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IMPACT MODEL

BY DMITRY KRAMKOV1 AND SERGIO PULIDO

Carnegie Mellon University and ENSIIE & Université d’Évry-Val-d’Essonne,
LaMME, UMR CNRS 8071

We consider a financial model where the prices of risky assets are quoted
by a representative market maker who takes into account an exogenous de-
mand. We characterize these prices in terms of a system of BSDEs with
quadratic growth. We show that this system admits a unique solution for ev-
ery bounded demand if and only if the market maker’s risk-aversion is suffi-
ciently small. The uniqueness is established in the natural class of solutions,
without any additional norm restrictions. To the best of our knowledge, this
is the first study that proves such (global) uniqueness result for a system of
fully coupled quadratic BSDEs.

1. Introduction. In the classical problem of optimal investment, an economic
agent trades at exogenous stock prices and looks for a strategy maximizing his
expected utility. This problem has been extensively studied in the literature with
various approaches. For example, Merton [13] relied on PDEs, Kramkov and
Schachermayer [11] used the methods of convex duality and martingales and Hu
et al. [7] employed BSDEs.

In this paper, we consider an inverse problem: find stock prices for which a given
strategy is optimal; that is, instead of the usual task of getting “(optimal stocks’)
quantities from prices” we want to deduce “prices from quantities.” This problem
naturally arises in the market microstructure theory; see Grossman and Miller [6],
Garleanu et al. [4] and German [5]. Here, the strategy represents the continuous
demand on the market for a set of divided-paying stocks. The representative dealer,
with exponential utility, provides liquidity for these assets and quotes prices in such
a way that the market clears. In [4] and [5], the existence and uniqueness of such
prices is established for every simple demand process, where trades occur only a
finite number of times. It is the purpose of this paper to cover the general case.

As a first step, we obtain in Theorem 3.1 an equivalent characterization of
the demand-based prices in terms of solutions to a system of BSDEs with
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quadratic growth. Similar systems appear naturally in economic equilibrium prob-
lems with exponential preferences; see Frei and dos Reis [3]. Contrary to the one-
dimensional case, which is well studied and where general criteria for existence
and uniqueness are available (see, e.g., Kobylanski [9] and Briand and Hu [1]), the
situation with a system of quadratic BSDEs is more delicate. A counter-example in
[3] shows that, in general, such system may not have solutions even for a bounded
terminal condition. Moreover, although the existence can be guaranteed when the
values at maturity are sufficiently small (see Proposition 1 in Tevzadze [14]), the
uniqueness is only obtained in a local manner.

Our main results are stated in Theorem 4.1 and Proposition 4.3. In Theorem 4.1,
we prove that the solutions to our system of quadratic BSDEs exist and are (glob-
ally) unique, provided that the product of the BMO-norm of the stocks’ dividends,
the L∞-norm of the demand and the dealer’s risk-aversion is sufficiently small. To
the best of our knowledge, this is the first study that proves a (global) uniqueness
result for a system of fully coupled quadratic BSDEs. In Proposition 4.3, we show
that, in general, such well-posedness may be violated even if the dividends and the
demand are bounded. A crucial role in our study is played by the “sharp” a priori
estimate given in Lemma 4.5. This estimate is obtained considering the stochastic
control problem, which corresponds to the maximization of the dealer’s expected
utility with respect to demands bounded by 1.

Notation. For a matrix A = (Aij ), we denote its transpose by A∗ and define
its norm as

|A| � √
traceAA∗ =

√∑
i,j

(
Aij

)2
.

We will work on a filtered probability space (�,F , (Ft )t∈[0,T ],P) satisfying
the standard conditions of right-continuity and completeness; the initial σ -algebra
F0 is trivial, F = FT , and the maturity T is finite. The expectation is denoted as
E[·] and the conditional expectation with respect to Ft as Et [·].

We shall use the following spaces of stochastic processes:

BMO(Rm) is the Banach space of continuous m-dimensional martingales M

with M0 = 0 and the norm

‖M‖BMO � sup
τ

∥∥{
Eτ

[|MT − Mτ |2]}1/2∥∥∞,

where the supremum is taken with respect to all stopping times τ .
H0(Rm×d) is the vector space of predictable processes ζ with values in

m × d-matrices such that
∫ T

0 |ζs |2 ds < ∞. This is precisely the space of m × d-
dimensional integrands ζ for a d-dimensional Brownian motion B . We shall iden-
tify α and β in H0(Rm×d) if

∫ T
0 |αs −βs |2 ds = 0 or, equivalently, if the stochastic

integrals α · B and β · B coincide.
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Hp(Rm×d) for p ≥ 1 consists of ζ ∈ H0(Rm×d) such that

‖ζ‖p �
{
E

[(∫ T

0
|ζs |2 ds

)p/2]}1/p

< ∞.

It is a complete Banach space under this norm.
HBMO(Rm×d) consists of ζ ∈ H0(Rm×d) such that ζ · B ∈ BMO(Rm) for a

d-dimensional Brownian motion B . It is a Banach space under the norm:

‖ζ‖BMO � ‖ζ · B‖BMO = sup
τ

∥∥∥∥{
Eτ

[∫ T

τ
|ζs |2 ds

]}1/2∥∥∥∥∞
.

H∞(Rn) is the Banach space of bounded n-dimensional predictable pro-
cesses γ with the norm:

‖γ ‖∞ � inf
{
c ≥ 0 :

∣∣γt (ω)
∣∣ ≤ c, dt × P[dω]-a.s.

}
.

For an n-dimensional integrable random variable ξ with E[ξ ] = 0 set

‖ξ‖BMO �
∥∥(
Et [ξ ])t∈[0,T ]

∥∥
BMO.(1.1)

Denote also

‖ξ‖p �
(
E

[|ξ |p])1/p
, p ≥ 1,

‖ξ‖∞ � inf
{
c ≥ 0 :

∣∣ξ(ω)
∣∣ ≤ c,P[dω]-a.s.

}
.

