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SUPER-REPLICATION WITH NONLINEAR TRANSACTION COSTS
AND VOLATILITY UNCERTAINTY

BY PETER BANK∗,1, YAN DOLINSKY†,1,2 AND SELIM GÖKAY∗,1

Technische Universität Berlin∗ and Hebrew University†

We study super-replication of contingent claims in an illiquid market
with model uncertainty. Illiquidity is captured by nonlinear transaction costs
in discrete time and model uncertainty arises as our only assumption on stock
price returns is that they are in a range specified by fixed volatility bounds. We
provide a dual characterization of super-replication prices as a supremum of
penalized expectations for the contingent claim’s payoff. We also describe the
scaling limit of this dual representation when the number of trading periods
increases to infinity. Hence, this paper complements the results in [Finance
Stoch. 17 (2013) 447–475] and [Ann. Appl. Probab. 5 (1995) 198–221] for
the case of model uncertainty.

1. Introduction. We study an illiquid discrete-time market with model un-
certainty. As in [11], we consider the case where the size of the trade has an im-
mediate but temporary effect on the price of the asset. This model captures the
classical case of proportional transaction costs as well as other illiquidity models
such as the discrete-time version of the model introduced by Çetin, Jarrow and
Protter in [5] for continuous time. By contrast to [11], our sole assumption on the
price dynamics of the traded security is that the absolute value of the log-returns
is bounded from below and above. This is a natural discrete-time version of the
widely studied uncertain volatility models; see, for example, [8, 22] and [25]. The
paper [10] studies super-replication of game options in such a discrete-time model,
but does not allow for any market frictions.

The benchmark problem in models with uncertain volatilities is the description
of super-replication prices. In our version of such a result in a model with trans-
action costs, we provide a general duality for European options with an upper-
semicontinuous payoff. Specifically, Theorem 2.2 provides a combination of the
dual characterization for super-replication prices in frictionless uncertain volatil-
ity models (see [8]) with analogous duality formulae in binomial markets with
frictions (see [11]). Let us emphasize that, under volatility uncertainty, we do not
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define super-replication prices merely in an almost sure-sense because we actually
insist on super-replication for any possible evolution of stock prices which respects
the specified volatility bounds. Since, in contrast to [11], in our setup the set of all
possible stock price evolutions is uncountable; we cannot find a dominating proba-
bility measure which will give positive weight to every possible evolution of stock
prices. Hence, the duality result of Theorem 2.2 goes beyond the now classical
results for almost sure super-replication, and it complements the findings of [4],
who consider a probabilistically more general setting albeit without frictions. For
a discussion of the fundamental theorem of asset pricing with proportional trans-
action costs under model uncertainty, see [3]. The key observation for the proof
of Theorem 2.2 is that for continuous payoffs one can find approximative discrete
models where classical duality results give us super-replication strategies that can
be lifted to the original setting with uncertain volatilities in a way that allows us to
control the difference in profits and losses.

In Theorem 2.3, we consider the special case of a convex payoff profile. In fric-
tionless models with volatility uncertainty, it is well known from, for example,
[18, 21] or Remark 7.20 in [15] that the super-replication price coincides with the
one computed in the classical model where the volatility always takes the max-
imal value. We show that this result also holds in our framework with nonlinear
transaction costs if these are deterministic.

Finally, we study the scaling limit of our super-replication prices when the num-
ber of trading periods becomes large. Theorem 2.7 describes this scaling limit as
the value of a stochastic volatility control problem on the Wiener space. We use the
duality result Theorem 2.2 and study the limit of the dual terms by applying the
theory of weak convergence of stochastic processes. This extends the approach
taken in [11], since we need to extend Kusuoka’s construction of suitable martin-
gales (see [19], Section 5) to our setting with volatility uncertainty. As a result,
we get an understanding of how Kusuoka’s finding of volatility uncertainty in the
description of the scaling limit is extended to our setting which already starts with
volatility uncertainty. In the special case of a frictionless setup, we recover Peng’s
[23] result that the limit is equal to the payoff’s G-expectation with upper and
lower bounds as in the discrete setup. In setups with market frictions, continuous-
time models are known to produce trivial super-replication prices when one con-
siders proportional transaction costs (cf., e.g., [20] and [24]) or no liquidity effect
at all when one has nonlinear, differentiable transaction costs or market impact;
see [5] or [2]. Our scaling limit, by contrast, gives a value in between these two
extremes and can be viewed as a convex measure of risk for the payoff as in [14]
or [16].

Our approach to the proof of the main results is purely probabilistic and based
on the theory of weak convergence of stochastic processes. This approach allows
us to study a quite general class of path dependent European options, and a general
class of nonlinear transaction costs.
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2. Preliminaries and main results.

2.1. The discrete-time model. Let us start by introducing a discrete time fi-
nancial model with volatility uncertainty. We fix a time horizon N ∈ N and con-
sider a financial market with a riskless savings account and a risky stock. The
savings account will be used as a numeraire, and thus we normalize its value
at time n = 0, . . . ,N to Bn = 1. The stock price evolution starting from s > 0
will be denoted by Sn > 0, n = 0,1, . . . ,N . Hence, by introducing the log-return
Xn � log(Sn/Sn−1) for period n = 1, . . . ,N we can write

Sn = s0 exp

(
n∑

m=1

Xm

)
, n = 0, . . . ,N.(2.1)

Our sole assumption on these dynamics will be that there are volatility bounds
on the stock’s price fluctuations in the sense that the absolute values of these log-
returns are bounded from below and above:

σ ≤ |Xn| ≤ σ , n = 1, . . . ,N,(2.2)

for some constants 0 ≤ σ ≤ σ < ∞. In other words the log-returns will take values
in the path-space

� � �σ,σ �
{
ω = (x1, . . . , xN) ∈ RN : σ ≤ |xn| ≤ σ ,n = 1, . . . ,N

}
and identifying these returns with the canonical process

Xk(ω) � xk for ω = (x1, . . . , xN) ∈ �

we find that (2.1) allows us to view the stock’s price evolution as a process S =
(Sn)n=0,...,N defined on �. Clearly, the canonical filtration

Fn � σ(X1, . . . ,Xn), n = 0, . . . ,N,

coincides with the one generated by S = (Sn)n=0,...,N . Similar models with volatil-
ity uncertainty have been considered in [10].

The aim of the present paper is to study the combined effects of volatility un-
certainty and nonlinear transaction costs. Following [5, 11, 17], we assume these
costs to be given by a penalty function

g : {0,1, . . . ,N} × � ×R →R+,

where g(n,ω,β) denotes the costs (in terms of our numeraire B) of trading β ∈R

worth of stock at time n when the evolution of the stock price is determined by the
returns from ω ∈ �.

ASSUMPTION 2.1. The cost function

g : {0,1, . . . ,N} × � ×R→R+
is (Fn)n=0,...,N -adapted. Moreover, for any n = 0, . . . ,N , the costs g(n,ω,β) are
a nonnegative convex function in β ∈ R with g(n,ω,0) = 0 for any fixed ω ∈ �

and a continuous function in ω ∈ � for any fixed β ∈ R.
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For simplicity of notation, we will often suppress the dependence of costs on
ω and simply write gn(β) for g(n,ω,β). We will proceed similarly with other
functions depending on ω ∈ �.

In our setup, a trading strategy is a pair π = (y, γ ) where y denotes the ini-
tial wealth and γ : {0,1, . . . ,N − 1} × � → R is an (Fn)-adapted process spec-
ifying the number γn = γ (n,ω) of shares held at the beginning of any period
n = 0, . . . ,N − 1 with the stock price evolution given by ω ∈ �. The set of all
portfolios starting with initial capital y will be denoted by A(y).

The evolution of the mark-to-market value Yπ = (Y π
n (ω))n=0,...,N resulting

from a trading strategy π = (y, γ ) ∈ A(y) is given by Yπ
0 = y and the difference

equation

Yπ
n+1 − Yπ

n = γn(Sn+1 − Sn) − gn

(
(γn − γn−1)Sn

)
, n = 0, . . . ,N − 1,

where we let γ−1 � 0. Hence, we start with zero stocks in our portfolio and trad-
ing to the new position γn to be held after time n incurs the transaction costs
gn((γn − γn−1)Sn), which is the only friction in our model. Hence, the value Yπ

n+1
represents the portfolio’s mark-to-market value before the transaction at time n+1
is made. Note that, focussing on the mark-to-market value rather than the liquida-
tion value, we disregard in particular the costs of unwinding any nonzero position
for simplicity.

