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We obtain bounds on the distribution of the maximum of a martingale
with fixed marginals at finitely many intermediate times. The bounds are
sharp and attained by a solution to n-marginal Skorokhod embedding prob-
lem in Obłój and Spoida [An iterated Azéma-Yor type embedding for finitely
many marginals (2013) Preprint]. It follows that their embedding maximizes
the maximum among all other embeddings. Our motivating problem is su-
perhedging lookback options under volatility uncertainty for an investor al-
lowed to dynamically trade the underlying asset and statically trade Euro-
pean call options for all possible strikes and finitely-many maturities. We
derive a pathwise inequality which induces the cheapest superhedging value,
which extends the two-marginals pathwise inequality of Brown, Hobson and
Rogers [Probab. Theory Related Fields 119 (2001) 558–578]. This inequality,
proved by elementary arguments, is derived by following the stochastic con-
trol approach of Galichon, Henry-Labordère and Touzi [Ann. Appl. Probab.
24 (2014) 312–336].

1. Introduction.

Probabilistic perspective. The problem of controlling the maximum of a con-
tinuous martingale using its terminal distribution has a long and rich history, start-
ing with Doob’s maximal inequalities. In seminal contributions, Blackwell and
Dubins [7], Dubins and Gilat [21] and Azéma and Yor [3, 4] established that the
distribution of the maximum X∗

T := supt≤T Xt of a martingale (Xt) is bounded
above, in stochastic order, by the so-called Hardy–Littlewood transform of the dis-
tribution of XT , and the bound is attained. This led to series of studies on the
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possible distributions of (XT ,X∗
T ) including Gilat and Meilijson [24], Kertz and

Rösler [31–33], Rogers [46] and Vallois [50]; see also Carraro, El Karoui and
Obłój [13]. More recently, such problems appeared very naturally within the field
of mathematical finance, as we explain below, which motivated further develop-
ments. The original result was generalized to the case of a nontrivial starting law
in Hobson [29] and to the case of a fixed intermediate law in Brown, Hobson and
Rogers [11].

In this paper, we generalize the above studies by controlling the maximum us-
ing several intermediate marginals. We consider the case when distributions of
Xt1, . . . ,Xtn−1,Xtn are given and establish an upper bound on the distribution of
the maximum X∗

tn
. Our motivation comes from the mathematical finance problem

of robust superhedging of a lookback option. We apply a general duality result
from Possamaï et al. [45] which converts the original problem into a min-max
calculus of variations problem where the Lagrange multipliers encode the inter-
mediate marginal constraints. The multipliers have in fact an important financial
interpretation as the optimal static positions in Vanilla options, which reduce the
risk induced by the derivative security. Following Galichon, Henry-Labordère and
Touzi [23], we apply stochastic control methods to solve the new problem ex-
plicitly. The first step of our solution recovers the extended optimal properties of
the Azéma–Yor solution to the Skorokhod embedding problem (SEP) obtained by
Hobson and Klimmek [27] (under slightly different conditions). The two marginal
case corresponds to the work of Brown, Hobson and Rogers [11].

The stochastic control approach allows us to derive the upper bound on the dis-
tribution of X∗

tn
in terms of the intermediate distributions Xt1, . . . ,Xtn−1,Xtn . To

show that the bound is sharp, we need to construct a martingale that fits the given
marginals and attains the bound. To do this we revert to the SEP methodology.
First we derive the upper bound by taking expectations in a functional (pathwise)
inequality, which in mathematical finance terms has the interpretation of a semi-
static superhedging. This inequality is “guessed,” and crucially, it is the stochastic
control methodology that provides candidates for the static and the dynamic com-
ponents of the optimal hedge, that is, the different terms in the pathwise inequal-
ity. Once postulated, the inequality is verified independently without any use of
stochastic analysis tools. Finally, we show the optimality of the upper bound, un-
der some technical assumptions on the marginals, by establishing that the solution
to the n-marginal SEP obtained in Obłój and Spoida [41] achieves equality in our
inequality. We note that the idea to derive martingale inequalities from pathwise
inequalities was pivotal to the pioneering work on robust pricing and hedging of
Hobson [25] and was recently underlined in Acciaio et al. [1].

Mathematical finance motivation. The problem we consider, as described
above, has a clear motivation coming from mathematical finance. The classical
framework underpinning much of the quantitative finance starts by postulating a
stochastic universe (�,F,P), which is meant to model a financial environment
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and capture its riskiness. What it fails to capture, however, is the uncertainty in
the choice of P, that is, the possibility that the model itself is wrong, also called
the Knightian uncertainty; see Knight [34]. To account for model uncertainty it is
natural to consider simultaneously a whole family {Pα :α ∈ A} of probability mea-
sures. When all Pα are absolutely continuous w.r.t. one reference measure P, we
speak of drift uncertainty or dominated setting. This has important implications
for portfolio choice problems (see Föllmer, Schied and Weber [22]) but is not dif-
ferent from an incomplete market setup in terms of option pricing. However, the
nondominated setup when Pα may be mutually singular posed new challenges and
was investigated starting with Avellaneda et al. [2] and Lyons [35], through Denis
and Martini [19], to several recent works, for example, Peng [44], Soner, Touzi
and Zhang [47], Dolinsky and Soner [20] and Bouchard and Nutz [9].

Naturally as one relaxes the classical setup, one has to abandon its precision:
under model uncertainty we do not try to have a unique price but rather to ob-
tain an interval of no-arbitrage prices. Its bounds are given by seller’s and buyer’s
“safe” prices, the superreplication and the subreplication prices, which can be en-
forced by trading strategies that work in all considered models. These bounds can
be made more efficient by enlarging the set of hedging instruments. Indeed, in the
financial markets certain derivatives on the underlying we try to model are liquid
and have well-defined market prices. Without one fixed model, these options can
be included in traded assets without creating an arbitrage opportunity. By allow-
ing one to trade dynamically in the underlying and statically (today) in a range
of options, one hopes to have a more efficient approach with smaller intervals of
possible no-arbitrage prices. This constitutes the basis of the so-called robust ap-
proach to pricing and hedging.

