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SAMPLE PATH BEHAVIOR OF A LÉVY INSURANCE RISK
PROCESS APPROACHING RUIN, UNDER THE

CRAMÉR–LUNDBERG AND CONVOLUTION
EQUIVALENT CONDITIONS1

BY PHILIP S. GRIFFIN

Syracuse University

Recent studies have demonstrated an interesting connection between
the asymptotic behavior at ruin of a Lévy insurance risk process under the
Cramér–Lundberg and convolution equivalent conditions. For example, the
limiting distributions of the overshoot and the undershoot are strikingly simi-
lar in these two settings. This is somewhat surprising since the global sample
path behavior of the process under these two conditions is quite different. Us-
ing tools from excursion theory and fluctuation theory, we provide a means of
transferring results from one setting to the other which, among other things,
explains this connection and leads to new asymptotic results. This is done by
describing the evolution of the sample paths from the time of the last maxi-
mum prior to ruin until ruin occurs.

1. Introduction. It is becoming increasingly popular to model insurance risk
processes with a general Lévy process. In addition to new and interesting math-
ematics, this approach allows for direct modeling of aggregate claims which can
then be calibrated against real aggregate data, as opposed to the traditional ap-
proach of modeling individual claims. Whether this approach is superior remains
to be seen, but it offers, at a minimum, an alternative, to the traditional approach.
The focus of this paper will be on two such Lévy models, and their sample path
behavior as ruin approaches.

Let X = {Xt : t ≥ 0}, X0 = 0, be a Lévy process with characteristics (γ, σ 2,

�X). The characteristic function of X is given by the Lévy–Khintchine represen-
tation, EeiθXt = et�X(θ), where

�X(θ) = iθγ − σ 2θ2/2 +
∫

R

(
eiθx − 1 − iθx1{|x|<1}

)
�X(dx) for θ ∈ R.

To avoid trivialities, we assume X is nonconstant. In the insurance risk model,
X represents the excess in claims over premium. An insurance company starts
with an initial positive reserve u, and ruin occurs if this level is exceeded by X.
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To reflect the insurance company’s desire to collect sufficient premia to prevent
almost certain ruin, it is assumed that Xt → −∞ a.s. This is the general Lévy
insurance risk model, which we will investigate under two distinct conditions. The
first is the well-known Cramér–Lundberg condition:

EeαX1 = 1 and EX1e
αX1 < ∞ for some α > 0.(1.1)

The second, introduced by Klüppelberg, Kyprianou and Maller [24], is the convo-
lution equivalent condition:

EeαX1 < 1 and X+
1 ∈ S(α) for some α > 0,(1.2)

where S(α) denotes the class of convolution equivalent distributions of index α.
The formal description of S(α) will be given in Section 7. Typical examples of
distributions in S(α) are those with tails of the form

P(X1 > x) ∼ e−αx

xp
for p > 1.

Under (1.2), EeθX1 = ∞ for all θ > α, so (1.1) must fail. Hence, conditions (1.1)
and (1.2) are mutually exclusive. For a further comparison, see the introduction
to [20].

Historically, the first insurance risk model to be extensively studied was the
compound Poisson model.2 This arises when X is a spectrally positive compound
Poisson process with negative drift. In recent years, attention has turned to the
general Lévy insurance risk model (see Kyprianou [25] for a detailed discussion of
the general model), where considerable progress has been made in calculating the
limiting distribution of several variables related to ruin; see Doney, Klüppelberg
and Maller [12], Doney and Kyprianou [13], Griffin and Maller [20], Klüppelberg,
Kyprianou and Maller [24] and the references therein. To give some examples,
particularly relevant to this paper, we first need a little notation. Set

Xt = sup
0≤s≤t

Xs,

τ (u) = inf
{
t :X(t) > u

}
,

and let P (u) denote the probability measure P (u)(·) = P(·|τ(u) < ∞). Let H be
the ascending ladder height process, and �H,dH and q its Lévy measure, drift and
killing rate, respectively; see Section 2 for more details. Then under the Cramér–
Lundberg condition (1.1), it was shown in [21] that the limiting distributions of the
shortfall at, and the minimum surplus prior to, ruin are given by

P (u)(Xτ(u) − u ∈ dx)
w−→ q−1α

[
dHδ0(dx) +

∫
y≥0

eαy�H(y + dx)dy

]
,

(1.3)
P (u)(u − Xτ(u)− ∈ dy)

w−→ q−1α
[
dHδ0(dy) + eαy�H(y)dy

]
,

2This is often called the Cramér–Lundberg model, as opposed to the Cramér–Lundberg condi-
tion (1.1).
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where
w−→ denotes weak convergence and δ0 is a point mass at 0. Under the con-

volution equivalent condition (1.2), it follows from Theorem 4.2 in [24] and The-
orem 10 in [13] (see also Section 7 of [20]) that the corresponding limits are

P (u)(Xτ(u) − u ∈ dx)
w−→ q−1α

[
− ln

(
EeαH1

)
e−αx dx + dHδ0(dx)

+
∫
y≥0

eαy�H(y + dx)dy

]
,(1.4)

P (u)(u − Xτ(u)− ∈ dy)
v−→ q−1α

[
dHδ0(dy) + eαy�H(y)dy

]
,

where
v−→ denotes vague convergence of measures on [0,∞).3

The resemblance between the results in (1.3) and (1.4) is striking and in many
ways quite surprising, since the paths resulting in ruin behave very differently in
the two cases as we now explain. Under the Cramér–Lundberg condition, with
b = EX1e

αX1 , we have
τ(u)

u
→ b−1 in P (u) probability

and

sup
t∈[0,1]

∣∣∣∣X(tτ(u))

τ (u)
− bt

∣∣∣∣ → 0 in P (u) probability,

indicating that ruin occurs due to the build up of small claims which cause X to
behave as though it had positive drift; see Theorem 8.3.5 of [16].4 By contrast
in the convolution equivalent case, asymptotically, ruin occurs in finite time (in
distribution), and for ruin to occur, the process must take a large jump from a
neighborhood of the origin to a neighborhood of u. This jump may result in ruin,
but if not, the resulting process X − u subsequently behaves like X conditioned
to hit (0,∞). This representation of the limiting conditioned process leads to a
straightforward proof of (1.4); see [20]. However, the description in the Cramér–
Lundberg case is not sufficiently precise to yield (1.3). What is needed is a more
refined characterization of the process as ruin approaches, specifically, a limiting
description of the path from the time of the last strict maximum before time τ(u)

up until time τ(u).
In the discrete time setting, such a result was proved by Asmussen [1]. Let Zk

be i.i.d., nonlattice and set Sn = Z1 + · · · + Zn. Assume the Cramér–Lundberg
condition,

EeαZ1 = 1 and EZ1e
αZ1 < ∞ for some α > 0.

3In (1.3) and (1.4), it is assumed that X1 has a nonlattice distribution. Similar results hold in the
lattice case if the limit is taken through points in the lattice span, but to avoid repetition we will
henceforth make the nonlattice assumption.

4The result cited in [16] follows from the work of Asmussen [1], which is for the compound
Poisson model, but the result remains true for the general model.



LÉVY INSURANCE RISK PROCESS 363

As above, let τ(u) be the first passage time of Sn over level u and σ(u) the time of
the last strict ladder epoch prior to passage [thus σ(0) = 0]. Set

Z(u) = (Zσ(u)+1, . . . ,Zτ(u)).

It follows from Section 8 of [1] that for G bounded and continuous

E(u)G
(
Z(u), Sτ(u) − u

)
(1.5)

→
∫ ∞

0 eαyE{G(Z(0), Sτ(0) − y);Sτ(0) > y, τ (0) < ∞}dy

CE(Sτ(0)e
αSτ(0); τ(0) < ∞)

,

where C = limu→∞ eαuP (τ(u) < ∞) and E(u) denotes expectation with respect
to the conditional probability P (u)(·) = P(·|τ(u) < ∞). This result describes the
limit of the conditioned process from the time of the last strict ladder epoch prior
to first passage over a high level, up until the time of first passage. From it, the
limiting distribution of several quantities related to first passage, such as those
in (1.3), may be found in the random walk setting.

As it stands, the formulation in (1.5) makes no sense for a general Lévy process.
To apply even to the compound Poisson model, the most popular risk model, some
reformulation is needed. Furthermore, to prove (1.5), Asmussen derives a renewal
equation by considering the two cases τ(0) = τ(u) and τ(0) < τ(u). This is a
standard renewal theoretic device which has no hope of success in the general Lévy
insurance risk model since typically τ(0) = 0. To circumvent these problems, we
apply arguments from fluctuation theory and excursion theory. This allows us to
describe, for any Lévy process, the final segment of the path from the time of
the last maximum prior to ruin, up until the time of ruin. This description is in
terms of the renewal measure V of the ascending ladder height process and the
excursion measure of X below its running supremum X. The key observation that
ties together the two cases (1.1) and (1.2), and allows proof of convergence as
u → ∞, is that in either case, (V ◦ ln) is regularly varying at infinity with index
−α, where V (u) = V (∞) − V (u). This allows us to derive not only new results
in the Cramér–Lundberg setting, but also to provide a tool for transferring results
from one setting to the other, and in particular, to explain the striking similarity
between results under (1.1) and (1.2).

A very different description of the sample paths which lead to ruin under (1.1),
can be found in Barczy and Bertoin [4]. Building on results from Bertoin and
Savov [7], they describe the sample paths in reverse time, from the time of ruin,
in terms of the associated exponentially tilted process conditioned to stay positive
and started with the limiting distribution of the undershoot u − Xτ(u)−. These two
approaches are quite distinct and the aim of [4] is somewhat different from here.
An interesting example related to the post ruin process is discussed in [4], but the
paper is not specifically directed at insurance risk. The limiting process here is
described in forward time, and the convergence is stronger than in [4], in that it
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also applies to certain discontinuous and unbounded functionals of the path. Ad-
ditionally, the results of [4] do not apply to the convolution equivalent setting and
so cannot explain the connection between results such as (1.3) and (1.4). The ap-
proach in this paper may also prove useful in establishing similar connections for
related processes. For example, Mijatovic and Pistorius [26] recently showed that
the joint limit law of the undershoot and overshoot for the reflected process under
(1.1) is the same as for the processes itself. It now seems reasonable to conjecture
that the analogous result holds under (1.2) and, furthermore, that this is a conse-
quence of a more general result related to the sample path behavior of the process
and the reflected processes under (1.1) and (1.2) as first passage approaches.

Although not directly related to the current work, a description of the sample
paths leading to ruin has also been obtained for the heavy tailed subexponential
class of general Lévy insurance risk processes. This class was studied in the com-
pound Poisson model by Asmussen and Klüppelberg [3] and later for spectrally
positive process by Klüppelberg and Kyprianou [23]. Results for the general Lévy
insurance risk process were obtained recently by Doney, Klüppelberg and Maller
[12]. The behavior of the paths is diametrically opposite to that in the Cramér–
Lundberg case, with ruin being a consequence of one extremely large jump.

We conclude the Introduction with a brief outline of the paper. Section 2 con-
tains the necessary fluctuation theory and excursion theory to give a precise state-
ment of the results. The main results can then be found in Section 3 together with
an outline of the general approach to their proof. Further results and proofs re-
lated to Section 2 are given in Section 4 and the proof of a preliminary result from
Section 3 is in Section 5. Proof of the main convergence result under the Cramér–
Lundberg condition is given in Section 6 and under the convolution equivalent
condition in Section 7. The special case where (0,∞) is irregular is then briefly
discussed in Section 8. Specific calculations of limiting distributions as well as a
Gerber–Shiu EDPF are given in Section 9. Finally, the Appendix contains a result
in the case that X is compound Poisson which, as is often the case, needs to be
treated separately. Throughout C,C1,C2, . . . will denote constants whose value is
unimportant and may change from one usage to the next.

