged with the random variable Y1 and, in particular, independent of Y1. Thus,
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if Ṽ is a random variable with the same distribution as V and independent of β̃ ,
we can replace Y1 with H−1(1, Ṽ ) in (3.9) and obtain the SDE

dỸt = σ dβ̃t +
{
σ 2 py

p

(
t, Ỹt ;1,H−1(1, Ṽ )

) − σ 2ρ

2N
ỸtHy(t, Ỹt )

}
dt.

Now, suppose that the solutions of this SDE are unique in law. Then Ỹ will have
the same law as Y , which yields in particular that Ỹ1 = H−1(1, Ṽ ) and in its own
filtration Ỹ follows

dỸt = σ dBỸ
t − σ 2ρ

2N
ỸtHy(t, Ỹt ) dt,

for some Brownian motion BỸ .
The above discussion makes it clear what the optimal strategy of the insider

should be given H . Since V is independent of B , the optimal number of shares of
the risky asset held by the insider at time t equals∫ t

0

{
σ 2 py

p

(
s, Ys;1,H−1(1,V )

) − σ 2ρ

2N
YsHy(s, Ys)

}
ds.

This ensures that Y follows (3.5) in its own filtration and H(1, Y1) = V achieving
the optimality conditions for the insider as well as those for the market makers.

These considerations imply that the question of existence of the equilibrium can
be reduced to the problem of existence of a solution to the system (3.6)–(3.8) with
process Y admitting a smooth transition density. Despite the apparent simplicity,
the existence of a solution to this system is far from being a trivial matter. Indeed, in
order to determine H via the basic PDE in (3.6), we first need to know its boundary
condition. However, the boundary condition for H , (3.8), requires the knowledge
of the distribution of Y1 which can only be determined if we know H . Thus, this
problem is appropriate for the employment of a fixed-point theorem which indeed
yields the existence of the solution as demonstrated in the next section.

We end this section by proving the optimality criteria for the insider that we
used in order to establish the above system.

PROPOSITION 3.1. Suppose H is a pricing rule satisfying

Ht + 1
2σ 2Hyy = 0.(3.10)

If Xt = ∫ t
0 αs ds for some F I -progressively measurable α such that, for all v ∈

f (R), we have Pv(
∫ 1

0 |αs |ds < ∞) = 1,

Ev

(∫ 1

0
H 2(t,Xt + σBt) dt

)
< ∞(3.11)

and

H(1,X1 + Z1) = V, Pv-a.s.,(3.12)

then X ∈A(H) and it is an optimal strategy for the insider.
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PROOF. We adapt the arguments in [2] and [41] to our case. Consider the
function


(t, y) :=
∫ y

ξ(t)

{
H(t, u) − V

}
du + 1

2
σ 2

∫ 1

t
Hy

(
s, ξ(s)

)
ds,(3.13)

where ξ(t) is the unique solution of H(t, ξ(t)) = V . Direct calculations show


y(t, y) = H(t, y) − V(3.14)

and


t + σ 2

2

yy = 0.

Therefore, from (3.14) and Itô’s formula it follows that


(1, Y1) − 
(0,0) =
∫ 1

0

{
H(t, Yt ) − V

}
dYt

(3.15)

= −WX
1 +

∫ 1

0

{
H(t, Yt ) − V

}
σ dBt

for any X such that Xt = ∫ t
0 αs ds with Pv(

∫ 1
0 |αs |ds < ∞) = 1. Using (3.15) and

admissibility properties of X (see Definition 2.2), insider’s optimisation problem
becomes

sup
X∈A(H)

Ev[
WX

1
] = sup

X∈A(H)

Ev

[∫ 1

0

(
V − H(t, Yt )

)
dXt

]
(3.16)

= Ev[

(0,0)

] − inf
X∈A(H)

Ev[

(1, Y1)

]
,(3.17)

where the last equality is due to (2.2).
Since 
(1, Y1) = ∫ Y1

ξ(1){H(1, u) − V }du is strictly positive unless Y1 = ξ(1) as
H(1, y) is strictly increasing, the conclusion will follow as soon as X is shown to
be admissible. In view of (3.15),

WX
1 = 
(0,0) +

∫ 1

0

{
H(t, Yt ) − V

}
σ dBt ,

and, therefore, the admissibility of X follows from (3.11). �

4. The main result and its proof. In this section, we state and prove the main
result of this paper that establishes the existence of a solution to the system given
by (3.6)–(3.8).

THEOREM 4.1. There is a pair (H,Y ) that solves the system of equations
(3.6)–(3.8). Moreover, 0 < Hy(t, y) ≤ C 1√

1−t
for all (t, y) ∈ [0,1) × R and for

some constant C. Furthermore, Y is the unique strong solution of (3.7) and admits
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a regular transition density,3 p(s, y; t, z), for all 0 ≤ s ≤ t ≤ 1 and (y, z) ∈ R2

such that, for any fixed (t, z), p(s, y; t, z) > 0 on [0, t)×R and is C1,2([0, t)×R).

We will prove this theorem by an application of Schauder’s fixed-point theorem.
Observe that if we start with an absolutely continuous probability measure on R

with full support, (3.8) yields an increasing function H(1, ·), which defines an
H solving (3.6). If we then plug this function into the SDE of (3.7), we arrive
at a new probability measure on R associated with the distribution of Y1. This
procedure defines a transformation from the space of probability measures on R

into itself. Application of Schauder’s fixed-point theorem requires a suitable choice
of a closed and convex subset, D, of probability measures on R such that the above
transformation maps D into itself and satisfies the conditions of Schauder’s fixed-
point theorem.

Before we present the proof of the fixed-point result, we collect some useful
facts on the behaviour of the solutions of (3.7) in the following lemmata. The first
lemma observes a striking relationship between the time 1 laws of the solutions
of (3.7) and that of Bσ 2 . An immediate consequence of this lemma is that the law
of Y1, where Y is the solution of (3.7) for a given H , has a full support on R. This
property allows us to compute the law of Y1 via a Girsanov transform using the
law of B1, which is achieved in the second lemma.

LEMMA 4.1. Suppose H ∈ C1,2([0,1) × R) satisfies 0 ≤ Hy(t, y) ≤ C 1√
1−t

for all (t, y) ∈ [0,1) ×R, and some constant C. Let c ≥ 0 be a constant, then the
stochastic differential equation

dYt = σ dBt − cYtHy(t, Yt ) dt(4.1)

has a unique strong solution on [0,1]. Moreover, for any x > 0,

E
[
(Y1 − x)+

] ≥ E
[(

e−2cCBσ 2 − x
)+]

> 0,(4.2)

E
[
(−x − Y1)

+] ≥ E
[(−x − e−2cCBσ 2

)+]
> 0,(4.3)

and, in particular, P(Y1 ≤ y) ∈ (0,1) for all y ∈R.