We contribute to this literature. Our aim was to derive in an explicit form the
superhedging cost of a Lookback option given that the underlying asset is available
for frictionless continuous-time trading, and that European options for all strikes
are available for trading for a finite set of maturities. In a zero interest rate finan-
cial market, it essentially follows from the no-arbitrage condition, as observed by
Breeden and Litzenberger [10], that these trading possibilities restrict the under-
lying asset price process into being a martingale with given marginals. Since a
martingale can be written as a time changed Brownian motion, and the maximum
of a continuous processes is not altered by such a time change, the one-marginal
constraint version of this problem can be converted into the framework of the Sko-
rokhod embedding problem (SEP). This observation is the starting point of the
seminal paper by Hobson [25] who exploited the already known optimality result
of the Azéma–Yor solution to the SEP and, importantly, provided an explicit static
superhedging strategy. This methodology was subsequently used to derive robust
prices and super/sub-hedging strategies for barrier options in Brown, Hobson and
Rogers [12], for options on local time in Cox, Hobson and Obłój [14], for double
barrier options in Cox and Obłój [15, 16] and for options on variance in Cox and
Wang [17]; see Obłój [40] and Hobson [26] for more details.
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The above works focused on finding explicitly robust prices and hedges for an
option maturing at T and given market prices of call/put options co-maturing at T .
For lookback options, an extension to the case where prices at one intermediate
maturity are given can be deduced from Brown, Hobson and Rogers [11]. More
recently, Hobson and Neuberger [28] treated forward starting straddle also using
option prices at two maturities. Otherwise, and excluding the trivial cases when
intermediate laws have no constraining effect (see, e.g., the iterated Azéma–Yor
setting in Madan and Yor [36]), we are not aware of any explicit robust pric-
ing/hedging results when prices of call options for several maturities are given.
The most likely reason for this is that the SEP-based methodology pioneered in
Hobson [25] starts with a good guess for the superhedge/embedding, and these be-
come much more difficult when more marginals are involved. As explained above,
our approach uses stochastic control methods to derive a candidate optimal su-
perhedge strategy. On the dual side, it sees superhedging as a martingale trans-
portation problem: maximize the expected coupling defined by the payoff so as
to transport the Dirac measure along the given distributions μ1, . . . ,μn by means
of a continuous-time process restricted to be a martingale. This approach was si-
multaneously suggested by Beiglböck, Henry-Labordère and Penkner [5] in the
discrete-time case, and Galichon, Henry-Labordère and Touzi [23] in continuous-
time. We refer to Bonnans and Tan [8] for a numerical approximation in the context
of variance options, and Tan and Touzi [49] for a general version of the optimal
transportation problem under controlled dynamics.

Organization of the paper. The paper is organized as follows. Section 2 pro-
vides the precise mathematical formulation of the problem and establishes the rel-
evant connections with martingale inequalities, the Skorohod embedding problem
and the martingale optimal transport. The main results of this paper are collected
in Section 3, starting from a remarkable pathwise inequality. The proofs are re-
ported in Section 4. In particular, the pathwise inequality follows from an elemen-
tary verification. The stochastic control approach, which allowed us to derive the
correct quantities for the pathwise arguments, is pursued in Section 5. Additional
arguments for the one marginal case are given in Section 6. Finally, the Appendix
contains some proofs of technical lemmas including some additional properties of
the embedding obtained in [41].

2. Robust superhedging of Lookback options.

2.1. Modeling the volatility uncertainty. Let �x := {ω ∈ C([0, T ],R1) :ω0 =
x}. We consider the set of paths � := �0 as the canonical space equipped with
the uniform norm ‖ω‖∞ := sup0≤t≤T |ωt |, B the canonical process, P0 the Wiener
measure, F := {Ft }0≤t≤T the filtration generated by B . Throughout the paper, X0
is some given initial value in R, and we denote

Xt := X0 + Bt for t ∈ [0, T ].
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In order to model the volatility uncertainty, we introduce the set P of all proba-
bility measures on (�,F) such that B is a P-martingale. The coordinate process
stands for the price process of an underlying security, and the restriction to martin-
gale measures P is motivated by the classical no-arbitrage results in mathematical
finance and will be justified by the duality results in Theorems 3.3 and 3.5.

The quadratic variation process 〈X〉 = 〈B〉 is universally defined and takes val-
ues in the set of all nondecreasing continuous functions with 〈B〉0 = 0.

2.2. Dynamic trading strategies. For all P ∈ P , we denote by H
0(P) the col-

lection of all (P,F)-progressively measurable processes and

H
2(P) :=

{
H ∈ H

0(P) :
∫ T

0
|Ht |2 d〈B〉t < ∞,P-a.s.

}
.

A dynamic trading strategy is defined by a process H ∈ Ĥ
2 := ⋂

P∈P H
2(P), where

Ht denotes the number of shares of the underlying asset held by the investor at
each time t ∈ [0, T ]. Under the self-financing condition, the portfolio value process
induced by a dynamic trading strategy is

YH
t := Y0 +

∫ t

0
Hs dBs, t ∈ [0, T ],P-a.s. for all P ∈ P .(2.1)

The stochastic integral in (2.1) is well defined and should be rather denoted YH
t

P

to emphasize its dependence on P; see, however, Nutz [38]. Nevertheless, for a
large class of strategies H we may define YH

t pathwise. In particular, consider
H :�X0 × [0, T ] → R to be a process of finite variation which is progressively
measurable in the sense that Ht(ω) = Ht(ω

′) for any t ∈ [0, T ] and any ω,ω′ ∈
�X0 with ωs = ω′

s , s ≤ t . We define its integral (see Dolinsky and Soner [20])
through an integration by parts formula using classical Stieltjes integration,∫ t

0
Hs(ω)dωs := Ht(ω)ωt − H0ω0 −

∫ t

0
ωs dHs(ω),

(2.2)
t ∈ [0, T ],ω ∈ �X0 .

Note that this integral agrees a.s. with the Itô stochastic integral P-a.s. for any
P ∈ P . We will use this approach in particular in Section 2.5 and in Theorem 3.5.

2.3. Semi-static hedging strategies. Let n be some positive integer and 0 =
t0 < · · · < tn = T be some partition of the interval [0, T ]. In addition to the
continuous-time trading of the primitive securities, we assume that the investor
can take static positions in European call or put options with all possible strikes
and maturities t1 < · · · < tn. The market price of the European call option with
strike K ∈ R and maturity ti is denoted

ci(K), i = 1, . . . , n and we denote c0(K) := (X0 − K)+.
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A model P ∈ P is said to be calibrated to the market if EP[(Xti − K)+] = ci(K)

for all 1 ≤ i ≤ n and K ∈ R. For such a model, it was observed by Breeden and
Litzenberger [10] that, by direct differentiation with respect to K ,

P(Xti > K) = −c′
i (K+) =: μi

(
(K,∞)

)
,

so that the marginal distributions of Xti , i = 1, . . . , n, are uniquely specified by the
market prices and are independent of P. Let μ = (μ1, . . . ,μn) and

Pμ := {P ∈ P :Xti ∼ μi,1 ≤ i ≤ n}
be the set of calibrated market models. By the Strassen theorem [48], we have
Pμ �= ∅ if and only if μi’s are nondecreasing in convex order or, equivalently,∫

|x|dμi(x) < ∞,

∫
x dμi(x) = X0 and ci−1 ≤ ci

(2.3)
for all 1 ≤ i ≤ n,

where now ci(K) = ∫ ∞
K (x − K)dμi(x). The necessity follows from Jensen’s in-

equality. For sufficiency, an explicit model can be constructed using techniques
of Skorokhod embeddings; see Obłój [39]. Consequently, up to integrability, the
ti-maturity European derivative defined by the payoff λi(Xti ) has an unambiguous
market price

μi(λi) :=
∫

λi dμi = E
P
[
λi(Xti )

]
for all P ∈ Pμ.

The condition Pμ �= ∅ embodies the fact that the current observed market prices
do not induce arbitrage. By this we mean that there exists a model which admits no-
arbitrage (no free lunch with vanishing risk) and reprices the call options through
risk neutral expectation. For this reason we sometimes refer to (2.3) as the no-
arbitrage condition. We note, however, that the arbitrage considerations are more
subtle in all generality since boundary cases may arise where Pμ = ∅ but there is
no model-independent arbitrage; see Davis and Hobson [18] and Cox and Obłój
[15].