2.2. Robust super-replication with frictions. The benchmark problem for
models with uncertain volatility is the super-replication of a contingent claim. We
investigate this problem in the presence of market frictions as specified by a func-
tion g satisfying Assumption 2.1. So consider a European option F : RN+1+ →R+
which pays off F(S) when the stock price evolution is S = (Sn)n=0,...,N . The super-
replication price V (F) = V

σ,σ
g (F) is then defined as

V σ,σ
g (F) � inf

{
y ∈ R : ∃π ∈A(y) with Yπ

N (ω) ≥ F
(
S(ω)

) ∀ω ∈ �σ,σ

}
.

We emphasize that we require the construction of a robust super-replication strat-
egy π which leads to a terminal value Yπ

N that dominates the payoff X in any
conceivable scenario ω ∈ �.

Our first result provides a dual description of super-replication prices.

THEOREM 2.2. Let Gn : �×R →R+, n = 0,1, . . . ,N , denote the Legendre–
Fenchel transform (or convex conjugate) of gn, that is,

Gn(α) � sup
β∈R

{
αβ − gn(β)

}
, α ∈ R.

Then, under Assumption 2.1, the super-replication price of any contingent claim
F with upper-semicontinuous payoff function F :RN+1+ →R+ is given by

V (F) = sup
P∈Pσ ,σ

EP

[
F(S) −

N−1∑
n=0

Gn

(
EP[SN |Fn] − Sn

Sn

)]
,



1702 P. BANK, Y. DOLINSKY AND S. GÖKAY

where Pσ,σ denotes the set of all Borel probability measures on � = �σ,σ and
where EP denotes the expectation with respect to such a probability measure P.

The proof of this theorem will be carried out in Section 3.1 below. Observe
that this result is a hybrid of the dual characterization for super-replication prices
in frictionless uncertain volatility models and of analogous duality formulae in
binomial markets with frictions; see [9] and [11], respectively.

2.3. Convex payoff functions. Our next result deals with the special case where
the payoff F is a nonnegative convex function of the stock price evolution S =
(Sn)n=0,...,N . It is well known that in a frictionless binomial model, the price of a
European option with a convex payoff is an increasing function of the volatility.
This implies that super-replication prices in uncertain volatility models coincide
with the replication costs in the model with maximal compatible volatility; see
[21]. The next theorem gives a generalization of this claim for the setup of volatility
uncertainty under friction.

THEOREM 2.3. Suppose that the cost function g = g(n,ω,β) is deterministic
in the sense that it does not depend on ω ∈ �.

Then the super-replication price of any convex payoff F : RN+1+ → R+ is given
by

V σ,σ
g (F) = V g(F),

where V g(F) � V σ,σ
g (F) denotes the super-replication price of F = F(S) in the

Binomial model with frictions for S with volatility σ and cost function g.

PROOF. The relation “≥” holding true trivially, it suffices to construct, for any
ε > 0, a strategy γ which super-replicates F(S) in every scenario from � starting
with initial capital y = ε + V g(F).

The binomial model with volatility σ can be formalized on � � {−1,1}N with
canonical process Xk(ω) � xk for ω = (x1, . . . , xN) ∈ � by letting the stock price
evolution be given inductively by S0 � s0 and Sn � Sn−1 exp(σXn), n = 1, . . . ,N .
With (Fn)n=0,...,N denoting the corresponding canonical filtration, we get from the
definition of V g(F) that there is an (Fn)n=0,...,N -adapted process γ such that with
γ −1 � 0 we have

ε + V g(F) +
N−1∑
n=0

γ n(Sn+1 − Sn) −
N−1∑
n=0

gn

(
(γ n − γ n−1)Sn

) ≥ F(S)(2.3)

everywhere on �.
In view of (2.2), for any ω ∈ � and n = 1, . . . ,N there are unique weights

λ
(+1)
n (ω), λ

(−1)
n (ω) ≥ 0 with λ

(+1)
n (ω) + λ

(−1)
n (ω) = 1 such that

eXn(ω) = λ(+1)
n (ω)eσ + λ(−1)

n (ω)e−σ .(2.4)
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It is readily checked that also the weights

λωn

n (ω) �
n∏

m=1

λ
(ωn

m)
m (ω), ωn = (

ωn
1, . . . ,ω

n
n

) ∈ {−1,+1}n,

sum up to 1. Indeed,

∑
ωn∈{−1,+1}n

λωn

n =
n∏

m=1

(
λ(+1)

m (ω) + λ(−1)
m (ω)

) = 1, n = 1, . . . ,N.(2.5)

Moreover, for n = 1, . . . ,N − 1 we have

λωn

n = λωn

n

N∏
m=n+1

(
λ(+1)

m (ω) + λ(−1)
m (ω)

) = ∑
ωN−n∈{−1+,1}N−n

λ
(ωn,ωN−n)
N ,(2.6)

which in conjunction with (2.4) and the adaptedness of S entails the representation

Sn(ω) = s0

n∏
m=1

(
λ(+1)

m (ω)eσ + λ(−1)
n (ω)e−σ )

(2.7)
= ∑

ωn∈{−1,+1}n
Sn

(
ωn,1, . . . ,1

)
λωn

n (ω) = ∑
ω∈�

Sn(ω)λω
N(ω)

for any n = 1, . . . ,N , ω ∈ �.
Now evaluate (2.3) at ω ∈ �, multiply by λω

N and then take the sum over all
ω ∈ �.

The right-hand side of (2.3) then aggregates to

R �
∑
ω∈�

F
(
S(ω)

)
λω

N ≥ F

( ∑
ω∈�

S(ω)λω
N

)
= F(S),(2.8)

where the estimate follows from (2.5) in conjunction with the convexity of F :
RN+1+ →R and where for the last identity we exploited (2.7).

On the left-hand side of (2.3) the contributions from the constant ε + V g(F)

just reproduce this very constant because of (2.5). Since γ and S are (Fn)n=0,...,N -
adapted, the nth summand in the first sum of (2.3) contributes

In �
∑
ω∈�

γ n(ω)
(
Sn+1(ω) − Sn(ω)

)
λω

N

= ∑
ωn∈{−1,1}n

∑
x∈{−1,1}

(γ nSn)
(
ωn,1, . . . ,1

)(
eσx − 1

)
λωn

n λ
(x)
n+1.

By definition of λ
(±1)
n+1 we have∑

x∈{−1,1}

(
eσx − 1

)
λ

(x)
n+1 = eXn+1 − 1 = (Sn+1 − Sn)/Sn
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which entails

In = ∑
ωn∈{−1,1}n

(γ nSn)
(
ωn,1, . . . ,1

)
λωn

n (Sn+1 − Sn)/Sn

= γn(Sn+1 − Sn),

where the (Fn)n=0,...,N -adapted process γ is given by γ0 � γ 0 and

γn(ω) = ∑
ωn∈{−1,1}n

(γ nSn)
(
ωn,1, . . . ,1

)
λωn

n (ω)/Sn(ω), ω ∈ �,

for n = 1, . . . ,N − 1. In a similar fashion, the nth summand from the second sum
in (2.3) gives

IIn �
∑
ω∈�

gn

((
γ n(ω) − γ n−1(ω)

)
Sn(ω)

)
λω

N

≥ gn

( ∑
ω∈�

(
γ n(ω) − γ n−1(ω)

)
Sn(ω)λω

N

)

= gn

(
(γn − γn−1)Sn

)
,

where the estimate is due to (2.5) and the convexity of gn : R → R and where the
last identity is due to the adaptedness of γ , S and to (2.6). As a consequence, the
left-hand side of (2.3) aggregates in the above manner to

L � ε + V g(F) +
N−1∑
n=0

In −
N−1∑
n=0

IIn

≤ ε + V g(F) +
N−1∑
n=0

γn(Sn+1 − Sn) −
N−1∑
n=0

gn

(
(γn − γn−1)Sn

)
.