PROOF. Since yHy(t, y) is locally Lipschitz on [0, T ] ×R for any T < 1, the
above equation has a unique strong solution on [0, T ] upto an explosion time τ .
Since T is arbitrary this implies the existence of a unique continuous strong solu-
tion on [0,1 ∧ τ). Let τn := inf{t ∈ [0,1) : |Yt | > n} and observe that τn ↑ τ , a.s.
Moreover, for any t ∈ [0,1]

Y 2
t∧τn

= 2
∫ t∧τn

0
Ysσ dBs − 2c

∫ t∧τn

0
Y 2

s Hy(s, Ys) ds + σ 2(t ∧ τn)

≤ 2
∫ t∧τn

0
Ysσ dBs + σ 2(t ∧ τn).

3See the last paragraph on page 76 of [35] for a definition.
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Thus, by Itô’s isometry and the elementary inequality x ≤ 1 + x2,

E
[
Y 2

t∧τn

] ≤ 1 + σ 2 + 4σ 2
∫ t

0
E

[
Y 2

s 1[s<τn]
]
ds ≤ 1 + σ 2 + 4σ 2

∫ t

0
E

[
Y 2

s∧τn

]
ds.

Therefore, Gronwall’s inequality yields E[Y 2
t∧τn

] ≤ (1 + σ 2)e4σ 2
for all t ∈ [0,1]

and n ≥ 1. Thus, (Yt∧τn)n≥1 is uniformly integrable, and consequently, P(τ < t) =
0 and E[Y 2

t ] ≤ (1+σ 2)e4σ 2
for all t ∈ [0,1], that is, Y never explodes and the SDE

has a nonexploding strong solution.
To obtain the estimates (4.2) and (4.3), let

Ỹt = Yt exp
(
c

∫ t

0
Hy(s,Ys) ds

)
and observe that

Ỹt =
∫ t

0
exp

(
c

∫ s

0
Hy(r,Yr) dr

)
σ dBs.

Thus, Ỹt = WTt for some Brownian motion W and the time change Tt satisfying

σ 2t ≤ Tt = σ 2
∫ t

0
exp

(
2c

∫ s

0
Hy(r,Yr) dr

)
ds ≤ σ 2 exp(4cC)t.

Thus, by the optional sampling theorem, for any K ∈ R we have

E
[
(Ỹ1 − K)+

] = E
[
(WT1 − K)+

] ≥ E
[
(Wσ 2 − K)+

]
> 0,

E
[
(K − Ỹ1)

+] = E
[
(K − WT1)

+] ≥ E
[
(K − Wσ 2)

+]
> 0,

which implies (4.2) and (4.3). �

LEMMA 4.2. Let h be a bounded, nondecreasing, and absolutely continuous
function, which is not constant. Consider the solution, H , of (3.6) with the terminal
condition h. Then |H(t, ·)| ≤ ‖h‖∞ for t ≤ 1, and 0 < Hy(t, ·) ≤ C 1√

1−t
for t < 1,

where C =
√

2
σ 2π

‖h‖∞. Consequently, there exists a unique, strong solution, Y , of
(4.1) and, for any bounded and continuous function g and T ≤ 1, we have

E
[
g(YT )

] = EQ
[
g(σWT )MT

]
,

where W is a Brownian motion on a filtered probability space (�̃, F̃, (F̃t )t∈[0,1],
Q) and (Mt)t∈[0,1] is a strictly positive ((F̃t ),Q)-martingale given by

Mt := exp
(
−c

∫ t

0
WsHy(s, σWs) dWs − c2

2

∫ t

0
W 2

s H 2
y (s, σWs) ds

)
,(4.4)

with c being the constant from Lemma 4.1. Furthermore, Q-a.s., M1 ≤ e2cC , and∣∣∣∣∫ τ

0
WsHy(s, σWs) dWs

∣∣∣∣ ≤ K
(
1 + |Wτ |) ≤ K

(
1 + W ∗

1
)
,(4.5)
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where τ is any stopping time with respect to the natural filtration of W such that
τ ≤ 1, Q-a.s., W ∗

t = sups≤t |Ws |, and K is some constant that depends only on σ

and ‖h‖∞.

PROOF. Observe that

H(t, y) =
∫
R

h(z)q
(
σ 2(1 − t), z − y

)
dz,

where q(t, x) is the probability density of a normal random variable with mean 0
and variance t . Then, clearly, |H(t, y)| ≤ ∫

R |h(z)|q(σ 2(1 − t), z− y)dz ≤ ‖h‖∞.
Moreover, Hy(t, y) is strictly positive whenever t < 1. Indeed, differentiating
above, we have

Hy(t, y) =
∫
R

h(z)qy

(
σ 2(1 − t), z − y

)
dz =

∫
R

q
(
σ 2(1 − t), z − y

)
dh(z) > 0.

On the other hand,

Hy(t, y) =
∫
R

h(z)
z − y

σ 2(1 − t)
q
(
σ 2(1 − t), z − y

)
dz

(4.6)

≤ sup
z∈R

h(z)

∫
R

|z − y|
σ 2(1 − t)

q
(
σ 2(1 − t), z − y

)
dz ≤ C

1√
1 − t

,

where C = ‖h(z)‖∞
√

2
σ 2π

. Hence, Lemma 4.1 implies the existence and the
uniqueness of a strong solution to (4.1).

Next, we will characterise the distribution of Y on [0, T ] for T < 1 by con-
structing a weak solution to (4.1) via a Girsanov transform. To this end, let W be a
Brownian motion on some filtered probability space (�̃, F̃, (F̃t )t∈[0,1],Q). Then
M is a martingale on [0, T ] by Corollary 3.5.16 in [26]. Thus, if we define P̃ on
(�̃, F̃) by ˜dP/dQ = MT , σW solves (4.1) under P̃ on [0, T ]. Due to the unique-
ness in law of the solutions of (4.1), for any continuous and bounded function g

we therefore have

EP̃
[
g(YT )

] = EQ
[
g(σWT )MT

]
.

We next aim to extend the above equality to T = 1, which would follow from
the dominated convergence theorem once we demonstrate that M is a bounded
martingale. Direct calculations lead to

MT = exp
(
B(T ,σWT )

+ c

∫ T

0

{
Hy(s, σWs) − 1

2
Hy(s,0) − c

2
W 2

s H 2
y (s, σWs)

}
ds

)
,

where

B(t, y) = − c

σ 2

∫ y

0
xHy(t, x) dx ≤ 0(4.7)
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since Hy is positive. Thus, for any t ≤ T ,

Mt ≤ exp
(
c

∫ 1

0
Hy(s, σWs) ds

)
≤ e2cC(4.8)

implying

EP̃[
g(Y1)

] = EQ[
g(σW1)M1

]
,

where M1 := limT →1 MT .
Our next goal is to prove the estimate in (4.5) which will, in turn, imply that M1

is strictly positive. Let τ be a stopping time with respect to the natural filtration of
W and bounded by 1. Then

c

∣∣∣∣∫ τ

0
WsHy(s, σWs) dWs

∣∣∣∣ ≤ ∣∣B(τ,σWτ )
∣∣ + c

∫ τ

0

∣∣∣∣Hy(s, σWs) − 1

2
Hy(s,0)

∣∣∣∣ds

≤ ∣∣B(τ,σWτ )
∣∣ + 3cC,

where B(t, y) is given by (4.7). A simple application of integration by parts on
B(t, y) yields that |B(t, y)| ≤ 2c

σ 2 |y|‖h‖∞. Hence,∣∣∣∣∫ τ

0
WsHy(s, σWs) dWs

∣∣∣∣ ≤ K
(
1 + |Wτ |) ≤ K

(
1 + W ∗

1
)
,

for some K that depends on σ and ‖h‖∞ only.
The above estimate also shows that c

∫ t
0 WsHy(s, σWs) dWs is a square inte-

grable martingale on [0,1] with

c2
∫ 1

0
EQ[

W 2
s

(
Hy(s, σWs)

)2]
ds ≤ 2c2K2(

1 + EQ(
W ∗

1
)2)

< ∞.