REMARK 2.1. For the purpose of the present financial application, we could
restrict the measures μi to have support in R+ and P ∈ P to be such that Xt ≥ 0
P-a.s. Note, however, that this is easily achieved: it suffices to assume that X0 > 0
and cn(K) = X0 − K for K ≤ 0. Then μn((K,∞)) = 1, K < 0, and hence
μn([0,∞)) = 1. Then for any P ∈ Pμ we have Xt = E

P[XT |Ft ] ≥ 0 P-a.s. for
t ∈ [0, T ]. In particular, μi([0,∞)) = P(Xti ≥ 0) = 1.

We denote t := (t1, . . . , tn), λ = (λ1, . . . , λn),

μ(λ) :=
n∑

i=1

μi(λi), λ(ωt) :=
n∑

i=1

λi(ωti ),(2.4)
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for ω ∈ C([0, T ]). The set of Vanilla payoffs which may be used by the hedger are
naturally taken in the set

�μ
n :=

{
λ :

∫
|λi |dμi < ∞,1 ≤ i ≤ n

}
.(2.5)

Thus, in addition to the dynamic hedging strategies H , the investor has access to
the static hedging strategies λ, consisting of a buy-and-hold strategy in a portfolio
of options. Such a pair (λ,H) is called a semi-static hedging strategy and induces
the final value of the self-financing portfolio

Y
H,λ
T := YH

T − μ(λ) + λ(Xt),(2.6)

indicating that the investor has the possibility of buying at time 0 any derivative
security with payoff λi(Xti ) for the price μi(λi). As it will be made clear in our
subsequent analysis, the functions λi will play the role of a Lagrange multiplier
for the constraints Xti ∼ μi , i = 1, . . . , n.

2.4. Robust superhedging under semi-static hedging strategies. In this paper,
we focus on the problem of robust semi-static superhedging of a lookback option
defined by the payoff at the maturity T ,

ξ := φ(X∗
T ) where X∗

t := maxs≤t Xs and φ :R �−→ R is right-continuous,
nondecreasing.

The investor can trade as discussed in the previous two sections. However, we need
to impose a further admissibility condition to rule out doubling strategies. We let
Hμ consist of all processes H ∈ Ĥ

2 whose induced portfolio value process YH is
P-supermartingale for all P ∈ Pμ. The robust superhedging upper bound is then
defined by

Uμ
n (ξ) := inf

{
Y0 :∃(λ,H) ∈ �μ

n ×Hμ,Y
H,λ
T ≥ ξ,P-a.s. for all P ∈ P

}
.(2.7)

Selling ξ at a price higher than U
μ
n (ξ), the hedger could set up a portfolio with

a negative initial cost and a nonnegative payoff under any market scenario lead-
ing to a strong (model-independent) arbitrage opportunity. Note that, thanks to the
definition of admissible trading strategies, by taking expectations in the superhedg-
ing inequality Y

H,λ
T ≥ ξ , and optimizing over (λ,H) and P, we obtain the usual

pricing-hedging inequality

Uμ
n (ξ) ≥ sup

P∈Pμ

E
P[ξ ].(2.8)

Theorems 3.3 and 3.5 below establish a bound on the RHS value and show that
under mild technical conditions equality holds in (2.8) and exhibit both the best
superhedge and the maximal Pmax on the RHS. However, before proceeding to
our main results, we first discuss the connection of the superhedging problem with
two important questions in applied mathematics, namely martingale inequalities in
probability and the theory of optimal transport.
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2.5. Pathwise super-hedging and martingale inequalities. In this section, we
discuss briefly the connection between the robust super-hedging problem and
pathwise inequalities inducing martingale inequalities, as highlighted by Acciaio
et al. [1] and Beiglböck and Nutz [6]; see also Osȩkowski [43]. Suppose that exis-
tence holds in the super hedging problem (2.7). Then Y

H,λ
0 = U

μ
n (ξ) and Y

H,λ
T ≥ ξ ,

P-a.s. for all P ∈ P , for some λ ∈ �
μ
n and H ∈ Hμ. Assume further that the dy-

namic hedging process H is such that its “stochastic integral” can be defined path-
wise and that the super-hedging property extends to a pathwise inequality

ξ(ω) ≤ Uμ
n (ξ) + λ(ωt) − μ(λ) +

∫ T

0
Hs dω(s) for all ω ∈ �X0 .(2.9)

This inequality is then sharp in the sense that the above pair (λ,H) minimizes
the cost μ(λ) of the trading strategy among all such strategies which super-hedge
ξ pathwise. In particular, U

μ
n (ξ) is the superhedging price not only in the sense

of (2.7) but also in the pathwise sense. Assuming further that the stochastic inte-
gral in (2.9) defines a uniformly integrable martingale, this implies a martingale
inequality

E[ξ(Y )] ≤ U
LY

t
n (ξ) for any continuous martingale (Yt )t≤T ,

where LY
t = (LYti , i ≤ n),

and LYti is the distribution of Yti and Y0 = X0. Moreover, by construction, this in-
equality is sharp: we can construct continuous martingales Y which attain equality.
An example of such martingale inequality is provided in Proposition 3.2 below.

2.6. Optimal transportation under martingale restriction. In this short section
we discuss the connection of our problem to optimal transportation theory, which
will be the building block for the stochastic control approach of Section 5.

The first duality we consider is the expected quasi-sure extension of the classical
dual formulation of the superhedging problem

Uμ
n (ξ) = inf

λ∈�
μ
n

sup
P∈P

E
P
[
ξ + λ(Xt) − μ(λ)

]
.

We show it holds, subject to technical assumptions, in Proposition 5.2 below. The
second duality follows by formally inverting the inf-sup on the RHS above leading
to the optimization problem

sup
P∈Pμ

E
P[ξ ],(2.10)

which falls into the recently introduced class of optimal transportation prob-
lems under controlled stochastic dynamics; see Beiglböck, Henry-Labordère and
Penkner [5], Galichon, Henry-Labordère and Touzi [23] and Tan and Touzi [49].
In words, the above problem consists of maximizing the expected transportation
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cost of the Dirac measure δ{X0} along the given marginals μ1, . . . ,μn with trans-
portation scheme constrained to the class of martingales. The cost of transportation
in our context is defined by the path-dependent payoff ξ(ω).

The validity of the equality between the value function in (2.10) and our prob-
lem U

μ
n (ξ) was established recently by Dolinsky and Soner [20] for n = 1 and un-

der strong continuity assumptions on the payoff function ω �−→ ξ(ω). The corre-
sponding duality result in the discrete time framework was obtained by Beiglböck,
Henry-Labordère and Penkner [5].

Note that if we can find a trading strategy Y
H,λ
T as in (2.6) which superreplicates

ξ : Y
H,λ
T ≥ ξ P-a.s. for all P ∈P and a P

max ∈Pμ such that EP
max[ξ ] = Y0, then as

in (2.8),

Y0 ≤ sup
P∈Pμ

E
P[ξ ] ≤ Uμ

n (ξ) ≤ Y0,

and it follows that we have equalities throughout. This line of attack has been at
the heart of the approach to robust pricing and hedging based on the Skorokhod
embedding problem, as in Hobson [25], Brown, Hobson and Rogers [12], Cox and
Obłój [15, 16] and Cox and Wang [17]. It relies crucially on the ability to make a
correct guess for the cheapest superhedge Y

H,λ
T . This becomes increasingly diffi-

cult when one considers information about prices at several maturities, n > 1. In
this paper, we follow the above methodology in Section 4 to prove our main result,
Theorem 3.5. Sections 5–6 then provide an alternative approach based on stochas-
tic control methods. The latter is longer and more involved than the former and
requires slight modifications for technical reasons. However, it is in fact necessary
as it is the origin of the determination of the right quantities for the former, namely
the pathwise inequality.