In light of our estimate (2.8) for the analogously aggregated right-hand side of (2.3)
this shows that γ super-replicates F(S) with initial capital ε + V g(F). This com-
pletes our proof. �

2.4. Scaling limit. Our last result gives a dual description for the scaling limit
of our super-replication prices when the number of periods N becomes large, stock
returns are scaled by 1/

√
N and earned over periods of length 1/N . The limiting

trading costs will be specified in terms of a function

h : [0,1] × C[0,1] ×R→R+,

(t,w,β) �→ ht (w,β)

such that:

• for any t ∈ [0,1], w ∈ C[0,1], β �→ ht (w,β) is nonnegative and convex with
ht (w,0) = 0;
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• for any β ∈ R the process h(β) = (ht (w,β))t∈[0,1] is progressively measurable
in the sense that ht (w,β) = ht (w̃, β) if w[0,t] = w̃[0,t].
For technical reasons, we were able to establish our scaling limit only for a

suitably truncated penalty function. For a given truncation level c > 0, we consider
the linearly extrapolated costs hc given by

hc
t (w,β) �

{
ht (w,β), for β ∈ Ic(h),

linear extrapolation with slope c beyond Ic(h),

where Ic(h) � {β ∈ R : | ∂h
∂β

| ≤ c} denotes the interval around zero where the slope
of h has not yet exceeded c in absolute value. For a truncated penalty hc, the
dual formula of super-replication prices will only involve measures which satisfy
a certain tightness condition; this allows us to establish the upper bound of our
scaling limit in Section 3.2.2. For the original h (by taking c to infinity), we can
only prove the lower bound of the super-replication prices; the proof for a tight
upper bound remaining an open problem in this case.

The cost for the N period model with returns in

�N �
{
ωN = (x1, . . . , xN) : σ/

√
N ≤ |xn| ≤ σ/

√
N,n = 1, . . . ,N

}
are given by

gN,c
n

(
ωN,β

)
� h

c/
√

N
n/N

(
S

N (
ωN )

, β
)
,(2.9)

where S
N

(ωN) ∈ C[0,1] denotes the continuous linear interpolation in C[0,1] of
the points

S
N

n/N

(
ωN )

� s0 exp

(
n∑

m=1

xm

)
, n = 0, . . . ,N,

for ωN = (x1, . . . , xN) ∈ �N .
The technical assumption for our asymptotics to work out is the following.

ASSUMPTION 2.4. The Legendre–Fenchel transform H : [0,1] × C[0,1] ×
R →R with

Ht(w,α) = sup
β∈R

{
αβ − ht (w,β)

}
, t ∈ [0,1],w ∈ C[0,1], α ∈ R

has polynomial growth in (w,α) uniformly in t in the sense that there are constants
C,p1,p2 ≥ 0 such that

Ht(w,α) ≤ C
(
1 + ‖w‖p1∞

)(
1 + |α|p2

)
, (t,w,α) ∈ [0,1] × C[0,1] ×R.

In addition, H is continuous in (t,w) and essentially quadratic in α asymptotically,
that is, there is a function Ĥ : [0,1] × C[0,1] → R+ such that for any sequence
{(tN ,wN,αN)}N=1,2,... converging to (t,w,α) in [0,1] × C[0,1] ×R we have

lim
N→∞

∣∣NHtN (wN,αN/
√

N) − Ĥt (w)α2∣∣ = 0.
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Let us give two examples.

EXAMPLE 2.5. (i) Proportional transaction costs: Fix c > 0 and consider the
cost functions given by

gN,c
n

(
ωN,β

)
� c√

N
|β|

for our binomial market model with N trading periods. This example was studied
in [19] for binomial models and corresponds in our setup to the case Ĥ = H ≡ 0.

(ii) Quadratic costs. For a given constant � > 0, let

ht (w,β) = �β2.

Fix c > 0 and observe that our truncation hc of h is then

hc(w,β) =

⎧⎪⎪⎨
⎪⎪⎩

�β2, if |β| ≤ c

2�
,

cβ − c2

4�
, else.

Thus, the penalty in the N -step binomial model is given by

gN,c
n

(
ωN,β

) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�β2, if |β| ≤ c

2�
√

N
,

c√
N

|β| − c2

4�N
, else.

Hence, the marginal costs from trading slightly higher volumes are linear for a
small total trading volume and constant for a large one. This example corresponds

to the case where Ht(w,β) = β2

4�
and Ĥt (w) ≡ 1

4�
.

REMARK 2.6. A sufficient condition for a limiting cost process h to satisfy
our Assumption 2.4 is the joint validity of:

(i) there exists ε > 0 such that for any (t,w) ∈ [0, T ] × C+[0, T ], the second
derivative ∂2h

∂β2 (t,w,β) exists for any −εw(t) < β < εw(t), and is continuous at
(t,w,0), and

(ii) we have

∂h

∂β
(t,w,0) ≡ 0 and inf

(t,w)∈[0,T ]×C+[0,T ]
inf|β|<εw(t)

∂2h

∂β2 (t,w,β) > 0.

Indeed, sufficiency of these conditions can be verified by use of a Taylor expansion.

Under Assumption 2.4, the scaling limit for the discrete-time super-replication
prices can be described as follows.
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THEOREM 2.7. Suppose that Assumption 2.4 holds and that σ > 0. Fur-
thermore assume that F : C[0,1] → R+ is continuous with polynomial growth:
0 ≤ F(S) ≤ C(1 + ‖S‖∞)p , S ∈ C[0,1], for some constants C,p ≥ 0.

Then we have

lim
N→∞V

σ/
√

N,σ/
√

N

gN,c (F) = sup
σ∈
(c)

EW

[
F

(
Sσ ) −

∫ 1

0
Ĥt

(
Sσ )

a2(σt ) dt

]
,

where:

• EW denotes the expectation with respect to PW , the Wiener measure on
(C[0,1],B(C[0,1])), for which the canonical process W is a Brownian motion,

• 
(c) is the class of processes σ ≥ 0 on Wiener space which are progressively
measurable with respect to the filtration generated by W and such that

a(σt ) ≤ c

for

a(σ ) �

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

2

σ 2 − σ 2

σ
, 0 ≤ σ ≤ σ ,

0, σ ≤ σ ≤ σ ,

1

2

σ 2 − σ 2

σ
, σ ≤ σ ,

• Sσ denotes the stock price evolution with volatility σ :

Sσ
t � s0 exp

(∫ t

0
σs dWs − 1

2

∫ t

0
σ 2

s ds

)
, 0 ≤ t ≤ 1.

The proof of this result is deferred to Section 3.2. One way to interpret Theo-
rem 2.7 is that it describes the scaling limit of super-replication prices as a con-
vex risk measure for the payoff; see [14] or [16]. The class 
(c) parametrizes the
volatility models which one chooses to take into account and the integral term mea-
sures the relevance one associates with the payoff’s mean under any such model.
From this perspective, the most relevant models are those where the volatility stays
within the prescribed uncertainty region [σ ,σ ] (so that the integral term vanishes).
One also considers models with higher or lower volatilities σt , though, [for as long
as a(σt ) ≤ c], but diminishes their relevance according to the average difference
of their local variances from σ 2 on the low and σ 2 on the high side as measured
by a(σt ). In particular, the scaling limit of our super-replication prices is bounded
from below by the G-expectation supσ∈[σ ,σ ]EW [F(Sσ )]. In the frictionless case

(where h ≡ 0, Ĥ ≡ ∞), the penalty for choosing a volatility model with values
outside the interval [σ,σ ] is infinite and we recover the well-known frictionless
characterization of super-replication prices under uncertainty as the payoff’s G-
expectation.
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3. Proofs. In this section, we carry out the proofs of Theorems 2.2 and 2.7.

3.1. Proof of Theorem 2.2. Theorem 2.2 is concerned with the identity
V (F) = U(F) where

U(F) � sup
P∈Pσ ,σ

EP

[
F(S) −

N−1∑
n=0

Gn

(
EP[SN |Fn] − Sn

Sn

)]
.

As a first step, we note the following.

LEMMA 3.1. For any measurable F : RN+1+ → R+, we have that V (F) ≥
U(F).

PROOF. Let π = (y, γ ) super-replicate F(S). Then we have

F(S) ≤ Yπ
N = y +

N−1∑
n=0

(
γn(Sn+1 − Sn) − gk

(
(γn − γn−1)Sn

))

= y +
N−1∑
n=0

(
(γn − γn−1)(SN − Sn) − gn

(
(γn − γn−1)Sn

))
.