Observe that

‖ξ‖BMO ≤ inf
x∈Rn

‖ξ − x‖∞.(1.2)

2. Model. There is a single representative market maker whose preferences
regarding terminal wealth are modeled by the exponential utility with the risk aver-
sion coefficient a > 0:

U(x) = −1

a
e−ax, x ∈ R.(2.1)

The financial market consists of a bank account and n stocks. The bank account
pays an exogenous interest rate, which we assume to be zero. The stocks pay div-
idends � = (�i)i=1,...,n at maturity T ; each �i is a random variable. While the
terminal stocks’ prices ST are always given by � , their values St on [0, T ) are
determined endogenously by the equilibrium mechanism specified below; in par-
ticular, they are affected by demand on stocks. Following Garleanu et al. [4] and
German [5], we give the following definition.

DEFINITION 2.1. A predictable process γ = (γt ) with values in Rn is called
a demand. The demand γ is viable if there is an n-dimensional semimartingale



BSDE IN A PRICE IMPACT MODEL 797

of stock prices S = (St ) such that ST = � , the probability measure Q, called the
pricing measure, is well defined by

dQ

dP
� U ′(

∫ T
0 γ dS)

E[U ′(
∫ T

0 γ dS)] = e−a
∫ T

0 γ dS

E[e−a
∫ T

0 γ dS]
,

and S and the stochastic integral γ · S are uniformly integrable martingales un-
der Q.

In this definition, −γt stands for the number of stocks that an external counter-
party plans to buy/sell from the market up to time t . The stochastic integral γ · S
represents the evolution of the losses of the external counter-party or, equivalently,
of the gains of the market maker. Note that, as S = S(γ ), the dependence of γ · S
on γ is nonlinear; this is in contrast to the standard, “small agent’s,” model of
mathematical finance.

To clarify the economic meaning of Definition 2.1, we recall a well-known re-
sult in the theory of optimal investment, which states that under the stock prices
S = S(γ ) the strategy γ is optimal.

LEMMA 2.2. Let the utility function U be given by (2.1) and γ be a viable
demand accompanied by the stock prices S and the pricing measure Q in the sense
of Definition 2.1. Then

E

[
U

(∫ T

0
γ dS

)]
≥ E

[
U

(∫ T

0
ζ dS

)]
,

for every demand ζ such that the stochastic integral ζ · S is a Q-supermartingale.

PROOF. Define the conjugate function to U :

V (y) � sup
x∈R

{
U(x) − xy

} = 1

a
y(lny − 1), y > 0,

and observe that, as

V
(
U ′(x)

) = U(x) − xU ′(x), x ∈ R,

the construction of Q yields that

V

(
y

dQ

dP

)
= U

(∫ T

0
γ dS

)
− y

dQ

dP

∫ T

0
γ dS,(2.2)

where

y = E

[
U ′

(∫ T

0
γ dS

)]
= E

[
e−a

∫ T
0 γ dS]

.

On the other side, clearly,

V

(
y

dQ

dP

)
≥ U

(∫ T

0
ζ dS

)
− y

dQ

dP

∫ T

0
ζ dS.(2.3)
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Taking expectations (under P) in (2.2) and (2.3), we obtain the conclusion. �

We call a demand γ simple if

γ =
m−1∑
i=0

θi1(τi ,τi+1],

where 0 = τ0 < τ1 < · · · < τm = T are stopping times and θi is a Fτi
-measurable

random variable with values in Rn, i = 0, . . . ,m − 1. Theorem 1 in [5] shows
that if the dividends � = (�i) have all exponential moments, then every bounded
simple demand γ is viable. Moreover, the price process S = S(γ ) is unique and is
constructed explicitly, by backward induction.

The goal of this paper is to investigate the case of demands γ with general
continuous dynamics. Our main results, Theorem 4.1 and Proposition 4.3, rely on
the BSDE-characterization of the stock prices S = S(γ ) from the next section.

REMARK 2.3. To simplify notation, we neglected in our setup the existence
of the initial random endowment β0 for the market maker. Due to the choice of
exponential utility in (2.1), this condition does not restrict any generality. Indeed,
if β0 
= 0, then, in Definition 2.1 and throughout the paper, the measure P should
just be replaced by the measure Q(0) with the density

dQ(0)

dP
� U ′(β0)

E[U ′(β0)] = exp(−aβ0)

E[exp(−aβ0)] .

3. Characterization in terms of BSDE. Hereafter, we shall assume that:

(A1) There exists a d-dimensional Brownian motion B such that every local
martingale M is a stochastic integral with respect to B:

M = M0 + ζ · B.

Of course, this assumption holds if the filtration is generated by B .
For a viable demand γ accompanied by stocks’ prices S define the process R

such that

Rt � U−1
(
Et

[
U

(∫ T

t
γ dS

)])
= −1

a
log

(
Et

[
e−a

∫ T
t γ dS])

,(3.1)

is the market maker’s certainty equivalent value at time t of the remaining gain∫ T
t γ dS. Observe that the density process Z of the pricing measure Q has the

form

Zt � Et

[
dQ

dP

]
= e−a(Rt−R0+∫ t

0 γ dS), t ∈ [0, T ].
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Jensen’s inequality and the martingale property of γ · S under Q imply that
Z−1e−aR = e−a(R0−γ ·S) is a Q-submartingale. Hence, e−aR is a submartingale
(under P) and, as RT = 0, we obtain that

e−aR ≤ 1 or, equivalently R ≥ 0.(3.2)

Under (A1), there is α ∈ H0(Rd), the market price of risk, such that

Z = E (−α · B) = e−α·B−(1/2)
∫ |α|2 dt .

From Girsanov’s theorem, we deduce that

W � B +
∫

α dt

is a Brownian motion under Q and that every local martingale under Q is a stochas-
tic integral with respect to W . In particular, there is σ ∈ H0(Rn×d), the volatility
of stocks’ prices, such that

S = S0 + σ · W = S0 +
∫

σα dt + σ · B.

We now characterize S, R, α and σ in terms of solutions to the multi-
dimensional quadratic BSDE (3.3)–(3.4).

THEOREM 3.1. Assume (A1). An n-dimensional predictable process γ is
a viable demand if and only if there are processes (S,R,η, θ), where S is a
n-dimensional semi-martingale, R is a semi-martingale, η ∈ H0(Rd), and θ ∈
H0(Rn×d), such that, for every t ∈ [0, T ],

aRt = 1

2

∫ T

t

(∣∣θ∗
s γs

∣∣2 − |ηs |2)
ds −

∫ T

t
η dB,(3.3)

aSt = a� −
∫ T

t
θs

(
ηs + θ∗

s γs

)
ds −

∫ T

t
θ dB,(3.4)

and such that the stochastic exponential Z � E (−(η+ θ∗γ ) ·B) and the processes
ZS and Z(γ · S) are (uniformly integrable) martingales.