2.7. The Skorokhod embedding problem. We now specialize the discussion
to the case of a lookback option ξ = G(Xt,X

∗
T ), for some payoff function G.

By the Dambis–Dubins–Schwarz theorem, we may re-write problem (2.10) as a
multiple stopping problem (see Proposition 3.1 of Galichon, Henry-Labordère and
Touzi [23]),

sup
(τ1,...,τn)∈T μ

E
P0

[
G

(
Xτ1, . . . ,Xτn,X

∗
τn

)]
,(2.11)

where the T μ is the set of ordered stopping times τ1 ≤ · · · ≤ τn < ∞ P0-a.s. with
Xτi

∼P0 μi for all i = 1, . . . , n and (Xt∧τn) being a uniformly integrable martin-
gale. Elements of T μ are solutions to the iterated (multi-marginal) version of the
so-called Skorokhod embedding problem (SEP); cf. Obłój [39]. Here, formulation
(2.11) is directly searching for a solution to the SEP which maximizes the cri-
terion defined by the coupling G(x,m). Previous works have focused mainly on
single marginal constraint (n = 1). The case G(x,m) = φ(m) for some nonde-
creasing function φ is solved by the so-called Azéma–Yor embedding; cf. Azéma
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and Yor [3, 4], Hobson [25]; see also Galichon, Henry-Labordère and Touzi [23]
who recovered this result by the stochastic-control approach of Section 5. The case
G(x,m) was considered recently by Hobson and Klimmek [27], where the opti-
mality of the Azéma–Yor solution of the SEP is shown to be valid under convenient
conditions on the function G. This case is also solved in Section 6 of the present
paper, with our approach leading to the same results as those obtained by Hobson
and Klimmek [27], but under slightly different assumptions.

The case G(x1, . . . , xn,m) = φ(m) for some nondecreasing function φ is also
trivially solved by τAY (μn) in the following special case when the single marginal
solutions are naturally ordered: τAY (μi) ≤ τAY (μi+1). This is called the increas-
ing mean residual value property by Madan and Yor [36] who establish, in partic-
ular, a strong Markov property of the resulting time-changed process. The case of
arbitrary measures which satisfy (2.3) for n = 2 was solved in Brown, Hobson and
Rogers [11]. In this paper we consider n ∈ N. For subsequent use, we recall that the
Azéma–Yor embedding for μi is given by τAY (μi) = inf{t ≥ 0 :Xt ≤ b−1

i (X∗
t )},

where the inverse barycentre function b−1
i (m) is a minimizer in

min
ζ≤m

ci(ζ )

m − ζ
, m > X0,(2.12)

taken to be right-continuous in m and with b−1
i (m) = m for m ≥ inf{m : ci(m) =

0}. It is easy to see that b−1
i is nondecreasing. Note also that ci(ζ )/(m − ζ ) is

nonincreasing for ζ ≤ b−1
i (m) and nondecreasing for ζ ≥ b−1

i (m).

3. Main results. Our main result is split into three parts. We first state a tra-
jectorial inequality which is the building block for the solution of the robust su-
perhedging problem. We next solve the pricing problem (2.10) in Theorem 3.3.
Finally, in Theorem 3.5, we solve the superhedging problem (2.7).

3.1. A remarkable trajectorial inequality. The first result involves, for all ζ1 ≤
· · · ≤ ζn < m, the semi-static hedging strategy

λ
ζ,m
i (x) := (x − ζi)

+

m − ζi

− 1{i<n}
(x − ζi+1)

+

m − ζi+1
, x ∈ R,(3.1)

H
ζ,m
t (ω) := −1(ti−1,t](Tm(ω)) + 1[0,ti−1](Tm(ω))1{ωti−1≥ζi}

m − ζi

,

(3.2)
t ∈ [ti−1, ti),

for all i = 1, . . . , n, where Tm(ω) := inf{t ≥ 0 :ωt ≥ m}. Notice that Hζ,m is a
piecewise constant predictable process, so that the stochastic integral

∫
Ht(ω)dωt

is a well-defined, pathwise, finite sum.
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PROPOSITION 3.1. Let ω be a càdlàg path, m > ω0, and denote ω∗
t :=

sup0≤s≤t ωs . Then, for all ζ1 ≤ · · · ≤ ζn < m, the following inequality holds:

1{ω∗
tn

≥m} ≤
n∑

i=1

{
λ

ζ,m
i (ωti ) +

∫ ti

ti−1

H
ζ,m
t (ω)dωt

}
.(3.3)

The proof is reported in Section 4.1 and is based on an elementary verifica-
tion. The importance of this inequality is that it will be shown to be sharp in some
precise sense, so that the solution of the robust superhedging problem is fully de-
duced from it. Thereore, the relevant difficulty is on how this inequality can be
guessed. This issue is addressed in Section 5, where our intention is to show that
the stochastic control approach is genuinely designed for this purpose.

The pathwise inequality of Proposition 3.1 is stated for the elementary lookback
option defined by the payoff function φ = 1[m,∞). The corresponding extension
to a general right-continuous, nondecreasing function φ follows by the obvious
identity

φ
(
ω∗

tn

) = φ(ω0) +
∫
(ω0,∞)

1{ω∗
tn

≥m} dφ(m).(3.4)

3.2. Financial interpretation. We develop now a financial interpretation of the
RHS of (3.3), for ω = X the price process, as a (pathwise) superhedging strategy
for a simple knock-in digital barrier option with payoff ξ = 1{X∗

T ≥m}. The semi-
static hedging strategy consists of three elements: a static position in call options,
a forward transaction (with the shortest available maturity) when the barrier m is
hit and rebalancing thereafter at times ti . More precisely:

(i) Static position in calls:

λζ,m(Xt) :=
n∑

i=1

λ
ζ,m
i (Xti ).

For 1 ≤ i < n, we hold a portfolio long and short calls with maturity ti and strikes
ζi and ζi+1, respectively. This yields a “tent like” payoff which becomes negative
only if the underlying exceeds level m. Note that by setting ζi = ζi+1 we may
avoid trading the ti -maturity calls. For maturity tn we are only long in a call with
strike ζn.

(ii) Forward transaction if the barrier m is hit:∫ ti

ti−1

H
ζ,m
t (X)dXt = m − Xti

m − ζi

on
{
ti−1 < Tm(X) ≤ ti

} = {
X∗

ti−1
< m ≤ X∗

ti

}
.

At the moment when the barrier m is hit,4 say between maturities ti−1 and ti , we
enter into forward contracts with maturity ti . Note that the long call position with

4This is well defined since we only consider continuous paths. Note, however, that even if the
process was allowed to jump over the level m, the superhedging property would be preserved and
only an additional profit would be realized.
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maturity ti together with the forward then superhedge the knock-in digital barrier
option; cf. (4.3). This resembles the robust semi-static hedge in the one-marginal
case; cf. Lemma 2.4 of Brown, Hobson and Rogers [11]. All the “tent like” payoffs
up to maturity ti−1 are nonnegative.