As {ω : M1(ω) = 0} ⊆ {ω : ∫ 1
0 W 2

s (ω)(Hy(s, σWs(ω)))2 ds = ∞}, this yields that
M is strictly positive on [0,1], Q-a.s. and

M1 = exp
(
−c

∫ 1

0
WsHy(s, σWs) dWs − c2

2

∫ 1

0
W 2

s H 2
y (s, σWs) ds

)
. �

Next lemma is not needed for the fixed-point algorithm that we will consider in
order to show the existence of a solution to the system (3.6)–(3.8). On the other
hand, it shows that any solution to (3.7) has a smooth transition density, which is
necessary to construct the equilibrium in our model.

LEMMA 4.3. Let h be a nonconstant, bounded, nondecreasing, absolutely
continuous function, the derivative of which is bounded on compacts. Consider the
solution, H , of (3.6) with the terminal condition h. Then the unique strong solution,
Y , of (4.1) admits a regular transition density p(s, y; t, z) for all 0 ≤ s ≤ t ≤ 1 for
(y, z) ∈ R2. Moreover, for any fixed (t, z), p(s, y; t, z) > 0 on [0, t) × R and is
C1,2([0, t) ×R).
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PROOF. Due to the Lemma 4.2, we have 0 < Hy(t, y) ≤ C 1√
1−t

for t < 1
and y ∈ R, where H is the solution of (3.6) with the terminal condition h, and

C =
√

2
σ 2π

‖h‖∞. Furthermore, there exists a unique the solution, Y , to (3.7) and
for any bounded function g and 0 ≤ t < u ≤ 1,

E
[
g(Yu)|Yt = y

]
= EQ

[
g(σWu) exp

(
−c

∫ u

t
WsHy(s, σWs) dWs

− c2

2

∫ t

0
W 2

s H 2
y (s, σWs) ds

)∣∣∣Wt = y

σ

]
.

Thus, a regular transition density of Y can be defined as

p(t, y;u, z) = q
(
σ 2(u − t), z − y

)
r(t, y;u, z), 0 ≤ t < u ≤ 1,(4.9)

where

r(t, y;u, z)

:= EQ
y→z
t→u

[
exp

(
− c

σ 2

∫ u

t
YsHy(s, Ys) dYs(4.10)

− c2

2σ 2

∫ u

t
Y 2

s H 2
y (s, Ys) ds

)]
,

with Y
σ

being a Brownian bridge from y
σ

to z
σ

on the interval [t, u] under measure
Q

y→z
t→u . Indeed, the representation (4.9) holds once we show that r is a measurable

function and Chapman–Kolmogorov equations hold. In fact, as we show below r

is continuous with respect to all its parameters, hence, measurable (the easy task
of validating Chapman–Kolmogorov equation is left to the reader).

First, observe that the Itô formula and the PDE (3.6) satisfied by H yield [recall
that B(t, y) is given by (4.7)]

eB(t,y)−B(u,z)r(t, y;u, z)

= EQ
y→z
t→u

[
exp

(
c

∫ u

t

{
Hy(s,Ys) − 1

2
Hy(s,0) − c

2σ 2 Y 2
s H 2

y (s, Ys)

}
ds

)]
(4.11)

= exp
(
−c

2

∫ u

t
Hy(s,0) ds

)
×EQ

y→z
t→u

[
exp

(
c

∫ u

t

{
Hy(s,Ys) − c

2σ 2 Y 2
s H 2

y (s, Ys)

}
ds

)]
.

Moreover, in view of the SDE representation of Brownian bridges (see Sec-
tion 5.6.B in [26]), the law of Y under Qy→z

t→u is the same as that of Ỹ under Q,
where

Ỹs := y
u − s

u − t
+ z

s − t

u − t
+ σ(u − s)

∫ s

t

dWr

u − r
, s ∈ [t, u].
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Therefore,

EQ
y→z
t→u

[
exp

(
c

∫ u

t

{
Hy(s,Ys) − c

2σ 2 Y 2
s H 2

y (s, Ys)

}
ds

)]
= EQ

[
exp

(
c

∫ u

t

{
Hy(s, Ỹs) − c

2σ 2 Ỹ 2
s H 2

y (s, Ỹs)

}
ds

)]
,

and the desired continuity follows from the continuity of Ỹ with respect to
(t, y, u, z) and the dominated convergence theorem that applies due to the bounds
on Hy .

In order to show that r(t, y;u, z) > 0 for all u ≤ 1, it suffices to show that

Q
y→z
t→u

(∫ u

t
Y 2

s H 2
y (s, Ys) ds < ∞

)
= 1.(4.12)

Indeed, due the uniform bounds on Hy , the nonnegative random variable inside
the conditional expectation in (4.11) is zero only if

∫ u
t Y 2

s H 2
y (s, Ys) ds = ∞. To

this end, fix an ω and observe that Kt,u := supt≤s≤u Y 2
s satisfies Qy→z

t→u(0 < Kt,u <

∞) = 1. Therefore,

1

4Kt,u

∫ u

t
Y 2

s H 2
y (s, Ys) ds ≤ 1

4

∫ u

t
H 2

y (s, Ys) ds

= 1

4

∫ u

t

(∫
R

h′(z)q
(
σ 2(1 − s), z − Ys

)
dz

)2

ds

≤
∫ u

t

(∫ 1

−1
h′(z + Ys)q

(
σ 2(1 − s), z

)
dz

)2

ds

+
∫ u

t

(∫ ∞
1

h′(z + Ys)q
(
σ 2(1 − s), z

)
dz

)2

ds

+
∫ u

t

(∫ −1

−∞
h′(z + Ys)q

(
σ 2(1 − s), z

)
dz

)2

ds.

Observe that, for the fixed ω, Y is a continuous function of time and, there-
fore, takes values in a compact set, which implies that h′(z + Ys) is bounded
for z ∈ [−1,1] and all s ∈ [t, u]. This implies that the first integral is finite since∫ 1
−1 q(σ 2(1 − s), z) dz < 1.