In this case, S represents stocks’ prices which accompany γ , R is the certainty
equivalent value, Z is the density process of the pricing measure Q, and the market
price of risk α and the volatility σ are given by

α = η + θ∗γ,(3.5)

σ = θ/a.(3.6)

PROOF. Let γ be a viable demand accompanied by stocks’ prices S and the
certainty equivalent value R. Define the martingales

Lt = Et

[
U ′

(∫ T

0
γ dS

)]
= Et

[
e−a

∫ T
0 γ dS]

,

Mt = aEt

[
�U ′

(∫ T

0
γ dS

)]
= aEt

[
�e−a

∫ T
0 γ dS]

,
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and observe that the pricing measure Q has the density LT /L0 and

aSt = aE
Q
t [�] = Mt/Lt ,

aRt = aR0 − log(Lt/L0) −
∫ t

0
γ d(M/L),

or, in a “backward” form, as ST = � and RT = 0,

aSt = a� −
∫ T

t
d(M/L),

aRt =
∫ T

t

(
d logL + γ d(M/L)

)
.

From (A1) and accounting for the strict positivity of L, we deduce the existence
and uniqueness of α ∈ H0(Rd) and β ∈ H0(Rn×d) such that

L = L0 − Lα · B,

M = M0 + Lβ · B.

Direct computations based on Itô’s formula yield

d logL = −1

2
|α|2 dt − αdB,

d(M/L) =
(
βα + 1

L
M|α|2

)
dt +

(
β + 1

L
Mα∗

)
dB

= (
β + aSα∗)

α dt + (
β + aSα∗)

dB,

and equations (3.3) and (3.4) hold with

θ = β + aSα∗,
η = α − θ∗γ.

Observe that

Z = E
(−(

η + θ∗γ
) · B) = E (−α · B) = L/L0

is the density process of Q and, in particular, is a martingale. The martingale prop-
erties of ZS and Z(γ · S) under P then follow from those of S and γ · S under Q.
Hence, the process (S,R, θ, η) satisfies the conditions of the theorem.

Conversely, let (S,R, θ, η) be as in the statement of the theorem. Define
the probability measure Q with the density process Z = E (−(η + θ∗γ ) · B).
From (3.3) and (3.4), we deduce that

dQ

dP
= ZT = e− ∫ T

0 (η+θ∗γ )dB−(1/2)
∫ T

0 |η+θ∗γ |2 dt

= e−a(RT −R0+∫ T
0 γ dS) = U ′(

∫ T
0 γ dS)

E[U ′(
∫ T

0 γ dS)] .
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Moreover, ST = � and the martingale properties of S and γ · S under Q follow
from those of ZS and Z(γ · S) under P. Hence, S satisfies the conditions of Defi-
nition 2.1.

Finally, as part of the arguments above, we obtained that, given the stocks’
prices S, the linear invertibility relations (3.5) and (3.6) between (η, θ) and (α,σ )

hold and equations (3.1) and (3.3) for R are equivalent. �

REMARK 3.2. The BSDE characterization in Theorem 3.1 heavily relies on
condition (2.1) of exponential preferences. For a general utility function U , one
can similarly associate with the stock prices S = S(γ ) the following system of
Forward–Backward Stochastic Differential Equations (FBSDEs):

St = � −
∫ T

t
σuαu du −

∫ T

t
σ dB,

Yt = log
(
U ′(XT )

) + 1

2

∫ T

t
|αu|2 du +

∫ T

t
α dB,

Xt =
∫ t

0
γ dS.

Here, X is the gain process of the market maker due to the demand γ and Y =
logZ + const is a normalized log-density process of the pricing measure. If U

is of exponential type then, by “decoupling” substitution (3.1), this fully coupled
system of FBSDEs can be reduced to the simpler system (3.3)–(3.4) of quadratic
BSDEs.

4. Existence and uniqueness. This is our main result.

THEOREM 4.1. Assume (A1). There is a constant c = c(n) > 0 (dependent
only on the number of stocks n) such that if γ ∈ H∞(Rn) and

a‖γ ‖∞
∥∥� −E[�]∥∥BMO ≤ c,(4.1)

then γ is a viable demand accompanied by the unique stocks’ prices S. Moreover,
the BMO-norms of the volatility σ and of the market price of risk α are bounded
by

‖σ‖BMO ≤ 2
∥∥� −E[�]∥∥BMO,

(4.2)
‖α‖BMO ≤ 4a‖γ ‖∞

∥∥� −E[�]∥∥BMO.

As the following simple example illustrates, among the dividends � with fi-
nite BMO-norm, condition (4.1) is necessary even for the viability of constant
demands.
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EXAMPLE 4.2. Suppose that � is a real-valued random variable such that

E[�] = 0, ‖�‖BMO < ∞ but E
[
e�] = ∞;

see, for example, Example 3.4 in Kazamaki [8]. It readily follows from Defini-
tion 2.1 that the constant demand γ = −1/a is not viable. Indeed, in this case, the
pricing measure Q can only be of the form:

dQ

dP
= const e�,

which is not possible, because of the lack of integrability.

It is more delicate to construct a counter-example for bounded dividends � . Let
c = c(n) > 0 be a constant from Theorem 3.1. In view of (1.2), condition (4.1)
holds if

a‖γ ‖∞ inf
x∈Rn

‖� − x‖∞ ≤ c.

The following proposition shows that, already in one-dimensional case, the asser-
tions of Theorem 4.1 may fail for bounded � and that c(1) < 1. It is stated under
a stronger assumption than (A1):

(A2) There exists a one-dimensional Brownian motion B such that the filtration
(Ft ) is the completion of the filtration generated by B:

Ft = FB
t ∨ N P, t ∈ [0, T ].

Here, FB
t � σ {Bs, s ≤ t} and N P is the family of all P-null sets in F .

PROPOSITION 4.3. Assume (A2). There exist a bounded predictable process
γ and a bounded random variable � (both γ and � have dimension one) such
that

a‖γ ‖∞‖�‖∞ ≤ 1,

and such that γ is not supported by a unique semi-martingale S in the sense of
Definition 2.1.