(iii) Rebalancing of portfolio to hedge calendar spreads:∫ tn

ti

H
ζ,m
t dXt =

n∑
j=i

1{Xtj
≥ζj+1}

Xtj − Xtj+1

m − ζj+1
on

{
ti−1 < Tm(X) ≤ ti

}
.

After the barrier m is hit between ti−1 and ti , we start trading at times tj , j ≥ i,

in such a way that a potential negative payoff of the calendar spreads
(Xtj

−ζj )+
m−ζj

−
(Xtj−1−ζj )+

m−ζj
, i < j ≤ n, is offset; cf. (4.2).

In the above, (ii) and (iii) are instances of dynamic trading which is done in a
self-financing way. Their combined payoff is

∫ T
0 H

ζ,m
s dXs , and inequality (3.3)

simply says that for any choice of ζ1 ≤ · · · ≤ ζn < m, the semi-static hedging strat-
egy (Hζ,m,λζ,m) superreplicates ξ .

3.3. Martingale inequalities and robust superhedging. As a first consequence
of the trajectorial inequality of Proposition 3.1, we have the following martingale
inequality involving finitely-many intermediate marginals.

PROPOSITION 3.2. Let Y be a càdlàg submartingale defined on a filtered
probability space satisfying the usual conditions, and consider an arbitrary right-
continuous nondecreasing function φ. Then, for any functions ζ1(m) ≤ · · · ≤
ζn(m) ≤ m, we have

E
[
φ

(
Y ∗

tn

)] ≤ φ(Y0) +
∫
(X0,∞)

n∑
i=1

(
E[(Yti − ζi(m))+]

m − ζi(m)

− E[(Yti − ζi+1(m))+]
m − ζi+1(m)

1{i<n}
)

dφ(m),

where Y ∗
t := supu≤t Yu.

PROOF. Taking expectation in inequality (3.3) for any ζ1 ≤ · · · ≤ ζn < m, we
see that

E[1{Y ∗
tn

≥m}] ≤
n∑

i=1

{
E

[
λζ,m(Yti )

]

− E[Yti∨Tm − Yti−1∨Tm + 1{Tm≤ti−1,Yti−1≥ζi}(Yti − Yti−1)]
m − ζi

}

≤
n∑

i=1

E
[
λζ,m(Yti )

]
,



THE MAXIMUM MAXIMUM OF A MARTINGALE 13

by the submartingale property of Y . Taking limits, the above extends to any
ζ1 ≤ · · · ≤ ζn ≤ m giving the required inequality for φ = 1[m,∞). Then, for a right-
continuous nondecreasing function φ, we take expectation in (3.4), and we con-
clude using Fubini and the last inequality. �

The particular case φ = 1[m,∞) provides an upper bound on P[Y ∗
tn

≥ m]. Note
also that for some Y , the RHS may reduce to a much simpler form. In particular if
Y is stopped at t1, Yt = Yt∧t1 for t ≥ 0, then the RHS reduces to the one marginal
case. We explore martingale inequalities of the above form and their usefulness in
a short parallel note [42].

The key ingredient for the solution of the present n-marginals robust superhedg-
ing problem is to re-write the upper bound in the last martingale inequality in terms
of the call prices

n∑
i=1

E
P
[
λζ,m(Xti )

] =
n∑

i=1

(
ci(ζi)

m − ζi

− ci(ζi+1)

m − ζi+1
1{i<n}

)
for all P ∈ Pμ.

By the arbitrariness of the parameters ζ , we are then reduced to the best upper
bound

C(m) := min
ζ1≤···≤ζn≤m

n∑
i=1

(
ci(ζi)

m − ζi

− ci(ζi+1)

m − ζi+1
1{i<n}

)
(3.5)

for all m > X0,

where here, and throughout, we understand the value of the sum on the RHS
of (3.5) for ζk < ζk+1 = · · · = ζn = m as limit of the value ζk+1 = · · · = ζn =
ζ → m which is clearly either +∞ or is well defined in terms of the derivative of
the call function at m.

THEOREM 3.3. Let φ be a right-continuous nondecreasing function.

(i) Under the no-arbitrage condition (2.3), we have

sup
P∈Pμ

E
P
[
φ

(
X∗

T

)] ≤ φ(X0) +
∫
(X0,∞)

C(m)dφ(m).(3.6)

(ii) If in addition μ1, . . . ,μn satisfy Assumption � of Obłój and Spoida [41],
then equality holds in (3.6) and is attained by some P

max ∈ Pμ.

Part (i) of the last theorem is a direct consequence of Proposition 3.2. The proof
of part (ii) is reported in Section 4.3. The upper bound (3.6) holds in all generality;
in particular, both sides could be infinite.

We next focus on the existence of a semi-static superhedging strategy which in-
duces upper bound (3.6). For the following preliminary result, we recall the inverse
barycenter functions bi introduced by (2.12).
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LEMMA 3.4. There exists a measurable minimiser ζ ∗(m) for the optimization
problem (3.5) with ζ ∗

1 (m) ≥ b−1(m) := min1≤i≤n b−1
i (m).

The proof of this lemma is reported in Appendix A. Given these minimizing
functions m �−→ ζ ∗(m), we deduce from Proposition 3.1 together with (3.4) the
following candidates for the optimal semi-static hedging strategies:

λ̂i :=
∫
(X0,∞)

λ
ζ ∗
i (m),m

i dφ(m), i = 1, . . . , n,

(3.7)
Ĥt :=

∫
(X0,∞)

H
ζ ∗(m),m
t dφ(m),

where we will impose further assumptions on φ under which these integrals are
well defined. Note that from the definition of Tm it follows that

−Ĥt =
∫
(ω∗

ti−1
,ω∗

t ]
dφ(m)

m − ζ ∗
i (m)

(3.8)

+
∫
(X0,ω

∗
ti−1

]
1{ωti−1≥ζ ∗

i (m)}
dφ(m)

m − ζ ∗
i (m)

, t ∈ [ti−1, ti).

The first term is nondecreasing in t ∈ [ti−1, ti) while the second one is constant. It
follows that Ĥ is of finite variation. It is also clear that Ĥ is progressively mea-
surable in the sense introduced in Section 2.2 and hence the stochastic integral∫

Ĥt dωt is well-defined pathwise for ω ∈ �X0 via (2.2).
We now show that, under mild technical assumptions, equality holds in (2.8)

and that (λ̂, Ĥ ) is optimal and attains the minimal superhedging cost.

