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This paper is the third part of our study started with Cattiaux, León and
Prieur [Stochastic Process. Appl. 124 (2014) 1236–1260; ALEA Lat. Am. J.
Probab. Math. Stat. 11 (2014) 359–384]. For some ergodic Hamiltonian sys-
tems, we obtained a central limit theorem for a nonparametric estimator of
the invariant density [Stochastic Process. Appl. 124 (2014) 1236–1260] and
of the drift term [ALEA Lat. Am. J. Probab. Math. Stat. 11 (2014) 359–384],
under partial observation (only the positions are observed). Here, we obtain
similarly a central limit theorem for a nonparametric estimator of the diffu-
sion term.

1. Introduction. In this article, we consider the estimation, using data sam-
pled at high frequency, of the local variance or diffusion term σ(·, ·) in the system
(Zt := (Xt , Yt ) ∈ R2d, t ≥ 0) governed by the following Itô stochastic differential
equation: {

dXt = Yt dt,

dYt = σ(Xt , Yt ) dWt − (
c(Xt , Yt )Yt + ∇V (Xt)

)
dt.(1.1)

The function c is called the damping force and V the potential, σ is the diffusion
term and W a standard Brownian motion.

The problem of estimating the diffusion term, sometimes called volatility, in a
model of diffusion has a somewhat long history and has a lot of motivations, in
particular in the analysis of financial or neuronal data.

The beginning of the story takes place at the end of the eighties of the last
century. The first and seminal articles were written by [11, 12, 15] and [17]. The
method generally used is the central limit theorem for martingales. Recently, an
excellent survey introducing the subject and giving some important recent refer-
ences was written by [26]. In that work, the authors give some insights about the
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methods of proof of the limit theorems and recall also the existence of some good-
ness of fit tests useful in financial studies. This article also mentioned the names
of those linked to the development in this area. They are, among others, [3, 21]
and [2]. The second of the last cited works contains a deep study for the asymp-
totic behavior of discrete approximations of stochastic integrals; it is thus in tight
relationship with the estimation of the diffusion term.

The present article is the continuation of two previous works by the authors:
[7] and [8]. In the first one, we tackled the problem of estimating the invariant
density of the system (1.1) and in the second one the estimation of the drift term
(x, y) �→ b(x, y) = −c(x, y)y + ∇V (x) was studied. In both papers, we assumed
that the diffusion coefficient σ is constant, in order to control the mixing rate of
the process (see the remarks at the end of the present paper for extensions to the
nonconstant diffusion case).

Here, we consider the estimation of the function σ , in particular we do no more
assume necessarily that it is a constant. We observe the process in a high resolution
grid, that is, Zphn,p = 1, . . . , n with hn −→

n→+∞0. As for our previous works, we

consider the case where only the position coordinates Xphn are observed (partial
observations). This is of course the main technical difficulty. This situation leads us
to define the estimator using the second- order increments of process �2X(p,n) =
X(p+1)hn −2Xphn +X(p−1)hn . This fact introduces some technicalities in the proof
of each result.

In the first part of the article, we consider the case of infill statistics t = nhn is
fixed. Two situations are in view: first, σ is a constant and we estimate σ 2 by using
a normalization of �2X(p,n), second, σ is no more constant and we estimate∫ t

0 σ 2(Xs,Ys) ds. In both cases, we obtain a stable limit theorem with rate
√

n for
the estimators (for the definition of stable convergence in law see the next section).

This asymptotic convergence can be applied, for instance, for testing the null
hypothesis H0: the matrix σ contains only nonvanishing diagonal terms that is,
σij = 0 for i 
= j .

In the second part, we study the infinite horizon estimation nhn = t −→
n→+∞ +∞.

We assume that the rate of mixing of the process (Zt , t ≥ 0) is sufficiently high.
Whenever σ is a constant, we obtain a central limit theorem (CLT) for the estimator
of σ 2 with rate

√
n. However, in the case where σ is not a constant we get a new

CLT but the rate now is
√

nhn and the asymptotic variance is the same as the one
obtained for occupation time functionals.

The result in the infinite horizon can serve to test H0 : σ(x, y) = σ against the
sequence of alternatives Hn

1 : σn = σ + cnd(x, y), for some sequence cn tending to
zero as n tends to infinity, because of the difference in the convergence rate under
the null and under the sequence of alternatives.

Estimation with partial observations has been considered previously in the lit-
erature. In [18], the case of one-dimensional diffusion Vt is studied. One observes
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only St = ∫ t
0 Vs ds, in a discrete uniform grid. The estimation is made for the pa-

rameters defining the variance and the drift. More recently for the same type of
models, the problem of estimation was considered in [9]. In this last work, the
study is nonparametric in nature; it deals with adaptive estimation, evaluating the
quadratic risk. The models in both these articles, contrary to models of type (1.1),
do not allow the second equation to depend on the first coordinate. It can be written
as {

dSt = Vt dt,

dVt = σ(Vt ) dWt + b(Vt ) dt.

The literature concerning the estimation for models of type (1.1) is rather scarce.
However, two papers must be cited. First, [27] consider parameter estimation by
using approximate likelihoods. The horizon of estimation is infinite and they as-
sume hn −→

n→+∞0 and nhn −→
n→+∞ + ∞. Second, [28] introduce, in the case of par-

tial observations, an Euler contrast defined using the second coordinate only. We
should point out that the present work, while dealing with nonparametric estima-
tion, has a nonempty intersection with the one of [28] when the diffusion term is
constant.

In Section 5, we consider Langevin dynamics described by{
dXt = Yt dt,

dYt =
√

2β−1s(Xt) dWt − (
s(Xt)s

∗(Xt)Yt + ∇V (Xt)
)
dt.

(1.2)

This form of hypo-elliptic diffusion is a particular case of (1.1) with σ(x, y) ×
σ ∗(x, y) = 2

β
c(x, y). This last relation is called fluctuation-dissipation rela-

tion since it relates the magnitude of the dissipative term −c(Xt , Yt ) dt =
−s(Xt)s

∗(Xt)Yt dt and the magnitude of the random term σ(Xt , Yt ) dWt =√
2β−1s(Xt) dWt . The precise balance between the drift term which removes en-

ergy in average and the stochastic term provided by the fluctuation-dissipation
relation insures that the canonical measure is preserved by the dynamics. More
precisely, under assumptions H0 and H1 of Section 2, it is proved that the so-
lution of (1.2) is ergodic with invariant probability measure proportional to the
Boltzmann distribution exp(−βH(x, y)), where H(x,y) = 1

2 |y|2 +V (x) and β is
inversely proportional to the temperature (see, e.g., [23, 25]).

Numerical experiments are provided in Section 6.
Let us end this Introduction with some comments about some possible general-

izations. In the first place, the methods that we use in this work can be adapted for
considering the power variation type estimators defined as

VF (n) =
(([t/(2hn)]−1)hn∑

p=0

F
(
�2X(p,n)

)
,

for F a smooth function, usually F(x) = |x|r the r th power variation (see, e.g.,
[20]). Second, it would be possible to study an estimator constructed through a
Fourier transform method as the one defined in [24].
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2. Tools.

2.1. Stable convergence. In this article, the type of convergence we consider
is the stable convergence, introduced by Renyi, whose definition is recalled be-
low (see Definition 2.1). In this subsection, all random variables or processes are
defined on some probability space (�,F,P).

DEFINITION 2.1 (Definition 2.1 in [26]). Let Yn be a sequence of random
variables with values in a Polish space (E,E). We say that Yn converges stably

with limit Y , written Yn
S−→

n→+∞Y , where Y is defined on an extension (�′,F′,P′)
iff for any bounded, continuous function g and any bounded F-measurable random
variable Z it holds that

E
(
g(Yn)Z

) → E′(g(Y )Z
)

as n → +∞, where E (resp., E′) denotes the expectation with respect to probabil-
ity P (resp., P′).

If F is the σ -algebra generated by some random variable (or process) X, then
it is enough to consider Z = h(X) for some continuous and bounded h. It is thus
clear that the stable convergence in this situation is equivalent to the convergence
in distribution of the sequence (Yn,X) to (Y,X). It is also clear that convergence
in probability implies stable convergence. As shown in [26], the converse holds
true if Y is F measurable.

Notice that we may replace the assumption Z is bounded by Z ∈ L1(P). This
remark allows us to replace P by any Q which is absolutely continuous with respect
to P, that is, the following proposition.

PROPOSITION 2.2. Assume that Yn [defined on (�,F,P)] converges stably
to Y . Let Q be a probability measure on � such that dQ

dP
= H . Then Yn [defined on

(�,F,Q)] converges stably to the same Y [defined on (�′,F′,Q′ = HP′)].

In particular, in the framework of our diffusion processes, this proposition com-
bined with Girsanov transform theory will allow us to “kill” the drift.

2.2. About the s.d.e. (1.1). In all of the paper, we will assume (at least) that
the coefficients in (1.1) satisfy:

• H0 The diffusion matrix σ is symmetric, smooth, bounded as well as its first and
second partial derivatives and uniformly elliptic, that is, ∀x, y, σ(x, y) ≥ σ0Id
(in the sense of quadratic forms) for a positive constant σ0 > 0.

• H1 The potential V is lower bounded and continuously differentiable on Rd .
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• H2 The damping matrix c is continuously differentiable and for all N > 0:
sup|x|≤N,y∈Rd |c(x, y)| < +∞ and ∃c0,L > 0 cs(x, y) ≥ c0Id for all |x| >

L,y ∈ Rd , cs being the symmetrization of the matrix c.

Under these assumptions, equation (1.1) admits an unique strong solution which
is nonexplosive. In addition, we have the following lemma.

LEMMA 2.3 (Lemma 1.1 in [30]). Assume H0, H1 and H2. Then, for ev-
ery initial state z = (x, y) ∈ R2d , the s.d.e. (1.1) admits a unique strong solution
Pz (a probability measure on �), which is nonexplosive. Moreover, Pz � P0

z on
(�,Ft ) for each t > 0, where P0

z is the law of the solution of (1.1) associated to
c(x, y) = 0 and V = 0, and with (Ft := σ(Zs,0 ≤ s ≤ t))t≥0.

REMARK 2.4. The formulation of H0 can be surprising. Let σ ∗ denote the
transposed matrix of σ . Actually the law of the process depends on σσ ∗ (which is
the second-order term of the infinitesimal generator). If this symmetric matrix is
smooth, it is well known that one can find a smooth symmetric square root of it,
which is the choice we make for σ . As it will be clear in the sequel, our estimators
are related to σσ ∗ (hence here σ 2).

3. Finite horizon (infill) estimation. We consider infill estimation, that is we
observe the process on a finite time interval [0, T ], with a discretization step equal
to hn with hn −→

n→+∞0.

According to Lemma 2.3 and Proposition 2.2, any P0
z stably converging se-

quence Yn is also Pz stably converging to the same limit. Hence, in all of this
section we will assume that H0 is satisfied and that c and V are identically 0. Any
result obtained in this situation is thus true as soon as H0, H1 and H2 are satisfied.

3.1. The case of a constant diffusion matrix. We start with the definition of
the “double” increment of the process.

Define for 1 ≤ p ≤ [ T
2hn

] − 1 := pn (here [·] denotes the integer part)

�2X(p,n) = X(2p+1)hn − 2X2phn + X(2p−1)hn.(3.1)

Then

σ−1�2X(p,n) =
∫ (2p+1)hn

2phn

Ws ds −
∫ 2phn

(2p−1)hn

Wu du

=
∫ (2p+1)hn

2phn

(Ws − W2phn) ds +
∫ 2phn

(2p−1)hn

(W2phn − Wu)du.