Note that, in comparison to the nonexistence construction in Example 4.2 for
dividends with finite BMO-norm, our result for bounded dividends is weaker. Here
we only claim either nonexistence or nonuniqueness.

REMARK 4.4. In the follow-up paper [10], we show that under (4.1) the prices
S = S(γ ) are stable under small changes in the demand γ ; in particular, they can be
well approximated by the prices originated from simple demands. We also obtain
in [10] a power series expansion of S = S(γ, a) with respect to the market’s risk-
aversion a in a neighborhood of the point a = 0 where the price impact effect
disappears.
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4.1. Outline of the proof of Theorem 4.1. For the reader’s convenience, we
begin with an outline of the key steps in the proof of Theorem 4.1. To simplify
notation, suppose that

E[�] = 0, a = 1 and |γ | ≤ 1.

By Theorem 4.1, the existence and uniqueness of the price process S, which ac-
companies the demand γ , is equivalent to the existence and uniqueness of the
solution (η, θ) of the multi-dimensional quadratic BSDE:

Rt = 1

2

∫ T

t

(∣∣θ∗
s γs

∣∣2 − |ηs |2)
ds −

∫ T

t
η dB,

St = � −
∫ T

t
θs

(
ηs + θ∗

s γs

)
ds −

∫ T

t
θ dB,

such that the stochastic exponential Z � E (−(η + θ∗γ ) · B) and the processes ZS

and Z(γ · S) are martingales.
The first step is standard. Using a rather straightforward extension of the results

of Tevzadze [14] (see Theorem A.1 in the Appendix), we deduce the existence of
a constant b = b(n) such that if

‖�‖BMO ≤ b,

then the BSDE admits only one solution (η, θ) such that∥∥(η, θ)
∥∥

BMO ≤ 2b.

Local existence and local uniqueness then readily follow.
The delicate part is to verify the global uniqueness. For that, we need to find a

constant 0 < c ≤ b such that

‖�‖BMO ≤ c �⇒ ∥∥(η, θ)
∥∥

BMO ≤ 2b,

for every solution (η, θ) for which Z = E (− ∫
(η + θ∗γ )dB), ZS, and Z(γ · S)

are martingales. Using basic BMO-inequalities, we first deduce the existence of an
increasing function f = f (x), x ≥ 0, such that∥∥(η, θ)

∥∥
BMO ≤ f

(‖R‖∞
)‖�‖BMO.

To conclude the argument, we need to find a constant K > 0 and an increasing
function g = g(x) on [0,K), such that

‖R‖∞ ≤ g
(‖�‖BMO

)
if ‖�‖BMO < K.

A sharp version of the above a priori estimate is obtained in Lemma 4.5 and is
based on the verification arguments for the stochastic control problem:

u∗
t � ess sup

|γ |≤1

(−e−Rt (γ )) = ess sup
|γ |≤1

Et

[−e− ∫ T
t γ dS(γ )],

where we maximize the market maker’s expected utility over all viable demands
γ with |γ | ≤ 1. Later, this estimate is also used in Proposition 4.3 to produce a
counter-example.
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4.2. Proof of Theorem 4.1. From Definition 2.1, we deduce that the depen-
dence of stocks’ prices S = S(γ, a,�) on the viable demand γ , on the risk-
aversion coefficient a, and on the dividend � has the following homogeneity prop-
erties: for b > 0,

S(bγ, a,�) = S(γ, ba,�) = 1

b
S(γ, a, b�).(4.3)

This yields similar properties of the volatilities σ = σ(γ, a,�) and of the market
prices of risk α = α(γ, a,�) which correspond to S = S(γ, a,�):

σ(bγ, a,�) = σ(γ, ba,�) = 1

b
σ(γ, a, b�),

(4.4)
α(bγ, a,�) = α(γ, ba,�) = α(γ, a, b�).

In view of these identities, it is sufficient to prove Theorem 4.1 for the case

a = 1 ≥ ‖γ ‖∞.(4.5)

Define the function H = H(u) on [0,∞) as

H(u) = eu(u − 1) + 1, u ≥ 0.

Observe that H is an N -function in the theory of Orlicz spaces, that is, it is convex,
strictly increasing, H(0) = H ′(0) = 0, and H ′(∞) = ∞; see Krasnosel’skiı̆ and
Rutickiı̆ [12]. For a later use, we also note that for any ε > 0 there is a constant
C(ε) > 0 such that

1

2
u2 ≤ H(u) ≤ C(ε)e(1+ε)u, u ≥ 0.(4.6)

For an n-dimensional martingale M with M0 = 0 set

‖M‖H � inf
{
λ > 0 : sup

τ

∥∥∥∥Eτ

[
H

( |MT − Mτ |
λ

)]∥∥∥∥∞
≤ 1

}
,

where the upper bound is taken with respect to all stopping times τ . Observe that,
by the monotone convergence theorem,

sup
τ

∥∥∥∥Eτ

[
H

( |MT − Mτ |
‖M‖H

)]∥∥∥∥∞
≤ 1.(4.7)

The family of n-dimensional martingales M with M0 = 0 and ‖M‖H < ∞ is a
Banach space under ‖ · ‖H and this norm is equivalent to the BMO-norm: there is
a constant CH = CH(n) > 0 such that

1√
2
‖M‖BMO ≤ ‖M‖H ≤ CH‖M‖BMO.(4.8)

Here, the first inequality follows from the left-hand side of (4.6), while the second
one holds by Remark 2.1 on page 28 of Kazamaki [8].

For an n-dimensional integrable random variable ξ with E[ξ ] = 0 denote

‖ξ‖H �
∥∥(
Et [ξ ])t∈[0,T ]

∥∥
H .
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LEMMA 4.5. Let γ ∈ H∞(Rn) be a viable demand accompanied by stocks’
prices S and the certainty equivalent value R. Assume (A1), (4.5) and that

E[�] = 0, ‖�‖H < 1.

Then for every x ∈ Rn the process

Vt(x) �
(
1 − H

(|St − x|))e−Rt , t ∈ [0, T ],
is a supermartingale and the following estimate holds:

e−Rt ≥ 1 − ‖�‖H , t ∈ [0, T ].(4.9)

PROOF. To simplify notation, set

F(u) � 1 − H(u) = eu(1 − u), u ≥ 0.