To see the finiteness of the second integral, apply integration by parts to get∫ u

t

(
−h̃(1+Ys)q

(
σ 2(1−s),1

)+∫ ∞
1

h̃(z+Ys)
z

σ 2(1 − s)
q
(
σ 2(1−s), z

)
dz

)2

ds,

where h̃ = h + ‖h‖∞. Note that h̃ is positive, therefore, the above integral is
bounded from above by

8‖h‖2∞
∫ u

t
q2(

σ 2(1 − s),1
)
ds < ∞.
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The third integral can be shown to be finite in the same way.
In order to show that p(t, y;u, z) ∈ C1,2([0, u) × R) for fixed (u, z), where

u < 1, we will show that it is the fundamental solution of a parabolic differential
equation (see page 3 of [21] for the definition of fundamental solutions). In view
of the relationship between the fundamental solutions of PDEs and transition den-
sities of diffusion processes (see the discussion following Definition 5.7.9 in [26]),
let us consider the PDE

ut + 1
2σ 2uyy − cyHyuy = 0(4.13)

on the interval [0, T ] where T < 1. The existence of a fundamental solution to
this PDE will follow from Theorem 1 in [9] once we show that conditions (i)–(iii)
on page 28 of [9] are satisfied. Condition (i) is trivially satisfied for σ being a
constant. Moreover, since ∣∣∣∣ ∂

∂y
yHy

∣∣∣∣ = |Hy + yHyy |

and Hy(t, y) ≤ C 1√
1−T

for all (t, y) ∈ [0, T ] ×R, we can conclude that the func-

tion ∂
∂y

yHy is locally bounded if Hyy can be shown to be bounded in (t, y) when
y belongs to a bounded interval. Indeed, by directly differentiating H we obtain

|Hyy | ≤ 1

σ 2(1 − t)

(∫
R

∣∣H(1, z)
∣∣q(

σ 2(1 − t), z − y
)
dz

+
∫
R

∣∣H(1, z)
∣∣ (z − y)2

σ 2(1 − t)
q
(
σ 2(1 − t), z − y

)
dz

)

≤ 2
‖h(z)‖∞
σ 2(1 − T )

,

that is, Hyy is uniformly bounded on [0, T ] ×R. Thus, we have shown that condi-
tion (ii) was satisfied. Since the constant functions solve the (4.13), condition (iii)
is satisfied as well; thus, a fundamental solution, �(t, y; s, z) to (4.13) exists. In
particular, if one considers this PDE with the boundary condition u(T , y) = g(y)

for some bounded g, the solution is given by

u(t, y) =
∫
R

g(z)�(t, y;T , z) dz.

On the other hand, since the SDE (4.1) satisfies the hypotheses of Theorem 5.7.6
in [26] on the time interval [0, T ], u has the following stochastic representation by
this theorem:

u(t, y) = E
[
g(YT )|Yt = y

] =
∫
R

g(z)p(t, y;T , z) dz.

Thus, ∫
R

g(z)p(t, y;T , z) dz =
∫
R

g(z)�(t, y;T , z) dz,
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and since g is arbitrary and both � and p are continuous in their parameters, we
deduce p(t, y;T , z) = �(t, y;T , z) for all 0 ≤ t < T < 1, and thus, it is C1,2 on
[0, T ) ×R for T < 1.

To show that p(t, y;1, z) is C1,2 on [0,1) × R for each z consider (4.13) with
the boundary condition u(T , y) = p(T , y;1, z). Note that u(T , y) is bounded in y

since, due to (4.11), we have

r(t, y;u, z) ≤ e2cCe−B(t,y) = e2cCe(c/σ 2)(yH(t,y)−∫ y
0 H(t,x) dx)

(4.14)
≤ e2cCe(c‖h‖∞/σ 2)|y|,

where the first inequality is due to bounds on Hy(t, y) and the last one due to the
bounds on H(t, y) obtained in Lemma 4.2. Thus, there exists a unique classical
solution, u(t, y), to (4.13), with the boundary condition u(T , y) = p(T , y;1, z),
given by

u(t, y) =
∫
R

p(t, y;T ,x)p(T , x;1, z) dx

by the definition of fundamental solutions. However, by Chapman–Kolmogorov
equations, ∫

R
p(t, y;T ,x)p(T , x;1, z) dx = p(t, y;1, z),(4.15)

which in turn yields that p(t, y;1, z) ∈ C1,2([0, T ) ×R). Since T is arbitrary, we
have p(t, y;1, z) ∈ C1,2([0,1) ×R). �

Having collected all the prerequisites, we can now prove our main theorem.

PROOF OF THEOREM 4.1. In the setting of Lemma 4.2, M defines an equiv-
alent change of measure between the laws of Y and σW . Thus, if we define r(y)

by [see (4.10)]

r(y) := r(0,0;1, y) = EQ

[
M1

∣∣∣W1 = y

σ

]
,(4.16)

then

E
[
g(Y1)

] =
∫
R

g(y)q
(
σ 2, y

)
r(y) dy

and, therefore, the probability density of Y1 under P is given by

q
(
σ 2, y

)
r(y) ≤ q

(
σ 2, y

)
e2cC.(4.17)

The existence of a solution to the system of equations (3.6)–(3.8) will be shown via
a fixed-point argument applied to a certain operator mapping a class of distribution
functions on R into itself.
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Schauder’s fixed-point theorem (see Theorem 7.1.2 in [21]) states that if D is a
closed convex subset of a Banach space and T : D �→ D is a continuous operator,
then it has a fixed point if the space T D is precompact, that is, every sequence in
T D has a subsequence which converges to some element of the Banach space. In
order to apply this theorem, we first need to find a suitable Banach space which
contains a class of probability distribution functions on R that is large enough
to contain the distribution of Y1 where Y is one of the components of the so-
lution to the system of equations (3.6)–(3.8). In view of the above discussion,
the distribution of Y1 will be continuous, in fact it will admit a density. Thus,
we may take Cb(R), the space of bounded continuous functions on R, equipped
with the sup norm as our underlying Banach space and set P as the space of ab-
solutely continuous distribution functions on R, that is, P ∈ P if P is increas-
ing, P(−∞) = 0, P(∞) = 1, and there exists a measurable function P ′ such that
P(y) = ∫ y

−∞ P ′(z) dz. Then we can define the set

D =
{
P ∈ P : P ′(z) ≤ C∗q

(
σ 2, z

)
,∀z ∈R,

∫ ∞
x

(y − x)P ′(y) dy ≥ E

[(
1

C∗ Wσ 2 − x

)+]
,∀x > 0,

−
∫ −x

−∞
(y + x)P ′(y) dy ≥ E

[(
−x − 1

C∗ Wσ 2

)+]
,∀x > 0

}
,

where

C∗ := exp
(

ρ‖f (z)‖∞
N

√
2

π
σ

)
.

The reason for this judicious choice of C∗ will become apparent when we define
the operator T . We will prove the existence of a fixed point in four steps.

Step 1: D is a closed convex set. It is clear that D is convex. To see it is also
closed, suppose that Pn is a sequence of elements in D converging to some el-
ement, P , of the Banach space in the sup norm. Clearly, P is increasing with
P(−∞) = 0 and P(∞) = 1. Moreover, for any x ≤ y in R, it follows from Fa-
tou’s lemma that

0 ≤ P(y) − P(x) = lim
n→∞

∫ y

x
P ′

n(z) dz ≤
∫ y

x
lim sup
n→∞

P ′
n(z) dz,

since each P ′
n is bounded from above by the same integrable function, which in

turn is an upper bound to the positive function lim supn→∞ P ′
n. However, this im-

plies that P is absolutely continuous and, in particular, there exists a function P ′
with 0 ≤ P ′(z) ≤ lim supn→∞ P ′

n(z) ≤ C∗q(σ 2, z) for all z ∈ R.
To complete the proof that D is closed, we need to show∫ ∞

x
(y − x)P ′(y) dy ≥ EQ

[(
1

C∗ Wσ 2 − x

)+]
∀x > 0.
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Since Pn converges P weakly, there exists a probability space supporting random
variables (Yn)n≥0 and Y such that Yn → Y , a.s., Yn has distribution Pn, and Y has
distribution P . Note that one can directly verify that∫

R
(y − x)2Pn(dy) ≤ C∗E

[
(Wσ 2 − x)2]

,

which shows the uniform integrability of the sequence (Yn − x)+. Therefore,∫ ∞
x

(y − x)P (dy) = lim
n→∞

∫ ∞
x

(y − x)Pn(dy) ≥ E

[(
1

C∗ Wσ 2 − x

)+]
.