The right-hand side is the sum of two independent centered normal random vec-

tors, whose coordinates are independent, so that
√

3
2h3

n
σ−1�2X(p,n) is a centered
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Gaussian random vector with covariance matrix equal to Identity (recall that we
assume that σ = σ ∗).

Furthermore, all the (�2X(p,n))1≤p≤pn are independent (thanks to our choice
of the increments).

So we define our estimator σ̂ 2
n of the matrix σ 2 as

σ̂ 2
n = 1

[T/(2hn)] − 1

3

2h3
n

[T/(2hn)]−1∑
p=1

�2X(p,n) ⊗ �2X(p,n),(3.2)

where A ⊗ B denotes the (d, d) matrix obtained by taking the matrix product of
the (d,1) vector A with the transposed of the (d,1) vector B , denoted by B∗.

Using what precedes, we see that

σ−1σ̂ 2
n σ−1 = 1

[T/(2hn)] − 1

[T/(2hn)]−1∑
p=1

M(p,n),

where for each n the M(p,n) are i.i.d. symmetric random matrices whose entries
Mi,j are all independent for i ≥ j , satisfying E0

z(Mi,j ) = δi,j and Var0
z(Mi,j ) =

1 + δi,j .
According to the law of large numbers and the central limit theorem for trian-

gular arrays of independent variables, we have the following.

LEMMA 3.1 (Convergence). Assume c = 0, V = 0 and H0. Then if hn −→
n→+∞0,

starting from any initial point z = (x, y) ∈ R2d , we have

σ̂ 2
n

P0
z−→

n→+∞σ 2,

and ([
T

2hn

]
− 1

)1/2(
σ−1σ̂ 2

nσ−1 − Id
) D−→
n→+∞N(d,d),

where N(d,d) is a (d, d) symmetric random matrix whose entries are centered
Gaussian random variables with Var(Ni,j ) = 1 + δi,j , all the entries (i, j) for
i ≥ j being independent.

The consistence result is interesting since convergence in P0
z probability implies

convergence in Pz probability (i.e., for general c and V ). The convergence in distri-
bution however is not sufficient and has to be reinforced into a stable convergence.

This is the aim of what follows.
To this end, we define the sequence of processes defined for 0 ≤ t ≤ T ,

σ̂ 2
n (t) = 1

[T/(2hn)] − 1

3

2h3
n

[t/(2hn)]−1∑
p=1

�2X(p,n) ⊗ �2X(p,n),(3.3)

where the empty sums are set equal to zero. We will prove the following.
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THEOREM 3.2 (Convergence in Skorohod’s metric). Assume c = 0, V = 0
and H0.

Then if hn −→
n→+∞0, starting from any initial point z = (x, y) ∈ R2d , we have

(
W·,

√
T

2hn

(
σ−1σ̂ 2

n (·)σ−1 − Id
))D([0,T ])×D([0,T ])−−−−−−−−−−→

n→+∞ (W·, W̃·),

where (W̃t , t ∈ [0, T ]) is a (d, d) symmetric matrix valued random process whose
entries are Wiener processes with variance Vari,j (t) = (1 + δi,j )(t/T ), all the
entries (i, j) for i ≥ j being independent. In addition W̃. is independent of W..

According to the discussion on stable convergence, we immediately deduce the
following.

COROLLARY 3.3 (Stable convergence). Under assumptions H0, H1 and H2,
if hn −→

n→+∞0, starting from any initial point z = (x, y) ∈ R2d , we have

√
T

2hn

(
σ−1σ̂ 2

nσ−1 − Id
) S−→
n→+∞N(d,d),

where N(d,d) is as in Lemma 3.1.

PROOF OF THEOREM 3.2. In the following, we fix T = 1 without loss of gen-
erality. Notice that we may also replace T

2hn
by [ T

2hn
] − 1 (using Slutsky’s theorem

if one wants).
The convergence of

t �→ Zn(t) =
√

1

2hn

σ−1σ̂ 2
n (t)σ−1

to a matrix of Wiener processes is proved as for Donsker invariance principle.
The only difference here is that instead of an i.i.d. sample we look at a triangular
array of i.i.d. random vectors (on each row), but the proof in [4] applies in this
situation. This result is sometimes called Donsker–Prohorov invariance principle.
Writing Wt as the sum of its increments on the grid given by the intervals [(2p −
1)hn, (2p + 1)hn] the convergence of the joint law of (W.,Zn(·)) in D([0,1]) is
proved in exactly the same way.

The final independence assumption is a simple covariance calculation. �

3.2. Estimation of the noise, general case. In this section, we do not assume
anymore that the diffusion term σ is constant.

In the following, we want to estimate
∫ t

0 σ 2(Xs,Ys) ds, for any 0 ≤ t ≤ T .
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To this end, we introduce the quadratic variation process defined for n ∈ N∗ and
0 ≤ t ≤ T as

QVhn(t) = 1

h2
n

[t/(2hn)]−1∑
p=1

�2X(p,n) ⊗ �2X(p,n),(3.4)

with �2X(p,n) defined in (3.1). The main result of this section is the following.

THEOREM 3.4. Under assumptions H0, H1 and H2, if hn −→
n→+∞0, starting

from any initial point z = (x, y) ∈ R2d , we have for any 0 ≤ t ≤ T

QVhn(t)
Pz−→

n→+∞
1

3

∫ t

0
σ 2(Xs,Ys) ds,

and√
1

hn

(
QVhn(t) − 1

3

∫ t

0
σ 2(Xs,Ys) ds

)
S−→

n→+∞
2

3

∫ t

0
σ(Xs,Ys) dW̃sσ (Xs,Ys),

where (W̃t , t ∈ [0, T ]) is a symmetric matrix valued random process independent
of the initial Wiener process W., whose entries W̃.(i, j) are Wiener processes with
variance Vi,j (t) = (1 + δi,j )t , these entries being all independent for i ≥ j .

Recall that for the proof of this theorem, we only need to consider the case
where c = 0 and V = 0.

In this case, the strong solution, with initial conditions (X0, Y0) = (x, y) = z,
can be written as

Zt = (Xt , Yt ) =
(
x + yt +

∫ t

0
Ys ds, y +

∫ t

0
σ(Xs,Ys) dWs

)
.

We thus have

�2X(p,n) =
∫ (2p+1)hn

2phn

[∫ s

0
σ(Xu,Yu) dWu

]
ds

−
∫ 2phn

(2p−1)hn

[∫ s

0
σ(Xu,Yu) dWu

]
ds.

Using Fubini’s theorem for stochastic integrals, one gets

�2X(p,n) = hn

∫ 2phn

0
σ(Xu,Yu) dWu

+
∫ (2p+1)hn

2phn

(
(2p + 1)hn − u

)
σ(Xu,Yu) dWu

− hn

∫ (2p−1)hn

0
σ(Xu,Yu) dWu

−
∫ 2phn

(2p−1)hn

(2phn − u)σ(Xu,Yu) dWu,
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thus

�2X(p,n) =
∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)σ(Xu,Yu) dWu.(3.5)

If p 
= q are two integers, denoting by �2X(p,n, i) the ith coordinate of
�2X(p,n), we immediately have, for all i, j = 1, . . . , d ,

E0
z

(
�2X(p,n, i)�2X(q,n, j)

) = 0.(3.6)

As a warm up lap, we look at the convergence of the first moment of QVhn .

LEMMA 3.5 (Preliminary result). Assume c = 0, V = 0 and H0. Then, if
hn −→

n→+∞0, starting from any initial point z = (x, y) ∈ R2d , we have for any

0 ≤ t ≤ T ,

E0
zQVhn(t) −→

n→+∞
1

3

∫ t

0
E0

zσ
2(Xu,Yu) du.

Recall that we assumed σ = σ ∗, and of course look at the previous equality as
an equality between real matrices.

PROOF OF LEMMA 3.5. First, using Itô’s isometry and equality (3.5), one gets

E0
z

(
�2X(p,hn)⊗�2X(p,hn)

) =
∫ (2p+1)hn

(2p−1)hn

(
hn −|u−2phn|)2

E0
zσ

2(Xu,Yu) du.

Since ∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)2

du = 2

3
h3

n,

we thus have

1

h2
n

E0
z

(
�2X(p,hn) ⊗ �2X(p,hn)

)− 1

3

∫ (2p+1)hn

(2p−1)hn

E0
zσ

2(Xu,Yu) du

= 1

h2
n

∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)2

×E0
z

(
σ 2(Xu,Yu) − σ 2(X(2p−1)hn, Y(2p−1)hn)

)
du

+ 1

3

∫ (2p+1)hn

(2p−1)hn

E0
z

(
σ 2(X(2p−1)hn, Y(2p−1)hn) − σ 2(Xu,Yu)

)
du.

Define on � × [0, t], the sequence of random (matrices)

Gn(u) =
[t/(2hn)]−1∑

p=1

σ 2(X(2p−1)hn, Y(2p−1)hn)1(2p−1)hn≤u<(2p+1)hn.
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Since σ is continuous, Gn converges P0
z ⊗ du almost everywhere to σ 2(Xu,Yu).

In addition, since σ is bounded, Gn is dominated by a constant which is P0
z ⊗ du

integrable on � × [0, t].
Hence, using Lebesgue bounded convergence theorem, we get that∫ t

0
E0

z

(
Gn(u) − σ 2(Xu,Yu)

)
du → 0.

Similarly, the variables

[t/(2hn)]−1∑
p=1

(hn − |u − 2phn|)2

h2
n

× 1(2p−1)hn≤u<(2p+1)hn

(
σ 2(X(2p−1)hn, Y(2p−1)hn) − σ 2(Xu,Yu)

)
are bounded and converge almost everywhere to 0, so that their expectation also
goes to 0. This completes the proof. �

Of course, a careful look at this proof shows that we did not use all the strength
of H0, only the fact that σ is continuous and bounded. It is thus clearly possible to
improve upon this result, using the same idea of introducing the skeleton Markov
chain and controlling the errors.

Hence, introduce

�2H(p,hn) =
∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)σ(X(2p−1)hn, Y(2p−1)hn) dWu.(3.7)

We may decompose

J 1
n + J 2

n + J 3
n = QVhn(t) − 1

3

∫ t

0
σ 2(Xu,Yu) du(3.8)

with

J 1
n = QVhn(t) − 1

h2
n

[t/(2hn)]−1∑
p=1

�2H(p,hn) ⊗ �2H(p,hn),

J 2
n =

(
1

h2
n

[t/(2hn)]−1∑
p=1

�2H(p,hn) ⊗ �2H(p,hn)

)
− 1

3

(∫ t

0
Gn(u)du

)
,

J 3
n = 1

3

(∫ t

0
Gn(u)du −

∫ t

0
σ 2(Xu,Yu) du

)
.

For A = (Ai,j )1≤i≤q,1≤j≤r a q × r real matrix, we define |A| as |A| =
max1≤i≤q,1≤j≤r |Ai,j |.
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We then have the following.

LEMMA 3.6. Assume c = 0, V = 0, (X0, Y0) = (x, y) ∈ R2d and H0. Then
there exist constants C depending on σ , its derivatives and the dimension only,
such that for any 0 ≤ t ≤ T ,

E0
z

(∣∣∣∣
∫ t

0
Gn(u)du −

∫ t

0
σ 2(Xu,Yu) du

∣∣∣∣
)

≤ Ct
√

hn,(3.9)

and

E0
z

(∣∣�2X(p,hn) − �2H(p,hn)
∣∣2) ≤ Ch4

n.(3.10)

PROOF. For the first part, it is enough to show that∫ t

0
E0

z

∣∣Gn(u) − σ 2(Xu,Yu)
∣∣du ≤ Ct

√
hn.