As the density process of the pricing measure Q has the form:

Zt � Et

[
dQ

dP

]
= e−(Rt−R0+∫ t

0 γ dS), t ∈ [0, T ],
the P-supermartingale property of V (x) is equivalent to the Q-supermartingale
property of

Ṽ (x) � eR0Z−1V (x) = F
(|S − x|)eγ ·S.

Recall that under Q the price process S evolves as

S = S0 + σ · W,

where W is a Brownian motion under Q. Using the fact that F ′(0) = 0, we deduce
from Itô’s formula that

Ṽt (x) = Mt(x) +
∫ t

0
e(γ ·S)r Ar(x) dr,

where M(x) is a local martingale under Q and

A(x) = 1{|S−x|>0}
(

1

2
F ′′(|S − x|) |σ ∗(S − x)|2

|S − x|2 + 1

2
F

(|S − x|)∣∣σ ∗γ
∣∣2

+ F ′(|S − x|)(〈σ ∗(S − x), σ ∗γ 〉
|S − x|

+ 1

2|S − x|
(
|σ |2 − |σ ∗(S − x)|2

|S − x|2
)))

.

As ‖γ ‖∞ ≤ 1, F ′ ≤ 0, and

F − 2F ′ + F ′′ = 0,
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we deduce that

A(x) ≤ 1{|S−x|>0}
|σ |2

2

(
F ′′ − 2F ′ + F

)(|S − x|) = 0,

thus proving the local supermartingale property of Ṽ (x) under Q.
To verify that Ṽ (x) is a (global) Q-supermartingale, it is sufficient to show that

Ṽ (x) is bounded below by some Q-martingale. With this goal in mind, take ε > 0
such that

‖�‖H <
1

1 + ε
< 1

and observe that, by the construction of the norm ‖ · ‖H ,

E
[
e(1+ε)|�|] < ∞.

It follows that

EQ[
e(1+ε)|�|+(γ ·S)T

] = eR0E
[
e(1+ε)|�|] < ∞

and hence, the Q-martingale

Nt � E
Q
t

[
e(1+ε)|�|+(γ ·S)T

]
, t ∈ [0, T ],

is well defined. Recall that S and γ ·S are Q-martingales. From the right-hand side
of (4.6) and Jensen’s inequality we deduce that

−Ṽt (x) ≤ H
(|St − x|)e(γ ·S)t ≤ C(ε)e(1+ε)|St−x|+(γ ·S)t

≤ C(ε)E
Q
t

[
e(1+ε)|�−x|+(γ ·S)T

] ≤ C(ε)Nte
(1+ε)|x|

and the global supermartingale property of Ṽ (x) under Q follows.
We thus have shown that V (x) = F(|S −x|)e−R is a supermartingale. As F ≤ 1

and RT = 0 we then obtain

e−Rt ≥ F
(|St − x|)e−Rt ≥ Et

[
F

(|� − x|)], x ∈ Rn.

Of course, we can replace x in the inequality above with any Ft -measurable
random variable and, in particular, with Et [�]. As H is convex, H(0) = 0, and
‖�‖H < 1 we then deduce that

e−Rt ≥ Et

[
F

(∣∣� −Et [�]∣∣)]
= 1 −Et

[
H

(∣∣� −Et [�]∣∣)]
= 1 −Et

[
H

(
‖�‖H

|� −Et [�]|
‖�‖H

)]

≥ 1 − ‖�‖HEt

[
H

( |� −Et [�]|
‖�‖H

)]
and the inequality (4.9) follows from (4.7). �
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Recall that if L is a BMO-martingale, then the stochastic exponential E (L) is
a martingale, and hence, is the density process of some probability measure Q.
Moreover, if ‖L‖BMO ≤ b then there is a constant K = K(n,b) such that if M ∈
BMO(Rn) then its Girsanov’s transform N � M − 〈M,L〉 belongs to BMO(Q)

and
1

K
‖N‖BMO(Q) ≤ ‖M‖BMO ≤ K‖N‖BMO(Q);

see Theorem 3.3 in Kazamaki [8]. If M = β · B , then the above inequality can be
equivalently written as

1

K
‖β‖BMO(Q) ≤ ‖β‖BMO ≤ K‖β‖BMO(Q).(4.10)

We need a similar inequality for the BMO-norm (1.1) associated with random
variables.

LEMMA 4.6. Let L be a BMO-martingale with ‖L‖BMO ≤ b, Q be the prob-
ability measure with the density process Z = E (L), and ξ be an integrable n-
dimensional random variable such that E[ξ ] = 0 and ‖ξ‖BMO < ∞. Then ξ is
integrable under Q and there is a constant K = K(n,b) such that

1

K

∥∥ξ −EQ[ξ ]∥∥BMO(Q) ≤ ‖ξ‖BMO ≤ K
∥∥ξ −EQ[ξ ]∥∥BMO(Q).(4.11)

PROOF. It is sufficient to prove only the first inequality in (4.11). Recall that
by the reverse Hölder inequality there are constants p0 = p0(b) > 1 and C1 =
C1(p0, b) > 0 such that (

Eτ

[
Z

p0
T

])1/p0 ≤ C1Zτ ,

for every stopping time τ ; see Theorem 3.1 in Kazamaki [8]. For a random variable
η ≥ 0, this yields

EQ
τ [η] = 1

Zτ

Eτ [ZT η] ≤ 1

Zτ

(
Eτ

[
Z

p0
T

])1/p0
(
Eτ

[
ηq0

])1/q0 ≤ C1
(
Eτ

[
ηq0

])1/q0,

where q0 = p0
p0−1 > 1.

Since ‖ξ‖BMO < ∞, the estimate above implies that ξ is integrable under Q and

EQ
τ

[∣∣ξ −EQ
τ [ξ ]∣∣] ≤ 2EQ

τ

[∣∣ξ −Eτ [ξ ]∣∣] ≤ 2C1
(
Eτ

[∣∣ξ −Eτ [ξ ]∣∣q0
])1/q0 .