2. Fluctuation variables and excursion measure. Let Lt, t ≥ 0, denote the
local time at 0 of the process X − X, normalized by

E

∫ ∞
0

e−t dLt = 1.(2.1)

Here, we are following Chaumont [9] in our choice of normalization. When 0
is regular for [0,∞), L is the unique increasing, continuous, additive functional
satisfying (2.1) such that the support of the measure dLt is the closure of the set
{t :Xt = Xt } and L0 = 0 a.s. If 0 is irregular for [0,∞), the set {s :Xs > Xs−} of
times of strict new maxima of X is discrete. Let Rt = |{s ∈ (0, t] :Xs > Xs−}| and
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define the local time of X − X at 0 by

Lt =
Rt∑

k=0

ek,(2.2)

where ek , k = 0,1, . . . is an independent sequence of i.i.d. exponentially dis-
tributed random variables with parameter

p = 1

1 − E(e−τ(0); τ(0) < ∞)
.(2.3)

Note that in this latter case, dLt has an atom of mass e0 at t = 0 and thus the
choice of p ensures that (2.1) holds. Let L−1 be the right continuous inverse of L

and Hs = X
L−1

s
. Then (L−1

s ,Hs)s≥0 is the (weakly) ascending bivariate ladder
process.

We will also need to consider the strictly ascending bivariate ladder process,
which requires a slightly different definition for L. Specifically, when 0 is regular
for (0,∞), L is the unique increasing, continuous, additive functional as above.
When 0 is irregular for (0,∞), L is defined by (2.2). Thus, the only difference is
for the compound Poisson process, where the L switches from being continuous
to being given by (2.2). In this case, that is, when X is compound Poisson, the
normalization (2.1) still holds, but now the support of the measure dLt is the set of
times of strict maxima of X, as opposed to the closure of the set {t :Xt = Xt }. L−1

and H are then defined as before in terms of L and X, and (L−1
s ,Hs)s≥0 is the

strictly ascending bivariate ladder process. See [5, 11] and particularly Chapter 6
of [25].

In the following paragraph, (L−1
s ,Hs)s≥0 can be either the weakly ascending

or strictly ascending bivariate ladder process. When Xt → −∞ a.s., L∞ has an
exponential distribution with some parameter q > 0, and the defective process
(L−1,H) may be obtained from a nondefective process (L−1,H) by indepen-
dent exponential killing at rate q > 0. We denote the bivariate Lévy measure of
(L−1,H) by �L−1,H (·, ·). The Laplace exponent κ(a, b) of (L−1,H), defined by

e−κ(a,b) = E
(
e−aL−1

1 −bH1;1 < L∞
) = e−qEe−aL−1

1 −bH1

for values of a, b ∈ R for which the expectation is finite, may be written

κ(a, b) = q + dL−1a + dHb +
∫
t≥0

∫
x≥0

(
1 − e−at−bx)

�L−1,H (dt, dx),

where dL−1 ≥ 0 and dH ≥ 0 are drift constants. Observe that the normalization
(2.1) results in κ(1,0) = 1. The bivariate renewal function of (L−1,H), given by

V (t, x) =
∫ ∞

0
e−qsP

(
L−1

s ≤ t,Hs ≤ x
)
ds

=
∫ ∞

0
P

(
L−1

s ≤ t,Hs ≤ x; s < L∞
)
ds,
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has Laplace transform∫
t≥0

∫
x≥0

e−at−bxV (dt, dx) =
∫ ∞
s=0

e−qsE
(
e−aL−1

s −bHs
)
ds

(2.4)

= 1

κ(a, b)
,

provided κ(a, b) > 0. We will also frequently consider the renewal function of H ,
defined on R by

V (x) =
∫ ∞

0
e−qsP (Hs ≤ x)ds = lim

t→∞V (t, x).

Observe that V (x) = 0 for x < 0, while V (0) > 0 iff H is compound Poisson. Also

V (∞) := lim
x→∞V (x) = q−1.(2.5)

From this point on, we will take (L−1,H) to be the strictly ascending bivariate
ladder processes of X. Let X̂t = −Xt , t ≥ 0 denote the dual process, and (L̂−1, Ĥ )

the weakly ascending bivariate ladder processes of X̂. This is opposite to the usual
convention, and means some care needs to be taken when citing the literature in
the compound Poisson case. This choice is made because it leads to more natural
results and a direct analogue of (1.5) when X is compound Poisson. All quantities
relating to X̂ will be denoted in the obvious way, for example, τ̂ (0), p̂,�L̂−1,Ĥ ,
κ̂ and V̂ . With these choices of bivariate ladder processes, together with the nor-
malization of the local times implying κ(1,0) = κ̂(1,0) = 1, the Wiener–Hopf
factorization takes the form

κ(a,−ib)κ̂(a, ib) = a − �X(b), a ≥ 0, b ∈ R.(2.6)

If α > 0 and EeαX1 < ∞, then by analytically extending κ , κ̂ and �X , it follows
from (2.6) that

κ(a,−z)κ̂(a, z) = a − �X(−iz) for a ≥ 0,0 ≤ 	z ≤ α.

If further EeαX1 < 1, for example, when (1.2) holds, then �X(−iα) < 0 and since
trivially κ̂(a,α) > 0, we have

κ(a,−α) > 0 for a ≥ 0.(2.7)

Let D be the Skorohod space of functions w : [0,∞) → R which are right con-
tinuous with left limits, equipped with the usual Skorohod topology. The lifetime
of a path w ∈ D is defined to be ζ(w) = inf{t ≥ 0 :w(s) = w(t) for all s ≥ t},
where we adopt the standard convention that inf∅ = ∞. If ζ(w) = ∞ then w(ζ )

is taken to be some cemetery point. Thus, for example, if w(ζ ) > y for some y then
necessarily ζ < ∞. The jump in w at time t is given by �wt = w(t)−w(t−). We
assume that X is given as the coordinate process on D, and the usual right contin-
uous completion of the filtration generated by the coordinate maps will be denoted
{Ft }t≥0. Pz is the probability measure induced on F = ∨

t≥0 Ft by the Lévy pro-
cess starting at z ∈ R, and we usually write P for P0.
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Let G = {L−1
t− :�L−1

t > 0} and D = {L−1
t :�L−1

t > 0} denote the set of left
and right endpoints of excursion intervals of X − X. For g ∈ G, let d ∈ D be the
corresponding right endpoint of the excursion interval (d = ∞ if the excursion has
infinite lifetime), and set

εg(t) = X(g+t)∧d − Xg, t ≥ 0.

Note, these are X-excursions in the terminology of Greenwood and Pitman; see
Remark 4.6 of [17], as opposed to X − X excursions. Let

E = {
w ∈ D :w(t) ≤ 0 for all 0 ≤ t < ζ(w)

}
and FE the restriction of F to E . Then εg ∈ E for each g ∈ G, and ζ(εg) = d − g.
The characteristic measure on (E,FE) of the X-excursions will be denoted n.

For fixed u > 0, let

Gτ(u)− =
{

g, if τ(u) = d for some excursion interval (g, d)

τ (u), else.

If X is compound Poisson, then Gτ(u)− is the first time of the last maximum prior
to τ(u). When X is not compound Poisson, Gτ(u)− is the left limit at τ(u) of
Gt = sup{s ≤ t :Xs = Xs}, explaining the reason behind this common notation.

Set

Yu(t) = X(Gτ(u)−+t)∧τ(u) − Xτ(u)−, t ≥ 0.

Clearly, ζ(Yu) = τ(u) − Gτ(u)−. If ζ(Yu) > 0 then Gτ(u)− ∈ G, Xτ(u)− = XGτ(u)−
and Yu ∈ E . If in addition τ(u) < ∞, equivalently ζ(Yu) < ∞, then Yu is the ex-
cursion which leads to first passage over level u. To cover the possibility that first
passage does not occur at the end of an excursion interval, introduce

E = E ∪ {x :x ≥ 0},
where x ∈ D is the path which is identically x. On the event ζ(Yu) = 0, that is
Gτ(u)− = τ(u), either X creeps over u in which case Yu = 0, or X jumps over u

from its current strict maximum in which case Yu = x where x = �Xτ(u) > 0 is
the size of the jump at time τ(u). In all cases, Yu ∈ E .

Let FE be the restriction of F to E . We extend n trivially to a measure on FE

by setting n(E \ E) = 0. Let ñ denote the measure on FE obtained by pushing
forward the measure �+

X with the mapping x → x, where �+
X is the restriction of

�X to [0,∞). Thus, ñ(E) = 0, and for any Borel set B ⊂ [0,∞), ñ({x :x ∈ B}) =
�+

X(B). Finally, let n = n + dL−1 ñ.
For u > 0, s ≥ 0, y ≥ 0, ε ∈ E define

Qu(ds, dy, dε)
(2.8)

= P
(
Gτ(u)− ∈ ds,u − Xτ(u)− ∈ dy,Yu ∈ dε, τ (u) < ∞)

.

The starting point for our investigation is the following result, to be proved in
Section 4, which provides a description of the sample paths from the (first) time
of the last maximum prior to τ(u) until the time of first passage over u. It may be
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viewed as an extension of the quintuple law of Doney and Kyprianou [13]; see the
discussion following Proposition 4.3.

THEOREM 2.1. For u > 0, s ≥ 0, y ≥ 0, ε ∈ E ,

Qu(ds, dy, dε) = I (y ≤ u)V (ds,u − dy)n
(
dε, ε(ζ ) > y

)
(2.9)

+ dH

∂−
∂−u

V (ds,u)δ0(dy)δ0(dε),

where ∂−
∂−u

denotes left derivative and ∂−
∂−u

V (ds,u) is the Lebesgue–Stieltges mea-

sure associated with the function ∂−
∂−u

V (s, u) (which is increasing in s by (1.2)
and (3.5) of [19]).

3. Statement of results and a unified approach. In this section, we state the
main results and outline a unified approach to proving them under (1.1) and (1.2).
We assume from now on that Xt → −∞. We will be interested in a marginalized
version of (2.8) conditional on τ(u) < ∞. Thus, for u > 0, y ≥ 0 and ε ∈ E define

Q(u)(dy, dε) = P (u)(u − Xτ(u)− ∈ dy,Yu ∈ dε),

where recall P (u)(·) = P(·|τ(u) < ∞). Setting V (u) = V (∞) − V (u), and using
the Pollacek–Khintchine formula,

P
(
τ(u) < ∞) = qV (u),(3.1)

see Proposition 2.5 of [24], it follows from (2.9) that

Q(u)(dy, dε) = I (y ≤ u)
V (u − dy)

qV (u)
n
(
dε, ε(ζ ) > y

) + dH

V ′(u)

qV (u)
δ0(dy)δ0(dε).

Here, we have used the fact that V is differentiable when dH > 0, see Theo-
rem VI.19 of [5]. Now under either the Cramér–Lundberg condition (1.1) or the
convolution equivalent condition (1.2),

V (u − dy)

qV (u)

v−→ α

q
eαy dy and dH

V ′(u)

qV (u)
→ dH

α

q(3.2)
as u → ∞;

see Sections 6 and 7 below. This suggests that under suitable conditions on
F : [0,∞) × E → R,∫

[0,∞)×E
F(y, ε)Q(u)(dy, dε) →

∫
[0,∞)×E

F(y, ε)Q(∞)(dy, dε),(3.3)

where

Q(∞)(dy, dε) = α

q
eαy dy n

(
dε, ε(ζ ) > y

) + dH

α

q
δ0(dy)δ0(dε),(3.4)
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thus yielding a limiting description of the process as ruin approaches. Observe
that (3.3) may be rewritten as

E(u)F (u − Xτ(u)−, Yu)
(3.5)

→
∫
[0,∞)

α

q
eαy dy

∫
E
F(y, ε)n

(
dε, ε(ζ ) > y

) + dH

α

q
F(0,0),

indicating how the limiting behavior of many functionals of the process related to
ruin may be calculated.

To determine a broad class of functions F for which (3.3) holds, first introduce

h(y) =
∫
E
F(y, ε)n

(
dε, ε(ζ ) > y

)
.(3.6)

We emphasize that throughout, h will always depend on F , but we will suppress
this dependence to ease notation. Since, by (3.2), (3.3) is equivalent to∫ u

0
h(y)

V (u − dy)

qV (u)
→

∫ ∞
0

h(y)
αeαy

q
dy,(3.7)

it will be of interest to know when h is continuous a.e.with respect to Lebesgue
measure m. The most obvious setting in which the condition on By below holds,
is when F is continuous in y for each ε. In particular, it holds when F is jointly
continuous. The boundedness condition holds when F is bounded, but applies to
certain unbounded functions.