But using the fact that σ and its first derivatives are continuous and bounded, there
exists a constant C only depending on these quantities (but which may change
from line to line), such that∫ t

0
E0

z

∣∣Gn(u) − σ 2(Xu,Yu)
∣∣du ≤ Ct sup

|a−b|≤2hn

E0
z

(|Za − Zb|) ≤ Ct
√

hn.(3.11)

For the second part, we have

E0
z

(∣∣�2X(p,hn) − �2H(p,hn)
∣∣2)

= E0
z

(∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)2

× Trace
((

σ(X(2p−1)hn, Y(2p−1)hn) − σ(Xu,Yu)
)2)

du

)
,

from which the result easily follows as before. �

We deduce immediately the following.

PROPOSITION 3.7. Assume c = 0, V = 0 and H0. Then, if hn −→
n→+∞0, starting

from any initial point z = (x, y) ∈ R2d , we have for any 0 ≤ t ≤ T , that J 1
n and J 3

n

are converging to 0 in L1(P0
z) (with rates hn and

√
hn), hence in P0

z probability.

PROOF. The result for J 3
n is contained in the previous lemma. For J 1

n , we
calculate E0

z[|J 1
n |]. The (i, j)th term of J 1

n is given by

1

h2
n

[t/(2hn)]−1∑
p=1

(
�2X(p,hn, i)−�2H(p,hn, i)

)(
�2X(p,hn, j)−�2H(p,hn, j)

)
,
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so that, according to the previous lemma and the Cauchy–Schwarz inequality, we
thus have E0

z[|J 1
n |] ≤ Cthn. �

In order to prove the first part of Theorem 3.4, that is, the convergence in prob-
ability, it remains to look at J 2

n . We have

J 2
n = 1

h2
n

[t/(2hn)]−1∑
p=1

σ(X(2p−1)hn, Y(2p−1)hn)

(
M(p,hn) − 2h3

n

3
Id
)

(3.12)
× σ(X(2p−1)hn, Y(2p−1)hn),

where

M(p,hn) = �2W(p,hn) ⊗ �2W(p,hn)

and

�2W(p,hn) =
∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)dWu.

As before, we start with an estimation lemma.

LEMMA 3.8. Assume c = 0, V = 0, (X0, Y0) = (x, y) ∈ R2d and H0. Then
there exist constants C depending on σ , its derivatives and the dimension only,
such that

E0
z

(∣∣∣∣M(p,hn) − 2h3
n

3
Id
∣∣∣∣2
)

≤ Ch6
n.(3.13)

PROOF. We shall look separately at the diagonal terms and the off diagonal

terms of M(p,hn) − 2h3
n

3 Id.
The off diagonal terms are of the form Ai,j (n) with

Ai,j (n) =
(∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)dWi

u

)
(3.14)

×
(∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)dWj

u

)
,

where Wi and Wj are independent linear Brownian motions. Introduce the mar-
tingales

Ui(s) =
∫ s

(2p−1)hn

(
hn − |u − 2phn|)dWi

u
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defined for (2p − 1)hn ≤ s ≤ (2p + 1)hn. Using Itô’s formula, Ai,j (n) can be
rewritten(∫ (2p+1)hn

(2p−1)hn

(
Uj(u) − Uj

(
(2p − 1)hn

))(
hn − |u − 2phn|)dWi

u

)

+
(∫ (2p+1)hn

(2p−1)hn

(
Ui(u) − Ui

(
(2p − 1)hn

))(
hn − |u − 2phn|)dWj

u

)

so that

E0
z

(
A2

i,j (n)
)

= 2
∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)2

E0
z

[(
Ui(u) − Ui

(
(2p − 1)hn

))2]
du

= 2
∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)2

×
(∫ u

(2p−1)hn

(
hn − |s − 2phn|)2

ds

)
du

= Ch6
n,

where C is some universal constant, so that we get the result.
The diagonal terms can be written Ai,i(n) with

Ai,i(n) =
(∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)dWi

u

)2

− 2

3
h3

n

(3.15)

= 2
∫ (2p+1)hn

(2p−1)hn

(
Ui(u) − Ui

(
(2p − 1)hn

))(
hn − |u − 2phn|)dWi

u,

and we can conclude exactly as before. �

We can now state the following.

PROPOSITION 3.9. Assume c = 0, V = 0 and H0. Then, if hn −→
n→+∞0, start-

ing from any initial point z = (x, y) ∈ R2d , we have for any 0 ≤ t ≤ T , that J 2
n

converges to 0 in L2(P0
z) (with rate

√
hn), hence in P0

z probability.

PROOF. We look at each term (J 2
n )ij of the matrix J 2

n . Such a term can be
written in the form

(
J 2

n

)
ij = 1

h2
n

[t/(2hn)]−1∑
p=1

d∑
l,k=1

al,k,i,j (X(2p−1)hn, Y(2p−1)hn)Al,k(p,n),
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where the al,k,i,j ’s are C2
b functions, and the Al,k(p,n) are defined in the proof of

the previous lemma (here we make explicit the dependence in p). Hence,

h4
n

(
J 2

n

)2
ij

=
[t/(2hn)]−1∑

p,q=1

d∑
l,k,i,j=1

bl,k,i,j (X(2p−1)hn, Y(2p−1)hn)

× cl,k,i,j (X(2q−1)hn, Y(2q−1)hn)Al,k(p,n)Ai,j (q, n)

for some new functions bl,k,i,j and cl,k,i,j . As we remarked in (3.6), the expecta-
tion of terms where p 
= q is equal to 0, so that

E0
z

[
h4

n

(
J 2

n

)2
ij

] ≤ C

d∑
l,k,i,j=1

[t/(2hn)]−1∑
p=1

E0
z

[
Al,k(p,n)Ai,j (p,n)

]

≤ Cth5
n,

according to the previous lemma and the Cauchy–Schwarz inequality, hence the
result. �

We thus have obtained the first part of the main theorem, that is, the following.

COROLLARY 3.10 (Consistence result). Under assumptions H0, H1 and H2,
if hn −→

n→+∞0, starting from any initial point z = (x, y) ∈ R2d , we have for any

0 ≤ t ≤ T

QVhn(t)
Pz−→

n→+∞
1

3

∫ t

0
σ 2(Xs,Ys) ds.

We turn now to the second part of the main theorem, that is, the obtention of
confidence intervals. Again we assume first that c = 0 and V = 0.

Since we will normalize by
√

hn, we immediately see that the first “error” term
J 1

n /
√

hn converges to 0 in P0
z probability according to the rate of convergence we

obtained in Proposition 3.7.
For the second error term J 3

n , the convergence rate in
√

hn is not sufficient to
conclude. So, we have to improve on it.

LEMMA 3.11. Assume c = 0, V = 0, (X0, Y0) = (x, y) ∈ R2d and H0. Then
there exists some constant C depending on σ , its first two derivatives and the di-
mension only, such that for any 0 ≤ t ≤ T ,

E0
z

(∣∣∣∣
∫ t

0
Gn(u)du −

∫ t

0
σ 2(Xu,Yu) du

∣∣∣∣
)

≤ Cthn,(3.16)

hence (
∫ t

0 Gn(u)du − ∫ t
0 σ 2(Xu,Yu) du)/

√
hn goes to 0 in P0

z probability.
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PROOF. To begin with

σ 2(Xu,Yu) − Gn(u)

=
[t/(2hn)]−1∑

p=1

(
σ 2(Xu,Yu) − σ 2(X(2p−1)hn, Y(2p−1)hn)

)
1(2p−1)hn≤u<(2p+1)hn.

Now look at each coordinate, and to simplify denote by f the coefficient σ 2
ij . It

holds

f (Zu) − Gij
n (u)

=
[t/(2hn)]−1∑

p=1

1(2p−1)hn≤u<(2p+1)hn

∫ u

(2p−1)hn

(〈
σ(Zs)∇yf (Zs), dWs

〉

+ 1

2
Trace

(
σD2

yf σ
)
(Zs) ds + 〈

Ys,∇xf (Zs)
〉
ds

)

=
[t/(2hn)]−1∑

p=1

1(2p−1)hn≤u<(2p+1)hn

(
I 1(n,p,u) + I 2(n,p,u)

+ I 3(n,p,u) + I 4(n,p,u)
)
,

with

I 1(n,p,u) =
∫ u

(2p−1)hn

〈
σ(Zs)∇yf (Zs) − σ(Z(2p−1)hn)∇yf (Z(2p−1)hn), dWs

〉
,

I 2(n,p,u) = 〈
σ(Z(2p−1)hn)∇yf (Z(2p−1)hn),Wu − W(2p−1)hn

〉
,

I 3(n,p,u) =
∫ u

(2p−1)hn

1

2
Trace

(
σD2

yf σ
)
(Zs) ds,

I 4(n,p,u) =
∫ u

(2p−1)hn

〈
Ys,∇xf (Zs)

〉
ds.

Notice that |I 3(n,p,u)| ≤ C(u − (2p − 1)hn) so that∫ t

0

[t/(2hn)]−1∑
p=1

1(2p−1)hn≤u<(2p+1)hn

∣∣I 3(n,p,u)
∣∣du ≤ Cthn.

Similarly, |I 4(n,p,u)| ≤ C(sup0≤s≤t |Ys |)(u − (2p − 1)hn) so that

E0
z

(∫ t

0

[t/(2hn)]−1∑
p=1

1(2p−1)hn≤u<(2p+1)hn

∣∣I 4(n,p,u)
∣∣du

)

≤ CthnE
0
z

(
sup

0≤s≤t

|Ys |
)

≤ Ct
(
1 + t1/2)hn

according to the Burkholder–Davis–Gundy inequality.
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Now(
E0

z

(∣∣I 1(n,p,u)
∣∣))2

≤ E0
z

(∣∣I 1(n,p,u)
∣∣2)

= E0
z

[∫ u

(2p−1)hn

∣∣σ(Zs)∇yf (Zs) − σ(Z(2p−1)hn)∇yf (Z(2p−1)hn

∣∣2 ds

]

≤ C
(
u − (2p − 1)hn

)
E0

z

(
sup

|a−b|≤2hn

|Za − Zb|2
)

≤ Chn

(
u − (2p − 1)hn

)
using the fact that σ and its first two derivatives are bounded and (3.11). It follows
that

E0
z

(∫ t

0

[t/(2hn)]−1∑
p=1

1(2p−1)hn≤u<(2p+1)hn

∣∣I 1(n,p,u)
∣∣du

)
≤ Cthn.

Finally,(
E0

z

∣∣∣∣∣
∫ t

0

[t/(2hn)]−1∑
p=1

1(2p−1)hn≤u<(2p+1)hnI
2(n,p,u) du

∣∣∣∣∣
)2

≤ E0
z

(∣∣∣∣∣
∫ t

0

[t/(2hn)]−1∑
p=1

1(2p−1)hn≤u<(2p+1)hnI
2(n,p,u) du

∣∣∣∣∣
2)

≤ 2E0
z

[∫ t

0

∫ t

0

[t/(2hn)]−1∑
p,q=1

1(2p−1)hn≤u<(2p+1)hn

× 1(2q−1)hn≤s<(2q+1)hn1s≤uI
2(n,p,u)I 2(n, q, s) ds du

]
.