Taking (conditional) expectations with respect to any P ∈Pσ,σ , this shows that

EP

[
F(S)

] ≤ y +EP

[
N−1∑
n=0

(γn − γn−1)
(
EP[SN |Fn] − Sn

) − gn

(
(γn − γn−1)Sn

)]

= y +EP

[
N−1∑
n=0

(γn − γn−1)Sn

EP[SN |Fn] − Sn

Sn

− gn

(
(γn − γn−1)Sn

)]

≤ y +EP

[
N−1∑
n=0

Gn

(
EP[SN |Fn] − Sn

Sn

)]
,

where the final estimate follows from the definition of the dual functions Gn, n =
0, . . . ,N .

Since this holds for arbitrary P ∈ Pσ,σ and any initial wealth y for which we
can find a super-replicating strategy, the preceding estimate yields V (F) ≥ U(F).

�

We next observe that an identity analogous to U(F) = V (F) holds for multino-
mial models.

LEMMA 3.2. For k ∈ {1,2, . . .} consider the finite set

�k �
{
x ∈ � : |xi | = j

k
σ +

(
1 − j

k

)
σ for some j ∈ {0, . . . , k}

}
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and let Pk
σ ,σ be the subset of Pσ,σ which contains those discrete probability mea-

sures that are supported by �k .
Then we have

V k(F) = Uk(F),

where

V k(F) = inf
{
y : Y (y,γ )

N (ω) ≥ F
(
S(ω)

) ∀ω ∈ �k for some strategy γ
}

and

Uk(F) = sup
P∈Pk

σ ,σ

EP

[
F(S) −

N−1∑
n=0

Gn

(
EP[SN |Fn] − Sn

Sn

)]
.

PROOF. For k = 1, that is, in the binomial case, this is just Theorem 3.1
in [11]. This result is proved by observing that the identity can be cast as a fi-
nite dimensional convex duality claim. The same reasoning actually applies to the
multinomial setup with k > 1 as well. This establishes our claim. �

In a third step, we argue how to pass to the limit k ↑ ∞, first for continuous F.

LEMMA 3.3. With the notation of Lemma 3.2, we have

Uk(F) ≤ U(F), k = 1,2, . . . .(3.1)

If F is continuous, we have furthermore

lim inf
k↑∞ V k(F) ≥ V (F).(3.2)

PROOF. Estimate (3.1) is immediate from the definitions of Uk(F) and U(F)

as Pk
σ ,σ ⊂Pσ,σ .

To prove (3.2) take, for k = 1,2, . . . , a strategy γ̃ k such that Y
V k(F)+1/k,γ̃ k

N ≥
F(S) on �k . We will show below that without loss of generality we can assume
that the sequence of γ̃ ks is uniformly bounded, that is,∣∣γ̃ k

∣∣ ≤ C for some constant C > 0.(3.3)

Now consider the strategies γ k � γ̃ k ◦ pk where pk : � → �k is the projection
which maps ω = (x1, . . . , xN) to pk(ω) = ω̃ � (x̃1, . . . , x̃N ) ∈ �k with

x̃i � max
{
x ≤ xi : |x| = j

k
σ +

(
1 − j

k

)
σ for some j ∈ {0, . . . , k}

}
.
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For any initial capital y, we get

Y
y,γ k

N (ω) − Y
y,γ̃ k

N (ω̃)

=
N−1∑
n=0

γ̃ k
n (ω̃)

((
Sn+1(ω) − Sn(ω)

) − (
Sn+1(ω̃) − Sn(ω̃)

))

−
N−1∑
n=0

(
gn

(
ω,

(
γ̃ k
n (ω̃) − γ̃ k

n−1(ω̃)
)
Sn(ω)

)

− gn

(
ω̃,

(
γ̃ k
n (ω̃) − γ̃ k

n−1(ω̃)
)
Sn(ω̃)

))
.

Because |γ̃ k| ≤ C uniformly in k = 1,2, . . . , the first of these two sums has abso-
lute value less than

2C
N−1∑
n=0

w
(
Sn, |ω − ω̃|),

where for any function f we let w(f, δ), δ > 0, denote the modulus of continuity
over its domain. Similarly, we get for the second sum that its absolute value does
not exceed

N−1∑
n=0

w
(
gn|

�×[−2Cs0eσn,2Cs0eσn], |ω − ω̃| + 2Cw
(
Sn, |ω − ω̃|))

.

By continuity of S and gn, n = 0, . . . ,N − 1, both of these bounds tend to 0 as
|ω − ω̃| → 0. It follows that there are εk ↓ 0 as k ↑ ∞ such that

Y
y,γ̃ k

N (ω̃) ≤ Y
y,γ k

N (ω) + εk for all |ω − ω̃| ≤ 1/k, y ∈ R.

By assumption, F is also continuous and so we get

F(S)(ω) ≤ F(S)(ω̃) + w
(
F(S), |ω − ω̃|)

≤ Y
V k(F)+1/k,γ̃ k

N (ω̃) + w
(
F(S), |ω − ω̃|)

≤ Y
V k(F)+1/k,γ k

N (ω) + εk + w
(
F(S),1/k

)
.

It follows that V (F) ≤ V k(F) + 1/k + εk + w(F(S),1/k) which implies our
claim (3.2).

It remains to prove the uniform boundedness (3.3) of the sequence (γ̃ k)k=1,2,....
Clearly, yk � V k(F) + 1/k ≤ A, k = 1,2, . . . , for some A > 0. For any π̃ k =
(yk, γ̃ k), k = 1,2, . . . , we will prove by induction over n that

Y π̃k

n (ω̃) ≤ A
(
1 + eσ )n and

∣∣γ̃ k
n (ω̃)

∣∣ ≤ A(1 + eσ )n

(1 − e−σ )Sn(ω̃)
(3.4)
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for any ω̃ = (x̃1, . . . , x̃N ) ∈ �k and n = 0,1, . . . ,N . Since Sn ≥ s0e
−σN , our

claim (3.4) then holds for C � A(1 + eσ )N/((1 − e−σ )s0e
−σN).

Since each π̃ k super-replicates a positive claim, we must have Y π̃k

1 ≥ 0 in any
possible scenario. In particular, we have

yk + γ̃ k
0 s0

(
eσ − 1

) ≥ 0 and yk + γ̃ k
0 s0

(
e−σ − 1

) ≥ 0

which allows us to conclude that |γ̃ k
0 | ≤ A

s0(1−e−σ )
. Thus, (3.4) holds for n = 0.

Next, assume that (3.4) holds for n and let us prove it for n+1. From the induction
assumption, we get

Y π̃k

n+1(ω̃) ≤ Y π̃k

n (ω̃) + γ̃ k
n (ω̃)

(
Sn+1(ω̃) − Sn(ω̃)

)
≤ A

(
1 + eσ )n + A(1 + eσ )n

(1 − e−σ )Sn(ω̃)
Sn(ω̃)

(
eσ − 1

) = A
(
1 + eσ )n+1

,

as required. Again, the portfolio valued at time n + 2 should be nonnegative, for
any possible scenario. Thus,

Y π̃k

n+1(ω̃) + γ̃ k
n+1(ω̃)Sn+1(ω̃)

(
eσ − 1

) ≥ 0

and

Y π̃k

n+1(ω̃) + γ̃ k
n+1(ω̃)Sn+1(ω̃)

(
e−σ − 1

) ≥ 0

and so,

∣∣γ̃ k
n+1(ω̃)

∣∣ ≤ Y π̃k

n+1(ω̃)

(1 − e−σ )Sn+1(ω̃)
≤ A(1 + eσ )n+1

(1 − e−σ )Sn+1(ω̃)
.

This completes the proof of (3.4). �

It is immediate from Lemmas 3.1–3.3 that V (F) = U(F) for continuous func-
tions F. For upper-semicontinuous F, we can find continuous functions Fk with
sup� F(S) ≥ Fk(S) ≥ F(S) such that

lim sup
k↑∞,ωk→ω

Fk(
S(ωk)

) ≤ F
(
S(ω)

)
for any ω ∈ �; see, for example, Lemma 5.3 in [12]. The proof of Theorem 2.2
will thus follow from the series of inequalities

V (F) ≥ U(F) ≥ lim sup
k↑∞

U
(
Fk) = lim sup

k↑∞
V

(
Fk) ≥ V (F),

where the first inequality is due to Lemma 3.1, the last holds because Fk ≥ F and
the identity follows because our claim is already established for continuous Fk .
Hence, the only estimate still to be shown is the second one.
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LEMMA 3.4. If F is approximated by Fk , k = 1,2 . . . , as above we have

U(F) ≥ lim sup
k↑∞

U
(
Fk)

.