PROPOSITION 3.1. Assume EeαX1 < ∞, and F : [0,∞) × E → R is prod-
uct measurable, and F(y, ε)e−α(ε(ζ )−y)I (ε(ζ ) > y) is bounded in (y, ε). Further
assume n(Bc

y) = 0 for a.e. y with respect to Lebesgue measure m, where

By = {
ε :F(·, ε) is continuous at y

}
.

Then h is continuous a.e. w.r.t. m.

We can now state the main results.

THEOREM 3.1. If (1.1) holds, and F ≥ 0 satisfies the hypotheses for Propo-
sition 3.1, then (3.3), equivalently (3.5), holds. In particular,

Q(u)(dy, dε)
w−→ Q(∞)(dy, dε).

THEOREM 3.2. If (1.2) holds, F ≥ 0 satisfies the hypotheses of Proposi-
tion 3.1, and

F(y, ε)I
(
ε(ζ ) > y

) → 0 uniformly in ε ∈ E as y → ∞,(3.8)

then (3.3), equivalently (3.5), holds. Condition (3.8) holds if, for example, F has
compact support. In particular,

Q(u)(dy, dε)
v−→ Q(∞)(dy, dε).(3.9)
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While the outline of the proofs of these two results is the same, the details need
to be handled differently. In the Cramér–Lundberg case, the key renewal theorem is
used, whereas in the convolution equivalent case, special properties of convolution
equivalent distributions are used. This results in different classes of functions for
which (3.3) holds. The extra condition (3.8) in Theorem 3.2 cannot be dispensed
with, else the convergence in (3.9) could be improved to weak convergence. How-
ever, as we show later in (7.4), the total mass of Q(∞) under (1.2) is less than
one. The convergence in (3.5) may be expressed alternatively in terms of the over-
shoot Xτ(u) − u rather than the undershoot u − Xτ(u)−, making it more analogous
to (1.5); see Theorems 6.1 and 7.1.

Evaluation, or even simplification, of the limit in (3.5) for a specific functional
of the path is, in general, difficult to achieve. Here, we give an example where
it is possible and which arises naturally in risk theory. Note that the function f

below can grow exponentially in the overshoot variable. This allows for the calcu-
lation of certain unbounded Gerber–Shiu expected discounted penalty functions;
see Section 9.

THEOREM 3.3. Assume that (1.1) holds, and f : [0,∞)4 → [0,∞) is a
Borel function which is jointly continuous in the first three variables and
e−αxf (y, x, v, t) is bounded. Then

E(u)f
(
u − Xτ(u)−,Xτ(u) − u,u − Xτ(u)−, τ (u) − Gτ(u)−

)
→

∫
x≥0

∫
y≥0

∫
v≥0

∫
t≥0

f (y, x, v, t)

(3.10)
× α

q
eαy dy I (v ≥ y)V̂ (dt, dv − y)�X(v + dx)

+ dH

α

q
f (0,0,0,0).

In particular, we have joint convergence; for y ≥ 0, x ≥ 0, v ≥ 0, t ≥ 0

P (u)(u − Xτ(u)− ∈ dy,Xτ(u) − u ∈ dx,u − Xτ(u)− ∈ dv,

τ (u) − Gτ(u)− ∈ dt
)

(3.11)
w−→ α

q
eαy dy I (v ≥ y)V̂ (dt, dv − y)�X(v + dx)

+ dH

α

q
δ(0,0,0,0)(dx, dy, dv, dt).

In the convolution equivalent setting, the following result extends Theorem 10
of [13].
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THEOREM 3.4. Assume (1.2) holds and that f : [0,∞)4 → [0,∞) satis-
fies (9.12), is jointly continuous in the first three variables, e−αxf (y, x, v, t) is
bounded, and

sup
x>0,t≥0,v≥y

f (y, x, v, t) → 0 as y → ∞.

Then

E(u)f
(
u − Xτ(u)−,Xτ(u) − u,u − Xτ(u)−, τ (u) − Gτ(u)−

)
→

∫
x≥0

∫
y≥0

∫
v≥0

∫
t≥0

f (x, y, v, t)

(3.12)
× α

q
eαy dy I (v ≥ y)V̂ (dt, dv − y)�X(v + dx)

+ dH

α

q
f (0,0,0,0).

In particular, we have joint convergence; for y ≥ 0, x ≥ 0, v ≥ 0, t ≥ 0

P (u)(u − Xτ(u)− ∈ dy,Xτ(u) − u ∈ dx,u − Xτ(u)− ∈ dv,

τ (u) − Gτ(u)− ∈ dt
)

(3.13)
v−→ α

q
eαy dy I (v ≥ y)V̂ (dt, dv − y)�X(v + dx)

+ dH

α

q
δ(0,0,0,0)(dx, dy, dv, dt).

Theorems 3.1 and 3.2 describe, in a very general sense, how to transfer results
from the Cramér–Lundberg setting to the convolution equivalent setting and vice
versa. Theorems 3.3 and 3.4 provide a specific example of this. However, since the
mode of convergence is

w−→ under (1.1) and
v−→ under (1.2), some subtleties may

arise. For example, the marginal distributions of the limit in (3.11) can be readily
calculated using (4.8) below, and consequently under (1.1) we obtain, in addition
to (1.3),5

P (u)(u − Xτ(u)− ∈ dx)
w−→ q−1αdHδ0(dx)

+ q−1αeαx�X(x)dx

∫
0≤v≤x

e−αvV̂ (dv),

P (u)(τ(u) − Gτ(u)− ∈ dt
) w−→ q−1(

αdHδ0(dt) + K(dt)
)
,

5Strictly speaking, the proof of (1.3) in [21] assumes that (L−1,H) is the weakly ascending ladder

process, whereas the marginals of (3.11) yield the same formulae as (1.3) but with (L−1,H) the
strictly ascending ladder process. Thus, as can be easily checked directly, the limiting expressions
must agree irrespective of the choice of ascending ladder process. This remark applies to (1.4) and
several other limiting distributions discussed here.
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where

K(dt) =
∫
z≥0

(
eαz − 1

)
�L−1,H (dt, dz).(3.14)

Under (1.2), some care is needed. The marginals of the limit in (3.13) are the same
as in (3.11), but they all have mass less than one. This does not mean that we can
simply replace weak convergence of the marginals under (1.1) with vague conver-
gence under (1.2). For the undershoots of X and X, this is correct, but the over-
shoot and τ(u) − Gτ(u)− both converge weakly under (1.2); indeed they converge
jointly, as will be shown in Proposition 9.2. Consequently, an extra term appears
in the limit of the overshoot in (1.4) to account for the missing mass. Similarly, for
τ(u) − Gτ(u)−, see (9.19).

Based on the outline of the proofs of Theorems 3.1 and 3.2 given at the begin-
ning of this section, it is natural to ask if any other limits are possible in (3.2), thus
leading to different forms of the limit in (3.5). However, this is not the case. More
precisely, if V (u − dy)/V (u) converges vaguely to a nonzero locally finite Borel
measure, then V (u − y)/V (u) converges as u → ∞ on a dense set of y. Hence,
by Theorem 1.4.3 of [8], V (lnu) is regularly varying at infinity with some index
−α. Consequently, the limit in (3.2) must be of the form given. The only general
classes of processes that the author is aware of which satisfy (3.2) are those studied
in this paper, namely the Cramér–Lundberg and convolution equivalent cases.

4. Proof of Theorem 2.1 and related results. The following result will be
needed in the proof of Theorem 2.1.

PROPOSITION 4.1. If X is not compound Poisson, then for s ≥ 0, x ≥ 0,

dL−1V (ds, dx) = P(Xs = Xs ∈ dx)ds.

PROOF. For any s ≥ 0, x ≥ 0

dL−1

∫ L∞

0
I
(
L−1

t ≤ s,Ht ≤ x
)
dt = dL−1

∫ L∞

0
I
(
L−1

t ≤ s,X
L−1

t
≤ x

)
dt

= dL−1

∫ s

0
I (Xr ≤ x)dLr

=
∫ s

0
I (Xr ≤ x)I (Xr = Xr)dr,

by Theorem 6.8 and Corollary 6.11 of Kyprianou [25], which apply since X is
not compound Poisson, [Kyprianou’s (L−1,H) is the weakly ascending ladder
process in which case the result holds in the compound Poisson case also]. Taking
expectations completes the proof. �
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PROOF OF THEOREM 2.1. There are three possible ways in which X can first
cross level u; by a jump at the end of an excursion interval, by a jump from a
current strict maximum or by creeping. We consider each in turn.

Let f,h and j be nonnegative bounded continuous functions. Since X
L−1

t−
is left

continuous, we may apply the master formula of excursion theory, Corollary IV.11
of [5], to obtain

E
{
f (Gτ(u)−)h(u − Xτ(u)−)j (Yu);Xτ(u) > u,Gτ(u)− < τ(u) < ∞}

= E
∑
g∈G

f (g)h(u − Xg)j (εg)I
(
Xg ≤ u, εg(ζ ) > u − Xg

)

= E

∫ ∞
0

dLt

∫
E
f (t)h(u − Xt)j (ε)I

(
Xt ≤ u, ε(ζ ) > u − Xt

)
n(dε)

=
∫
E
j (ε)n(dε)E

∫ L∞

0
f

(
L−1

r

)
h(u − Hr)I

(
Hr ≤ u, ε(ζ ) > u − Hr

)
dr(4.1)

=
∫
E
j (ε)n(dε)

∫
s≥0

∫
0≤y≤u

f (s)h(u − y)I
(
ε(ζ ) > u − y

)
V (ds, dy)

=
∫
E
j (ε)n(dε)

∫
s≥0

∫
0≤y≤u

f (s)h(y)I
(
ε(ζ ) > y

)
V (ds,u − dy)

=
∫
s≥0

∫
0≤y≤u

∫
E
f (s)h(y)j (ε)V (ds, u − dy)n

(
dε, ε(ζ ) > y

)
.

Next, define j̃ : [0,∞) → R by j̃ (x) = j (x). Then, since Yu(t) = �Xτ(u) for all
t ≥ 0 on {Xτ(u) > u,Gτ(u)− = τ(u) < ∞}, we have by the compensation formula,

E
{
f (Gτ(u)−)h(u − Xτ(u)−)j (Yu);Xτ(u) > u,Gτ(u)− = τ(u) < ∞}

= E
{
f (Gτ(u)−)h(u − Xτ(u)−)j̃ (�Xτ(u));

Xτ(u) > u,Gτ(u)− = τ(u) < ∞}
= E

∑
s

f (s)h(u − Xs−)j̃ (�Xs)I (Xs− = Xs− ≤ u,�Xs > u − Xs−)

(4.2)
= E

∫ ∞
0

f (s)h(u − Xs)I (Xs = Xs ≤ u)ds

∫
ξ
j̃ (ξ)I (ξ > u − Xs)�X(dξ)

=
∫ ∞

0
f (s)

∫
0≤y≤u

h(y)

∫
ξ
j̃ (ξ)I (ξ > y)�X(dξ)P (Xs = Xs ∈ u − dy)ds

=
∫
s≥0

f (s)

∫
0≤y≤u

h(y)

∫
E
j (ε)ñ

(
dε, ε(ζ ) > y

)
P(Xs = Xs ∈ u − dy)ds

=
∫
s≥0

∫
0≤y≤u

∫
E
f (s)h(y)j (ε)ñ

(
dε, ε(ζ ) > y

)
dL−1V (ds,u − dy),
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where the final equality follows from Proposition 4.1 if X is not compound Pois-
son. If X is compound Poisson the first and last formulas of (4.2) are equal because
P(Gτ(u)− = τ(u)) = 0 and dL−1 = 0 [recall that (L−1,H) is the strictly ascending
ladder process].