THEOREM 3.5. Assume that the no-arbitrage condition (2.3) holds, and let
ζ ∗

1 (m), . . . , ζ ∗
n (m) be defined by Lemma 3.4. Let φ be a right-continuous nonde-

creasing function such that m �→ (m − ζ ∗
n (m))−1 is dφ-locally integrable, λ̂ and

Ĥ be given by (3.7), and assume that∫
R

∫
(X0,∞)

(x − ζ ∗
i (m))+

m − ζ ∗
i (m)

dφ(m)μi(dx) < ∞, i = 1, . . . , n,(3.9)

which is equivalent to λ̂ ∈ �
μ
n . Then Ĥ ∈ Hμ and:

(i) U
μ
n (φ(X∗

T )) ≤ φ(X0) + μ(λ̂) = φ(X0) + ∫
(X0,∞) C(m)dφ(m) < ∞, and

φ
(
ω∗

T

) ≤ φ(X0) + λ̂(ωt) +
∫ T

0
Ĥt (ω)dωt for all ω ∈ �X0;(3.10)

(ii) if, in addition, (μi)1≤i≤n satisfy Assumption � of Obłój and Spoida [41],
then U

μ
n (φ(X∗

T )) = φ(X0) + μ(λ̂), and equality holds in (3.10) P
max-a.s., for

P
max ∈ Pμ described in the proof.
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The proof is reported in Section 4.4. Note that when λ̂ ∈ �
μ
n and Ĥ ∈ Hμ,

claim (i) is a direct consequence of the pathwise inequality of Proposition 3.1
together with (3.4) and the assumed conditions.

REMARK 3.6. It follows from Section 4 of Obłój and Spoida [41] that if
their Assumption � fails, then bound (3.6) is not necessarily optimal, and The-
orem 3.5(ii) fails.

REMARK 3.7. In the case φ = ∑J
j=1 1[mj ,∞) for some mj ≥ X0 with

ζ ∗
j (mj ) < mj , the conditions of Theorem 3.5 are all easily satisfied; that is, both

the local integrability condition above and the requirement λ̂i ∈ L
1(μi) are imme-

diate for i = 1, . . . , n.

4. Proofs of the main results.

4.1. Proof of the pathwise inequality of Proposition 3.1. Our objective is to
prove by induction the following trajectorial inequality:

1{ω∗
tn

≥m} ≤ ϒn(ω,m, ζ )

:=
n∑

i=1

(
(ωti − ζi)

+

m − ζi

+ 1{ω∗
ti−1<m≤ω∗

ti

}
(m − ωti )

m − ζi

)

+
n−1∑
i=1

(
(ωti − ζi+1)

+

m − ζi+1
+ 1{m≤ω∗

ti
,ζi+1≤ω∗

ti
}
(ωti+1 − ωti )

m − ζi+1

)
,

which is immediately seen to imply the required inequality.
For simplicity we omit the arguments (ω,m, ζ ) for ϒn below. First, in the case

n = 1, the required inequality is the same as that of Lemma 2.1 of Brown, Hobson
and Rogers [11]:

ϒ1 =
(ωt1 − ζ1)

+ + 1{ω∗
t0

<m≤ω∗
t1

}(m − ωt1)

m − ζ1

≥ ωt1 − ζ1 + m − ωt1

m − ζ1
1{m≤ω∗

t1
}(4.1)

≥ 1{m≤ω∗
t1

}.

We next assume that ϒn−1 ≥ 1{ω∗
tn−1

≥m} for some n ≥ 2, and show that ϒn ≥
1{ω∗

tn
≥m}. We consider two cases:

Case 1: ω∗
tn−1

≥ m. Then ω∗
tn

≥ m, and it follows from the induction hypothe-
sis that 1 = 1{ω∗

tn
≥m} = 1{ω∗

tn−1
≥m} ≤ ϒn−1. In order to see that ϒn−1 ≤ ϒn, we
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compute directly that, in the present case,

ϒn − ϒn−1 = ωtn − ζn

m − ζn

(1{ωtn≥ζn} − 1{ωtn−1≥ζn}) ≥ 0.(4.2)

Case 2: ω∗
tn−1

< m. As (ω∗
t ) is nondecreasing, it follows that ω∗

ti
< m for all

i ≤ n − 1. With a direct computation we obtain

ϒn = ϒ0
n + (ωtn − ζn)

+

m − ζn

+ 1{m≤ω∗
tn

}
m − ωtn

m − ζn

where ϒ0
n :=

n−1∑
i=1

(
(ωti − ζi)

+

m − ζi

− (ωti − ζi+1)
+

m − ζi+1

)
.

Since m > ω∗
ti

≥ ωti for i ≤ n − 1, the functions ζ �−→ (ωti − ζ )+/(m − ζ ) are
nonincreasing. This implies that ϒ0

n ≥ 0 by the fact that ζi ≤ ζi+1 for all i ≤ n.
Then

ϒn ≥ (ωtn − ζn)
+ + 1{m≤ω∗

tn
}(m − ωtn)

m − ζn

≥ (ωtn − ζn)
+ + m − ωtn

m − ζn

1{m≤ω∗
tn

} ≥ ωtn − ζn + m − ωtn

m − ζn

1{m≤ω∗
tn

}(4.3)

= 1{m≤ω∗
tn

}. �

4.2. The iterated Azéma–Yor-type embedding of Obłój and Spoida [41]. Be-
fore we proceed to the proof of Theorems 3.3 and 3.5, we recall the iterated
Azéma–Yor-type embedding of Obłój and Spoida [41]. This embedding will al-
low us to identify the extremal model in the context of these theorems.

Under their Assumption �, Obłój and Spoida [41] extend the Azéma–Yor em-
bedding for μ1, . . . ,μn by introducing the stopping times based on some functions
η1, . . . , ηn,

τ0 = 0 and τi := inf
{
t ≥ τi−1 :Xt ≤ ηi

(
X∗

t

)}
, i = 1, . . . , n.(4.4)

Theorem 2.6 therein asserts that for η obtained from an iterative optimization
problem (these functions are called ξ1, . . . , ξn in [41]), we have Xτi

∼P0 μi , and
(Xt∧τn) is uniformly integrable. Consider a time change of X.

Zt := Xτi∧(τi−1∨(t−ti−1)/(ti−t)) for ti−1 < t ≤ ti , i = 1, . . . , n(4.5)

with Z0 = X0, and observe that Z is a continuous, uniformly integrable martingale
on [0, tn] with Zti = Xτi

∼P0 μi . As a consequence, the distribution of Z, Pmax :=
P0 ◦ (Z)−1, is an element of Pμ.

We shall argue in Appendix D that

ζ ∗
i (m) = min

j≥i
ηj (m) for all i ≤ n,X0 < m < inf

{
y : cn(y) = 0

}
.(4.6)
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Then note that

C(m) = Kn(m)(4.7)

for the continuous and nonincreasing function Kn defined by Obłój and Spoida
[41]; see Lemma 2.14 therein.