As before, if (2p − 1)hn ≤ u < (2p + 1)hn and (2q − 1)hn ≤ s < (2q + 1)hn,

E0
z

(
I 2(n,p,u)I 2(n, q, s)

) = 0

as soon as p 
= q .
If p = q ,∣∣E0

z

(
I 2(n,p,u)I 2(n,p, s)

)∣∣ ≤ C
√

u − (2p − 1)hn

√
s − (2p − 1)hn,

so that for a fixed u between (2p − 1)hn and (2p + 1)hn, s belongs to [(2p −
1)hn,u] and∫ u

(2p−1)hn

∣∣E0
z

(
I 2(n,p,u)I 2(n,p, s)

)∣∣ds ≤ Ch3/2
n

(
u − (2p − 1)hn

)1/2
.
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Integrating with respect to du, we finally get(
E0

z

∣∣∣∣∣
∫ t

0

[t/(2hn)]−1∑
p=1

1(2p−1)hn≤u<(2p+1)hnI
2(n,p,u) du

∣∣∣∣∣
)2

≤ Cth2
n,

as expected. �

We turn now to the central limit theorem for J 2
n defined in (3.12). We will prove

the following.

PROPOSITION 3.12. Assume c(x, y) = 0, V = 0 and H0. If hn −→
n→+∞0, start-

ing from any initial point z = (x, y) ∈ R2d and ∀0 ≤ t ≤ T ,√
1

hn

J 2
n (t)

S−→
n→+∞

2

3

∫ t

0
σ(Xu,Yu) dW̃uσ (Xu,Yu),

where (W̃t , t ∈ [0, T ]) is a symmetric matrix valued random process independent
of the initial Wiener process W., whose entries W̃.(i, j) are Wiener processes with
variance Vi,j (t) = (1 + δi,j )t , these entries being all independent for i ≥ j .

PROOF. Define

ξn,p = 1

h2
n

σ (X(2p−1)hn, Y(2p−1)hn)

(
M(p,hn) − 2h3

n

3
Id
)
σ(X(2p−1)hn, Y(2p−1)hn),

and Gn,p the σ -field generated by the ξn,j for j ≤ p. As we already saw

E0
z[ξn,p|Gn,p−1] = 0

(here the null matrix), saying that for a fixed n the ξn,p are martingale increments
and J 2

n (t) = ∑
p ξn,p .

In order to prove the proposition, we can first show that for all N ∈ N, all N -uple
t1 < · · · , tN ≤ t ,√

1

hn

(
J 2

n (t),Wt1, . . . ,WtN

) D−→
n→+∞

(∫ t

0
σ(Xu,Yu) dW̃uσ (Xu,Yu),Wt1, . . . ,WtN

)
,

and then apply the results we recalled on stable convergence as we did in the con-
stant case. To get the previous convergence, one can use the central limit theorem
for triangular arrays of Lindeberg type, stated for instance in [10], Theorem 2.8.42.

Another possibility is to directly use Jacod’s stable convergence theorem stated
in Theorem 2.6 of [26]. Actually in our situation, both theorems require exactly
the same controls (this is not surprising), as soon as one verifies that the statement
of Jacod’s theorem extends to a multi-dimensional setting.

We choose the second solution, and use the notation in [26], Theorem 2.6, so
that our ξn,p/

√
hn is equal to their Xpn.
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Conditions (2.6) (martingale increments) and (2.10) (dependence on W. only)
in [26] are satisfied. Condition (2.8) is also satisfied with vs = 0 as we already
remarked in the constant case. Here, it amounts to see that

E0
z

[
Ai,j (n)

(
Wk

(2p+1)hn
− Wk

(2p−1)hn

)|F(2p−1)hn

] = 0

for all triple (i, j, k) where the Ai,j (n) are defined in (3.14) and (3.15), which is
immediate.

It thus remains to check the two conditions

1

hn

[t/(2hn)]−1∑
p=1

E0
z

[(t
eiξn,pej

)2|F(2p−1)hn

] P0
z−→

n→+∞

∫ t

0
θ2
ij (Xu,Yu) du,(3.17)

for all i, j = 1, . . . , d (el, l = 1, . . . , d being the canonical basis), and

1

hn

[t/(2hn)]−1∑
p=1

E0
z

[|ξn,p|21|ξn,p |>ε|F(2p−1)hn

] P0
z−→

n→+∞ 0 for all ε > 0,(3.18)

where |ξ | denotes the Hilbert–Schmidt norm of the matrix |ξ |.
We denote by ui = σei , and we use the notation of Lemma 3.8, Ui(n, s) =∫ s

(2p−1)hn
(hn − |u − 2phn|) dWi

u and simply Ui(n) = Ui(n, (2p + 1)hn). Hence,

Ai,j (n) = Ui(n)Uj (n) − δi,j

2h3
n

3
.

It follows

h4
nE

0
z

[(t
eiξn,pej

)2|F(2p−1)hn

] = E0
z

[(∑
k,l

uk
i Ak,l(n)ul

j

)2∣∣∣F(2p−1)hn

]

= E0
z

[ ∑
k,l,k′,l′

uk
i u

l
ju

k′
i ul′

j Ak,l(n)Ak′,l′(n)|F(2p−1)hn

]

= ∑
k,l,k′,l′

uk
i u

l
ju

k′
i ul′

jE
0
z

[
Ak,l(n)Ak′,l′(n)|F(2p−1)hn

]
.

But all conditional expectations are vanishing except those for which (k, l) =
(k′, l′), in which case it is equal to

(1 + δk,l)

(∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)2

du

)2

= 4

9
h6

n(1 + δk,l).

Hence,

1

hn

[t/(2hn)]−1∑
p=1

E0
z

[(t
eiξn,pej

)2|F(2p−1)hn

]

=
d∑

k,l=1

(1 + δk,l)
4hn

9

[t/(2hn)]−1∑
p=1

σ 2
i,k(Z(2p−1)hn)σ

2
j,l(Z(2p−1)hn),
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and converges to
d∑

k,l=1

(1 + δk,l)
4

9

∫ t

0
σ 2

i,k(Zu)σ
2
j,l(Zu) du.

We get a similar result for 1
hn

∑[t/(2hn)]−1
p=1 E0

z[(t eiξn,pej )(
t ei′ξn,pej ′)|F(2p−1)hn]

for any pairs (i, j), (i′, j ′). It remains to remark that this increasing process is the
one of

2

3

∫ t

0
σ(Zu)dW̃uσ (Zu),

where W̃. is as in the statement of the proposition.
Finally, (3.18) is immediately checked, using the previous calculation, Cauchy–

Schwarz inequality and Burkholder–Davis–Gundy inequality. �

To conclude the proof of the main theorem, it is enough to apply Slutsky’s
theorem since all the error terms converge to 0 in probability (recall that Slutsky’s
theorem also works with stable convergence (see [26], Proposition 2.5).

4. Infinite-horizon estimation. In the previous section, we dealt with infill
estimation. We now consider that we work with an infinite-horizon design. We
aim at estimating the quantity Eμ(σ 2(X0, Y0)), where (Zt := (Xt , Yt ) ∈ R2, t ≥ 0)

is still governed by (1.1) and μ is the invariant measure, supposed to exist. We thus
have to introduce some new assumptions:

• H3 There exists an (unique) invariant probability measure μ and the Pμ sta-
tionary process Z. is α-mixing with rate τ , that is (in our Markovian situation),
there exists a nonincreasing function τ going to 0 at infinity such that for all
u ≤ s, all random variables F,G bounded by 1 s.t. F (resp., G) is Fu (resp.,
Gs) measurable where Fu (resp., Gs ) is the σ -algebra generated by Zv for v ≤ u

(resp., v ≥ s), one has

Covμ

(
F(Zu)G(Zs)

) ≤ τ(u − s).

• H4 Define b(x, y) := −(c(x, y)y + ∇V (x)). There exists some r ≥ 4 such that
Eμ(|b(Z0)|r ) < +∞ and

∫+∞
0 τ 1−(4/r)(t) dt < +∞.

These apparently technical assumptions are in a sense “minimal” for applying
known results on the central limit theorem for additive functionals of a diffusion
process (see, e.g., [6]). We shall come back later to these assumptions, indicating
in the last subsection of this section, sufficient conditions for them to hold.

We introduce the following estimator:

Kn = 3

2

1

(n − 1)h3
n

n−1∑
p=1

�2X(p,n) ⊗ �2X(p,n),(4.1)

where �2X(p,n) is the double increment of X defined in (3.1).
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We now state the main result of this section.

THEOREM 4.1. Assume that H0 up to H4 are satisfied. Assume in addition
that ∫ +∞

1
t−1/2τ 1/2(t) dt < +∞.

Let hn be a sequence going to 0 such that nhn → +∞ and nh3
n → 0.

Then, in the stationary regime,√
2nhn

(
Kn −Eμσ 2(X0, Y0)

) D−→
n→+∞N ,(4.2)

where N is a symmetric random matrix, with centered Gaussian entries satisfying

Cov(Ni,j ,Nk,l) = 1

2

∫ +∞
0

Eμ

(
σ̄ 2

i,j (Z0)σ̄
2
k,l(Zs) + σ̄ 2

k,l(Z0)σ̄
2
i,j (Zs)

)
ds,

where σ̄ 2(z) = σ 2(z) −Eμ(σ 2(Z0)).

REMARK 4.2. In the case where σ is constant, this result is useless as the
covariances are all vanishing.

PROOF OF THEOREM 4.1. From now on, we assume that the assumptions H0
up to H4 are satisfied.

Of course since we are looking at the whole time interval up to infinity, it is
no more possible to use Girsanov theory to reduce the problem to c = V = 0.
Hence, arguing as for the statement of (3.5), and defining b(x, y) := −(c(x, y)y +
∇V (x)), we get

�2X(p,n) =
∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)(σ(Zu)dWu + b(Zu)du

)
.

We then define the semimartingale (Ht , (2p − 1)hn ≤ t ≤ (2p + 1)hn) by

dHt = (
h − |t − 2phn|)σ(Zt) dWt + (

hn − |t − 2phn|)b(Zt) dt,

H(2p−1)hn = 0,

so that �2X(p,n) = H(2p+1)hn . Using Itô’s formula, we then have(
�2X(p,n) ⊗ �2X(p,n)

)
i,j

=
∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)(Hi

u

(
σ(Zu)dWu

)j + Hj
u

(
σ(Zu)dWu

)i)
(4.3)

+
∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)(Hi

ub
j (Zu) + Hj

u bi(Zu)
)
du

+
∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)2

σ 2
i,j (Zu) du.
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We have a simple but useful estimate, available for all i = 1, . . . , d , all k ∈ N,
all p and all u between (2p − 1)hn and (2p + 1)hn

Eμ

(∣∣Hi
s

∣∣2k)
≤ C(k)‖σ‖2k∞

(
s − (2p − 1)hn

)k
h2k

n(4.4)

+ (
s − (2p − 1)hn

)2k
h2k

n

(
Eμ

(∣∣b(Z0)
∣∣2k))

.

Indeed, one can first use (a + b)2k ≤ C(k)(a2k + b2k), for positive numbers a, b

which will be here the absolute values of the martingale part and of the bounded
variation part.

Then, if bu is stationary and hu bounded by h,

Eμ

((∫ t

0
buhu du

)m)
≤ tmhmEμ

(
bm

0
)
,

which can be used with m = 2k, t = (s − (2p − 1)hn), bu = bi(Zu), hu = (hn −
|u − 2phn|) ≤ 2hn. This gives the control for the bounded variation part. Finally,
using the Burkholder–Davis–Gundy inequality, we are reduced to the same control
for the martingale part; this time with m = k, hu = (hn − |u − 2phn|)2 ≤ 4h2

n and
|bu| ≤ ‖σ‖2∞.