Finally,

E
{
f (Gτ(u)−)h(u − Xτ(u)−)j (Yu);Xτ(u) = u, τ(u) < ∞}

= h(0)j (0)E
{
f

(
τ(u)

);Xτ(u) = u, τ(u) < ∞}
(4.3)

= dHh(0)j (0)

∫
s
f (s)

∂−
∂−u

V (ds,u)

if dH > 0, by (3.5) of [19]. If dH = 0, then X does not creep, and so P(Xτ(u) =
u) = 0. Thus, (4.3) holds in this case also. Combining the three terms (4.1), (4.2)
and (4.3) gives the result. �

The next two results will be used to calculate limits such as those of the form
(3.11) and (3.13).

PROPOSITION 4.2. For t ≥ 0, z ≥ 0,

V̂ (dt, dz) = n
(
ε(t) ∈ −dz, ζ > t

)
dt + dL−1δ(0,0)(dt, dz).(4.4)

PROOF. If X is not compound Poisson nor |X| a subordinator, (4.4) follows
from (5.9) of [9] applied to the dual process X̂.

If X is a subordinator, but not compound Poisson, then n is the zero measure and
dL−1 = 1 by (2.1). On the other hand, (L̂−1, Ĥ ) remains at (0,0) for an exponential
amount of time with parameter p̂ = 1, by (2.3), and is then killed. Hence, (4.4)
holds.

If −X is a subordinator, then (L̂−1
t , Ĥt ) = (t, X̂t ) and so V̂ (dt, dz) = P(Xt ∈

−dz) dt . On the other hand, n is proportional to the first, and only, excursion, so
n(ε(t) ∈ −dz, ζ > t) = cP (Xt ∈ −dz) for some c > 0. Since dL−1 = 0, we thus
only need check that |n| = 1. But G = {0}, and so by the master formula

1 = E
∑
g∈G

e−g = E

∫ ∞
0

e−t dLt

∫
E
n(dε) = |n|.

To complete the proof, it thus remains to prove (4.4) when X is compound
Poisson. We defer this case to the Appendix. �

For notational convenience, we define ε(0−) = 0 for ε ∈ E . Thus, in particular,
x(ζ−) = 0 since ζ(x) = 0. Note also that x(ζ ) = x.

PROPOSITION 4.3. For t ≥ 0, z ≥ 0 and x > 0,

n
(
ζ ∈ dt, ε(ζ−) ∈ −dz, ε(ζ ) ∈ dx

) = V̂ (dt, dz)�X(z + dx).(4.5)
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PROOF. First consider the case t > 0, z ≥ 0 and x > 0. For any 0 < s < t ,
using the Markov property of the excursion measure n, we have

n
(
ζ ∈ dt, ε(ζ−) ∈ −dz, ε(ζ ) ∈ dx

)
=

∫
y≥0

n
(
ε(s) ∈ −dy, ζ > s

)
× P−y

(
τ(0) ∈ dt − s,Xτ(0)− ∈ −dz,Xτ(0) ∈ dx

)
=

∫
y≥0

n
(
ε(s) ∈ −dy, ζ > s

)
× P

(
τ(y) ∈ dt − s,Xτ(y)− ∈ y − dz,Xτ(y) ∈ y + dx

)
.

By the compensation formula, for any positive bounded Borel function f ,

E
{
f

(
τ(y)

);Xτ(y)− ∈ y − dz,Xτ(y) ∈ y + dx
}

= E

{∑
r

f (r);Xr− ≤ y,Xr− ∈ y − dz,Xr ∈ y + dx

}

=
∫ ∞
r=0

f (r)P (Xr− ≤ y,Xr− ∈ y − dz) dr �X(z + dx).

Thus,

P
(
τ(y) ∈ dt − s,Xτ(y)− ∈ y − dz,Xτ(y) ∈ y + dx

)
= P(Xt−s ≤ y,Xt−s ∈ y − dz) dt �X(z + dx).

Hence,

n
(
ζ ∈ dt, ε(ζ−) ∈ −dz, ε(ζ ) ∈ dx

)
=

∫
y≥0

n
(
ε(s) ∈ −dy, ζ > s

)
P(Xt−s ≤ y,Xt−s ∈ y − dz) dt �X(z + dx)

= n
(
ε(t) ∈ −dz, ζ > t

)
dt �X(z + dx)

= V̂ (dt, dz)�X(z + dx)

by (4.4).
Finally, if t = 0, then for any positive bounded Borel function,∫

{(t,z,x) : t=0,z≥0,x>0}
f (t, z, x)n

(
ζ ∈ dt, ε(ζ−) ∈ −dz, ε(ζ ) ∈ dx

)

= dL−1

∫
x>0

f (0,0, x)ñ
(
ε(ζ ) ∈ dx

)
= dL−1

∫
x>0

f (0,0, x)�+
X(dx)

=
∫
{(t,z,x) : t=0,z≥0,x>0}

f (t, z, x)V̂ (dt, dz)�X(z + dx)
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by Proposition 4.2. �

As mentioned earlier, Theorem 2.1 may be viewed as an extension of the quintu-
ple law of Doney and Kyprianou [13]. To see this, observe that from Theorem 2.1
and Proposition 4.3, for u > 0, s ≥ 0, t ≥ 0,0 ≤ y ≤ u ∧ z, x ≥ 0,

P
(
Gτ(u)− ∈ ds,u − Xτ(u)− ∈ dy, τ (u) − Gτ(u)− ∈ dt,

u − Xτ(u)− ∈ dz,Xτ(u) − u ∈ dx
)

= P
(
Gτ(u)− ∈ ds,u − Xτ(u)− ∈ dy, ζ(Yu) ∈ dt,

Yu(ζ−) ∈ y − dz,Yu(ζ ) ∈ y + dx
)

(4.6)
= I (x > 0)V (ds, u − dy)n

(
ζ ∈ dt, ε(ζ−) ∈ y − dz, ε(ζ ) ∈ y + dx

)
+ dH

∂−
∂−u

V (ds,u)δ(0,0,0,0)(dt, dx, dz, dy)

= I (x > 0)V (ds, u − dy)V̂ (dt, dz − y)�X(z + dx)

+ dH

∂−
∂−u

V (ds,u)δ(0,0,0,0)(dt, dx, dz, dy).

When X is not compound Poisson, this is the statement of Theorem 3 of [13] with
the addition of the term due to creeping; see Theorem 3.2 of [19]. When X is
compound Poisson the quintuple law, though not explicitly stated in [13], remains
true and can be found in [14]. In that case, the result is slightly different from (4.6)
since the definitions of Gτ(u)−,V and V̂ then differ due to the choice of (L−1,H)

as the weakly ascending ladder process in [13] and [14]. Thus, we point out that
Vigon’s équation amicale inversée, [30],

�H(dx) =
∫
z≥0

V̂ (dz)�X(z + dx), x > 0,(4.7)

and Doney and Kyprianou’s extension,

�L−1,H (dt, dx) =
∫
v≥0

V̂ (dt, dv)�X(v + dx), x > 0, t ≥ 0,(4.8)

continue to hold with our choice of (L−1,H) as the strongly ascending ladder
process. The proof of (4.8) is analogous to the argument in Corollary 6 of [13],
using (4.6) instead of Doney and Kyprianou’s quintuple law, and (4.7) follows
immediately from (4.8).

COROLLARY 4.1. For x > 0,

n
(
ε(ζ ) ∈ dx

) = �H(dx).(4.9)
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PROOF. Integrating out in (4.5),

n
(
ε(ζ ) ∈ dx

) =
∫
z≥0

V̂ (dz)�X(z + dx) = �H(dx),

by (4.7). �

5. Proof of Proposition 3.1. From (3.6),

h(z) =
∫
E
fz(ε)n(dε),

where

fz(ε) = F(z, ε)I
(
ε(ζ ) > z

)
.

Fix y > 0 and assume |z − y| < y/2. Then for some constant C, independent of z

and ε, ∣∣fz(ε)
∣∣ ≤ Ceα(ε(ζ )−z)I

(
ε(ζ ) > z

) ≤ Ceα(ε(ζ )−y/2)I
(
ε(ζ ) > y/2

)
.(5.1)

By (4.9),∫
E
eα(ε(ζ )−y/2)I

(
ε(ζ ) > y/2

)
n(dε) =

∫
x>y/2

eα(x−y/2)�H (dx),(5.2)

and since EeαX1 < ∞, this last integral is finite by Proposition 7.1 of [18].
Now let A = {y :n(Bc

y) = 0} and CH = {y :�H({y}) = 0}. Then Cc
H is count-

able and

n
(
ε(ζ ) = y

) = �H

({y}) = 0 if y ∈ CH .

Thus, if y > 0, y ∈ A∩CH and z → y, then fz(ε) → fy(ε) a.e. n. Hence, by (5.1)
and (5.2), we can apply dominated convergence to obtain continuity of h at such y.
Since m(Ac) = m(Cc

H ) = 0, this completes the proof.

6. Proofs under the Cramér–Lundberg condition. In studying the process
X under the Cramér–Lundberg condition (1.1), it is useful to introduce the Esscher
transform. Thus, let P ∗ be the measure on F defined by

dP ∗ = eαXt dP on Ft ,

for all t ≥ 0. Then X under P ∗ is the Esscher transform of X. It is itself a Lévy
process with E∗X > 0; see Section 3.3 of Kyprianou [25].

When (1.1) holds, Bertoin and Doney [6] extended the classical Cramér–
Lundberg estimate for ruin to a general Lévy process; assume X is nonlattice in
the case that X is compound Poisson, then

lim
u→∞ eαuP

(
τ(u) < ∞) = q

αm∗ ,(6.1)
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where m∗ = E∗H1. Under P ∗, H is a nondefective subordinator with drift d∗
H and

Lévy measure �∗
H given by

d∗
H = dH and �∗

H(dx) = eαx�H(dx),

and so

E∗H1 = d∗
H +

∫ ∞
0

x�∗
H(dx) = dH +

∫ ∞
0

xeαx�H(dx).(6.2)

Combining (6.1) with the Pollacek–Khintchine formula (3.1), we obtain

lim
u→∞

V (u − y)

V (u)
= eαy,(6.3)

and hence the first result in (3.2) holds as claimed. The second result in (3.2) is
a consequence of (4.15) in [21], for example. Since V (lnx) is regularly varying,
note that the convergence in (6.3) is uniform on compact subsets of R; see Theo-
rem 1.2.1 of [8].

Let

V ∗(x) :=
∫ ∞

0
P ∗(Hs ≤ x)ds =

∫
y≤x

eαyV (dy),(6.4)

see [6] or Section 7.2 of [25]. Then V ∗ is a renewal function, and so by the key
renewal theorem ∫ u

0
g(y)V ∗(u − dy) → 1

m∗
∫ ∞

0
g(y) dy,(6.5)

if g ≥ 0 is directly Riemann integrable on [0,∞). We will make frequent use of
the following criterion for direct Riemann integrability. If g ≥ 0 is continuous a.e.
and dominated by a bounded, nonincreasing integrable function on [0,∞), then g

is directly Riemann integrable on [0,∞). See Chapter V.4 of [2] for information
about the key renewal theorem and direct Riemann integrability.

The function to which we would like to apply (6.5), namely eαyh(y) where h is
given by (3.6), is typically unbounded at 0. To overcome this difficulty, we use the
following result.

PROPOSITION 6.1. If (1.1) holds, h ≥ 0, eαyh(y)1[ε,∞)(y) is directly Rie-
mann integrable for every ε > 0, and

lim sup
ε→0

lim sup
u→∞

∫
[0,ε)

h(y)
V (u − dy)

V (u)
= 0,(6.6)

then (3.3) holds.

PROOF. By (3.1) and (6.4),

V (u − dy)

qV (u)
= eαyV ∗(u − dy)

eαuP (τ(u) < ∞)
.
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Hence, by (6.1), and (6.5) applied to eαyh(y)1[ε,∞)(y),∫ u

ε
h(y)

V (u − dy)

qV (u)
=

∫ u

ε
eαyh(y)

V ∗(u − dy)

eαuP (τ(u) < ∞)
→

∫ ∞
ε

eαyh(y)
α

q
dy

as u → ∞. Combined with (6.6) and monotone convergence, this proves (3.7),
which in turn is equivalent to (3.3). �

The next result gives conditions on F which ensure that h, defined by (3.6),
satisfies the hypotheses of Proposition 6.1.