PROOF. Without loss of generality, we can assume that (U(Fk))k=1,2,... con-
verges in R. By definition of U(Fk), there is Pk ∈ Pσ,σ such that, for k = 1,2, . . . ,

U
(
Fk) − 1

k
≤ EPk

[
Fk(S) −

N−1∑
n=0

Gn

(
EPk [SN |Fn] − Sn

Sn

)]
.(3.5)

We wish to show that the lim sup of the right-hand side of (3.5) as k ↑ ∞ is not
larger than U(F). To this end, denote by � the set of Borel probability measures
on � × [0, s0e

σN ]N . Since � × [0, s0e
σN ]N is compact, so is � when endowed

with the weak topology. Now consider the sequence of probabilities measures in
� obtained by considering the law of

Zk �
(
X,EPk [SN ],EPk [SN |F1], . . . ,EPk [SN |FN−1])

under Pk for k = 1,2, . . . . Due to Prohorov’s theorem, by possibly passing to a
subsequence, we can assume without loss of generality that this sequence con-
verges weakly. By Skorohod’s representation theorem, there thus exists a prob-
ability space (�̂, F̂, P̂) with a P̂-almost surely convergent sequence of random
variables Ẑk , k = 1,2, . . . , taking values in � × [0, s0e

σN ]N , whose laws under
P̂ coincide, respectively, with those of Zk under Pk , k = 1,2, . . . . Let Ẑ∞ denote
the P̂-a.s. existing limit of Ẑk , k = 1,2, . . . , and write it as

Ẑ∞ = (
X̂∞, Y0, . . . , YN−1

)
.

We will show that

E
P̂

[
SN

(
X̂∞)|X̂∞

1 , . . . , X̂∞
n

] = E
P̂

[
Yn|X̂∞

1 , . . . , X̂∞
n

]
, n = 0, . . . ,N.(3.6)

By construction of Ẑk , we have for the right-hand side of (3.5):

EPk

[
Fk(S) −

N−1∑
n=0

Gn

(
X,

EPk [SN |Fn] − Sn

Sn

)]

= E
P̂

[
Fk(

S
(
X̂k)) −

N−1∑
n=0

Gn

(
X̂k,

E
P̂
[SN(X̂k)|X̂k

1, . . . , X̂
k
n] − Sn(X̂

k)

Sn(X̂k)

)]
.

The P̂-a.s. convergence of Ẑk and the construction of the sequence of Fk imply
that the lim supk↑∞ of the term inside this last expectation is P̂-a.s. not larger than

F
(
S

(
X̂∞)) −

N−1∑
n=0

Gn

(
X̂∞,

Yn − Sn(X̂
∞)

Sn(X̂∞)

)
,
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where we used the lower semi-continuity of Gn. Because of the boundedness of
F on compact sets and because G ≥ 0, it then follows by Fatou’s lemma that the
lim sup of the right-hand side of (3.5) is not larger than

E
P̂

[
F

(
S

(
X̂∞)) −

N−1∑
n=0

Gn

(
X̂∞,

Yn − Sn(X̂
∞)

Sn(X̂∞)

)]
.

From the definitions it follows that Gn(ω,α) is adapted and Gn(ω, ·) is convex.
This together with the Jensen inequality and (3.6) yields that for any n < N

E
P̂

[
Gn

(
X̂∞,

Yn − Sn(X̂
∞)

Sn(X̂∞)

)∣∣∣X̂∞
1 , . . . , X̂∞

n

]

≥ Gn

(
X̂∞,

E
P̂
[SN(X̂∞)|X̂∞

1 , . . . , X̂∞
n ] − Sn(X̂

∞)

Sn(X̂∞)

)
.

We conclude that the lim sup of the right-hand side of (3.5) is not larger than

E
P̂

[
F

(
S

(
X̂∞)) −

N−1∑
n=0

Gn

(
X̂∞,

E
P̂
[SN(X̂∞)|X̂∞

1 , . . . , X̂∞
n ] − Sn(X̂

∞)

Sn(X̂∞)

)]
.

Since the distribution of X̂∞ is an element in Pσ,σ , this last expectation is not
larger than U(F) as we had to show.

It remains to establish (3.6). Let n < N and let f : Rn → R be a continuous
bounded function. From the dominated convergence theorem, it follows that

E
P̂

[
Ynf

(
X̂∞

1 , . . . , X̂∞
n

)] = lim
k→∞E

P̂

[
E
P̂

[
SN

(
X̂k)|X̂k

1, . . . , X̂
k
n

]
f

(
X̂k

1, . . . , X̂
k
n

)]
= lim

k→∞E
P̂

[
SN

(
X̂k)

f
(
X̂k

1, . . . , X̂
k
n

)]
= E

P̂

[
SN

(
X̂∞)

f
(
X̂∞

1 , . . . , X̂∞
n

)]
.

Thus, by applying standard density arguments we obtain (3.6). This completes our
proof. �

3.2. Proof of Theorem 2.7. For the proof of the asserted limit,

lim
N→∞V

σ/
√

N,σ/
√

N

gN,c (F) = sup
σ∈
(c)

EW

[
F

(
Sσ ) −

∫ 1

0
Ĥt

(
Sσ )

a2(σt ) dt

]
(3.7)

we first have to go through some technical preparations in Section 3.2.1 before we
can establish “≤” and then “≥” in (3.7) in Sections 3.2.2 and 3.2.3, respectively.
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3.2.1. Technical preparations. Let us start by recalling that, for N = 1,2, . . . ,

�N = {
ωN = (x1, . . . , xN) : σ/

√
N ≤ |xn| ≤ σ/

√
N,n = 1, . . . ,N

}
allows for the definition of the canonical process

XN
n

(
ωN ) = xn for n = 1, . . . ,N,ωN = (x1, . . . , xN) ∈ �N.

We thus can consider the canonical filtration

FN
n � σ

(
XN

m,m = 1, . . . , n
)
, n = 0, . . . ,N,

which clearly is the same as the one generated by

SN
n = s0 exp

(
n∑

m=1

Xm

)
, n = 0, . . . ,N,

since

XN
n = lnSN

n − lnSN
n−1, n = 1, . . . ,N.

It will be convenient to let, for a vector y = (y0, . . . , yN) ∈ RN+1, the func-
tion y ∈ C[0,1] denote the continuous linear interpolation on [0,1] determined by
yn/N = yn, n = 0, . . . ,N . This gives us, in particular, the continuous time analog

(S
N

t )0≤t≤1 of (SN
n )n=0,...,N .

Our first observation is that the continuity of F allows us to write the supremum
in (3.7) in different ways.

LEMMA 3.5. Let

R � sup
σ∈
(c)

EW

[
F

(
Sσ ) −

∫ 1

0
Ĥt

(
Sσ )

a2(σt ) dt

]

denote the right-hand side of (3.7).

(i) We have

R = sup
P∈Pσ ,σ ,c

EP

[
F(S) −

∫ 1

0
Ĥt (S)a2

(√
d〈S〉t
dt

/S2
t

)
dt

]
,(3.8)

where Pσ,σ ,c denotes the class of probabilities P on (C[0,1],B(C[0,1])) under
which the coordinate process S = (St )0≤t≤1 is a strictly positive martingale start-
ing at S0 = s0 whose quadratic variation is absolutely continuous with

a

(√
d〈S〉t
dt

/S2
t

)
≤ c, 0 ≤ t ≤ 1,P-almost surely.

(ii) The supremum defining R does not change when we take it over 
̃(c) ⊂

(c), the class of progressively measurable processes σ̃ : [0,1] × C[0,1] → R+
on the Wiener space (C[0,1],B(C[0,1]),PW) such that:
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• there is δ > 0 such that

σ(σ − 2c)+ + δ ≤ σ̃ 2 ≤ σ(σ + 2c) − δ(3.9)

uniformly on [0,1] × C[0,1] and such that, in addition,

σ̃ ≡ σ on [1 − δ,1] × C[0,1].(3.10)

• σ̃ is Lipschitz continuous on [0,1] × C[0,1].