Now we can decompose

Kn −Eμσ 2(Z0) = Kn,1 +Kn,2

with

Kn,1 = 3

2

1

(n − 1)h3
n

n−1∑
p=1

{
�2X(p,n) ⊗ �2X(p,n)

−
∫ (2p+1)hn

(2p−1)hn

(
hn − |s − 2phn|)2

σ 2(Zs) ds

}

and

Kn,2 = 3

2

1

(n − 1)h3
n

n−1∑
p=1

∫ (2p+1)hn

(2p−1)hn

(
hn − |s − 2phn|)2{

σ 2(Zs) −Eμσ 2(Z0)
}
ds.

We shall look at both quantities separately, starting with Kn,2. �

4.1. Study of Kn,2.

LEMMA 4.3. There exists some constant C only depending on the bounds of
σ such that

Eμ

{|Kn,2|2} ≤ C

nhn

∫ +∞
0

τ(t) dt.
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PROOF.
4

9
Eμ

{
(Kn,2)

2
i,j

}

= 1

(n − 1)2h6
n

n−1∑
p,q=1

∫ (2p+1)hn

(2p−1)hn

∫ (2q+1)hn

(2q−1)hn

(
hn − |s − 2phn|)2

× (
hn − |u − 2qhn|)2

Eμ

{
σ 2

i,j (Zs)σ
2
i,j (Zu)

}
ds du

≤ ‖σ 2‖2∞
(n − 1)2h6

n

n−1∑
p,q=1

∫ (2p+1)hn

(2p−1)hn

∫ (2q+1)hn

(2q−1)hn

(
hn − |s − 2phn|)2

× (
hn − |u − 2qhn|)2

τ
(|s − u|)duds

≤ C‖σ 2‖2∞
(n − 1)

+ C‖σ 2‖2∞
(n − 1)2

∑
|p−q|≥2

τ
(
2(|p − q| − 1)hn

)

≤ C‖σ 2‖2∞
(n − 1)

+ C‖σ 2‖2∞
(n − 1)

n−2∑
k=1

τ(2khn)

≤ C
∥∥σ 2∥∥2

∞
(

1

n − 1
+ 1

(n − 1)hn

∫ +∞
0

τ(t) dt

)

with C some constant. We have used the fact that τ is nonincreasing for the final
inequality. �

The previous result indicates why the normalization
√

nhn has to be chosen.
Now we decompose again

Kn,2 = Kn,21 +Kn,22

by decomposing

σ 2(Zs) −Eμσ 2(Z0) = σ 2(Zs) − σ 2(Z(2p−1)hn) + σ 2(Z(2p−1)hn) −Eμσ 2(Z0).

We thus have

Kn,22 = 1

2(n − 1)hn

n−1∑
p=1

∫ (2p+1)hn

(2p−1)hn

(
σ 2(Z(2p−1)hn) −Eμσ 2(Z0)

)
ds

= 1

2(n − 1)hn

∫ (2n−1)hn

hn

(
σ 2(Zs) −Eμσ 2(Z0)

)
ds

+ 1

2(n − 1)hn

n−1∑
p=1

∫ (2p+1)hn

(2p−1)hn

(
σ 2(Z(2p−1)hn) − σ 2(Zs)

)
ds

= Kn,222 +Kn,221.
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It follows that√
2(n − 1)hnKn,2

= 1√
2(n − 1)hn

∫ (2n−1)hn

hn

(
σ 2(Zs) −Eμσ 2(Z0)

)
ds

+√
2(n − 1)hn(Kn,221 +Kn,21),

the first summand being the important term the two others being error terms. We
shall show that these errors terms converge to 0 in L2. Indeed,

Eμ

(
(n − 1)2h2

n(Kn,221)
2
i,j

)

≤ C

n−1∑
p,q=1

∫ (2p+1)hn

(2p−1)hn

∫ (2q+1)hn

(2q−1)hn

ds du

×Eμ

{(
σ 2

i,j (Zs) − σ 2
i,j (Z(2p−1)hn)

)(
σ 2

i,j (Zu) − σ 2
i,j (Z(2q−1)hn)

)}
,

so that, as for the proof of Lemma 4.3, what has to be done is to control

Cov
(
σ 2

i,j (Zs) − σ 2
i,j (Z(2p−1)hn), σ

2
i,j (Zu) − σ 2

i,j (Z(2q−1)hn)
)
.

The problem is that, if we use the α-mixing we will not improve upon the bound
in the previous lemma, since the uniform bound of these variables is still of order
a constant. However, for Markov diffusion processes, one can show (see, e.g., [6],
Lemma 4.2 and Lemma 5.1, or [14], Chapter 1, but the latter result also easily
follows from the Riesz–Thorin interpolation theorem) the following.

LEMMA 4.4. Let F and G be as in the definition of the α-mixing except that
they are not bounded. Assume that F ∈ Lr (Eμ) and G ∈ La(Eμ) for some r and a

larger than or equal to 2. Then

Covμ(F,G)

≤ C min
(
τ (r−2)/(2r)(s − u)‖F‖Lr ‖G‖L2; τ (a−2)/(2a)(s − u)‖F‖L2‖G‖La

)
,

for some constant C depending on a and r only. One also has

Covμ(F,G) ≤ Cτ(r−2)/(2r)((s − u)/2
)
τ (a−2)/(2a)((s − u)/2

)‖F‖Lr ‖G‖La ,

for some constant C depending on a and r only.

Choosing F = σ 2
i,j (Zs) − σ 2

i,j (Z(2p−1)hn) and G = σ 2
i,j (Zu) − σ 2

i,j (Z(2q−1)hn),
r = a, we see that what we have to do is to get a nice upper bound for Eμ(|F |r ).
But ∣∣σ 2

i,j (Zs) − σ 2
i,j (Z(2p−1)hn)

∣∣ ≤ K|Zs − Z(2p−1)hn |,
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where K only depends on σ and its first derivatives. Using Burkholder–Davis–
Gundy inequality, we thus have

Eμ

(|F |r) ≤ C
(
hr/2

n + hr
nEμ

(∣∣b(Z0)
∣∣r)).

It follows that, provided Eμ(|b(Z0)|r ) < +∞,

Cov
(
σ 2

i,j (Zs) − σ 2
i,j (Z(2p−1)hn), σ

2
i,j (Zu) − σ 2

i,j (Z(2q−1)hn)
)

≤ Chnτ
1−(2/r)((|p − q| − 1

)
hn

)
,

so that finally, as in the proof of Lemma 4.3 we get

Eμ

(
(n − 1)hn(Kn,221)

2
i,j

) ≤ Chn

(
1 +

∫ +∞
0

τ 1−(2/r)(t) dt

)
.(4.5)

Exactly in the same way, we obtain the same result replacing Kn,221 by Kn,21.
It remains to look at

1√
2(n − 1)hn

∫ (2n−1)hn

hn

(
σ 2(Zs) −Eμσ 2(Z0)

)
ds.

The asymptotic behavior of such additive functionals of stationary Markov pro-
cesses has been extensively studied. For simplicity, we refer to the recent [6] for
an overview and a detailed bibliography. In particular, Section 4 of this reference
contains the following result (essentially due to Maxwell and Woodroofe), pro-
vided

∫+∞
1 t−1/2τ 1/2(t) dt < +∞, the previous quantity converges in distribution

to a centered Gaussian random variable, as soon as nhn goes to infinity. The cal-
culation of the covariance matrix of these variables is done as in [6]. We have thus
obtained the following.

PROPOSITION 4.5. Assume that H0 up to H4 are satisfied. Assume in addition
that

∫+∞
1 t−1/2τ 1/2(t) dt < +∞. Let hn be a sequence going to 0 such that nhn →

+∞.
Then, in the stationary regime,

√
2(n − 1)hnKn,2 converges in distribution to a

symmetric random matrix N , with centered Gaussian entries satisfying

Cov(Ni,j ,Nk,l) = 1

2

∫ +∞
0

Eμ

(
σ̄ 2

i,j (Z0)σ̄
2
k,l(Zs) + σ̄ 2

k,l(Z0)σ̄
2
i,j (Zs)

)
ds.

4.2. Study of Kn,1.

LEMMA 4.6. Assume that for some k ∈ N∗, Eμ(|b(Z0)|4k) < +∞ and that∫+∞
0 τ 1−(1/k)(t) dt < +∞.

Then there exists some constant C(k) such that for all i, j = 1, . . . , d ,

Varμ
[
(Kn,1)i,j

] ≤ C(k)

n
.
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Hence,

Varμ
[√

nhn(Kn,1)i,j
] → 0.

PROOF. We write

�2X(p,n)⊗�2X(p,n)−
∫ (2p+1)hn

(2p−1)hn

(
hn−|s−2phn|)2

σ 2(Zs) ds = Mp,n+Vp,n,

where M. (resp., V.) denotes the martingale (resp., bounded variation) part. As
usual, we use V̄ for the centered V −Eμ(V ). Hence,

4

9
(n − 1)2h6

n Varμ
[
(Kn,1)i,j

]

=
n−1∑

p,q=1

Eμ

(
Mi,j

p,nM
i,j
q,n + Mi,j

p,nV̄
i,j
q,n + V̄ i,j

p,nM
i,j
q,n + V̄ i,j

p,nV̄
i,j
q,n

)
.

A lot of terms of this sum are vanishing, so that we get

4

9
(n − 1)2h6

n Varμ
[
(Kn,1)i,j

] =
n−1∑
p=1

Eμ

((
Mi,j

p,n

)2 + 2V̄ i,j
p,nM

i,j
p,n + (

V̄ i,j
p,n

)2)

+
n−1∑

p>q=1

Eμ

(
V̄ i,j

p,nM
i,j
q,n + 2V̄ i,j

p,nV̄
i,j
q,n

)
.

Using stationarity and (4.4), we get

Eμ

((
Mi,j

p,n

)2) =
∫ 2hn

0

(
hn − |u − hn|)2

×Eμ

(
σ 2

i,i(Zs)
(
Hj

s

)2 + σ 2
j,j (Zs)

(
Hi

s

)2 + 2σ 2
i,j (Zs)H

j
s H i

s

)
ds

≤ Ch6
n

(
1 + hnEμ

(∣∣b(Z0)
∣∣2)).

Similarly,

Eμ

((
V i,j

p,n

)2) = Eμ

[(∫ 2hn

0

(
hn − |u − hn|)(Hi

ub
j (Zu) + Hj

u bi(Zu)
)
du

)2]

≤ Ch3
n

∫ 2hn

0
Eμ

(∣∣b(Zu)
∣∣2(Hi

u

)2)
du

≤ Ch7
n

(
Eμ

(∣∣b(Z0)
∣∣4))1/2(1 + hn

(
Eμ

(∣∣b(Z0)
∣∣4))1/2)

.

It follows that
n−1∑
p=1

Eμ

((
Mi,j

p,n

)2 + 2V̄ i,j
p,nM

i,j
p,n + (

V̄ i,j
p,n

)2) ≤ C(n − 1)h6
n.
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Exactly in the same way one obtains that, for k ∈ N∗, provided Eμ(|b(Z0)|2k) <

+∞,

Eμ

(∣∣Mi,j
p,n

∣∣2k) ≤ C(k)h6k
n

and provided Eμ(|b(Z0)|4k) < +∞,

Eμ

(∣∣V i,j
p,n

∣∣2k) ≤ C(k)h7k
n .