PROPOSITION 6.2. Assume F ≥ 0 satisfies the hypotheses of Proposition 3.1,
and further that EX1e

αX1 < ∞. Then h satisfies the hypotheses of Proposition 6.1.

PROOF. For any y ≥ 0,

eαyh(y) =
∫
E
eαyF (y, ε)n

(
dε, ε(ζ ) > y

)
=

∫
E
I
(
ε(ζ ) > y

)
e−α(ε(ζ )−y)F (y, ε)eαε(ζ )n(dε)(6.7)

≤ C

∫
(y,∞)

eαx�H(dx),

by (4.9). Further,∫
y≥0

∫
x>y

eαx�H(dx)dy =
∫
x≥0

xeαx�H(dx) < ∞,

by an argument analogous to Proposition 7.1 of [18]. Thus, eαyh(y) is dominated
by a nonincreasing integrable function on [0,∞), and hence, for each ε > 0,
eαyh(y)1[ε,∞)(y) is dominated by a bounded nonincreasing integrable function
on [0,∞). Additionally, by Proposition 3.1, h is continuous a.e. with respect
to Lebesgue measure. Consequently, eαyh(y)1[ε,∞)(y) is directly Riemann inte-
grable for every ε > 0.

Next, since the convergence is uniform on compact in (6.3), for any x ≥ 0,∫
[0,x)

V (u − dy)

V (u)
→ eαx − 1(6.8)

as u → ∞. Thus, by (6.7) and (6.8), if ε < 1 and u is sufficiently large∫
[0,ε)

h(y)
V (u − dy)

V (u)

≤ C

∫
[0,ε)

V (u − dy)

V (u)

∫
(y,∞)

eαx�H(dx)

= C

∫
[0,ε)

eαx�H(dx)

∫
[0,x)

V (u − dy)

V (u)
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+ C

∫
[ε,∞)

eαx�H(dx)

∫
[0,ε)

V (u − dy)

V (u)

≤ C1

∫
[0,ε)

xeαx�H(dx) + C1ε

∫
[ε,∞)

eαx�H(dx)

≤ C1e
α

∫
[0,ε)

x�H(dx) + C1e
αε�H(ε) + C1ε

∫
[1,∞)

eαx�H(dx).

Now
∫
[0,1) x�H(dx) < ∞, since H is a subordinator, thus

∫
[0,ε) x�H(dx) → 0

and ε�H(ε) → 0 as ε → 0. Combined with
∫
x≥1 eαx�H(dx) < ∞, this shows

that the final expression approaches 0 as ε → 0. �

As a consequence, we have the following.

PROOF OF THEOREM 3.1. This follows immediately from Propositions 6.1
and 6.2. �

The convergence in Theorem 3.1 may alternatively be expressed in terms of the
overshoot Xτ(u) − u rather than the undershoot of the maximum u − Xτ(u)−.

THEOREM 6.1. Assume G :E × [0,∞) → [0,∞) is product measurable,
e−αxG(ε, x) is bounded in (ε, x) and G(ε, ·) is continuous for a.e. ε w.r.t. n. Then
under (1.1),

E(u)G(Yu,Xτ(u) − u)

→
∫
[0,∞)

α

q
eαy dy

∫
E×(0,∞)

G(ε, x)n
(
dε, ε(ζ ) ∈ y + dx

)
(6.9)

+ dH

α

q
G(0,0).

PROOF. Let F(y, ε) = G(ε, ε(ζ ) − y)I (ε(ζ ) ≥ y). Then F satisfies the con-
ditions of Theorem 3.1, and

G(Yu,Xτ(u) − u) = F(u − Xτ(u)−, Yu)

on {τ(u) < ∞}. Consequently, (3.5) yields

E(u)G(Yu,Xτ(u) − u)

→
∫
[0,∞)

α

q
eαy dy

∫
E
G

(
ε, ε(ζ ) − y

)
n
(
dε, ε(ζ ) > y

) + dH

α

q
G(0,0)

=
∫
[0,∞)

α

q
eαy dy

∫
E×(0,∞)

G(ε, x)n
(
dε, ε(ζ ) ∈ y + dx

) + dH

α

q
G(0,0),

completing the proof. �
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7. Proofs under the convolution equivalent condition. We begin with the
definition of the class S(α). As mentioned previously, we will restrict ourselves to
the nonlattice case, with the understanding that the alternative can be handled by
obvious modifications. A distribution F on [0,∞) with tail F = 1 − F belongs to
the class S(α), α > 0, if F(u) > 0 for all u > 0,

lim
u→∞

F(u + x)

F (u)
= e−αx for x ∈ (−∞,∞),(7.1)

and

lim
u→∞

F 2∗(u)

F (u)
exists and is finite,(7.2)

where F 2∗ = F ∗ F . Distributions in S(α) are called convolution equivalent with
index α. When F ∈ S(α), the limit in (7.2) must be of the form 2δF

α , where
δF
α := ∫

[0,∞) e
αxF (dx) is finite. Much is known about the properties of such dis-

tributions; see, for example, [10, 15, 22, 27, 28] and [31]. In particular, the class is
closed under tail equivalence, that is, if F ∈ S(α) and G is a distribution function
for which

lim
u→∞

G(u)

F (u)
= c for some c ∈ (0,∞),

then G ∈ S(α).
The convolution equivalent model (1.2) was introduced by Klüppelberg, Kypri-

anou and Maller [24].6 As noted earlier, when (1.2) holds, EeθX1 = ∞ for all
θ > α, so (1.1) must fail. Nevertheless, (3.2) continues to hold under (1.2). This is
because by (2.5), F(u) = qV (u) is a distribution function, and combining several
results in [24] (see (4) of [13]), together with closure of S(α) under tail equivalence,
it follows that F ∈ S(α). Hence, the first condition in (3.2) follows from (7.1). The
second condition, which corresponds to asymptotic creeping, again follows from
results in [24] and can also be found in [13].

We begin with a general result about convolution equivalent distributions.

LEMMA 7.1. If F ∈ S(α), and g ≥ 0 is continuous a.e. (Lebesgue) with
g(y)/F (y) → L as y → ∞, then∫

0≤y≤u
g(y)

F (u − dy)

F (u)
→

∫ ∞
0

g(y)αeαy dy + L

∫ ∞
0

eαyF (dy) as u → ∞.

6In [24], (1.2) is stated in terms of �+
X(· ∩ [1,∞))/�+

X([1,∞)) ∈ S(α). This is equivalent to

X+
1 ∈ S(α) by Watanabe [31].
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PROOF. Fix K ∈ (0,∞) and write∫
0≤y≤u

g(y)
F (u − dy)

F (u)

=
(∫

0≤y≤K
+

∫
K<y<u−K

+
∫
u−K≤y≤u

)
g(y)

F (u − dy)

F (u)
(7.3)

= I + II + III.

By vague convergence,

I →
∫ K

0
g(y)αeαy dy.

Next,

III =
∫

0≤y≤K
g(u − y)

F (dy)

F (u)
=

∫
0≤y≤K

g(u − y)

F (u − y)

F (u − y)

F (u)
F (dy).

For large u, the integrand is bounded by 2LeαK and converges to Leαy , thus by
bounded convergence,

III → L

∫ K

0
eαyF (dy).

Finally,

lim sup
K→∞

lim sup
u→∞

II ≤ lim sup
K→∞

lim sup
u→∞

sup
y≥K

g(y)

F (y)

∫
K<y<u−K

F(y)
F (u − dy)

F (u)
= 0,

by Lemma 7.1 of [24]. Thus, the result follows by letting u → ∞ and then K → ∞
in (7.3). �

We now turn to conditions under which (3.3) holds in terms of h given by (3.6).

PROPOSITION 7.1. If (1.2) holds, and h ≥ 0 is continuous a.e. (Lebesgue)
with h(y)/V (y) → 0 as y → ∞, then (3.3) holds. More generally, assume
h(y)/V (y) → L, then an extra term needs to be added to the RHS of (3.3), namely
L/qκ(0,−α).

PROOF. As noted above, qV (u) is a distribution function in S(α). Thus, by
Lemma 7.1,∫

0≤y≤u
h(y)

V (u − dy)

V (u)
→

∫ ∞
0

h(y)αeαy dy + L

∫ ∞
0

eαyV (dy).

Dividing through by q and using (2.4) and (2.7) gives∫
0≤y≤u

h(y)
V (u − dy)

qV (u)
→

∫ ∞
0

h(y)
αeαy

q
dy + L

qκ(0,−α)
.
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With L = 0, this is (3.7) which is equivalent to (3.3). �

The next result gives conditions on F in (3.6) which ensures convergence of
h(y)/V (y) as y → ∞.

PROPOSITION 7.2. If (1.2) holds and∣∣F(y, ε) − L
∣∣I (

ε(ζ ) > y
) → 0 uniformly in ε ∈ E as y → ∞,

then h(y)/V (y) → Lκ2(0,−α).

PROOF. By (3.6),

h(y) ∼ Ln
(
ε(ζ ) > y

) = L�H(y) ∼ Lκ2(0,−α)V (y)

by (3.1) together with (4.4) of [24]. �

As a consequence, we have the following.

PROOF OF THEOREM 3.2. This follows immediately from Propositions 7.1
and 7.2. �

REMARK 7.1. Another condition under which (3.8) from Theorem 3.2 holds,
other than when F has compact support, is if F(y, ε) = F̃ (y, ε)I (ε(ζ ) ≤ K) for
some function F̃ and some K ≥ 0. In particular if F̃ ≥ 0 satisfies the hypotheses
of Proposition 3.1, then F satisfies all the hypotheses of Theorem 3.2.

The convergence in (3.9) cannot be improved to
w−→ since from (3.4) the total

mass of Q(∞) is given by∣∣Q(∞)
∣∣ = α

q

∫
[0,∞)×E

eαyn
(
dε, ε(ζ ) > y

)
dy + dH

α

q

= α

q

∫
[0,∞)

eαy�H(y)dy + dH

α

q
(7.4)

= 1

q

∫
[0,∞)

(
eαy − 1

)
�H(dy) + dH

α

q

= 1 − κ(0,−α)

q
.

Under (1.1), κ(0,−α) = 0 so |Q(∞)| = 1, but under (1.2), κ(0,−α) > 0 and so
|Q(∞)| < 1.

As with Theorem 3.1, the convergence in Theorem 3.2 may alternatively be
expressed in terms of the overshoot Xτ(u) − u rather than the undershoot u −
Xτ(u)−.
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THEOREM 7.1. Assume G :E × [0,∞) → [0,∞) is product measurable,
e−αxG(ε, x) is bounded in (ε, x) and G(ε, ·) is continuous for a.e. ε w.r.t. n. Fur-
ther assume that

G
(
ε, ε(ζ ) − y

)
I
(
ε(ζ ) > y

) → 0 uniformly in ε ∈ E as y → ∞.

Then under (1.2),

E(u)G(Yu,Xτ(u) − u)

→
∫
[0,∞)

α

q
eαy dy

∫
E×(0,∞)

G(ε, x)n
(
dε, ε(ζ ) ∈ y + dx

)
(7.5)

+ dH

α

q
G(0,0).