This readily yields the result after we recall that for every p ≥ 1 there is a constant
C2 = C2(p,n) such that

1

C2
‖ζ‖BMO ≤ ‖ζ‖BMOp � sup

τ

∥∥(
Eτ

[∣∣ζ −Eτ [ζ ]∣∣p])1/p∥∥∞ ≤ C2‖ζ‖BMO,

for every n-dimensional random variable ζ with E[ζ ] = 0. �
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LEMMA 4.7. Let γ ∈ H∞(Rn) and suppose that conditions (A1) and (4.5)
hold and that E[�] = 0 and

‖�‖H ≤ b < 1.

Then γ is a viable demand accompanied by stocks’ prices S and the certainty
equivalent value R if and only if there exist θ ∈ HBMO(Rn×d) and η ∈ HBMO(Rd)

such that (S,R,η, θ) is a solution of the BSDE (3.3)–(3.4). Moreover, there is a
constant K = K(n,b) > 0 such that

‖η‖BMO + ‖θ‖BMO ≤ K‖�‖BMO.(4.12)

PROOF. Let γ be a viable demand accompanied by stocks’ prices S and the
certainty equivalent value R and let η and θ be as in Theorem 3.1. Recall that
a = 1 and observe that (3.3) can be written as

Rt = 1

2

∫ T

t

(∣∣θ∗
s γs

∣∣2 − |ηs |2)
ds −

∫ T

t
η dB,

(4.13)

= 1

2

∫ T

t
|αs |2 ds −

∫ T

t
η dW,

where α = η + θ∗γ is the market price of risk and W = B + ∫
α dt is a Brownian

motion under the pricing measure Q. As R is nonnegative, [see (3.2)], and by
Lemma 4.5,

R ≤ c(b) � − log(1 − b) > 0,

we deduce from the second equality in (4.13) that

‖α‖2
BMO(Q) ≤ 2c(b).

As the stochastic exponential E (α · W) is the density of P with respect to Q

we deduce from Lemma 4.6 that � is Q-integrable and that there is a constant
C1 = C1(n, b) such that∥∥� −EQ[�]∥∥BMO(Q) ≤ C1‖�‖BMO.

As S = S0 + θ · W , we have

‖θ‖BMO(Q) = ‖S − S0‖BMO(Q) = ∥∥� −EQ[�]∥∥BMO(Q).

Then, by (4.10), there is a constant C2 = C2(n, b) such that

‖θ‖BMO ≤ C2‖θ‖BMO(Q) ≤ C1C2‖�‖BMO.

Finally, since θ ∈ HBMO and R ≥ 0, from the first equality in (4.13) we deduce
that η ∈ HBMO and, as ‖γ ‖∞ ≤ 1, that

‖η‖BMO ≤ ∥∥θ∗γ
∥∥

BMO ≤ ‖θ‖BMO.
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This yields (4.12) with K = 2C1C2.
Conversely, let (S,R,η, θ) be a solution of the BSDE (3.3)–(3.4) with θ ∈

HBMO(Rn×d) and η ∈ HBMO(Rd). In view of Theorem 3.1, we only have to ver-
ify the uniform integrability of the local martingales Z = E ((η + θ∗γ ) · B), ZS,
and Z(γ · S). This readily follows from θ and η being in HBMO. �

PROOF OF THEOREM 4.1. In view of the homogeneity relations (4.3)
and (4.4), it is sufficient to prove the result under the extra condition (4.5). Without
loss of generality, we can also assume that E[�] = 0.

By Theorem A.1 in the Appendix, there is a constant b = b(n) > 0 such that if

‖�‖BMO ≤ b,

then among (η, θ) ∈ BMO(Rd × Rn×d) with∥∥(η, θ)
∥∥

BMO ≤ 2b,(4.14)

there is only one solution (S,R,η, θ) of (3.3)–(3.4) and this solution satisfies∥∥(η, θ)
∥∥

BMO ≤ 2‖�‖BMO.(4.15)

Lemma 4.7 then implies that γ is a viable demand accompanied by stocks’
prices S.

From Lemmas 4.5 and 4.7 and accounting for (4.8), we deduce the existence of
a constant c = c(n, b) ≤ b such that if

‖�‖BMO ≤ c,

then every solution (S,R,η, θ) of (3.3)–(3.4) satisfies (4.14). Hence, there is only
one such solution, and thus stocks’ prices S are defined uniquely.

Finally, from (4.15) and (3.5)–(3.6) we obtain

‖σ‖BMO = ‖θ‖BMO ≤ 2‖�‖BMO,

‖α‖BMO = ∥∥η + θ∗γ
∥∥

BMO ≤ ‖η‖BMO + ‖θ‖BMO ≤ 4‖�‖BMO,

which, under (4.5), is precisely (4.2). �

4.3. Proof of Proposition 4.3. The proof is divided into lemmas. We begin
with a “backward localization” result which does not require either (A1) or (A2).

LEMMA 4.8. Let � be a bounded n-dimensional random variable represent-
ing the stocks’ dividends and γ be a viable demand for � accompanied by stock’s
prices S. Let τ be a stopping time taking values in [0, T ]. Then the predictable
process

γ ′
t � γt1{t>τ }, t ∈ [0, T ],
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is a viable demand for the stocks’ dividends

� ′ = �1{τ<T }
and there are stocks’ prices S′ for � ′ and γ ′ such that

S′
t = St , t > τ.(4.16)

PROOF. To simplify notation, take the risk-aversion a = 1. Let Q be the pric-
ing measure for γ and S, that is,

dQ

dP
= const e− ∫ T

0 γ dS.

From the martingale property of γ · S and Jensen’s inequality, we deduce

EQ
[
e

∫ τ
0 γ dS] ≤ EQ

[
e

∫ T
0 γ dS]

< ∞.

This allows us to define the probability measure Q′ such that

dQ′

dQ
= e

∫ τ
0 γ dS

EQ[e∫ τ
0 γ dS] .

Then

dQ′

dP
= e− ∫ T

τ γ dS

E[e− ∫ T
τ γ dS]

= e− ∫ T
0 γ ′ dS

E[e− ∫ T
0 γ ′ dS]

.

Define the bounded Q′-martingale

S′
t � EQ′[

� ′|Ft

] = EQ′ [�1{τ<T }|Ft ], t ∈ [0, T ].
To show that S′ is a desired price process for � ′ and γ ′, we need to verify (4.16)
and the Q′-martingale property of γ ′ · S′.