PROOF. The proof is done similar to the proof of Lemmas 7.1–7.2 in [11].
�

The following technical key lemma can be viewed as an adaption of Kusuoka’s
results from [19] on super-replication with proportional transaction costs to our
uncertain volatility setting with nonlinear costs.

LEMMA 3.6. Under the assumptions of Theorem 2.7 the following holds true:

(i) Let c > 0 and, for N = 1,2, . . . , let QN be a probability measure on
(�N,FN

N ) for which

MN
n � EQN [

SN
N |FN

n

]
, n = 0, . . . ,N,(3.11)

is close to SN in the sense that QN -almost surely∣∣∣∣M
N
n − SN

n

SN
n

∣∣∣∣ ≤ c√
N

, n = 0, . . . ,N.(3.12)

Then we have

sup
N=1,2,...

EQN

[(
max

n=0,...,N
SN

n

)p]
< ∞ for any p > 0(3.13)

and, with

QN
n �

n∑
m=1

(
XN

m

)2 + 2
n∑

m=1

MN
m − SN

m

SN
m

XN
m, n = 0, . . . ,N,(3.14)

there is a subsequence, again denoted by N , such that, for N ↑ ∞,

Law
(
S

N
,M

N
,Q

N |QN ) ⇒ Law
(
S,S,

∫ .

0

d〈S〉s
S2

s

∣∣∣P)
,(3.15)

where P is a probability measure in Pσ,σ ,c, S is as in Lemma 3.5(i), and where,

as before, S
N

etc. denote the continuous interpolations on [0,1] induced by the
vector SN = (SN

n )n=0,...,N etc.
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(ii) For any c > 0 and σ̃ ∈ 
̃(c) as in Lemma 3.5(ii), there exists a sequence of
probability measures QN , N = 1,2, . . . , as in (i) such that the weak convergence
in (3.15) holds with P � Law(Sσ̃ |PW). In addition, we get the weak convergence
(as N ↑ ∞)

Law
(
S

N
,M

N
,
√

N
|MN − SN |

SN

∣∣∣QN

)
⇒ Law

(
Sσ̃ , Sσ̃ , a(σ̃ )|PW )

.(3.16)

PROOF. Let us first focus on claim (i). It obviously suffices to prove (3.13)
only for p ∈ {1,2, . . .}. For this, we proceed similar to Kusuoka for his claim (4.23)
in [19] and write

(
MN

n+1
)p = (

MN
n

)p(
1 + MN

n+1 − MN
n

MN
n

)p

= (
MN

n

)p(
1 +

p∑
j=1

(
p

j

) (
MN

n+1 − MN
n

MN
n

)j
)
.

Now observe that, when taking the QN -expectation, the contribution from the sum-
mand for j = 1 can be dropped since it has vanishing FN

n -conditional expectation
due to the martingale property of MN under QN . From (3.12) and SN

n+1/S
N
n =

exp(XN
n ) ∈ [e−σ/

√
N, eσ/

√
N ], it follows that MN

n+1/M
N
n = 1 + O(1/

√
N) where

the random O(1/
√

N)-term becomes small uniformly in n and ωN . Therefore, the
summands for j = 2, . . . , p are uniformly of the order O(1/N). Thus, we obtain

EQN

[(
MN

n+1
)p] = (

1 + O(1/N)
)
EQN

[(
MN

n

)p]
and, so upon iteration,

EQN

[(
MN

N

)p] = (
1 + O(1/N)

)N (
MN

0
)p

.

Clearly, (1 + O(1/N))N is bounded in N . The same holds for MN
0 = s0(1 +

O(1/
√

N), where we used (3.12)) and SN
0 = s0. Hence,

sup
N=1,2,...

EQN

[(
MN

N

)p]
< ∞

which by Doob’s inequality entails that even

sup
N=1,2,...

EQN

[(
max

n=0,...,N
MN

n

)p]
< ∞.(3.17)

Because of (3.12), this yields our claim (3.13).

Let us next focus on Law(M
N |QN)N=1,2,... for which we will verify Kol-

mogorov’s tightness criterion (see [6]) on C[0,1]. To this end, recall that
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MN
n+j /M

N
n+j−1 − 1 = O(1/

√
N) and so the quadratic variation of MN satisfies

〈
MN 〉

n+l − 〈
MN 〉

n

=
l∑

j=1

EQN

[(
MN

n+j − MN
n+j−1

)2|FN
n+j−1

]

=
(

max
0≤n≤N

MN
n

)2
O(l/N).

From the Burkholder–Davis–Gundy inequality and the bound (3.17) we thus get

EQN

[(
MN

n+l − MN
n

)4] = O
(
(l/N)2)

which readily gives Kolmogorov’s criterion for our continuous interpolations M
N

,
N = 1,2, . . . .

Having established tightness, we can find a subsequence, again denoted by N ,

such that Law(M
N |QN)N=1,2,... converges to the law of a continuous process M

on a suitable probability space (�̂, F̂, P̂). We will show next that this process M

is a strictly positive martingale. In fact, by Skorohod’s representation theorem, we
can assume that there are processes M̂N , N = 1,2, . . . , on (�̂, F̂, P̂) with

Law
(
M

N |QN ) = Law
(
M̂N |P̂)

which converge P̂-almost surely to M as N ↑ ∞. It is then immediate from (3.17)
that the martingale property of MN under QN gives the martingale property of
M̂ under P̂. To see that M is strictly positive, we follow Kusuoka’s argument
for (4.24) and (4.25) in his paper [19] and establish

sup
N=1,2,...

EQN

[
max

n=0,...,N

∣∣lnMN
n

∣∣2]
< ∞(3.18)

since this entails the P̂-integrability of max0≤t≤1 | lnMt | by Fatou’s lemma.

For (3.18), recall that MN
m /MN

m−1 = 1 + O(1/
√

N) uniformly in m and ωN . This
allows us to use Taylor’s expansion to obtain

lnMN
m − lnMN

m−1 = MN
m − MN

m−1

MN
m−1

+ O(1/N).

Upon summation over m = 1, . . . , n, this gives in conjunction with MN
0 = s0(1 +

O(1/
√

N)):

max
n=0,...,N

∣∣lnMN
n

∣∣ ≤ max
n=0,...,N

∣∣∣∣∣
n∑

m=1

MN
m − MN

m−1

MN
m−1

∣∣∣∣∣ + O(1).
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Hence,

EQN

[
max

n=0,...,N

∣∣lnMN
n

∣∣2]
≤ 2EQN

[
max

n=0,...,N

∣∣∣∣∣
n∑

m=1

MN
m − MN

m−1

MN
m−1

∣∣∣∣∣
2]

+ O(1)

≤ 8EQN

[
N∑

m=1

(
MN

m − MN
m−1

MN
m−1

)2
]

+ O(1),

where for the second estimate we used Doob’s inequality for the martingale given
by the sum for which we take the maximum in the above expression. Recalling
again that MN

m /MN
m−1 − 1 = O(1/

√
N) uniformly in m and ωN the above expec-

tation is of order O(1) and we obtain (3.18).
Let us finally turn to the weak convergence (3.13) and introduce, for N =

1,2, . . . , the auxiliary discrete stochastic integrals

YN
n �

n∑
m=1

MN
m − MN

m−1

SN
m−1

, n = 0, . . . ,N.

By applying Theorem 4.3 in [13], (3.12)–(3.13) and the already established weak

convergence of Law(M
N |QN)N=1,2,... on C[0,1], we deduce the weak conver-

gence

Law
((

1

SN[Nt]
,MN[Nt], YN[Nt]

)
0≤t≤1

∣∣∣QN

)
(3.19)

⇒ Law
((

1

Mt

,Mt,Yt

)
0≤t≤1

∣∣∣P̂)
as N ↑ ∞

on the Skorohod space D[0,1]×D[0,1]×D[0,1] where Y �
∫ .