Again we shall use Lemma 4.4 to control

Eμ

(
V̄ i,j

p,nM
i,j
q,n

) = Covμ

(
V i,j

p,n,M
i,j
q,n

)
and Eμ

(
V̄ i,j

p,nV̄
i,j
q,n

) = Covμ

(
V i,j

p,n,V
i,j
q,n

)
,

and we obtain

Covμ

(
V i,j

p,n,M
i,j
q,n

) ≤ Ch6
nτ

(k−1)/k((p − q − 1)/2
)

and

Covμ

(
V i,j

p,n,V
i,j
q,n

) ≤ Ch6
nτ

(k−1)/k((p − q − 1)/2
)

provided, respectively, Eμ(|b(Z0)|2k) < +∞ and Eμ(|b(Z0)|4k) < +∞.
We have thus obtained

n−1∑
p>q=1

Eμ

(
V̄ i,j

p,nM
i,j
q,n + 2V̄ i,j

p,nV̄
i,j
q,n

) ≤ C(n − 1)h6
n

∫ +∞
0

τ (k−1)/k(t) dt,

so that gathering all previous estimates we get the result. �

It remains to bound the expectation of (Kn,1)i,j . But

Eμ

[
(Kn,1)i,j

]
= 3

2(n − 1)h3
n

×
n−1∑
p=1

Eμ

[∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)(Hi

ub
j (Zu) + Hj

u bi(Zu)
)
du

]

= 3

2(n − 1)h3
n

(An,1 + An,2)

with

An,1 =
n−1∑
p=1

Eμ

[∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)(Hi

ub
j (Z(2p−1)hn)

+ Hj
u bi(Z(2p−1)hn)

)
du

]
,
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and

An,2 =
n−1∑
p=1

Eμ

[∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)(Hi

u

(
bj (Zu) − bj (Z(2p−1)hn)

)

+ Hj
u

(
bi(Zu) − bi(Z(2p−1)hn)

))
du

]
.

An,2 can be studied exactly as we did before because bj (Zu) − bj (Z(2p−1)hn) is
centered. To be more precise, instead of calculating An,2 we look at the L2 norm
of the random variable

n−1∑
p=1

∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)(Hi

u

(
bj (Zu) − bj (Z(2p−1)hn)

)

+ Hj
u

(
bi(Zu) − bi(Z(2p−1)hn)

))
du

which is, thanks to the centering property, similar to the quantities we have stud-
ied in the proof of Lemma 4.6, that is, we can use the mixing property for the
covariances. It follows that

√
nhn

An,2
nh3

n
goes to 0.

Finally, using the semimartingale decomposition of Hu,

An,1 =
n−1∑
p=1

∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)Eμ

(
Hi

ub
j (Z(2p−1)hn)

+ Hj
u bi(Z(2p−1)hn)

)
du

=
n−1∑
p=1

∫ (2p+1)hn

(2p−1)hn

∫ u

(2p−1)hn

(
hn − |u − 2phn|)(hn − |v − 2phn|)

×Eμ

(
bi(Zv)b

j (Z(2p−1)hn) + bj (Zv)b
i(Z(2p−1)hn)

)
dv du

so that

|An,1| ≤ Cnh4
n

(
Eμ

(∣∣b(Z0)
∣∣2))2

.

Hence,
√

nhn
An,1
nh3

n
goes to 0, provided nh3

n → 0. This completes the proof of the

theorem.

4.3. The σ constant case. As we already remarked, if σ(x, y) is constant,
Kn,2 = 0. The good normalization is then

√
n. Indeed, in the previous proof we

did not use the full strength of the bound

Eμ

(∣∣V i,j
p,n

∣∣2k) ≤ C(k)h7k
n ,

furnishing some h
7/2
n instead of a h3

n each time a bounded variation term appears.
Hence, all terms will go to 0 except the two remaining terms:
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• √
n

An,1

nh3
n

≤ C(Eμ(|b(Z0)|2))2√nhn for which we need nh2
n → 0,

• and the remaining martingale term∫ (2p+1)hn

(2p−1)hn

(
hn − |u − 2phn|)

×
∫ u

(2p−1)hn

(
hn − |s − 2phn|)(σ(Zs) dWs

)i(
σ(Zu)dWu

)j
in (4.3).

But since σ is constant, this is exactly the martingale term we encountered in
Section 3.1. We thus have obtained the following.

THEOREM 4.7. Assume that H0 up to H4 are satisfied and that σ is constant.
Let hn be a sequence going to 0 such that nhn → +∞ and nh2

n → 0.
Then, in the stationary regime,

√
n
(
Kn − σ 2) D−→

n→+∞σN(d,d)σ,(4.6)

where N(d,d) is as in Lemma 3.1.

4.4. About H3 and H4. As we promised, we come back to the conditions H3
and H4. Actually, in full generality, very few are known. All known results amount
to the existence of some Lyapunov function (see, e.g., [30], Theorem 2.4), that is,
some nonnegative function ψ satisfying −Lψ ≥ λψ at infinity for some λ > 0.
In this case, τ has an exponential decay and the invariant measure exponential
moments, so that H3 and H4 are satisfied provided b has some polynomial growth.
General (and not really tractable) conditions for the existence of ψ are discussed
in [30], Sections 3 and 4. One can also relax the Lyapunov control as in [13].

Tractable conditions are only known when σ is constant. They are recalled in
[8] (see hypotheses H1 and H2 therein, based on [30] and [1]). Mainly, one has to
assume that c and V have at most polynomial growth and that < x,∇V (x) > is
positive enough at infinity, for instance,〈

x,∇V (x)
〉 ≥ λ|x|

at infinity.

5. Fluctuation-dissipation relation and Langevin dynamics. In this sec-
tion, we focus on Langevin equations, satisfying the so-called fluctuation-
dissipation relation. The motivation for the study of such dynamics comes from
modelling interaction of a subsystem with its environment. Several derivations can
be found in the literature, among others the Ehrenfest dynamics (see, e.g., [5, 19,
29]) or the nonlinear Kac–Zwanzig heat bath models (see, e.g., [22]).
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We now propose in this section an estimation procedure for Langevin dynamics
satisfying the so-called fluctuation-dissipation relation, that is, dynamics described
by equation (1.2) in the Introduction. Following Remark 2.4, (1.2) can be written
as {

dXt = Yt dt,

dYt =
√

2β−1s(Xt) dWt − (
s(Xt)s

∗(Xt)Yt + ∇V (Xt)
)
dt.

The study of such systems is of great interest for understanding molecular dynam-
ics (see references previously cited, as well as [19] and the references therein).

As already mentioned in the Introduction, it is proved under assumptions
H0 and H1 of Section 2, that the solution of (1.2) is exponentially ergodic
with invariant probability measure proportional to the Boltzmann distribution
exp(−βH(x, y)), where H(x,y) = 1

2 |y|2 + V (x) and β is inversely proportional

to the temperature (see, e.g., [23, 25]). In what follows, we denote by p
β
s (x, y) the

density of the invariant measure. We shall now propose an estimation procedure
for the parameters associated to the system described by (1.2).

First, we consider the estimation of the diffusion term. Under assumptions H0
and H1, the results of the Theorem 3.4 still hold (H0 indeed implies H2 if the
fluctuation-dissipation relation is satisfied). We thus get

QVhn = 1

h2
n

[t/(2hn)]−1∑
p=1

�2X(p,n) ⊗ �2X(p,n)
Pz−→

n→+∞
2

3β

∫ t

0
s(Xs)s

∗(Xs) ds

and√
1

hn

(
QVhn(t) − 2

3β

∫ t

0
s(Xs)s

∗(Xs) ds

)
S−→

n→+∞
4

3β

∫ t

0
s(Xs) dW̃ss(Xs).

The infinite horizon setting can also be considered. Ergodic properties in [25]
and in [23] for nonperiodic potentials imply assumption H3 with an exponential
rate. Moreover, defining g(x, y) = −(s(x)s∗(x)y +∇V (x)), we get from the form

of the invariant density p
β
s (x, y): Eμ(|g(Z0)|r ) < ∞ for all r > 0. Besides, we also

have
∫∞

1 t−1/2τ 1/2(t) dt < ∞. Thus, assumption H4 is satisfied and the results of
Theorem 4.1 still holds:

Let hn be a sequence going to 0 such that nhn → +∞ and nh3
n → 0.

Then, recalling that

Kn = 3

2

1

(n − 1)h3
n

n−1∑
p=1

�2X(p,n) ⊗ �2X(p,n),

we have √
2nhn

(
Kn − 2

β

∫
s(x)s∗(x)pβ

s (x, y) dx dy

)
D−→

n→+∞N ,
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where N is a symmetric random matrix, with centered Gaussian entries satisfying

Cov(Ni,j ,Nk,l) = 1

2

∫ +∞
0

Eμ

(
s̄2
i,j (X0)s̄

2
k,l(Xs) + s̄2

k,l(X0)s̄
2
i,j (Xs)

)
ds,

where s̄2(x) = 2
β
(s(x)s∗(x) −Eμ(s(X0)s

∗(X0))). Notice that

2

β
Eμ

(
s(X0)s

∗(X0)
) = 2

β

∫
s(x)s∗(x)pβ

s (x, y) dx dy.

Although we have been able to estimate the quadratic variation in both cases there
are parameters that remain undetermined.

This leads us to consider a more general estimation taking into account our two
[7] and [8] previous articles. However, to get easier computations, we shall only
consider here the case when the two coordinates of the process are observed. In
this case, the computations below are simple adaptations of what we have done
in our previous works. The extension to partial observations is not as immediate,
and requires to re-write a large part of these works, but following closely the same
lines of reasoning. This job cannot be done here.

We know that p
β
s (x, y) = C(β)e−β(|y|2+V (x)) then ∇xp

β
s (x,y)

p
β
s (x,y)

= −β∇V (x). To

estimate this last quantity, let K be a convolution kernel with bounded support
satisfying

∫
K(x,y) dx dy = 1 and verifying that there exists an integer m > 0

such that for all nonconstant polynomial P(x, y) of degree less than or equal to
m,

∫
P(x, y)K(x, y) dx dy = 0. Let hn, b1,n and b2,n be sequences satisfying the

hypothesis (i), (ii), (iii) and (iv) of Theorem 3.3 in [8]. Then we introduce the
following estimators:

p̃s(x, y) = 1

nbd
1,nb

d
2n

n∑
i=1

K

(
x − Xihn

b1,n

,
y − Yihn

b2,n

)
,

∇xp̃s(x, y) = 1

nbd+1
1,n bd

2n

n∑
i=1

∇xK

(
x − Xihn

b1,n

,
y − Yihn

b2,n

)
.

The candidate for estimating −β∇V (x) will be ∇x p̃s (x,y)
p̃s (x,y)

whose consistence in
probability and asymptotic normality is derived below. Let us write

An(x, y) :=
(∇xp̃s(x, y)

p̃s(x, y)
+ β∇V (x)

)

=
(∇xp̃s(x, y)

p̃s(x, y)
− ∇xp

β
s (x, y)

p̃s(x, y)

)
+

(∇xp
β
s (x, y)

p̃s(x, y)
+ β∇V (x)

)

= 1

p̃s(x, y)

(∇xp̃s(x, y) − ∇xp
β
s (x, y)

)

− ∇xp
β
s (x, y)

p̃s(x, y)p
β
s (x, y)

(
p̃s(x, y) − pβ

s (x, y)
)
.
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Following the proof of Theorem 3.3 in [8], we can prove that the second term in the

last equality above is OPz
(
√

nbd
1,nb

d
1,n). Recalling that D denotes the convergence

in distributions of probability measures, we have

D lim
n→∞

√
nb

(d+2)
1,n bd

2,nAn(x, y)

=D lim
n→∞

√
nb

(d+2)
1,n bd

2,n

1

p̃s(x, y)

(∇xp̃s(x, y) − ∇xp
β
s (x, y)

)

= 1

p
β
s (x, y)

D lim
n→∞

√
nb

(d+2)
1,n bd

2,n

(∇xp̃s(x, y) − ∇xp
β
s (x, y)

)
.