Since the density of dQ′/dQ is Fτ -measurable, the conditional expectations of
Q and Q′ with respect to the σ -algebras Fτ∨t , t ∈ [0, T ], coincide. This readily
implies (4.16). We also deduce that if N is a Q-martingale then

N ′
t � Nt − Nt∧τ =

∫ t

0
1{s>τ } dNs, t ∈ [0, T ],

is a Q′-martingale. In particular, as∫ t

0
γ ′ dS′ =

∫ t

0
1{r>τ }γr dSr, t ∈ [0, T ],

we obtain that γ ′ · S′ is a Q′-martingale. �

The following lemma contains the main idea behind the proof of Propo-
sition 4.3. In its formulation, all processes and random variables are one-
dimensional.
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LEMMA 4.9. Let B be a Brownian motion, � be a random variable different
from a constant, and γ be a predictable process such that∣∣�(ω)

∣∣ = ∣∣γt (ω)
∣∣ = 1, P[dω] × dt-a.s.

Then there is no a solution (S,R,η, θ) of the BSDE

Rt = 1

2

∫ T

t

(
θ2
s − η2

s

)
ds −

∫ T

t
η dB,(4.17)

St = � −
∫ T

t
θs(ηs + θsγs) ds −

∫ T

t
θ dB,(4.18)

with bounded S, nonnegative R, and such that

sign
(
St (ω)

) = −γt (ω), P[dω] × dt-a.s.(4.19)

PROOF. Suppose, on the contrary, that (S,R,η, θ) solves (4.17)–(4.18) and
that S is bounded, R is nonnegative, and (4.19) holds. As in the proof of
Lemma 4.5, define the function

F(x) � e|x|(1 − |x|), x ∈ R,

and observe that it is twice continuously differentiable and solves

F(x) − 2F ′(x) sign(x) + F ′′(x) = 0.(4.20)

From Itô’s formula and equations (4.17)–(4.18) for R and S, we deduce that

de−Rt = e−Rt
(−ηt dB + 1

2θ2
t dt

)
,

dF (St ) = F ′(St )θt dB + (
F ′(St )θt (ηt + θtγt ) + 1

2F ′′(St )θ
2
t

)
dt.

Applying Itô’s formula to

Vt = F(St )e
−Rt , t ∈ [0, T ],

we then obtain that

Vt = Mt +
∫ t

0
e−RsAs ds,

where M is a local martingale and

At = 1
2θ2

t

(
F(St ) + 2F ′(St )γt + F ′′(St )

) = 0,

because of (4.19) and (4.20).
Thus, V is a local martingale. As S is bounded and R is nonnegative, V is

bounded, and hence, is a martingale. Since

VT = F(ST )e−RT = F(�) = 0,
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we deduce that V = 0, and hence, that |S| = 1. However, as S is a continuous one-
dimensional process, S equals to a constant, which contradicts the assumption that
� = ST is not a constant. �

PROOF OF PROPOSITION 4.3. In view of the self-similarity relations (4.3), it
is sufficient to consider the case a = 1. Take

� � sign(BT ), γ � − sign(B)(4.21)

and assume that γ is accompanied by a price process S. Lemma 4.9 yields the
contradiction if

sign(Sr) = sign(Br), r ∈ (0, T ).(4.22)

Fix r ∈ (0, T ), define the stopping time

τ = τ(r) � inf{t ≥ r :Bt = 0} ∧ T ,

and observe that (4.22) holds if

Sτ = 0 on the set {τ < T }.(4.23)

Indeed, in this case,

Sτ = �1{τ=T } = sign(BT )1{τ=T } = sign(Br)1{τ=T }
and, as S is a martingale under the pricing measure Q, we obtain

Sr = EQ[Sτ |Fr ] = sign(Br)Q[τ = T |Fr ].
This readily implies (4.22) after we observe that, because r < T and Q is equiva-
lent to P, the conditional probability

Q[τ = T |Fr ] = Q
[

inf
t∈[r,T ] |Bt | > 0|Fr

]
is strictly positive.

In view of (A2), the stock price S admits the representation

St (ω) = Xt

(
B(ω)

) = Xt

((
Bs(ω)

)
0≤s≤t

)
,

in terms of a continuous adapted process X defined on the canonical Wiener space
of continuous functions on [0, T ]. Define a Brownian motion

B̃t �
∫ t

0
sign(τ − r) dBr = Bt1{t≤τ } − Bt1{t>τ }, t ∈ [0, T ],

and observe that, as S corresponds to � and γ from (4.21), the continuous semi-
martingale

S̃t � −Xt(B̃), t ∈ [0, T ],
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accompanies �̃ and γ̃ given by

�̃ � − sign(B̃T ), γ̃ � sign(B̃).

By construction,

St = Xt

(
(Bs)s≤t

) = −S̃t , t ≤ τ(4.24)

and

� ′ � sign(BT )1{τ<T } = �1{τ<T } = �̃1{τ<T },

γ ′
t � − sign(Bt )1{t>τ } = γt1{t>τ } = γ̃t1{t>τ }, t ∈ [0, T ].

If � ′ and γ ′ are accompanied by the unique price process S′ then, by Lemma 4.9,

S′
t = St = S̃t , t > τ,

and, in particular,

Sτ = S̃τ , τ < T ,

which jointly with (4.24) implies (4.23). Thus, we have a contradiction. �

APPENDIX: BSDE WITH QUADRATIC GROWTH IN BMO

As before, we work on a complete filtered probability space (�,F , (Ft )t∈[0,T ],
P) where T is a finite time horizon and assume that (A1) holds.

Consider the n-dimensional BSDE:

Yt = � +
∫ T

t
f (s, ζs) ds −

∫ T

t
ζs dBs, t ∈ [0, T ].(A.1)

Here, Y is an n-dimensional semi-martingale, ζ is a predictable process with val-
ues in the space of n × d matrices, and the terminal condition � and the driver
f = f (t, z) satisfy the following assumptions:

(A3) � is an integrable random variable with values in Rn such that the mar-
tingale

Lt � Et [�] −E[�], t ∈ [0, T ],
belongs to BMO.