Optimality of these iterated Azéma–Yor-type embeddings will follow from the
fact that they attain a.s. equality in the pathwise inequality (3.3). We state this in a
greater generality:

LEMMA 4.1 (Pathwise equality). Let (ηi)1≤i≤n be nondecreasing, right-
continuous functions, and ζi := minj≥i ηj . Let (τi)1≤i≤n be the corresponding
stopping times defined by (4.4), and Z the process defined by (4.5). Assume that
(Xt∧τn : t ≥ 0) is P0-uniformly integrable. Then, for any m > Z0 with ηn(m) < m,
Z achieves equality in (3.3),

1{Z∗
tn

(ω)≥m} = ϒn

(
Z(ω),m, ζ(m)

) ∀ω ∈ �X0 .(4.8)

PROOF. See Appendix D. �

4.3. Proof of Theorem 3.3(ii). Assume that (μi) satisfy Assumption � of
Obłój and Spoida [41]. Recall that (4.6) then holds. First, suppose ζ ∗

n (m) < m

dφ(m)-a.e. Then it follows directly from Lemma 4.1 and the proof of Proposi-
tion 3.2 that we have equality in (3.6) which is attained by P

max := P0 ◦ (Z)−1 ∈
Pμ, as defined in Section 4.2. Finally, if dφ(m) charges the set {m : ζ ∗

n (m) = m},
the following reasoning applies. It is seen directly that Assumption � excludes that
cn ≡ cn−1 on an open interval inside the support of μn. Then for every δ > 0 and
m ∈ (X0, inf{y : cn(y) = 0}] such that ζ ∗

n (m) = m there exists m′ ∈ (m−δ,m) such
that ζ ∗

n (m′) < m′. Consequently, for ε > 0 there exists a right-continuous nonde-
creasing φε such that 0 ≤ φε − φ < ε, φε(X0) = φ(X0) and ζ ∗

n (m) < m dφε-a.s.
Note that clearly E

P
max[φ(Z∗

tn
)] is finite if and only if EP

max[φε(Z∗
tn
)] is. Let φε,−1

and φ−1 denote the right-continuous inverses of φε and φ, respectively. Finally,
recall from (4.7) above that C is nonincreasing and continuous. Hence, applying
the previous case to φε , we have

E
P

max[
φ

(
Z∗

tn

)] = lim
ε→0

E
P

max[
φε(Z∗

tn

)]

= lim
ε→0

{
φ(X0) +

∫
(X0,∞)

C(m)dφε(m)

}

= lim
ε→0

{
φ(X0) +

∫ ∞
φ(X0)

C
(
φε,−1(x)

)
dx

}

= φ(X0) +
∫
(X0,∞)

C(m)dφ(m),

where we used monotone convergence since C(φε,−1(x)) ≥ C(φ−1(x)).
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4.4. Proof of Theorem 3.5. Note that by Lemma 3.4, ζ ∗
i (m) ≥ b−1(m) → ∞

as m → ∞, and hence the integral defining λ̂i in (3.7) is over a bounded interval.
It is therefore well defined by the assumed local integrability. The same argument,
applied to representation (3.8), shows that Ĥ is well defined.

The superhedging inequality (3.10) then follows from the trajectorial inequal-
ity of Proposition 3.1 together with (3.4). If λ̂ ∈ �

μ
n and Ĥ ∈ Hμ, then (3.10)

instantly implies the bound U
μ
n (φ(X∗

T )) ≤ φ(X0) + μ(λ̂). Finally, by Fubini,
μ(λ̂) = ∫

(X0,∞) C(m)dφ(m) < ∞, thus establishing claim (i) of the theorem.
Note that the integrability conditions of Theorem 3.5 imply, in particular, that

ζ ∗
n (m) < m dφ(m)-a.e. If μ satisfy Assumption � of Obłój and Spoida [41], then

as above, it follows directly from Lemma 4.1 by integrating the pathwise equality
against dφ, that there is Pmax-a.s. equality in (3.10). As a consequence the equality
U

μ
n (φ(X∗

T )) = φ(X0) + μ(λ̂) holds. This establishes claim (ii) of the theorem.
It remains to argue the admissibility of λ̂ and Ĥ . Observe that for i = n, (3.9)

is simply the required property
∫

λ̂n dμn < ∞. Note also that the inner integral
in (3.9) is a convex function of x so that by (2.3), we may replace μi with μi−1
in (3.9) and the double integral remains finite. The equivalence of λ̂ ∈ �

μ
n and (3.9)

now follows from the definition of λ̂.
Finally, we show Ĥ ∈ Hμ. It is immediate that Ĥ ∈ Ĥ

2. It remains to prove that∫ ·
0 Ĥs dXs is a P-supermartingale for any P ∈ Pμ. Let us fix one such P and recall

that X is a P-continuous martingale. For t ∈ [ti , ti+1) we have, by (3.8),∫ t

ti

Ĥs dXs = −
∫ t

ti

(
fi

(
X∗

s

) − fi

(
X∗

ti

))
dXs − gi

(
Xti ,X

∗
ti

)
(Xt − Xti ),(4.9)

where fi(x) := ∫
(X0,x]

dφ(m)
m−ζ ∗

i+1(m)
and gi(x, y) = ∫

(X0,y] 1{x≥ζ ∗
i+1(m)} dφ(m)

m−ζ ∗
i+1(m)

. In

the first stochastic integral we recognize an Azéma–Yor process; see Carraro, El
Karoui and Obłój [13]. We recall that MFi (X)t := Fi(X

∗
t ) − fi(X

∗
t )(X

∗
t − Xt),

where Fi(x) = ∫ x
X0

fi(u) du = ∫
(X0,x]

(x−m)dφ(m)
m−ζ ∗

i+1(m)
, x ≥ X0, satisfies MFi (X)t =∫ t

0 fi(X
∗
s ) dXs and is a local martingale.

We can extend Fi to the real line putting Fi(x) = 0 for x < X0. This preserves
convexity, and we observe that we hence have MFi (X)t ≤ Fi(Xt). Also, for t ≤
ti+1,

E
P
[
Fi(Xt)

] ≤ E
P
[
Fi(Xti+1)

]
=

∫
R

∫ ∞
X0

(x − m)+ dφ(m)

m − ζ ∗
i+1(m)

μi+1(dx)

≤
∫
R

∫ ∞
X0

(x − ζ ∗
i+1(m))+ dφ(m)

m − ζ ∗
i+1(m)

μi+1(dx) < ∞

by condition (3.9). It follows that MFi (X)+t is P-integrable.
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Let (τk) be a localizing sequence for MFi (X) and 0 ≤ s ≤ t ≤ tn. A sim-
ple monotone convergence argument shows that EP[Fi(X

∗
t∧τk

)|Fs] converge to
E
P[Fi(X

∗
t )|Fs], as k → ∞, and MFi (X)s∧τk

converge to MFi (X)s by continuity.
It follows that the following limit is well defined:

lim
k→∞E

P
[
fi

(
X∗

t∧τk

)(
X∗

t∧τk
− Xt∧τk

)∣∣Fs

] ≥ E
P
[
fi

(
X∗

t

)(
X∗

t − Xt

)∣∣Fs

]
a.s.,

and the inequality follows from Fatou’s lemma since fi ≥ 0 and X∗ ≥ X. Com-
bining these we obtain

E
P
[
MFi (X)t |Fs

] ≥ lim
k→∞E

P
[
Fi

(
X∗

t∧τk

) − fi

(
X∗

t∧τk

)(
X∗

t∧τk
− Xt∧τk

)|Fs

]
= MFi (X)s,

where the LHS is well defined since MFi (X)+t is P-integrable. In particular
E
P[MFi (X)t ] ≥ MFi (X)0 = 0, and hence E

P[|MFi (X)t |] < ∞, and MFi (X) is
a submartingale. Finally, −MFi (X) is a supermartingale.

We can compute explicitly∫ t

ti

(
fi

(
X∗

s

) − fi

(
X∗

ti

))
dXs = MFi (X)t − MFi (X)ti − fi

(
X∗

ti

)
(Xt − Xti ).