8. The irregular case. We briefly consider the special case of Theorems 6.1
and 7.1 where 0 is irregular for (0,∞) for X. In addition to covering the natural
Lévy process version of Asmussen’s random walk result (1.5), that is when X is
compound Poisson, it also includes the widely studied compound Poisson model,
which recall includes a negative drift. We begin by identifying n in terms of the
stopped process X[0,τ (0)] where

X[0,τ (0)](t) := Xt∧τ(0), t ≥ 0.(8.1)

PROPOSITION 8.1. Assume 0 is irregular for (0,∞) for X, then

P
(
τ(0) < ∞)

n(dε) = |�H |P(X[0,τ (0)] ∈ dε).(8.2)

PROOF. By construction, or using the compensation formula as in Theo-
rem 2.1, for some constant c ∈ (0,∞),

n(dε) = n(dε) = cP (X[0,τ (0)] ∈ dε).(8.3)

Since P(Xτ(0) = 0, τ (0) < ∞) = 0, this implies

cP
(
τ(0) < ∞) = n

(
ε(ζ ) > 0, ζ < ∞) = |�H |(8.4)

by (4.9). Combining (8.3) and (8.4) proves (8.2). �

PROPOSITION 8.2. Assume 0 is irregular for (0,∞) for X and either, G is as
in Theorem 6.1 and (1.1) holds, or G is as in Theorem 7.1 and (1.2) holds, then

E(u)G(Yu,Xτ(u) − u)
(8.5)

→ α|�H | ∫ ∞
0 eαyE{G(X[0,τ (0)],Xτ(0) − y);Xτ(0) > y, τ (0) < ∞}dy

qP (τ(0) < ∞)
.
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PROOF. Since (1.1) or (1.2) holds, we have P(τ(0) < ∞) > 0. Thus, by (8.2),
if y ≥ 0, x ≥ 0, then

n
(
dε, ε(ζ ) ∈ y + dx

) = |�H |P(X[0,τ (0)] ∈ dε,Xτ(0) ∈ y + dx, τ (0) < ∞)

P (τ(0) < ∞)
.

Since H is compound Poisson when 0 is irregular for (0,∞), we have dH = 0.
Consequently (6.9) or (7.5) yields

E(u)G(Yu,Xτ(u) − u) →
∫
[0,∞)

α

q
eαy dy

∫
E×(0,∞)

G(ε, x)n
(
dε, ε(ζ ) ∈ y + dx

)
,

which, by (8), is equivalent to (8.5). �

Proposition 8.2 thus provides a natural Lévy process version of (1.5) under (1.2)
as well as under (1.1). We conclude this section by confirming that the constants
outside the integrals in (1.5) and (8.5) are in agreement when (1.1) holds. To be
precise, by (6.1), the natural Lévy process form of the constant in (1.5), when (1.1)
holds, is

αm∗

qE(Xτ(0)e
αXτ(0); τ(0) < ∞)

.

To see that this agrees with the constant in (8.5), it suffices to prove the following.

LEMMA 8.1. If 0 is irregular for (0,∞) for X and (1.1) holds, then

|�H |E(
Xτ(0)e

αXτ(0); τ(0) < ∞) = P
(
τ(0) < ∞)

E∗H1.

PROOF. By (4.9) and (8.2),

|�H |P (
Xτ(0) ∈ dx, τ (0) < ∞) = P

(
τ(0) < ∞)

�H(dx),

and so

|�H |E(
Xτ(0)e

αXτ(0); τ(0) < ∞) = P
(
τ(0) < ∞) ∫ ∞

0
xeαx�H(dx).

Since dH = 0 when 0 is irregular for (0,∞), the result now follows from (6.2).
�

9. Proofs of Theorems 3.3, 3.4 and related results. To calculate the limits
in Theorems 3.3 and 3.4, we consider a particular form for F in Theorems 3.1
and 3.2. Let f : [0,∞)4 → [0,∞) be a Borel function, and set

F(y, ε) = f
(
y, ε(ζ ) − y, y − ε(ζ−), ζ

)
I
(
ε(ζ ) ≥ y

)
.(9.1)

Then

F(u − Xτ(u)−, Yu) = f
(
u − Xτ(u)−,Xτ(u) − u,u − Xτ(u)−, τ (u) − Gτ(u)−

)
on {τ(u) < ∞}. To calculate the limit in this case, we need the following.
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LEMMA 9.1. If F is of the form (9.1) then for every y ≥ 0,∫
E
F(y, ε)n

(
dε, ε(ζ ) > y

)
(9.2)

=
∫
x>0

∫
v≥0

∫
t≥0

f (y, x, v, t)I (v ≥ y)V̂ (dt, dv − y)�X(v + dx).

If in addition, EeαX1 < ∞, f is jointly continuous in the first three variables and
e−αxf (y, x, v, t) is bounded, then F satisfies the hypotheses of Proposition 3.1.

PROOF. Using Proposition 4.3 in the third equality, we have∫
E
F(y, ε)n

(
dε, ε(ζ ) > y

)
=

∫
E
f

(
y, ε(ζ ) − y, y − ε(ζ−), ζ

)
n
(
dε, ε(ζ ) > y

)
=

∫
x>0

∫
z≥0

∫
t≥0

f (y, x, y + z, t)n
(
ε(ζ ) ∈ y + dx, ε(ζ−) ∈ −dz, ζ ∈ dt

)

=
∫
x>0

∫
z≥0

∫
t≥0

f (y, x, y + z, t)V̂ (dt, dz)�X(z + y + dx)

=
∫
x>0

∫
v≥0

∫
t≥0

f (y, x, v, t)I (v ≥ y)V̂ (dt, dv − y)�X(v + dx),

which proves (9.2).
For the second statement, we only need to check n(Bc

y) = 0 for a.e. y. But
Bc

y ⊂ {ε : ε(ζ ) = y}, and so n(Bc
y) ≤ �H({y}) = 0 except for at most countably

many y. �

REMARK 9.1. Lemma 9.1 remains true if f is replaced by φ(y)f (y, x, v, t)

where φ is bounded and continuous a.e., since in that case n(Bc
y) = 0 except when

y is a point of discontinuity of φ or �H({y}) = 0.

For reference below we note that if e−αxf (y, x, v, t) is bounded then∫
x=0

∫
y≥0

∫
v≥0

∫
t≥0

f (y, x, v, t)eαy dy I (v ≥ y)

(9.3)
× V̂ (dt, dv − y)�X(v + dx) = 0,

since ∫
x=0

∫
y≥0

∫
v≥0

∫
t≥0

eαy dy I (v ≥ y)V̂ (dt, dv − y)�X(v + dx)

=
∫
y≥0

∫
v≥0

eαy dy I (v ≥ y)V̂ (dv − y)�X

({v})

=
∫
v≥0

V̂ (dv)

∫
y≥0

eαy�X

({v + y})dy = 0.
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We first consider limiting results for F of the form (9.1) in the Cramér–
Lundberg setting, beginning with Theorem 3.3.

PROOF OF THEOREM 3.3. Define F by (9.1). Then by Lemma 9.1, F satis-
fies the hypotheses of Theorem 3.1, and hence the result follows from (3.5), (9.2)
and (9.3). �

Marginal convergence in each of the first three variables in (3.11) was shown
in [21]. Equation (3.11) exhibits the stronger joint convergence and includes the
additional time variable τ(u) − Gτ(u)−. Note also that in the time variable, there
is no restriction on f beyond bounded, and hence the convergence is stronger than
weak convergence in this variable.

As an illustration of (3.10) we obtain, for any λ ≤ 0, η ≤ α,ρ ≤ 0 and δ ≥ 0,

E(u)eλ(u−Xτ(u)−)+η(Xτ(u)−u)+ρ(u−Xτ(u)−)−δ(τ (u)−Gτ(u)−)

→
∫
x≥0

∫
y≥0

∫
v≥0

∫
t≥0

eλy+ηx+ρv−δt α

q
eαy dy I (v ≥ y)(9.4)

× V̂ (dt, dv − y)�X(v + dx) + dH

α

q
.

This gives the future value, at time Gτ(u)−, of a Gerber–Shiu expected discounted
penalty function (EDPF) as u → ∞. The present value is zero since τ(u) → ∞
in P (u) probability as u → ∞. The limit can be simplified if ρ = 0. From (4.8)
and (9.3), we obtain

E(u)eλ(u−Xτ(u)−)+η(Xτ(u)−u)−δ(τ (u)−Gτ(u)−)

→
∫
x>0

∫
y≥0

∫
t≥0

eλy+ηx−δt α

q
eαy dy

∫
v≥y

V̂ (dt, dv − y)�X(v + dx)

+ dH

α

q

=
∫
x>0

∫
y≥0

∫
t≥0

eλy+ηx−δt α

q
eαy dy�L−1,H (dt, y + dx) + dH

α

q
(9.5)

=
∫
t≥0

∫
y≥0

∫
x>y

eλy+η(x−y)−δt α

q
eαy dy�L−1,H (dt, dx) + dH

α

q

= α

q(η − λ − α)

∫
t≥0

∫
x>0

(
eηx − e(λ+α)x)

e−δt�L−1,H (dt, dx) + dH

α

q

= α(κ(δ,−(λ + α)) − κ(δ,−η))

q(η − λ − α)
.

Under (1.1), it is possible that EeθX1 = ∞ for all θ > α, but it is often the case
that EeθX1 < ∞ for some θ > α. The next result extends Theorem 3.3 to include
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this possibility, and also provides more information when restricted to the former
setting. This is done by taking advantage of the special form of F in (9.1), whereas
Theorem 3.3 was derived from the general convergence result in Theorem 3.1.
It is interesting to note how the exponential moments may be spread out over
the undershoot variables. The EDPF results in (9.4) and (9.5) also have obvious
extensions to this setting.

THEOREM 9.1. Assume (1.1) holds and f : [0,∞)4 → [0,∞) is a Borel func-
tion which is jointly continuous in the first three variables. Assume θ ≥ α and one
of the following three conditions holds:

(i) EeθX1 < ∞, ρ < θ and λ + ρ < θ − α;
(ii) EX1e

θX1 < ∞, ρ ≤ θ and λ + ρ ≤ θ − α, with at least one of these in-
equalities being strict;

(iii) EX2
1e

θX1 < ∞, ρ ≤ θ and λ + ρ ≤ θ − α.

If e−λy−θx−ρvf (y, x, v, t) is bounded, then

E(u)f
(
u − Xτ(u)−,Xτ(u) − u,u − Xτ(u)−, τ (u) − Gτ(u)−

)
→

∫
x≥0

∫
y≥0

∫
v≥0

∫
t≥0

f (y, x, v, t)
α

q
eαy dy I (v ≥ y)

(9.6)
× V̂ (dt, dv − y)�X(v + dx)

+ dH

α

q
f (0,0,0,0).

PROOF. Define F by (9.1) and then h by (3.6). We will show that h satis-
fies the hypotheses of Proposition 6.1. Let f̃ (y, x, v, t) = e−λy−θx−ρvf (y, x, v, t).
Then f̃ is bounded, jointly continuous in the first three variables, and by (9.2), for
every y ≥ 0,

h(y) =
∫
E
F(y, e)n

(
de, e(ζ ) > y

)
=

∫
x>0

∫
v≥0

∫
t≥0

f̃ (y, x, v, t)I (v ≥ y)eλy+θx+ρv

× V̂ (dt, dv − y)�X(v + dx)(9.7)

= e(λ+ρ−θ)y
∫
x>0

∫
v≥0

∫
t≥0

f̃ (y, x − v − y, v + y, t)I (x > v + y)

× eθx+(ρ−θ)vV̂ (dt, dv)�X(dx)

after a change of variables. Let gy(x, v, t) = f̃ (y, x − v − y, v + y, t)I (x > v +
y)eθx+(ρ−θ)v . Then clearly gz(x, v, t) → gy(x, v, t) as z ↓ y, for every y ≥ 0. Now
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fix y > 0 and let |z − y| < y/2. Then for some constant C independent of z, x, v

and t , ∣∣gz(x, v, t)
∣∣ ≤ CI (x > v + y/2)eθx+(ρ−θ)v

and ∫
x>0

∫
v≥0

∫
t≥0

I (x > v + y/2)eθx+(ρ−θ)vV̂ (dt, dv)�X(dx)

(9.8)
≤

∫
x>y/2

eθx�X(dx)

∫
0≤v<x−y/2

e(ρ−θ)vV̂ (dv).