The last equality above is a consequence of Slutsky’s theorem.
We now sketch the proof of the convergence in distribution of Rn :=√

nb
(d+2)
1,n bd

2,n(∇xp̃s(x, y) − ∇xp
β
s (x, y)). Let us denote by ∂xl the partial deriva-

tive with respect to the lth coordinate. Using as a tool the computation of covari-
ances for sums of α-mixing random variables, we get

Cov
(
∂xj

p̃(x, y), ∂xl
p̃(x, y)

) = O

(
p

β
s (x, y)

nb
(d+2)
1,n bd

2,n

∫
∂xj

K(u, v)∂xl
K(u, v) dudv

)
.

Hence, and as a consequence that the kernel K has bounded support we have(
nb

(d+2)
1,n bd

2,n

)
Cov

(
∂xj

p̃(x, y), ∂xl
p̃(x, y)

) → δjlp
β
s (x, y)

∫ (
∂xj

K(u, v)
)2

dudv,

where the δij ’s stand for the Kronecker symbols. The random sequence Rn is a
sum of a triangular array of α-mixing random vectors of Rd . It is straightforward
to extend the results of Theorem 4.3 in [8], via the Cramér–Wald device, to ran-
dom vectors. Thus, defining D(x, y) = (dij (x, y)) as a diagonal matrix, and if the
sequences hn, b1,n and b2,n satisfy the hypothesis of Theorem 3.3 in [8], we get

Rn
D→ N

(
0,D(x, y)

)
where djj (x, y) = pβ

s (x, y)

∫ (
∂xj

K(u, v)
)2

dudv.

We finally obtain √
nb

(d+2)
1,n bd

2,nAn(x, y)
D→ N

(
0,L(x, y)

)
where L is also diagonal with ljj (x, y) = 1

p
β
s (x,y)

∫
(∂xj

K(u, v))2 dudv.

Now we consider the drift estimation. We can estimate the function g(x, y) =
−[s(x)s∗(x)y + ∇V (x)]. We recall that we only consider the case of complete
observations and for simplicity we consider now d = 1. We define the Naradaya–
Watson estimator

Hn(x, y) = 1

(n − 1)bd
1,nb

d
2,n

n−1∑
i=1

K

(
x − Xihn

b1,n

,
y − Yih

b2,n

)
Y(i+1)hn − Yihn

hn

.



1612 P. CATTIAUX, J. R. LEÓN AND C. PRIEUR

The following approximation

Y(i+1)hn − Yihn ≈ s(Xihn)(W(i+1)hn − Wihn) + g(Xihn, Yihn)hn,(5.1)

permits to obtain

E
[
Hn(x, y)

] → g(x, y)pβ
s (x, y).

We recall that we provide here only a flavor of the proof, and not a rigorous justi-
fication for each point. We now write

H̃n(x, y) = I1,n + I2n,

where

I1n = 1

(n − 1)bd
1,nb

d
2,n

n−1∑
i=1

K

(
x − Xihn

b1,n

,
y − Yih

b2,n

)(
s(Xihn)(W(i+1)hn − Wihn)

hn

)
,

and

I2n = 1

(n − 1)bd
1,nb

d
2,n

n−1∑
i=1

K

(
x − Xihn

b1,n

,
y − Yih

b2,n

)
g(Xihn, Yihn).

We note that(
(n − 1)bd

1,nb
d
2,nhn

)
Var(I1n) → s(x)s∗(x)pβ

s (x, y)

∫
K2(u, v) dudv,

and, using the α-mixing properties, that

(
(n − 1)bd

1,nb
d
2,n

)
Var(I2n) → g2(x, y)pβ

s (x, y)

∫
K2(u, v) dudv.

These two last results entail

lim
n→∞

(
(n − 1)bd

1,nb
d
2,nhn

)
Var

(
H̃n(x, y)

) → s(x)s2(x)pβ
s (x, y)

∫
K2(u, v) dudv.

Using approximation (5.1) then allows to derive

lim
n→∞

(
(n − 1)bd

1,nb
d
2,nhn

)
Var

(
Hn(x, y)

) → σ 2(x)pβ
s (x, y)

∫
K2(u, v) dudv.

In this manner, we get

ĝn(x, y) = Hn(x, y)

p̃s(x, y)

Pz→ g(x, y).

This result is also true for d > 1. Thus, using the relation g(x, y) + ∇V (x) =
−s(x)s∗(x)y, we get ĝn(x, y)− ĝn(x,0)

Pz→ −s(x)s∗(x)y, as far as −〈ĝn(x, ei)−
ĝn(x,0), ej 〉 Pz→ (s(x)s∗(x))ij .
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6. Examples and numerical simulation results. In this section, we want to
illustrate some of the main results of the paper. We start with the Itô stochastic
differential equation defined by (1.1):{

dXt = Yt dt,

dYt = σ(Xt , Yt ) dWt − (
c(Xt , Yt )Yt + ∇V (Xt)

)
dt.

More precisely, we first consider an harmonic oscillator that is driven by a white
noise forcing: {

dXt = Yt dt,

dYt = σ dWt − (κYt + DXt)dt,
(6.1)

with κ > 0 and D > 0. For this model, we know that the stationary distribution
is Gaussian, with mean zero and an explicit variance matrix given in, for exam-
ple, [16].

For this example, the diffusion term is constant, equal to σ . Recall that the infill
estimator with T = 1 is defined by (3.2):

σ̂ 2
n = 1

[1/(2hn)] − 1

3

2h3
n

[1/(2hn)]−1∑
p=1

(X(2p+1)hn − 2X2phn + X(2p−1)hn)
2.

As the model satisfies assumptions H0, H1 and H2, we know from Corollary 3.3
that if hn −→

n→+∞0, starting from any initial point z = (x, y),

√
1

2hn

(
σ̂ 2

n − σ 2) S−→
n→+∞N

(
0,2σ 4).

A 95% asymptotic confidence interval for σ 2 is thus defined as

CI95%
(
σ 2) = [

σ̂ 2
n − 1.96

√
2σ̂ 2

n

√
2hn, σ̂

2
n + 1.96

√
2σ̂ 2

n

√
2hn

]
.

In the following, we approximate the solution of (6.1) by an explicit Eu-
ler scheme. We choose hn = n−γ , γ > 0, κ = 2 and D = 2. Then, for differ-
ent values of n and γ , we compute M = 1000 realizations of σ̂ 2

n . On these M

realizations, we compute the empirical relative mean squared error defined by
RMSE = 1

M

∑M
j=1((σ̂

2,j
n − σ 2)/σ 2)2, as far as the empirical coverage of the 95%

confidence interval defined as ECOV = 1
M

∑M
j=1 1

σ 2∈CIj95%(σ 2)
. The results are

summarized in Table 1 below.
As expected, the more γ is high, the more fast is the convergence. The speed of

convergence also depends (through a constant term in the asymptotic variance) on
the unknown value of σ 2.

We now consider for the same model the infinite-horizon estimation.
Model (6.1) satisfies assumptions H0 up to H4. Thus, if hn −→

n→+∞0, nhn −→
n→+∞
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TABLE 1
Infill estimation, empirical relative mean squared error (RMSE)
and empirical coverage (ECOV) of the 95% confidence interval
with hn = n−γ , M = 1000 realizations of the estimator, and for

different values of n, γ and σ

σ γ n RMSE ECOV

1 0.5 100 0.47 0.85
1 0.5 1000 0.13 0.92
1 0.5 104 0.04 0.93
1 0.7 100 0.19 0.90
1 0.7 1000 0.03 0.94
1 0.7 104 0.006 0.95
2 0.5 100 2.03 0.86
2 0.5 1000 0.53 0.91
2 0.5 104 0.15 0.94
2 0.7 100 0.72 0.91
2 0.7 1000 0.13 0.94
2 0.7 104 0.02 0.95

+∞ and nh2
n −→
n→+∞0, then through Theorem 4.7, we have

√
n
(
Kn − σ 2) D−→

n→+∞N
(
0,2σ 4),

with Kn = 3
2

1
(n−1)h3

n

∑n−1
p=1(X(2p+1)hn −2X2phn +X(2p−1)hn)

2. A 95% asymptotic

confidence interval for σ 2 is thus defined as

CI95%
(
σ 2) =

[
Kn − 1.96

√
2Kn√
n

,Kn + 1.96

√
2Kn√
n

]
.

In the following, we approximate the solution of (6.1) by an explicit Eu-
ler scheme. We choose hn = n−γ , γ > 0, κ = 2 and D = 2. Then, for differ-
ent values of n and γ , we compute M = 1000 realizations of Kn. On these M

realizations, we compute the empirical relative mean squared error defined by

RMSE = 1
M

∑M
j=1(

Kj
n−σ 2

σ 2 )2, as far as the empirical coverage of the 95% confi-

dence interval defined as ECOV = 1
M

∑M
j=1 1

σ 2∈CIj95%(σ 2)
. The results are summa-

rized in Table 2 below.
As expected, we observe that the rate of convergence does not depend on γ . The

result of Theorem 4.7 has to be compared to the one in Theorem 2 in [28]. In [28],
the estimator is obtained by minimizing a contrast. More precisely, the authors in
[28] define the contrast to minimize as

Ln

(
σ 2) =

n−2∑
p=1

3

2

(X(p+1)hn − 2Xphn + X(p−1)hn)
2

h3
nσ

2 + (n − 2) log
(
σ 2),
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TABLE 2
Infinite-horizon estimation, empirical relative mean squared error
(RMSE) and empirical coverage (ECOV) of the 95% confidence
interval with hn = n−γ , M = 1000 realizations of the estimator,

and for different values of n, γ and σ

σ γ n RMSE ECOV

1 0.5 100 0.022 0.890
1 0.5 500 0.005 0.917
1 0.5 1000 0.002 0.923
1 0.7 100 0.019 0.942
1 0.7 500 0.004 0.947
1 0.7 1000 0.002 0.949
2 0.5 100 0.084 0.892
2 0.5 500 0.017 0.921
2 0.5 1000 0.008 0.933
2 0.7 100 0.085 0.926
2 0.7 500 0.018 0.936
2 0.7 1000 0.008 0.947

and they obtain

σ̃ 2
n = 3

2

1

n − 2

n−2∑
p=1

(X(p+1)hn − 2Xphn + X(p−1)hn)
2

h3
n

.

They obtain the same rate of convergence but with the asymptotic variance equal
to 9

4σ 4. Our definition (3.1) of the double increment of X, which is different from
theirs, allows to recover the asymptotic variance 2σ 4 they get for the case of com-
plete observations. In the present paper, we do not study the optimality of the
estimators. It is naturally a very interesting problem, which, for the model under
study is still open.

We now consider a variant of model (6.1) in which we consider a diffusion term
which is nonconstant. It may indeed be interesting in the applications to choose a
position-dependent diffusion term, for example, to restrict the action of a thermo-
stat to the boundaries only.

More precisely, we consider the following model:⎧⎪⎨
⎪⎩

dXt = Yt dt,

dYt = (
2β−1)1/2 exp

( −1

X2
t + 1

)
dWt −

(
exp

( −2

X2
t + 1

)
Yt + sin(Xt)

)
dt.

(6.2)

Model (6.2) is of the form of (1.2). It satisfies the Einstein’s fluctuation-
dissipation relation discussed in Section 5. The potential is the periodic poten-
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FIG. 1. Estimated (dashed line) and theoretical (solid line) invariant density for the position (left)
and for the velocity (right), β = 2, n = 105.

tial V (x) = − cos(x) and the diffusion term is mainly active at the boundaries
s2(x) = exp( −2

x2+1
), satisfying however assumption H0.