(A4) t �→ f (t, z) is a predictable process with values in Rn,

f (t,0) = 0,

and there is a constant � > 0 such that∣∣f (t, u) − f (t, v)
∣∣ ≤ �

(|u − v|)(|u| + |v|),
for all t ∈ [0, T ] and u, v ∈ Rn×m.
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Note that f = f (t, z) has a quadratic growth in z.
Recall that there is a constant κ = κ(n) such that, for every martingale M ∈

BMO(Rn),

1

κ
‖M‖BMO ≤ ‖M‖BMO1 � sup

τ

∥∥Eτ

[|MT − Mτ |]∥∥∞ ≤ ‖M‖BMO;(A.2)

see [8], Corollary 2.1, page 28. Hereafter, we fix the constants κ and � from (A.2)
and (A4) and use the BMO-martingale L from (A3).

THEOREM A.1. Assume (A1), (A3) and (A4). If

‖L‖BMO <
1

8κ�
,(A.3)

then there is ζ ∈ HBMO solving (A.1) and such that

‖ζ‖BMO ≤ 2‖L‖BMO.(A.4)

Moreover, if (A.3) holds and ζ ′ ∈ HBMO is another solution to (A.1) such that∥∥ζ ′∥∥
BMO ≤ 1

4κ�
,(A.5)

then ζ = ζ ′.

REMARK A.2. Theorem A.1 extends Proposition 1 in Tevzadze [14], where
the terminal condition � is supposed to have sufficiently small L∞-norm. A sim-
ilar extension to the case � ∈ BMO has been obtained independently in Proposi-
tion 2.1 of Frei [2], however, with slightly different constants.

We are unaware of any general result on the global uniqueness of a local solu-
tion ζ from Theorem A.1; that is, the uniqueness of ζ in the whole space HBMO,
without the constraint (A.5). This highlights the relevance of Theorem 4.1 which,
to the best of our knowledge, is the first example of a coupled system of quadratic
BSDEs where such uniqueness is established.

We divide the proof of Theorem A.1 into lemmas.

LEMMA A.3. Assume (A1), (A3) and (A4). For ζ ∈ HBMO, there is unique
ζ ′ ∈ HBMO such that

(
ζ ′ · B)

t = Et

[
� +

∫ T

0
f (s, ζs) ds

]
−E

[
� +

∫ T

0
f (s, ζs) ds

]
.(A.6)

Moreover, ∥∥ζ ′∥∥
BMO ≤ ‖L‖BMO + 2κ�‖ζ‖2

BMO.(A.7)



BSDE IN A PRICE IMPACT MODEL 815

PROOF. Define the martingale

Mt � Et

[∫ T

0
f (s, ζs) ds

]
−E

[∫ T

0
f (s, ζs) ds

]
.

For a stopping time τ , we deduce from (A4) and Itô’s isometry that

Eτ

[|MT − Mτ |] = Eτ

[∣∣∣∣∫ T

τ
f (s, ζs) ds −Eτ

[∫ T

τ
f (s, ζs) ds

]∣∣∣∣]

≤ 2Eτ

[∫ T

τ

∣∣f (s, ζs)
∣∣ds

]
≤ 2�Eτ

[∫ T

τ
|ζs |2 ds

]

= 2�Eτ

[∣∣∣∣∫ T

τ
ζ dB

∣∣∣∣2]
.

Accounting for (A.2), we obtain

‖M‖BMO ≤ 2κ�
(‖ζ · B‖BMO

)2 = 2κ�‖ζ‖2
BMO.

This shows that the martingale on the right-hand side of (A.6) belongs to BMO. In
view of (A1) it then admits an integral representation as ζ ′ ·B for some ζ ′ ∈ HBMO.
We clearly have that ζ ′ is unique in HBMO and∥∥ζ ′∥∥

BMO = ∥∥ζ ′ · B∥∥
BMO ≤ ‖L‖BMO + ‖M‖BMO. �

Lemma A.3 allows us to define the map

F :HBMO → HBMO

such that ζ ′ = F(ζ ) is given by (A.6).

LEMMA A.4. Assume (A1), (A3) and (A4). Let ζ and ζ ′ be in HBMO. Then∥∥F(ζ ) − F
(
ζ ′)∥∥

BMO ≤ 2κ�
∥∥ζ − ζ ′∥∥

BMO

(‖ζ‖BMO + ∥∥ζ ′∥∥
BMO

)
.

PROOF. We have ∥∥F(ζ ) − F
(
ζ ′)∥∥

BMO = ‖M‖BMO,

where

Mt � Et

[∫ T

0

(
f (s, ζs) − f

(
s, ζ ′

s

))
ds

]
−E

[∫ T

0

(
f (s, ζs) − f

(
s, ζ ′

s

))
ds

]
.

For a stopping time τ , we deduce from (A4) that

Eτ

[|MT − Mτ |] ≤ 2�Eτ

[∫ T

τ

∣∣ζs − ζ ′
s

∣∣(|ζs | +
∣∣ζ ′

s

∣∣)ds

]
.

Cauchy’s inequality and Itô’s isometry then yield

Eτ

[|MT − Mτ |] ≤ 2�
∥∥ζ − ζ ′∥∥

BMO

(‖ζ‖BMO + ∥∥ζ ′∥∥
BMO

)
.
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The result now follows from (A.2). �

PROOF OF THEOREM A.1. From Lemma A.3, we deduce that F maps the
ball of the radius R � 1

4κ�
into the ball of the radius

R′ = ‖L‖BMO + 2κ�R2 < R.

From Lemma A.4, we obtain that F is a contraction on the ball of the radius R′: if
ζ, ζ ′ ∈ HBMO and max(‖ζ‖BMO,‖ζ ′‖BMO) ≤ R′, then∥∥F(ζ ) − F

(
ζ ′)∥∥

BMO ≤ 2κ�
∥∥ζ − ζ ′∥∥

BMO

(‖ζ‖BMO + ∥∥ζ ′∥∥
BMO

)
≤ R′

R

∥∥ζ − ζ ′∥∥
BMO.

Banach’s fixed-point theorem now implies the existence and uniqueness of ζ ∈
HBMO such that ‖ζ‖BMO ≤ R and F(ζ ) = ζ . The estimate (A.4) for ζ follows
from (A.7):

‖ζ‖BMO ≤ ‖L‖BMO + 2κ�‖ζ‖2
BMO ≤ ‖L‖BMO + 1

2‖ζ‖BMO.

It only remains to observe that the fixed points of F are in one-to-one correspon-
dence with the solutions ζ to (A.1) such that ζ · B ∈ BMO. �
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