If we show this last integral is finite, then by dominated convergence, h(z) →
h(y) as z ↓ y for every y > 0, showing that h is right continuous on (0,∞), and
consequently continuous a.e. The final expression in (9.8) is decreasing in y, hence
to prove finiteness it suffices to prove the following stronger result, which will be
needed below; for every ε > 0,

Iε :=
∫ ∞
ε

e(α+λ+ρ−θ)y dy

∫
x>y

eθx�X(dx)

∫
0≤v<x−y

e(ρ−θ)vV̂ (dv) < ∞.(9.9)

We will need the following consequence of Proposition 3.1 of Bertoin [5]; for
every y > 0 there is a constant c = c(y) such that

V̂ (v) ≤ cv for v ≥ y.(9.10)

First assume ρ < θ . Integrating by parts and using (9.10) shows that the last of the
three integrals in (9.9) is bounded independently of x and y, hence

Iε ≤ C

∫
x>ε

eθx�X(dx)

∫
ε<y<x

e(α+λ+ρ−θ)y dy

≤ C

⎧⎪⎪⎨
⎪⎪⎩

∫
x>ε

eθx�X(dx), if α + λ + ρ − θ < 0,∫
x>ε

xeθx�X(dx), if α + λ + ρ − θ = 0.

Thus, Iε < ∞ under each of the assumptions (i), (ii) and (iii) by Theorem 25.3 of
Sato [29]. Now assume ρ = θ . Then

Iε =
∫
x>ε

eθx�X(dx)

∫
ε<y<x

e(α+λ+ρ−θ)yV̂ (x − y)dy.

If α + λ + ρ − θ = 0, then we are in case (iii) and

Iε ≤
∫
x>ε

xV̂ (x)eθx�X(dx) ≤ C

∫
x>ε

x2eθx�X(dx),
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which is finite under (iii). Finally, if α + λ + ρ − θ < 0 then we are in case (ii)
or (iii). We break Iε into two parts Iε(1) + Iε(2) where

Iε(1) =
∫
x>ε

eθx�X(dx)

∫
ε∨(x−1)<y<x

e(α+λ+ρ−θ)yV̂ (x − y)dy

≤ V̂ (1)

∫
x>ε

eθx�X(dx)

and

Iε(2) =
∫
x>ε

eθx�X(dx)

∫
ε<y≤ε∨(x−1)

e(α+λ+ρ−θ)yV̂ (x − y)dy

≤ c(1)

∫
x>ε

eθx�X(dx)

∫
ε<y≤ε∨(x−1)

e(α+λ+ρ−θ)y(x − y)dy

≤ C

∫
x>ε

xeθx�X(dx).

Thus, Iε is finite in this case also, completing the proof of (9.9).
By (9.7), for every y ≥ 0,

eαyh(y) ≤ Ce(α+λ+ρ−θ)y
∫
v≥0

∫
x>0

I (x > v + y)eθx+(ρ−θ)vV̂ (dv)�X(dx)

(9.11)
=: k(y)

say. Clearly, k is nonincreasing on [0,∞), and for every ε > 0,∫ ∞
ε

k(y) dy = C

∫ ∞
ε

e(α+λ+ρ−θ)y dy

∫
x>y

eθx�X(dx)

∫
0≤v<x−y

e(ρ−θ)vV̂ (dv)

< ∞,

by (9.9) under (i), (ii) or (iii). Hence, in each case eαyh(y)1[ε,∞)(y) is directly
Riemann integrable for every ε > 0.

Finally, from (9.11), for ε ∈ (0,1),∫
[0,ε)

h(y)
V (u − dy)

V (u)

≤ C

∫
v≥0

∫
x>v

eθx+(ρ−θ)vV̂ (dv)�X(dx)

∫
[0,ε)

I (y < x − v)
V (u − dy)

V (u)
.

By the uniform convergence on compact sets in (6.3), it follows that for large u,∫
[0,ε)

h(y)
V (u − dy)

V (u)

≤ C1

(∫
v≤1

+
∫
v>1

)∫
x>v

eθx+(ρ−θ)v[
(x − v) ∧ ε

]
V̂ (dv)�X(dx)

= I + II.
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Now, using (4.7),

I ≤ C1

∫
v≤1

∫
x>0

(x ∧ ε)eθxV̂ (dv)�X(v + dx)

≤ C1

∫
x>0

(x ∧ ε)eθx�H(dx) → 0

as ε → 0 by dominated convergence, since
∫
x>1 eθx�H(dx) < ∞ by Proposi-

tion 7.1 of [18] and
∫
x≤1 xeθx�H(dx) < ∞ because H is a subordinator. For the

second term,

II ≤ C1ε

∫
x>1

eθx�X(dx)

∫
0≤v<x

e(ρ−θ)vV̂ (dv) → 0

as ε → 0, since the integral is easily seen to be finite from (9.9) and the renewal
theorem. Thus we may apply Proposition 6.1 to h, and (9.6) follows after observing
that the integral over x = 0 in (9.6) is zero by (9.3). �

REMARK 9.2. As the proof shows, conditions under which (9.6) holds can be
stated in terms of the integral condition (9.9) on the renewal function V̂ , rather
than in terms of conditions (i)–(iii). Specifically, assume (1.1) holds, EeθX1 < ∞
for some θ ≥ α, and f : [0,∞)4 → [0,∞) is a Borel function which is jointly con-
tinuous in the first three variables and e−λy−θx−ρvf (y, x, v, t) is bounded where
λ + ρ ≤ θ − α and ρ ≤ θ . If (9.9) holds for every ε > 0, then (9.6) holds.

We now turn to the convolution equivalent setting. In this case, we need to
impose an extra condition on f in (9.1).

PROPOSITION 9.1. Assume F is given by (9.1) where

sup
x>0,t≥0,v≥y

f (y, x, v, t) → 0 as y → ∞.(9.12)

Then (3.8) holds.

PROOF. From (9.1),

sup
ε∈E

F(y, ε)I
(
ε(ζ ) > y

) = sup
ε∈E

f
(
y, ε(ζ ) − y, y − ε(ζ−), ζ

)
I
(
ε(ζ ) > y

)
≤ sup

x>0,t≥0,v≥y

f (y, x, v, t) → 0

as y → ∞ by (9.12). �

As an immediate consequence, we have the following.

PROOF OF THEOREM 3.4. Define F by (9.1). By Lemma 9.1 and Proposi-
tion 9.1, F satisfies the hypotheses of Theorem 3.2. Thus, (3.3) holds which is
equivalent to (3.12) by (9.2) and (9.3). �
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Theorem 3.4 imposes the extra condition (9.12) on f compared with Theo-
rem 3.3. As a typical example, any function f satisfying the conditions of The-
orem 3.3, when multiplied by a bounded continuous function with compact sup-
port φ(y), trivially satisfies the conditions of Theorem 3.4. This manifests itself
in the convergence of (3.13) only being vague convergence rather than weak con-
vergence. It cannot be improved to the weak convergence of (3.11) since, as noted
earlier in (7.4), the total mass of the limit in (3.13) is 1 − κ(0,−α)q−1.

Another example of the effect of condition (9.12) is in the calculation of
the EDPF analogous (9.4). Using Remark 9.1, the continuity assumption on
φ above can be weakened to continuous a.e. Hence, we may take φ(y) =
I (y ≤ K) for some K ≥ 0. Thus, applying (3.12) to the function f (y, x, v, t) =
eλy+ηx+ρv−δt I (y ≤ K) where K > 0, λ ≤ 0, η ≤ α,ρ ≤ 0 and δ ≥ 0, we obtain

E(u){eλ(u−Xτ(u)−)+η(Xτ(u)−u)+ρ(u−Xτ(u)−)−δ(τ (u)−Gτ(u)−);u − Xτ(u)− ≤ K
}

→
∫

0≤y≤K

∫
x≥0

∫
v≥0

∫
t≥0

eλy+ηx+ρv−δt α

q
eαy dy I (v ≥ y)

× V̂ (dt, dv − y)�X(v + dx) + dH

α

q
.

The restriction imposed by K cannot be removed as will be apparent from Propo-
sition 9.2 below. Finally, we point out that there is no extension of Theorem 3.4 to
the setting of Theorem 9.1 since EeθX1 = ∞ for all θ > α.

We next address convergence of the marginals in (3.11) and (3.13). As indicated
in Section 3, some care is needed under (1.2) since, in (3.13), the limit of the
marginals is not the marginal of the limits for the case of the overshoot and τ(u)−
Gτ(u)−. If F is given by (9.1) where f depends only on x and t , then, using (4.8),
(9.2) reduces to∫

E
F(y, ε)n

(
dε, ε(ζ ) > y

)
(9.13)

=
∫
x>0

∫
t≥0

f (x, t)�L−1,H (dt, y + dx), y ≥ 0.

In particular, under (1.1), by Theorem 3.3, for x ≥ 0, t ≥ 0,

P (u)(Xτ(u) − u ∈ dx, τ (u) − Gτ(u)− ∈ dt
)

(9.14)
w−→ α

q

∫
y≥0

eαy�L−1,H (dt, y + dx)dy + dH

α

q
δ(0,0)(dx, dt).

Under (1.2), the mass of the limit in (9.14) is less than one. In this case, an extra
term appears in the limit. The distribution of this additional mass and proof of joint
weak convergence under (1.2) is given in the following result.
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PROPOSITION 9.2. Assume (1.2) holds and that f : [0,∞)2 → [0,∞) is
a Borel function which is continuous in the first variable, and e−βxf (x, t) is
bounded for some β < α. Then

E(u)f
(
Xτ(u) − u, τ(u) − Gτ(u)−

)
→ −�X(−iα)

q

∫
x≥0

∫
t≥0

f (x, t)αe−αx dx

∫
v≥0

e−αvV̂ (dt, dv)

(9.15)
+ α

q

∫
x≥0

∫
t≥0

f (x, t)

∫
y≥0

eαy�L−1,H (dt, y + dx)dy

+ dH

α

q
f (0,0).

In particular, we have joint convergence; for x ≥ 0, t ≥ 0,

P (u)(Xτ(u) − u ∈ dx, τ (u) − Gτ(u)− ∈ dt
)

w−→ −�X(−iα)

q
αe−αx dx

∫
v≥0

e−αvV̂ (dt, dv)(9.16)

+ α

q

∫
y≥0

eαy�L−1,H (dt, y + dx)dy + dH

α

q
δ(0,0)(dx, dt).

PROOF. We will use Proposition 7.1. Let

F(y, ε) = f
(
ε(ζ ) − y, ζ

)
I
(
ε(ζ ) ≥ y

)
.

By Lemma 9.1, F satisfies the hypothesis of Proposition 3.1, hence h is continuous
a.e. Next we evaluate the limit of h(y)/�X(y) as y → ∞. By (9.2), for y ≥ 0,

h(y) =
∫
E
F(y, ε)n

(
dε, ε(ζ ) > y

)
=

∫
x>0

∫
v≥0

∫
t≥0

f (x, t)I (v ≥ y)V̂ (dt, dv − y)�X(v + dx)

=
∫
t≥0

∫
v≥0

V̂ (dt, dv)

∫
x>0

f (x, t)�X(y + v + dx).

Observe that for v ≥ 0, from footnote 6 (page 381) and (7.1),

�X(y + v + dx)

�X(y)

w−→ αe−α(v+x) dx on [0,∞) as y → ∞.

Further, by Potter’s bounds (see, e.g., (4.10) of [20]), if γ ∈ (β,α) then

�X(y + v)

�X(y)
≤ Ce−γ v if v ≥ 0, y ≥ 1,
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where C depends only on γ . Thus, for any y ≥ 1, v ≥ 0 and K ≥ 0,∫
x>K

eβx �X(y + v + dx)

�X(y)
=

∫
x>K

βeβx �X(y + v + x)

�X(y)
dx

+ eβK�X(y + v + K)

�X(y)
(9.17)

≤ C

∫
x>K

βeβxe−γ (v+x) dx + CeβKe−γ (v+K)

≤ Ce−γ v−(γ−β)K.

Now, for any v ≥ 0 and K ≥ 0 write∫
x>0

f (x, t)
�X(y + v + dx)

�X(y)

=
(∫

0<x≤K
+

∫
x>K

)
f (x, t)

�X(y + v + dx)

�X(y)
(9.18)

= I + II.

By weak convergence,

I →
∫

0<x≤K
f (x, t)αe−α(v+x) dx as y → ∞,

and by monotone convergence,∫
0<x≤K

f (x, t)αe−α(v+x) dx →
∫
x≥0

f (x, t)αe−α(v+x) dx as K → ∞.