0 dMs/Ms . Hence,
M = M0 exp(Y − 〈Y 〉/2) and, in particular, 〈lnM〉 = 〈Y 〉. Moreover, again by
Skorohod’s representation theorem, we can assume that there are processes 1/ŜN ,
M̂N and Ŷ N on (�̂, F̂ , P̂) whose joint law under P̂ coincides with that in (3.19) and
which converge P̂-almost surely to 1/M , M and Y , respectively. Now, recalling
that |XN

m | ≤ σ/
√

N we can Taylor expand ex = 1 + x + x2/2 + O(x3) so that
with (3.12) we can write

MN
m − MN

m−1

SN
m−1

=
(

1 + MN
m − SN

m

SN
m

)
eXN

m − MN
m−1

SN
m−1

= MN
m

SN
m

− MN
m−1

SN
m−1

+ XN
m + 1

2

(
XN

m

)2 + MN
m − SN

m

SN
m

XN
m

+ O
(
1/

√
N

3)
.
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Thus, with QN as defined in (3.14), we obtain upon summing over m = 1, . . . , n:

YN
n = MN

n

SN
n

− MN
0

SN
0

+ lnSN
n − lnSN

0 + 1

2
QN

n + O(1/
√

N).

In terms of Ŷ N , M̂N and Q̂N � (QN[Nt])0≤t≤1 this amounts to

Ŷ N
t = M̂N

t

ŜN
t

− M̂N
0

ŜN
0

+ ln ŜN
t − ln s0 + 1

2
Q̂N

t + O(1/
√

N)

for t ∈ {0,1/N, . . . ,1}. Since all other terms in this expression converge P̂-almost
surely as N ↑ ∞, so does Q̂N and its limit is given by

lim
N

Q̂N
t = 2(Yt − lnMt + ln s0) = 〈Y 〉t = 〈lnM〉t , 0 ≤ t ≤ 1.

Now, fix 0 ≤ s < t ≤ 1 and observe that

〈lnM〉t − 〈lnM〉s = lim
N

(
Q̂N

t − Q̂N
s

)

= lim
N

∑
[Ns]<n≤[Nt]

X̂N
n/N

(
X̂N

n/N + 2
M̂n

n/N − ŜN
n/N

ŜN
n/N

)

∈ [
σ(σ − 2c)+(t − s), σ (σ + 2c)(t − s)

]
.

Hence, 〈lnM〉 is absolutely continuous with density

d〈lnM〉t
dt

∈ [
σ(σ − 2c)+, σ (σ + 2c)

]
, 0 ≤ t ≤ 1,

which readily implies

a

(√
d〈lnM〉t

dt

)
≤ c.

It thus follows that P � Law(M|P̂) lies in the class Pσ,σ ,c as considered in
Lemma 3.5(i). By the construction and P̂-almost sure convergence of ŜM , M̂N ,
Q̂N , this proves (3.15) for this P.

Let us now turn to the proof of item (ii) of our lemma and take a σ : [0,1] ×
C[0,1] → R from the class 
̃(c) introduced in Lemma 3.5. Fix N ∈ {1,2, . . .} and
define on �N the processes σN , κN , BN and ξN by the following recursion:

σN
0 � σ ∨ σ̃0(0) ∧ σ, BN

0 � 0

and, for n = 1, . . . ,N ,

σN
n � σ ∨ σ̃(n−1)/N

(
B

N ) ∧ σ ,
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κN
n � 1

2

( σ̃ 2
(n−1)/N(B

N
)

(σN
n )2 − 1

)
,

ξN
n �

√
N

lnSN
n − lnSN

n−1

σN
n−1

= √
NXN

n /σN
n ,

BN
n � BN

n−1 + exp((1 + κN
n )XN

n − κN
n−1X

N
n−1) − 1√

1 + 2κN
n σN

n

.

Observe that the progressive measurability of σ̃ ensures that its evaluation in the
definition of σN

n and κN
n depends on BN = (BN

m )m=0,...,N only via its already
constructed values for m = 0, . . . , n − 1.

Next, define the process qN by

qN
n = exp(κN

n−1X
N
n−1) − exp(−(1 + κN

n )σN
n /

√
N)

exp((1 + κN
n )σN

n /
√

N) − exp(−(1 + κN
n )σN

n /
√

N)
.(3.20)

Consider the probability measure PN on (�N,FN
N ) for which the random variables

ξN
1 , . . . , ξN

N are i.i.d. with PN(ξN
1 = 1) = PN(ξN

1 = −1) = 1/2. From (3.10), it
follows that there exists ε > 0 for which κN

n > ε − 1/2. Thus |BN
n − BN

n−1| =
O(N−1/2) and also |κN

n − κN
n−1| = O(N−1/2) because of the Lipschitz continuity

of σ̃ . We conclude that, for sufficiently large N , qN
n ∈ (0,1) PN -almost surely. For

such N we consider QN given by the Radon–Nikodym derivatives

dQN

dPN

∣∣∣
FN

n

= 2N
n∏

m=1

(
qN
m I{ξN

m =1} + (
1 − qN

m

)
I{ξN

m =−1}
)
.

Since PN [ξN
n = ±1] = 1/2, our choice of qN (3.20) ensures that BN is a martin-

gale under QN . Now consider the stochastic process

MN
n � SN

n exp
(
κN
n XN

n

)
, n = 0, . . . ,N.

From (3.10), it follows that κN
N = 0 for sufficiently large N and so MN

N = SN
N .

Furthermore, from (3.9) we have |MN
n −SN

n |
SN

n
≤ c√

N
. Observe also that

MN
n = MN

n−1

(
1 +

√
1 + 2κN

n σN
n

(
BN

n − BN
n−1

))
.(3.21)

Hence, the predictability of σN , κN ensures that, along with BN , also MN is
a martingale under QN . Hence, MN and QN are as requested in part (i) of our
present lemma.

It thus remains to establish the weak convergence (3.16). By applying Taylor’s
expansion, we get∣∣∣∣qN

n − κN
n−1σ

N
n−1ξ

N
n−1 + (1 + κN

n )σN
n

2(1 + κN
n )σN

n

∣∣∣∣ = O
(
N−1/2)

PN -almost surely.
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Thus, |(2qN
n − 1)ξN

n−1 − κN
n−1σ

N
n−1

(1+κN
n )σN

n
| = O(N−1/2) PN -almost surely. From the last

equality and the definition of the measure QN , we get that

EQN

[((
1 + κN

n

)
σN

n ξN
n − κN

n−1σ
N
n−1ξ

N
n−1

)2|FN
n−1

]
= (

σN
n

)2(
1 + κN

n

)2 + (
σN

n−1
)2(

κN
n−1

)2

− 2
(
2qN

n − 1
)(

1 + κN
n

)
σN

n κN
n−1σ

N
n−1ξ

N
n−1

= (
σN

n

)2(
1 + 2κN

n

) + O
(
N−1/2)

.

This together with applying the Taylor expansion yields

EQN

[(
BN

n − BN
n−1

)2|FN
n−1

] = 1

N
+ O

(
N−3/2)

.

From Theorem 8.7 in [1], we get the convergence of Law(B
N |QN) to Wiener mea-

sure on C[0,1]. From the continuity of σ̃, it follows that the continuous interpola-

tion on [0,1] of ({
√

1 + 2κN
n σN

n })Nn=0, that is, the process σ̃[Nt]/N(B
N

) under QN

converges in law to σ̃ under PW on C[0,1]. Thus, Theorem 5.4 in [13] and (3.21)
give the convergence

Law
(
B

N
,M

N |QN ) ⇒ Law
(
W,Sσ̃ |PW )

on the space C[0,1]×C[0,1]. Finally, observe that we have the joint convergence

Law
(
S

N
,M

N
,
√

N
∣∣κNσN

∣∣|QN ) ⇒ Law
(
Sσ̃ , Sσ̃ , a(σ̃ )|PW )

as N ↑ ∞
on C[0,1] × C[0,1] × C[0,1] and (3.16) follows as required. �

3.2.2. Proof of “≤” in (3.7). Applying Theorem 2.3 with g � gN,c of (2.9)
shows that for N = 1,2, . . . there exists a measure QN on (�N,FN

N ) such that

V
σ/

√
N,σ/

√
N

gN,c (F) ≤ 1

N
+EQN

[
F

(
S

N ) −
N−1∑
n=0

GN,c
n

(
MN

n − SN
n

SN
n

)]
,(3.22)

where GN,c is the Legendre–Fenchel transform of gN,c and where MN is defined
as in Lemma 3.6. Since by construction hc, and thus also gN,c has maximum
slope c, we have

GN,c
n (α) =

{
Hn/N

(
S

N
,α

)
, if |α| ≤ c,

∞, otherwise.