Similar arguments show the other inequality. Thus, D is closed.
Step 2: Defining the operator T . For any P ∈ D, let H : [0,1] ×R �→ R be the

unique function which solves the following boundary value problem:

Ht + σ 2

2
Hyy = 0,

(4.18)
H(1, y) = f

(
�−1(

P(y)
))

,

where � is the cumulative distribution function of a standard normal random vari-
able. Observe that h(z) := f (�−1(P (z))) is a bounded, increasing function. More-
over, its derivative given by f ′(�−1(P (y)))(�−1)′(P (y))P ′(y) is well defined for
all y ∈ R as P(y) ∈ (0,1) for all P ∈ D and y ∈ R and, therefore, h is also ab-
solutely continuous. Thus, by Lemma 4.2, for all t < 1, 0 < Hy(t, y) ≤ C 1√

1−t
,

where C =
√

2
σ 2π

‖f ‖∞ is independent of the choice of P .

To this H one can associate a unique process Y which solves (4.1) for c = σ 2ρ
2N

and Y1 is a continuous random variable with the probability density q(σ 2, y)r(y),
where r is defined in (4.16). Thus, we can define

T P (y) =
∫ y

−∞
q
(
σ 2, z

)
r(z) dz.

Note that T P belongs to D due to (4.2), (4.3) and (4.17).
Step 3: T is precompact. Since T D is an equicontinuous family of functions,

by a version of the Ascoli–Arzela theorem (see Corollary III.3.3 in [30]), if Pn

is a sequence in T D then it admits a subsequence which converges pointwise to
P ∈ Cb(R). Moreover, this convergence is uniform on every compact subset of R.
This would mean that T D is precompact once we show that the convergence is
uniform over all R.

To do so, let us assume without loss of generality that Pn itself is the convergent
subsequence and consider any ε > 0. Due to the definition of D, there exist x∗ and
x∗ such that

Pn(x) ≤ C∗
∫ x

−∞
q
(
σ 2, y

)
dy ≤ C∗

∫ x∗

−∞
q
(
σ 2, y

)
dy
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= C∗�(x∗) ≤ ε

6
∀x ≤ x∗;

1 − Pn(x) ≤ C∗
∫ ∞
x

q
(
σ 2, y

)
dy ≤ C∗

∫ ∞
x∗

q
(
σ 2, y

)
dy

= C∗�
(−x∗) ≤ ε

6
∀x ≥ x∗.

Since Pn converges to P pointwise, we also have with the same x∗ and x∗ that

P(x) ≤ ε

4
∀x ≤ x∗; 1 − P(x) ≤ ε

4
∀x ≥ x∗.

Since the convergence is uniform on the compact [x∗, x∗], there exist a K such
that for all n ≥ K

sup
x∈[x∗,x∗]

∣∣Pn(x) − P(x)
∣∣ ≤ ε

3
.

Thus, for any n ≥ K we have

sup
x∈R

∣∣Pn(x) − P(x)
∣∣ ≤ sup

x∈[x∗,x∗]
∣∣Pn(x) − P(x)

∣∣ + sup
x∈(−∞,x∗]

(
Pn(x) + P(x)

)
+ sup

x∈[x∗,∞)

(
1 − Pn(x) + 1 − P(x)

) ≤ ε.

Thus, we have shown that the convergence of Pn to P is uniform on R, that is, T D

is precompact in Cb(R) equipped with the sup norm. Hence, Schauder’s fixed-
point theorem yields T has a fixed point provided T is a continuous operator,
which we show next.

Step 4: T is continuous. To this end, let (Pn)n≥1 ⊂ D converge to P ∈ D in
the sup norm. As T Pn and T P belong to D, in view of Problem 14.8(c) in [11],
pointwise convergence of T Pn to T P will imply uniform convergence since T P

is continuous. To each Pn and P , we can associate functions Hn and H , Bn and
B [see (4.7)], and the processes Mn and M from Lemma 4.2.

Pointwise convergence of T Pn to T P will follow immediately once we can
show that for any continuous and bounded function g

lim
n→∞EQ[

g(σW1)M
n
1
] = EQ[

g(σW1)M1
]
.

In view of the uniform bound on Mn and M due to (4.8), the above convergence
will hold if we can show that Mn

1 converges to M1 in Q-probability.
In order to get the estimates to prove this convergence, first note that, due to

Lemma 4.2 for any stopping time, τ , bounded by 1, we have

c

∣∣∣∣∫ τ

0
WsH

n
y (s, σWs) dWs

∣∣∣∣ ≤ K
(
1 + |Wτ |) ≤ K

(
1 + W ∗

1
)
,
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for some K independent of n. This shows that c
∫ t

0 WsH
n
y (s, σWs) dWs is a square

integrable martingale on [0,1] with

c2
∫ 1

0
EQ[

W 2
s

(
Hn

y (s, σWs)
)2]

ds ≤ K
(
1 +EQ(

W ∗
1
)2)

,

where K is a constant independent of n. Let

Nn
t :=

∫ t

0
Ws

{
Hn

y (s, σWs) − Hy(s, σWs)
}
dWs.

Since [recall that B(t, y) is given by (4.7)]

−c

∫ 1

0
WsHy(s, σWs) dWs = B(1, σW1) + c

∫ 1

0

{
Hy(s, σWs) − 1

2
Hy(s,0)

}
ds,

integrating Bn and B by parts we obtain

cNn
1 = c

σ
W1

(
Hn(1, σW1) − H(1, σW1)

) − c

σ 2

∫ σW1

0

{
Hn(1, y) − H(1, y)

}
dy

+ c

∫ 1

0

{
Hy(s, σWs) − Hn

y (s, σWs)
}
ds − c

2

∫ 1

0

{
Hy(s,0) − Hn

y (s,0)
}
ds.

As Hn are uniformly bounded and Hn
y ≤ C 1√

1−t
for t < 1, if we can show that

Hn(1, y) → H(1, y) and Hn
y (t, y) → Hy(t, y) for all y ∈ R and t ∈ [0,1), the

above will immediately imply that Nn
1 converges to 0, Q-a.s. Moreover, it will

also imply convergence in Lp(Q) for all p ∈ [1,∞) in view of the bound obtained
in (4.5). In particular, we will have

lim
n→∞EQ

[∫ 1

0
W 2

s

{
Hn

y (s, σWs) − Hy(s, σWs)
}2

ds

]
= 0.(4.19)

Thus,

lim
n→∞

∫ 1

0
W 2

s

{
Hn

y (s, σWs) − Hy(s, σWs)
}2

ds = 0 in Q-probability.(4.20)

Moreover,∫ 1

0
W 2

s

∣∣Hn
y (s, σWs) − Hy(s, σWs)

∣∣Hy(s, σWs) ds

≤
∫ 1

0
W 2

s

{
Hn

y (s, σWs) − Hy(s, σWs)
}2

ds

∫ 1

0
W 2

s

(
Hy(s, σWs)

)2
ds,

which in turn [since due to (4.5),
∫ 1

0 W 2
s (Hy(s, σWs))

2 ds < ∞ Q-a.s.] implies

lim
n→∞

∫ 1

0
W 2

s

{
Hn

y (s, σWs) − Hy(s, σWs)
}
Hy(s, σWs) ds = 0

(4.21)
in Q-probability.
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Combining (4.20) and (4.21), we can deduce that

lim
n→∞

∫ 1

0
W 2

s

(
Hn

y (s, σWs)
)2

ds =
∫ 1

0
W 2

s

(
Hy(s, σWs)

)2
ds in Q-probability.