The invariant density is known for that model, but it is possible to apply the
Kernel estimation procedure proposed in [8] to estimate it. In Figures 1, 2 below,
we chose β = 2, the Epanechnikov kernel, the bandwidths b1,n = b2,n = n−0.2,
and the discretization step hn = n−0.30 with n = 105.

We are only considering then the infill estimation. In that case, the infill estima-
tor is defined as

QVhn(1) = 1

h2
n

[1/(2hn)]−1∑
p=1

(X2p+1)hn − 2X2phn + X(2p−1)hn)
2.

FIG. 2. Estimated bivariate invariant density, n = 106, β = 2, n = 105.
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FIG. 3. Histograms on M = 1000 realizations of the estimator (left) and of the limit integral (right),
n = 105, β = 2, hn = n−0.7.

Thus, if hn −→
n→+∞0, we get from Theorem 3.4

√
1

hn

(
QVhn(1) − 2

3β

∫ 1

0
exp

( −2

X2
s + 1

)
ds

)
S−→

n→+∞
4

3β

∫ 1

0
exp

( −2

X2
s + 1

)
dW̃s,

where (W̃t , t ∈ [0, T ]) is a Wiener process independent of the initial Wiener pro-
cess W., with variance equal to 2.

In the following, we choose hn = n−γ with γ = 0.7. We compute M = 1000
realizations of the estimator QVhn(1) and M = 1000 realizations of the limit
2

3β

∫ 1
0 exp( −2

X2
s +1

) ds. This integral is approximated by a quadrature formula with

the rectangle rule.
We consider the case n = 105, β = 2. We compute the empirical relative mean

squared error (RMSE) and we draw (see Figure 3) both the histogram of the esti-
mator and the one of the limit integral for the M = 1000 realizations.

We get for both cases RMSE = 0.0024.
The histograms in Figures 3 (left and right) have similarities. However, we note

that we have an important boundary effect for the lower tail in both cases, probably
due to the approximation of the limit integral by a quadrature rule.

Acknowledgements. We want to heartily acknowledge an anonymous referee
for comments on a first version of the paper, especially for suggesting to describe
how our techniques can apply to the Langevin dynamics in Section 5.

REFERENCES

[1] BAKRY, D., CATTIAUX, P. and GUILLIN, A. (2008). Rate of convergence for ergodic con-
tinuous Markov processes: Lyapunov versus Poincaré. J. Funct. Anal. 254 727–759.
MR2381160

http://www.ams.org/mathscinet-getitem?mr=2381160


1618 P. CATTIAUX, J. R. LEÓN AND C. PRIEUR

[2] BARNDORFF-NIELSEN, O. E., GRAVERSEN, S. E., JACOD, J., PODOLSKIJ, M. and SHEP-
HARD, N. (2006). A central limit theorem for realised power and bipower variations of
continuous semimartingales. In From Stochastic Calculus to Mathematical Finance (Yu.
Kabanov, R. Liptser and J. Stoyanov, eds.) 33–68. Springer, Berlin. MR2233534

[3] BIBBY, B. M. and SØRENSEN, M. (1995). Martingale estimation functions for discretely ob-
served diffusion processes. Bernoulli 1 17–39. MR1354454

[4] BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
MR1700749

[5] BORNEMANN, F. A., NETTESHEIM, P. and SCHÜTE, C. (1996). Quantum-classical molecular
dynamics as an approximation to full quantum dynamics. J. Chem. Phys. 105 1074–1083.

[6] CATTIAUX, P., CHAFAÏ, D. and GUILLIN, A. (2012). Central limit theorems for additive func-
tionals of ergodic Markov diffusions processes. ALEA Lat. Am. J. Probab. Math. Stat. 9
337–382. MR3069369

[7] CATTIAUX, P., LEÓN, J. and PRIEUR, C. (2014). Estimation for stochastic damping Hamil-
tonian systems under partial observation: II. Drift term. ALEA Lat. Am. J. Probab. Math.
Stat. 11 359–384. MR3245075

[8] CATTIAUX, P., LEÓN, J. R. and PRIEUR, C. (2014). Estimation for stochastic damping Hamil-
tonian systems under partial observation—I. Invariant density. Stochastic Process. Appl.
124 1236–1260. MR3148012

[9] COMTE, F., GENON-CATALOT, V. and ROZENHOLC, Y. (2009). Nonparametric adaptive esti-
mation for integrated diffusions. Stochastic Process. Appl. 119 811–834. MR2499859

[10] DACUNHA-CASTELLE, D. and DUFLO, M. (1983). Probabilités et Statistiques. Tome 2. Mas-
son, Paris. MR0732786

[11] DACUNHA-CASTELLE, D. and FLORENS-ZMIROU, D. (1986). Estimation of the coefficients
of a diffusion from discrete observations. Stochastics 19 263–284. MR0872464

[12] DOHNAL, G. (1987). On estimating the diffusion coefficient. J. Appl. Probab. 24 105–114.
MR0876173

[13] DOUC, R., FORT, G. and GUILLIN, A. (2009). Subgeometric rates of convergence of f -
ergodic strong Markov processes. Stochastic Process. Appl. 119 897–923. MR2499863

[14] DOUKHAN, P. (1994). Mixing: Properties and Examples. Lecture Notes in Statistics 85.
Springer, New York. MR1312160

[15] FLORENS-ZMIROU, D. (1989). Approximate discrete-time schemes for statistics of diffusion
processes. Statistics 20 547–557. MR1047222

[16] GARDINER, C. W. (1985). Handbook of Stochastic Methods: For Physics, Chemistry and
the Natural Sciences, 2nd ed. Springer Series in Synergetics 13. Springer, Berlin.
MR0858704

[17] GENON-CATALOT, V. and JACOD, J. (1993). On the estimation of the diffusion coefficient for
multi-dimensional diffusion processes. Ann. Inst. Henri Poincaré Probab. Stat. 29 119–
151. MR1204521

[18] GLOTER, A. (2006). Parameter estimation for a discretely observed integrated diffusion pro-
cess. Scand. J. Statist. 33 83–104. MR2255111

[19] HORENKO, I. and SCHÜTTE, C. (2008). Likelihood-based estimation of multidimensional
Langevin models and its application to biomolecular dynamics. Multiscale Model. Simul.
7 731–773. MR2443010

[20] JACOD, J. (2008). Asymptotic properties of realized power variations and related functionals
of semimartingales. Stochastic Process. Appl. 118 517–559. MR2394762

[21] JACOD, J. and PROTTER, P. (1998). Asymptotic error distributions for the Euler method for
stochastic differential equations. Ann. Probab. 26 267–307. MR1617049

[22] KUPFERMAN, R. and STUART, A. M. (2004). Fitting SDE models to nonlinear Kac–Zwanzig
heat bath models. Phys. D 199 279–316. MR2106316

http://www.ams.org/mathscinet-getitem?mr=2233534
http://www.ams.org/mathscinet-getitem?mr=1354454
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=3069369
http://www.ams.org/mathscinet-getitem?mr=3245075
http://www.ams.org/mathscinet-getitem?mr=3148012
http://www.ams.org/mathscinet-getitem?mr=2499859
http://www.ams.org/mathscinet-getitem?mr=0732786
http://www.ams.org/mathscinet-getitem?mr=0872464
http://www.ams.org/mathscinet-getitem?mr=0876173
http://www.ams.org/mathscinet-getitem?mr=2499863
http://www.ams.org/mathscinet-getitem?mr=1312160
http://www.ams.org/mathscinet-getitem?mr=1047222
http://www.ams.org/mathscinet-getitem?mr=0858704
http://www.ams.org/mathscinet-getitem?mr=1204521
http://www.ams.org/mathscinet-getitem?mr=2255111
http://www.ams.org/mathscinet-getitem?mr=2443010
http://www.ams.org/mathscinet-getitem?mr=2394762
http://www.ams.org/mathscinet-getitem?mr=1617049
http://www.ams.org/mathscinet-getitem?mr=2106316


ESTIMATION FOR KINETIC EQUATIONS 1619

[23] LELIÈVRE, T., ROUSSET, M. and STOLTZ, G. (2010). Free Energy Computations: A Mathe-
matical Perspective. Imperial College Press, London. MR2681239

[24] MALLIAVIN, P. and MANCINO, M. E. (2009). A Fourier transform method for nonparametric
estimation of multivariate volatility. Ann. Statist. 37 1983–2010. MR2533477

[25] MATTINGLY, J. C. and STUART, A. M. (2002). Geometric ergodicity of some hypo-elliptic
diffusions for particle motions. Markov Process. Related Fields 8 199–214. MR1924935

[26] PODOLSKIJ, M. and VETTER, M. (2010). Understanding limit theorems for semimartingales:
A short survey. Stat. Neerl. 64 329–351. MR2683464

[27] POKERN, Y., STUART, A. M. and WIBERG, P. (2009). Parameter estimation for partially
observed hypoelliptic diffusions. J. R. Stat. Soc. Ser. B Stat. Methodol. 71 49–73.
MR2655523

[28] SAMSON, A. and THIEULLEN, M. (2012). A contrast estimator for completely or partially
observed hypoelliptic diffusion. Stochastic Process. Appl. 122 2521–2552. MR2926166

[29] SZEPESSY, A. (2011). Langevin molecular dynamics derived from Ehrenfest dynamics. Math.
Models Methods Appl. Sci. 21 2289–2334. MR2860677

[30] WU, L. (2001). Large and moderate deviations and exponential convergence for stochastic
damping Hamiltonian systems. Stochastic Process. Appl. 91 205–238. MR1807683

P. CATTIAUX

INSTITUT DE MATHÉMATIQUES DE TOULOUSE

UNIVERSITÉ DE TOULOUSE

TOULOUSE

FRANCE

E-MAIL: cattiaux@math.univ-toulouse.fr

J. R. LEÓN

ESCUELA DE MATEMÁTICA, FACULTAD DE CIENCIAS

UNIVERSIDAD CENTRAL DE VENEZUELA

CARACAS

VENEZUELA

E-MAIL: jose.leon@ciens.ucv.ve

C. PRIEUR

UNIVERSITÉ GRENOBLE ALPES

AND INRIA GRENOBLE RHÔNE-ALPES

LABORATOIRE JEAN KUNTZMANN, INRIA/AIRSEA
GRENOBLE

FRANCE

E-MAIL: clementine.prieur@imag.fr

http://www.ams.org/mathscinet-getitem?mr=2681239
http://www.ams.org/mathscinet-getitem?mr=2533477
http://www.ams.org/mathscinet-getitem?mr=1924935
http://www.ams.org/mathscinet-getitem?mr=2683464
http://www.ams.org/mathscinet-getitem?mr=2655523
http://www.ams.org/mathscinet-getitem?mr=2926166
http://www.ams.org/mathscinet-getitem?mr=2860677
http://www.ams.org/mathscinet-getitem?mr=1807683
mailto:cattiaux@math.univ-toulouse.fr
mailto:jose.leon@ciens.ucv.ve
mailto:clementine.prieur@imag.fr

	Introduction
	Tools
	Stable convergence
	About the s.d.e. (1.1)

	Finite horizon (inﬁll) estimation
	The case of a constant diffusion matrix
	Estimation of the noise, general case

	Inﬁnite-horizon estimation
	Study of Kn,2
	Study of Kn,1
	The sigma constant case
	About H3 and H4

	Fluctuation-dissipation relation and Langevin dynamics
	Examples and numerical simulation results
	Acknowledgements
	References
	Author's Addresses