On the other hand, by (9.17),

II ≤ Ce−γ v−(γ−β)K for y ≥ 1.

Thus, letting y → ∞ then K → ∞ in (9.18) gives∫
x>0

f (x, t)
�X(y + v + dx)

�X(y)
→

∫
x≥0

f (x, t)αe−α(v+x) dx.

Further, by (9.17) with K = 0, for every v ≥ 0∫
x>0

f (x, t)
�X(y + v + dx)

�X(y)
≤ Ce−γ v.

Hence, by dominated convergence,

h(y)

�X(y)
→

∫
x≥0

∫
t≥0

f (x, t)αe−αx dx

∫
v≥0

e−αvV̂ (dt, dv).
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Since

lim
y→∞

�X(y)

V (y)
= κ2(0,−α)κ̂(0, α)

by (3.1), together with (4.4) and Proposition 5.3 of [24], we thus have

h(y)

V (y)
→ κ2(0,−α)κ̂(0, α)

∫
x≥0

∫
t≥0

f (x, t)αe−αx dx

∫
v≥0

e−αvV̂ (dt, dv).

Hence, by (2.6) and Proposition 7.1,

E(u)f
(
Xτ(u) − u, τ(u) − Gτ(u)−

)
→ −�X(−iα)

q

∫
x≥0

∫
t≥0

f (x, t)αe−αx dx

∫
v≥0

e−αvV̂ (dt, dv)

+
∫
y≥0

α

q
eαy dy

∫
E
F(y, ε)n

(
dε, ε(ζ ) > y

) + dH

α

q
f (0,0)

= −�X(−iα)

q

∫
x≥0

∫
t≥0

f (x, t)αe−αx dx

∫
v≥0

e−αvV̂ (dt, dv)

+ α

q

∫
x>0

∫
t≥0

f (x, t)

∫
y≥0

eαy�L−1,H (dt, y + dx)dy + dH

α

q
f (0,0)

by (9.13). This proves (9.15) since the integral over {x = 0} in the final expression
vanishes. �

From (9.16), a simple calculation shows that the limiting distribution of the
overshoot is as given in (1.4), and

P (u)(τ(u) − Gτ(u)− ∈ dt
)

(9.19)
w−→ q−1(−�X(−iα)δV̂−α(dt) + αdHδ0(dt) + K(dt)

)
,

where K(dt) is given by (3.14) and

δV̂−α(dt) =
∫
v≥0

e−αvV̂ (dt, dv).

Using (9.15), we can calculate the limiting value of an EDPF similar to (9.5);
for any β < α and δ ≥ 0,

E(u)eβ(Xτ(u)−u)−δ(τ (u)−Gτ(u)−)

→ −�X(−iα)

q

∫
x≥0

αe−(α−β)x dx

∫
t≥0

∫
v≥0

e−δt−αvV̂ (dt, dv)

+ α

q

∫
x≥0

∫
t≥0

eβx−δt
∫
y≥0

eαy�L−1,H (dt, y + dx)dy + dH

α

q
f (0,0)

= −α�X(−iα)

q(α − β)κ̂(δ,α)
+ α(κ(δ,−β) − κ(δ,−α))

q(α − β)



396 P. S. GRIFFIN

by the same calculation as (9.5).
The results of this section, in the convolution equivalent case, can be derived

from a path decomposition for the limiting process given in [20]. The main result
in [20], Theorem 3.1, makes precise the idea that under P (u) for large u, X behaves
like an Esscher transform of X up to an independent exponential time τ . At this
time, the process makes a large jump into a neighborhood of u, and if Wt = Xτ+t −
u then

P(W ∈ dw) = κ(0,−α)

∫
z∈R

αe−αzV (−z) dzPz

(
X ∈ dw|τ(0) < ∞)

,

w ∈ D,

where we set V (y) = q−1 for y < 0. Thus, W has the law of X conditioned on
τ(0) < ∞ and started with initial distribution

P(W0 ∈ dz) = κ(0,−α)αe−αzV (−z) dz, z ∈ R.

In the Cramér–Lundberg case, there is no comparable decomposition for the entire
path since there is no “large jump” at which to do the decomposition. One of the
aims of this paper is to offer an alternative approach by describing the path from
the time of the last maximum prior to first passage until the time of first passage.
This allows the limiting distribution of many variables associated with ruin to be
readily calculated.

APPENDIX: COMPLETION OF THE PROOF OF PROPOSITION 4.2
WHEN X IS COMPOUND POISSON

For ε > 0, let

Xε
t = Xt − εt.

If X is compound Poisson, then Proposition 4.2 holds for Xε . The aim is then to
take limits as ε → 0 and check that (4.4) continues to hold in the limit. We begin
with an alternative characterization of the constants in (8.2). Recall the notation
of (8.1).

LEMMA A.1. Assume 0 is irregular for (0,∞), then

dL̂−1n(dε) = P(X[0,τ (0)] ∈ dε).

PROOF. If s /∈ G set εs = � where � is a cemetery state. Then {(t, ε
L−1

t−
) : t ≥

0, ε
L−1

t−
�= �} is a Poisson point process with characteristic measure dt ⊗ n(dε).

By construction, n is proportional to the law of the first excursion, thus

n(dε) = |n|P(X[0,τ (0)] ∈ dε).(A.1)

Now let σ = inf{t : ε
L−1

t−
�= �}. Then σ is exponentially distributed with parame-

ter |n|. On the other hand σ is the time of the first jump of L−1 and hence is ex-
ponential with parameter p given by (2.3). A short calculation using duality (see,
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e.g., the paragraph following (2.7) in [9]) shows that if 0 is irregular for (0,∞),
then

pdL̂−1 = 1.(A.2)

Hence, |n|−1 = dL̂−1 and the result follows from (A.1). �

Let nε denote the excursion measure of Xε , with similar notation for all other
quantities related to Xε or X̂ε . To ease the notational complexity, we will write

d̂ε = d(L̂ε)−1 and d̂ = dL̂−1 .

LEMMA A.2. Assume 0 is irregular for (0,∞), then d̂ε is nondecreasing, and
for any δ ≥ 0

d̂ε ↓ d̂δ as ε ↓ δ.

PROOF. Clearly, for 0 ≤ δ < ε, we have τ δ(0) ≤ τ ε(0) and τ ε(0) ↓ τ δ(0) as
ε ↓ δ. Thus,

E
(
e−τ ε(0); τ ε(0) < ∞) ↑ E

(
e−τ δ(0); τ δ(0) < ∞)

,

and so from (2.3), pε ↑ pδ . Hence, by (A.2), d̂ε ↓ d̂δ . �

PROPOSITION A.1. Assume X is compound Poisson and f : [0,∞)2 →
[0,∞) is continuous with compact support. Then∫

t≥0

∫
z≥0

f (t, z)nε(ε(t) ∈ −dz, ζ > t
)
dt

→
∫
t≥0

∫
z≥0

f (t, z)n
(
ε(t) ∈ −dz, ζ > t

)
dt as ε → 0.

PROOF. Assume f vanishes for t ≥ r . Then

f
(
t,−Xε

t

)
I
(
τ ε(0) > t

) ≤ ‖f ‖∞I (t ≤ r).(A.3)

Thus, using Lemma A.1,∫
t≥0

∫
z≥0

f (t, z)nε(ε(t) ∈ −dz, ζ > t
)
dt

= d̂−1
ε

∫
t≥0

∫
z≥0

f (t, z)P
(
Xε

t ∈ −dz, τ ε(0) > t
)
dt

= d̂−1
ε

∫ ∞
t=0

E
(
f

(
t,−Xε

t

); τ ε(0) > t
)
dt

→ d̂−1
∫ ∞
t=0

E
(
f (t,−Xt); τ(0) > t

)
dt

=
∫
t≥0

∫
z≥0

f (t, z)n
(
ε(t) ∈ −dz, ζ > t

)
dt
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by (A.3) and dominated convergence, since Xε
t → Xt , τ ε(0) → τ(0) and

P(τ(0) = t) = 0. �

PROPOSITION A.2. Assume X is compound Poisson and f : [0,∞)2 →
[0,∞) is continuous with compact support. Then∫

t≥0

∫
z≥0

f (t, z)V̂ ε(dt, dz) →
∫
t≥0

∫
z≥0

f (t, z)V̂ (dt, dz) as ε → 0.

PROOF. We will show(
L̂ε)−1

s → L̂−1
s , Ĥ ε

s → Ĥs for all s ≥ 0 as ε → 0,(A.4)

and that the family

f
((

L̂ε)−1
s , Ĥ ε

s

)
, 0 < ε ≤ 1,(A.5)

is dominated by an integrable function with respect to P × ds. Then∫
t≥0

∫
z≥0

f (t, z)V̂ ε(dt, dz) =
∫ ∞
t=0

Ef
((

L̂ε)−1
s , Ĥ ε

s

)
ds

→
∫ ∞
t=0

Ef
(
L̂−1

s , Ĥs

)
ds

=
∫
t≥0

∫
z≥0

f (t, z)V (dt, dz).

For ε ≥ 0, let Aε = {s : X̂ε
s = X̂ε

s }. Then for 0 ≤ δ < ε, Aδ ⊂ Aε . Further, for
any T , if ε is sufficiently close to 0, then A0 ∩ [0, T ] = Aε ∩ [0, T ]. Thus, by
Theorem 6.8 and Corollary 6.11 of [25],

d̂δL̂
δ
t =

∫ t

0
IAδ (s) ds ≤

∫ t

0
IAε(s) ds = d̂εL̂

ε
t , all 0 ≤ δ < ε,

and

d̂L̂t = d̂εL̂
ε
t , 0 ≤ t ≤ T ,

if ε is sufficiently close to 0. Hence, for all 0 ≤ δ < ε,(
L̂δ)−1

s = inf
{
t : L̂δ

t > s
} ≥ inf

{
t : (d̂ε/d̂δ)L̂

ε
t > s

} = (
L̂ε)−1

(d̂δ/d̂ε)s
,(A.6)

with equality if δ = 0 and ε is sufficiently close to 0.
Fix s ≥ 0 and assume ε is sufficiently close to 0 that equality holds in (A.6) with

δ = 0. Thus, (
L̂ε)−1

s = L̂−1
(d̂ε/d̂)s

.(A.7)

Since (X̂ε)t = X̂t + Jε,t where

0 ≤ Jε,t ≤ εt,(A.8)
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it then follows that

Ĥ ε
s = (

X̂ε
)
(L̂ε)−1

s
= X̂

L̂−1
(d̂ε/d̂)s

+ J
ε,L̂−1

(d̂ε/d̂)s

= Ĥ(d̂ε/d̂)s + J
ε,L̂−1

(d̂ε/d̂)s

.(A.9)

Hence, using Lemma A.2, (A.4) follows from (A.7), (A.8) and (A.9).
Now let 0 ≤ ε ≤ 1. Then by (A.6),(

L̂ε)−1
s ≥ (

L̂1)−1
(d̂ε/d̂1)s

.

Thus, by monotonicity of d̂ε ,

I
((

L̂ε)−1
s ≤ r

) ≤ I
((

L̂1)−1
(d̂ε/d̂1)s

≤ r
) ≤ I

((
L̂1)−1

(d̂/d̂1)s
≤ r

)
.

Hence, if f vanishes for t ≥ r , then

f
((

L̂ε)−1
s , Ĥ ε

s

) ≤ ‖f ‖∞I
((

L̂1)−1
(d̂/d̂1)s

≤ r
)
,

where

E

∫ ∞
0

I
((

L̂1)−1
(d̂/d̂1)s

≤ r
)
ds = (d̂1/d̂)E

∫ ∞
0

I
((

L̂1)−1
s ≤ r

)
ds < ∞,

which proves (A.5). �

PROOF OF PROPOSITION 4.2 WHEN X IS COMPOUND POISSON. Assume
X is compound Poisson. Since dL−1 = 0 whenever 0 is irregular for (0,∞), it
follows that d(Lε)−1 = dL−1 = 0. Further, (4.4) holds for Xε . Hence, (4.4) for X

follows from Propositions A.1 and A.2. �
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