Together with Nn
1 → 0, Q-a.s. the above implies Mn

1 → M1, Q-probability.
Thus, it remains to show that Hn(1, y) → H(1, y) and Hn

y (t, y) → Hy(t, y) for
all y ∈ R and t ∈ [0,1). Indeed, limn→∞ Hn(1, y) = limn→∞ f (�−1(Pn(y))) =
f (�−1(P (y))) in view of the continuity of f ◦ �−1 on (0,1) and the fact that
the sequence (Pn(y)) converges to a limit P(y) ∈ (0,1) for any y ∈ R due to the
definition of D.

Next, observe that for t < 1∣∣Hn
y (t, y) − Hy(t, y)

∣∣
≤

∫
R

∣∣Hn(1, z + y) − H(1, z + y)
∣∣ |z|
σ 2(1 − t)

q
(
σ 2(1 − t), z

)
dz.

As Hn and H are bounded by ‖f ‖∞, the convergence to 0 follows from the dom-
inated convergence theorem and that Hn(1, y) → H(1, y) as n → ∞.

Thus, we have verified that T is continuous operator, D is a closed and convex
subset of a Banach space and T D is precompact. Therefore, by Schauder’s fixed-
point theorem, T has a fixed point P , that is, T P = P . For this P , define H as
the solution to (4.18) and Y as the corresponding unique solution to (3.7). Then
(H,Y ) is the solution to the system of equations (3.6)–(3.8).

To complete the proof of the theorem, we need to show that the solution
to (3.7) has a transition density with the required smoothness and positivity
properties. This follows from the Lemma 4.3 once we observe that h(z) :=
f (�−1(P (z))) satisfies the required conditions. It is obvious that h is bounded
(since f is), nonconstant and nondecreasing (as f , � and P are). Moreover,
h′(y) = f ′(�−1(P (y)))(�−1)′(P (y))P ′(y), is well defined for all y ∈ R as
P(y) ∈ (0,1) for all P ∈ D and y ∈ R and, therefore, h is absolutely continu-
ous. Let K ⊂ R be a compact, then since P is continuous, P(z) ∈ K1 for all
z ∈ K , where K1 ⊂ (0,1) is also a compact. As �−1 ∈ C1((0,1)), this implies that
(�−1)′(P (y)) is bounded for all y ∈ K . Similarly, f ′(�−1(P (y))) is bounded for
all y ∈ K . As boundedness of P ′ follows from the fact that P ∈ D, this yields that
h′ is bounded on compacts and, therefore, satisfies the conditions of Lemma 4.3.

�

5. Construction of the equilibrium. Suppose H is the function determined
in Theorem 4.1. As briefly discussed in Section 3, if we can identify an admissible

strategy X such that: (i) α̂ is given by −σ 2ρ
2N

YtHy(t, Yt ), and (ii) X1 satisfies (3.12),
then (H,X) will be a candidate equilibrium in view of Proposition 3.1 once we
show that U(G) is a true FM -martingale. The following theorem gives such an X.
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THEOREM 5.1. Let H and p be the functions defined in Theorem 4.1. Then
there exists a unique process (Yt )t∈[0,1) which solves

dYt = σ dBt +
{
−σ 2ρ

2N
YtHy(t, Yt ) + σ 2 py

p

(
t, Yt ;1,H−1(1,V )

)}
dt,

(5.1)
t ∈ [0, T ],

for all T < 1. Moreover, Y is a (Pv,F I )-semimartingale with Pv(limt→1 Yt =
H−1(1,V )) = 1 for every v ∈ f (R) and

dYt = σ dBY
t − σ 2ρ

2N
YtHy(t, Yt ) dt, t ∈ [0,1]

under FM .

PROOF. We will first show that there exists a unique weak solution to (5.1) on
[0, T ] for any T < 1. Then Proposition IX.3.2 in [39] will imply the uniqueness of
strong solutions since if Y 1 and Y 2 are two strong solutions, then Y 1 −Y 2 satisfies

Y 1
t − Y 2

t =
∫ t

0
b
(
s, Y 1

s , Y 2
s , V

)
ds

for some deterministic function b and, therefore, its local time process at level 0
is identically 0. The strong uniqueness combined with a weak solution will lead to
the existence of a unique strong solution by a result due to Yamada and Watanabe
(see Corollary 5.3.23 in [26]). To show the existence of a weak solution, fix T < 1
and let Nt := p(t, ζt ;1,H−1(1, v)) for t ≤ T where v ∈ R and ζ is the unique
strong solution of

dζt = σ dβt − σ 2ρ

2N
ζtHy(t, ζt ) dt

on [0,1] under a probability measure P̃, where β is a P̃-Brownian motion as es-
tablished in Theorem 4.1. The same theorem also gives p as the transition density
of ζ . Then (Nt)t∈[0,T ] is a strictly positive and bounded martingale with respect to
the natural filtration of ζ as a consequence of Itô formula and the estimates on p

obtained in (4.14). Thus, NT
N0

has expectation 1 under P̃ and defines an equivalent

change of measure on the σ -algebra F ζ
T . Since

dNt = σNt

py

p

(
t, ζt ;1,H−1(1, v)

)
dβt ,

then it follows from Girsanov’s theorem that under the new measure, QT ,

dζt = σ dWt +
{
−σ 2ρ

2N
ζtHy(t, ζt ) + σ 2 py

p

(
t, ζt ;1,H−1(1, v)

)}
dt
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for some QT -Brownian motion. Thus, ζ , as a solution of the above under QT is
a weak solution of (5.1) on [0, T ]. Moreover, the weak uniqueness holds since
the distribution of ζ under QT has a one-to-one correspondence with the dis-
tribution of ζ under the original measure via the change of measure martingale
p(t, ζt ;1,H−1(1, v)). More precisely, for any bounded function F and points
0 = t0 < · · · < tn = T ,

EQT [
F(ζt1, . . . , ζtn)

]
= EP̃

[
F(ζt1, . . . , ζtn)

p(T , ζT ;1,H−1(1, v))

p(0,0;1,H−1(1, v))

]
(5.2)

=
∫
R

· · ·
∫
R

F(y1, . . . , yn)

× p(0,0; t1, y1) · · ·p(tn−1, yn−1; tn, yn)p(T , yn;1,H−1(1, v))

p(0,0;1,H−1(1, v))
dy1 · · · dyn.

Hence, we conclude the existence of a unique strong solution, YT , of (5.1) over
the interval [0, T ] under Pv . Define Y by Yt = YT

t 1t≤T and observe that due to
the uniqueness of strong solutions Y is well defined and is the unique process that
solves (5.1).