In particular, the above sequence of probabilities (QN)N=1,2,... is as required in the
first part of Lemma 3.6. We thus obtain the weak convergence (3.15) with some
probability P∗ ∈ Pσ,σ ,c.
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Due to Skorohod’s representation theorem, there exists a probability space
(�̂, F̂, P̂) with processes ŜN , M̂N , and Q̂N , N = 1,2, . . . and a continuous mar-
tingale M > 0 such that

Law
(
S

N
,M

N
,Q

N |QN ) = Law
(
ŜN , M̂N, Q̂N |P̂)

, N = 1,2, . . . ,(3.23)

Law
(
S|P∗) = Law(M|P̂),(3.24)

and such that(
ŜN , M̂N, Q̂N ) → (

M,M, 〈lnM〉) P̂-almost surely as N ↑ ∞.(3.25)

Due to (3.13) of Lemma 3.6, max0≤t≤1 ŜN
t is bounded in Lp(P̂) for any p > 0.

By Lebesgue’s theorem, the assumed continuity and polynomial growth of F in
conjunction with (3.23) and (3.25) thus suffices to conclude that

EQN

[
F

(
S

N )] → E
P̂

[
F(M)

]
as N ↑ ∞.(3.26)

Below we will argue that

lim inf
N↑∞ EQN

[
N−1∑
n=0

GN,c
n

(
MN

n − SN
n

SN
n

)]

(3.27)

≥ E
P̂

[∫ 1

0
Ĥt (M)a2

(√
d〈lnM〉t

dt

)
dt

]
.

Combining (3.22) with (3.26) and (3.27) then gives

lim sup
N↑∞

V
σ/

√
N,σ/

√
N

gN,c (F) ≤ E
P̂

[
F(M) −

∫ 1

0
Ĥt (M)a2

(√
d〈lnM〉t

dt

)
dt

]
.(3.28)

Because of (3.24) the right-hand side of (3.28) can be viewed as one of the expec-
tations considered in (3.8). We deduce from Lemma 3.5(i) that “≤” holds in (3.7).

Let us conclude by proving (3.27) and write

EQN

[
N−1∑
n=0

GN,c
n

(
MN

n − SN
n

SN
n

)]
= E

P̂

[∫ 1

0
NH[Nt]/N

(
ŜN ,�N

t /
√

N
)
dt

]
,(3.29)

where

−c ≤ �N
t �

√
N

M̂N[Nt]/N − ŜN[Nt]/N
ŜN[Nt]/N

≤ c.

Let b : R → R be a convex function such that b(u) = a2(
√

u) for u ≥ 0, for in-
stance

b(u) �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−u, u ≤ −σ 2,

1

4

(σ 2 − u)2

σ 2 , −σ 2 < u < 0,

a(
√

u)2, u ≥ 0.

(3.30)
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By Assumption 2.4 and the P̂-almost sure convergence of ŜN to M , the inte-
grand NH[Nt]/N(ŜN ,�/

√
N) converges uniformly in t ∈ [0,1] and � ∈ [−c, c] to

Ĥt (M)�2. Moreover, from Lemma 3.7 below we have (�N
t )2 ≥ b(N�Q̂N[Nt]/N).

Hence, the lim inf in (3.27) is bounded from below by

lim inf
N↑∞ E

P̂

[∫ 1

0
Ĥt (M)

(
�N

t

)2
dt

]
(3.31)

≥ lim inf
N↑∞ E

P̂

[∫ 1

0
Ĥt (M)b

(
N�Q̂N[Nt]/N

)
dt

]
.

From their definition, it follows that the processes (N�Q̂N[Nt]/N)0≤t≤1, N =
1,2, . . . take values in the interval [σ 2 − 2cσ ,σ 2 + 2cσ ], and so they are bounded
uniformly. Hence, we can use Lemma A1.1 in [7] to find, for N = 1,2, . . . , con-
vex combinations δN of elements in this sequence of processes with index in
{N,N + 1, . . .} which converge P̂ ⊗ dt-almost every. Denote the limit process
by (δt )0≤t≤1. Observe that∫ t

0
δu du = lim

N→∞

∫ t

0
N�Q̂N[Nu]/N du = 〈lnM〉t

and so we conclude that δt = d〈lnM〉t /dt , P̂⊗ dt-almost every. Hence, by Fatou’s
lemma,

E
P̂

[∫ 1

0
Ĥt (M)a2(

√
δt ) dt

]
= E

P̂

[∫ 1

0
Ĥt (M)b(δt ) dt

]

≤ lim inf
N↑∞ E

P̂

[∫ 1

0
Ĥt (M)b

(
δN
t

)
dt

]
.

By convexity of b and by the construction of δN this last lim inf is not larger than
the lim inf on the right-hand side of (3.31). Hence, we can combine these estimates
to obtain our assertion (3.27).

3.2.3. Proof of “≥” in (3.7). Because of Lemma 3.5 it suffices to show that

lim inf
N↑∞ V

σ/
√

N,σ/
√

N

gN,c (F) ≥ EPW

[
F

(
Sσ̃ ) −

∫ 1

0
Ĥt

(
Sσ̃ )

a2(σ̃t ) dt

]
(3.32)

for σ̃ ∈ 
̃(c). For such σ̃ , we can apply Lemma 3.6(ii) which provides us with
probabilities QN and martingales MN on (�N,FN

N ), N = 1,2, . . . , such that

Law
(
S

N
,M

N
,
√

N
|MN − SN |

SN

∣∣∣QN

)
⇒ Law

(
Sσ̃ , Sσ̃ , a(σ̃ )|PW )

(3.33)
as N ↑ ∞.
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We can now use Skorohod’s representation theorem exactly as in Section 3.2.2 to
obtain, in analogy with (3.26), that

EQN

[
F

(
S

N )] → EPW

[
F

(
Sσ̃ )]

as N ↑ ∞.(3.34)

Set

−c ≤ �N
t �

√
N

M̂N[Nt]/N − ŜN[Nt]/N
ŜN[Nt]/N

≤ c.

In analogy with (3.29), we have that

lim
N↑∞EQN

[
N−1∑
n=0

GN,c
n

(
MN

n − SN
n

SN
n

)]

= lim
N↑∞E

P̂

[∫ 1

0
NH[Nt]/N

(
ŜN ,�N

t /
√

N
)
dt

]
(3.35)

= EPW

[∫ 1

0
Ĥt

(
Sσ̃ )

a2(σ̃t ) dt

]
,

where the last two equalities follow from our assumptions on H , the moment es-
timate in Lemma 3.6 (which gives uniform integrability) and (3.33) (together with
the Skorohod representation theorem).

Combining (3.34) with (3.35) then allows us to write the right-hand side
of (3.32) as

EPW

[
F

(
Sσ̃ ) −

∫ 1

0
Ĥt

(
Sσ̃ )

a2(σ̃t ) dt

]

= lim
N↑∞EQN

[
F

(
S

N ) −
N−1∑
n=0

GN,c
n

(
MN

n − SN
n

SN
n

)]
.

On the other hand, Theorem 2.2 reveals that such a limit is a lower bound for the
left side of (3.32). This accomplishes our proof that “≥” holds in (3.7).

We complete the section with the following elementary inequality which we
used in the previous proof:

LEMMA 3.7. For x, y ∈ R, such that |x| ∈ [σ,σ ] we have

b
(
x2 + 2xy

) ≤ y2,

where b denotes the function of (3.30).

PROOF. We distinguish four cases:

(i) x2 + 2xy ≥ σ 2. In this case 0 ≤ x2 + 2xy − σ 2 ≤ 2xy ≤ 2σ |y| and so

b
(
x2 + 2xy

) = 1

4

(x2 + 2xy − σ 2)2

σ 2 ≤ y2.
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(ii) σ 2 ≤ x2 + 2xy ≤ σ 2. In this case b(x2 + 2xy) = 0 and the statement is
trivial.

(iii) |x2 + 2xy| ≤ σ 2. Set z = x2 + 2xy. Assume that z is fixed and introduce

the function fz(u) = (z−u)2

u
, u ≥ σ 2. Observe that for z ∈ [−σ 2, σ 2] the derivative

f ′
z(u) = 1 − z2/u2 ≥ 0 and so

b
(
x2 + 2xy

) = 1
4fz

(
σ 2) ≤ 1

4fz

(
x2) = y2.

(iv) Finally, assume that x2 + 2xy ≤ −σ 2. Clearly x2 + 2xy + y2 ≥ 0 and so

b
(
x2 + 2xy

) = −x2 − 2xy ≤ y2. �
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