Next, we want to extend the process Y to time-1 by considering its limit. This
limit exists in view of Theorem 2.2 in [16]. Note that Assumption 2.2 of [16]
is satisfied since (t, y) �→ p(t, y;u, z) is C1,2 on [0, u) × R and p(t, y;u, z) =
q(σ 2(u− t), z−y)r(t, y;u, z), where q is the transition density of standard Brow-
nian motion and r is a strictly positive function with exponential bounds given
by (4.14), which in particular implies p generates a time inhomogeneous Feller
semigroup. Moreover, the same result also yields Pv(limt→1 Yt = H−1(1,V )) = 1.

To show the semimartingale property of Y let z = H−1(1, v) and recall from
(4.10) that

r(t, y;1, z)

= EQ
y→z
t→1

[
exp

(
− ρ

2N

∫ 1

t
XsHy(s,Xs) dXs − σ 2ρ2

8N2

∫ 1

t
X2

s H
2
y (s,Xs) ds

)]
.

In view of the Markov property of Brownian bridges, we have

r(t,Xt ;1, z)

= EQ0→z
0→1

[
exp

(
− ρ

2N

∫ 1

t
XsHy(s,Xs) dXs

− σ 2ρ2

8N2

∫ 1

t
X2

s H
2
y (s,Xs) ds

)∣∣∣FX
t

]
,

where (FX) is the usual augmentation of the natural filtration of X since
both

∫ 1
t XsHy(s,Xs) dXs and

∫ 1
t X2

s H
2
y (s,Xs) ds are measurable with respect to

σ(Xu;u ∈ [t,1]).
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Therefore,

Lt := r(t,Xt ;1, z) exp
(
− ρ

2N

∫ t

0
XsHy(s,Xs) dXs − σ 2ρ2

8N2

∫ t

0
X2

s H
2
y (s,Xs) ds

)
is a Q0→z

0→1-martingale. Moreover, it is strictly positive due to (4.12). Thus, we can

define P0,z on FX
1 via dP0,z

dQ0→z
0→1

= L1.

Recall that under Q0→z
0→1 X solves the following SDE:

Xt = σWz
t +

∫ t

0

z − Xs

1 − s
ds,

where Wz is a Q0→z
0→1-Brownian motion. Thus, a straightforward application of

Girsanov’s theorem yields that X solves (5.1) once B is replaced with the P0,z-
Brownian motion defined by the Girsanov transform since

dLt

Lt

=
(

rx(t,Xt ;1, z)

r(t,Xt ;1, z)
− σρ

2N
XtHy(t,Xt)

)
dWz

t .

Since semimartingale property is preserved under equivalent changes of measure
and the strong uniqueness holds for the solutions of (5.1), we obtain the desired
semimartingale property of its unique solution.

Having shown the semimartingale property it remains to demonstrate the
claimed representation of Y under FM . Suppose that ξ is a solution of

ξt = σβt −
∫ t

0

σ 2ρ

2N
ξsHy(s, ξs) ds.(5.3)

Then ξ has the transition density p. If one enlarges the filtration of ξ with ξ1, then
under the enlarged filtration ξ has the following decomposition:

dξt = σ dWt +
{
−σ 2ρ

2N
ξtHy(t, ξt ) + σ 2 py

p
(t, ξt ;1, ξ1)

}
dt,

(5.4)
t ∈ [0,1),

where (Wt)t∈[0,1) is a Brownian motion in the enlarged filtration independent of ξ1

(see Theorem 1.6 in [34]).
On the other hand, since E[ξt |F ξ

t ] = ξt for t < 1, we must have

σβt −
∫ t

0

σ 2ρ

2N
ξsHy(s, ξs) ds = E

[
σWt |F ξ

t

] +E

[∫ t

0
σ 2 py

p
(s, ξs;1, ξ1) ds

∣∣∣F ξ
t

]

−
∫ t

0

σ 2ρ

2N
ξsHy(s, ξs) ds.
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Since the projection of a martingale onto a smaller filtration is still a martingale,
from the above equation we conclude that E[∫ t

0 σ 2 py

p
(s, ξs;1, ξ1) ds|F ξ

t ] is an F ξ -
martingale which is equivalent to

E

[∫ u

t
σ 2 py

p
(s, ξs;1, ξ1) ds

∣∣∣F ξ
t

]
= 0 ∀u ∈ [t,1).(5.5)

Observe that by Theorem 4.1 the distribution of ξ1 and that of H−1(1,V ) co-
incide. Since we have established the uniqueness in law of solutions to (5.1) and
V is independent of B , we can conclude that the processes Y and ξ have the same
distribution. Thus, from (5.5) it follows that for u < 1

E

[∫ u

t
σ 2 py

p

(
s, Ys;1,H−1(1,V )

)
ds

∣∣∣FY
t

]
= E

[∫ u

t
σ 2 py

p
(s, Ys;1, Y1) ds

∣∣∣FY
t

]
= 0.

The above implies that E[∫ t
0 σ 2 py

p
(s, Ys;1,H−1(1,V )) ds|FY

t ] is an FY -

martingale. Therefore, Y has the following decomposition with respect to FY :

Yt = Mt −
∫ t

0

σ 2ρ

2N
YsHy(s, Ys) ds, t ∈ [0,1),

where M is an FY -martingale. On the other hand, [M,M]t = [Y,Y ]t = σ 2t . Thus,
by Lévy’s characterisation, Mt = σBY

t . Note that (BY
t )t∈[0,1) is a uniformly inte-

grable martingale; thus, we can define BY
1 = limt→1 BY

t so that (BY
t )t∈[0,1] is a

Brownian motion. This establishes the desired decomposition on [0,1] as Y con-
verges to a finite limit as t → 1. �

Theorem 5.1 in conjunction with Proposition 3.1 establish the existence of an
equilibrium in our model.

THEOREM 5.2. Let H ∗ and p be the functions defined in Theorem 4.1, and

X∗
t =

∫ t

0

{
−σ 2ρ

2N
Y ∗

s H ∗
y

(
s, Y ∗

s

) + σ 2 py

p

(
s, Y ∗

s ;1,H ∗−1(1,V )
)}

ds.

Then (H ∗,X∗) is an equilibrium.
Moreover, under FM the equilibrium demand evolves as

Y ∗
t = σBY

t − σ 2ρ

2N

∫ t

0
Y ∗

s H ∗
y

(
s, Y ∗

s

)
ds.

PROOF. Note that H ∗ is a bounded function being a solution of heat equa-
tion with a bounded terminal condition. Thus, conditions (2.1) and (2.2) are
automatically satisfied. Moreover, Theorem 5.1 yields that X∗ is a (P v,F I )-
semimartingale and Pv(H ∗(1, Y ∗

1 ) = v) = 1. Thus, Proposition 3.1 yields that X

is admissible and optimal strategy for the insider given H ∗.



ASYMMETRIC INFORMATION AND FORWARD–BACKWARD SYSTEMS 2025

Thus, it remains to verify the zero-utility gain condition of the market makers,
that is, to prove that U(G) is an FM -martingale. Recall from Theorem 5.1 that
with this choice of X∗, Y ∗ solves

dYt = σ dBY
t − σ 2ρ

2N
YtH

∗
y (t, Yt ) dt.(5.6)

Thus, Itô’s formula together with the conditions on H ∗ yields

U(Gt) = − exp
(

σρ

N

∫ t

0
Y ∗

s H ∗
y

(
s, Y ∗

s

)
dBY

s − σ 2ρ2

2N2

∫ t

0

(
Y ∗

s H ∗
y

(
s, Y ∗

s

))2
ds

)
.

Clearly, −U(G) is an exponential local martingale.
Next, observe in view of the absolute continuity relationship between the laws

of Y and σW as established in Lemma 4.2 ( 1
M∗

t
)t∈[0,1] is a strictly positive P-

martingale, where

M∗
t = exp

(
− ρ

2N

∫ t

0
Y ∗

s Hy

(
s, Y ∗

s

)
dYs − σ 2ρ2

8N2

∫ t

0

(
Y ∗

s Hy

(
s, Y ∗

s

))2
ds

)
.

Therefore, if we define an equivalent measure, Q, on FY ∗
1 by dP

dQ
= 1

M∗
1

, then

WY := Y ∗
σ

is a Q-Brownian motion. Consequently, U(G) is a P-martingale if and
only if U(G)M∗ is Q-martingale.

On the other hand, a straightforward application of integration by parts formula
yields

d
(−U(Gt)M

∗
t

) = −U(Gt)M
∗
t

σρ

2N
YtHy(t, Yt ) dWY

t ,

that is, −U(G)M∗ is the stochastic exponential of
∫ ·

0
σρ
2N

YtHy(t, Yt ) dWY
t . More-

over, ∣∣∣∣∫ 1

0
YtHy(t, Yt ) dWY

t

∣∣∣∣ ≤ K
(
1 + ∣∣WY

1
∣∣)

by (4.5). Since |WY
1 | has all exponential moments, we conclude that −U(G)M∗ is

a Q-martingale using Kazamaki’s criterion (see, e.g., Theorem III.44 in [38]). �

The above theorem shows that the equilibrium demand process has a drift in its
own filtration. This is in contrast with the other possible generalisations found in
the literature (for the change in the pattern of private information arrival see [5],
for a risk averse insider see [8] and for competition among insiders see [4]) of
the original models of [29] and [2] lead to equilibria with total demand being a
martingale in its own filtration.

Moreover, as Hy > 0 the equilibrium total demand process is mean reverting.
This suggests a theoretical explanation for the emergence of mean reversion in
the specialists’ inventories, which has strong empirical support (see, e.g., [12, 23,
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24] and [33]): The mean reversion appears as a result of the insider’s reaction to
the market maker’s demand for risk sharing. The speed of mean reversion is not
constant and depends on the market makers’ level of effective risk aversion, ρ

N
,

as well as the level of informational asymmetry, σ , in a nontrivial way due to the
definition of Hy . This theoretical implication is in line with the empirical findings
of [23] who observe that the speed of mean reversion depends on the inventory
levels of the market makers in the London Stock Exchange.

Closely related to the observation that the total order has a drift, is the fact
that the equilibrium price is no longer a martingale under the physical measure.
Moreover, Y ∗ and, therefore, H ∗(t, Y ∗

t ) are mean-reverting processes. This mean-
reversion property of Y ∗ also entails that Kyle’s conclusion of constant market
depth, which is the order size necessary to move the prices by one unit, does not
hold in this model. Indeed,

dH ∗
y

(
t, Y ∗

t

) = H ∗
yy

(
t, Y ∗

t

)
σ dBY

t − σ 2ρ

2N
Y ∗

t H ∗
y

(
t, Y ∗

t

)
H ∗

yy

(
t, Y ∗

t

)
dt

implies that H ∗
y (t, Y ∗

t ) is not a martingale since H ∗ is not linear. In particu-
lar, if H ∗ is such that H ∗

yy(1, y) = −H ∗
yy(1,−y) with H ∗

yy(1, y) ≤ 0 for y ≥
0, then yH ∗

yy(t, y) ≤ 0, and thus H ∗
y (t, Y ∗

t ) is a submartingale. Consequently,
E[H ∗

y (t, Y ∗
t )] has an upward slope, that is, the executions costs increase in time

in our model. This is consistent with the empirical findings of U-shaped patterns
of execution costs on NYSE (see [32]).

6. Conclusion and further remarks. We have solved a long-standing open
problem first posed by Subrahmanyam in [40] of existence of an equilibrium in a
financial market with asymmetrically informed traders and risk averse market mak-
ers in a continuous-time version of a model first introduced by Kyle [29]. The equi-
librium turns out to be the solution of a nonstandard FBSDE. We have solved this
FBSDE by transforming it into a forward–backward system of stochastic and par-
tial differential equations and employing a novel application of Schauder’s fixed-
point theorem.

Consistent with the empirical studies on the inventories of market makers we
find that the risk aversion of market makers causes mean reversion in the equilib-
rium total demand (i.e., collective inventory of the market makers). This implies
that the informed trader’s strategy ceases to be inconspicuous and, therefore, pro-
vides the first example of an equilibrium in a Kyle-type model which does not
satisfy inconspicuousness condition. The driving force behind this result is that
the risk aversion of market makers makes them unwilling to bear risk. Instead of
paying the extra compensation for the inventory risk, the informed trader chooses
to absorb a part of large fluctuations in the market makers’ inventories, that is,
participates in a risk sharing.

We also show that the sensitivity of prices to the total order, which is the recip-
rocal of the market depth, can be a sub-martingale for certain model parameters.
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This implies that the execution costs are, on average, increasing toward the end of
a trading period, which is consistent with the empirical results obtained in [32].

Whereas, for general set of the parameters, the reciprocal of the market depth is
not a sub-martingale, it is not a martingale either. This theoretical conclusion is in
discord with the results obtained in [29], as well as in [8], who studies the effect
of risk averse insider on the equilibrium, and in [5], who extend Kyle’s model to
the case when the informed trader receives a fluctuating signal over time. In fact,
Kyle in [29] made a conjecture that:

[· · ·] neither increasing nor decreasing depth is consistent with behavior by the informed
trader which is “stable” enough to sustain an equilibrium. If depth ever increases, the
insider wants to destabilize prices (before the increase in depth) to generate unbounded
profits. If depth ever decreases, the insider wants to incorporate all of his private infor-
mation into the price immediately.

Thus, the results obtained from our model demonstrate that the necessity of
risk sharing between the informed trader and the market makers makes exploita-
tion of systematic movements in market depth unprofitable for the informed trader.
Indeed, if the trader attempts to follow the strategy outlined by Kyle, that is, acquir-
ing a large position when depth is lower in order to liquidate at more favourable
price when depth is higher, she would be moving the total order away from its
mean, leaving the market makers exposed to the risk of large orders. Violation
of risk sharing would cause the market makers to adjust the prices eliminating
favourable liquidation opportunities for the informed trader. Thus, contrary to
Kyle, such a strategy does not lead to unbounded profits.

Moreover, the appearance of systematic changes in market depth as a result
of market makers’ risk aversion demonstrates that competition of the informed
traders, as in [4], is not the only possible mechanism that can make the strategy
proposed by Kyle unprofitable, thus leading to a drift in the reciprocal of the market
depth.

These observations show that a mere introduction of risk averse market makers
to the setting of [29] changes the equilibrium outcome fundamentally.
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