Combining with (4.9) we conclude that

∫ tn

0
Ĥs dXs = −

n−1∑
i=0

(
MFi (X)ti+1 − MFi (X)ti

)

+
n−1∑
i=0

(
fi

(
X∗

ti

) − gi

(
Xti ,X

∗
ti

))
(Xti+1 − Xti ),

and we note that by the above, the first sum is integrable under P. By the super-
hedging property (3.10), we have

n−1∑
i=0

(
fi

(
X∗

ti

) − gi

(
Xti ,X

∗
ti

))
(Xti+1 − Xti )

≥ φ
(
X∗

tn

) − λ̂(Xt) +
n−1∑
i=0

(
MFi (X)ti+1 − MFi (X)ti

)
,

and the RHS is a P-integrable r.v. by the above, the assumption that λ̂ ∈ �
μ
n

and, as argued above, its implication that the bound in (3.6) is finite. It fol-
lows from Lemma B.1 that the simple discrete trading component of Ĥ defines
a P-martingale; that is, (fi(X

∗
ti
) − gi(Xti ,X

∗
ti
))(Xt − Xti ), t ∈ [ti , ti+1) is a P-

martingale. The above was carried under an arbitrary P ∈ Pμ and hence Ĥ ∈ Hμ

as required. This completes the proof of the theorem.
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5. The stochastic control approach. We now present the methodology
which led us to identify the remarkable pathwise inequality of Proposition 3.1,
and to deduce the value (3.5) as the cheapest semi-static superhedging cost.

For technical reasons and clarity of presentation, we impose the following addi-
tional conditions on the nature of the lookback payoff and the marginal constraints:

φ ∈ C1 bounded nondecreasing, φ|(−∞,X0] ≡ 0,
∫ ∞
X0

C(m)dφ(m) < ∞,
(5.1)

λ̂ bounded and ζ ∗
i continuous increasing, i = 1, . . . , n,

where λ̂ is the optimal static hedging payoff function of (3.7). The assumption
that φ is constant on (−∞,X0] is no loss generality since these values of φ are
irrelevant for the payoff φ(X∗

T ). Clearly adding a constant to φ does not change
the problem, and hence we take φ(X0) = 0 for convenience.

REMARK 5.1. Given the expression of λ̂ as difference of call option’s payoffs,
the boundedness condition imposed above may seem inappropriate. However, we
observe that when the probability measures μi have bounded support, the values
taken by λ̂ outside all supports are irrelevant. Therefore, we may re-define λ̂ as a
bounded function.

Since the candidate optimal static hedging strategy λ̂ is assumed to be bounded,
the robust superhedging problem is not changed by restricting to bounded static
strategies. In the present section, we even seek more simplification, and we also
analyze a slightly different formulation,

U
μ

n (ξ) := inf
{
Y0 :∃(λ,H) ∈ (

L
∞)n ×H, Y

H,λ
T ≥ ξ,

(5.2)
P-a.s. for all P ∈ PS

}
,

where PS is the subset of P , consisting of probability measures

P := P0 ◦ (
Xα)−1 with Xα :=

∫ .

0
αs dBs for some α ∈ H

2(P0),

and where H is the subset of dynamic trading strategies H ∈ Ĥ
2 such that the

corresponding value process YH is a P-supermartingale for all P ∈ PS . We note
that

U
μ

n (ξ) ≥ inf
{
Y0 :∃(λ,H) ∈ (

L
∞)n ×Hμ

S ,Y
H,λ
T ≥ ξ,P-a.s. ∀P ∈PS

}
(5.3)

≥ sup
P∈Pμ

S

E
P[ξ ],

where Pμ
S := {P ∈ PS :Xti ∼P μi, i = 1, . . . , n} and Hμ

S is obtained by relaxing the
supermartingale requirement in H to P ∈ Pμ

S . The first inequality then follows by
relaxation of conditions on (λ,H), and the second one is the usual majorization of
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pricing by hedging; see (2.8). We note that, given the definition of U
μ
n in (2.7) and

Theorem 3.5, the middle term may appear more natural for the superhedging price.
However, under some simplifying technical assumptions and for ξ = φ(X∗

T ), we
will show that in fact we have equalities throughout (5.3).

5.1. Dual formulation of the robust superhedging problem. The first step for
the present approach is the observation that

U
μ

n (ξ) = inf
λ∈(L∞)n

inf
{
Y0 :∃H ∈ H, YH

T ≥ ξ − λ(Xt) + μ(λ),

P-a.s. for all P ∈ PS

}
.

We shall continue analyzing the RHS of the last inequality, observing that for
each fixed λ ∈ (L∞)n, we are reduced to the robust superhedging problem of the
derivative ξ − λ(Xt) + μ(λ). A dual formulation of this problem is derived in
Theorem 2.1 of [23] under some uniform continuity assumptions. More recently,
Neufeld and Nutz [37] relaxed the uniform continuity condition, allowing for a
larger class of random variables including measurable ones. The following direct
application of [45] is better suited to our context:

PROPOSITION 5.2. For a bounded random variable ξ , we have

U
μ

n (ξ) = inf
λ∈(L∞)n

sup
P∈PS

{
μ(λ) +E

P
[
ξ − λ(Xt)

]}
.

5.2. The one-marginal problem. We start with an essential ingredient, namely
a general one-marginal construction, which allows us to move from (n − 1) to n

marginals.
For an inherited maximum M0 ≥ X0, we introduce the process

Mt := M0 ∨ X∗
t for t ≥ 0.

The process (X,M) takes values in the state space � := {(x,m) ∈ R
2 :x ≤ m}.

Our interest in this section is on the upper bound on the price of the one-marginal
(n = 1) lookback option defined by the payoff

ξ = g
(
XT ,X∗

T

)
for some g :R×R −→ R.(5.4)

ASSUMPTION A. Function g :R×R −→ R is bounded, C1 in m, absolutely
continuous in x, and gxx exists as a measure.

ASSUMPTION B. The function x �−→ gm(x,m)
m−x

is nondecreasing.

For a bounded measurable function λ :R −→ R, we denote gλ := g − λ. Sim-
ilarly to Proposition 3.1 in Galichon, Henry-Labordère and Touzi [23], it follows
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from the Dambis–Dubins–Schwarz time change theorem that the model-free upper
bound can be converted into

U
μ
1 (ξ) = inf

λ∈L∞ sup
τ∈T

{
μ(λ) + J (λ, τ )

}
(5.5)

where J (λ, τ ) := E
P0

[
gλ(

Xτ ,X
∗
τ

)]
,

and T is the collection of all stopping times τ such that

{Xt∧τ , t ≥ 0} is a P0-uniformly integrable martingale.(5.6)

Then for every fixed multiplier λ ∈ L
∞, we are facing the infinite horizon optimal

stopping problem

uλ(x,m) := sup
τ∈T

E
P0
x,m

[
gλ(Xτ ,Mτ )

]
, (x,m) ∈ �,(5.7)

where E
P0
x,m denotes the conditional expectation operator E

P0[·|(X0,M0) =
(x,m)]. The dynamic programming equation corresponding to the optimal stop-
ping problem uλ defined in (5.7) is

min
{
u − gλ,−uxx

} = 0 for (x,m) ∈ �,
(5.8)

um(m,m) = 0 for m ∈ R.

It is then natural to introduce a candidate solution for the dynamic programming
equation defined by a free boundary {x = ψ(m)}, for some convenient function ψ ,

vψ(x,m) = gλ(
x ∧ ψ(m),m

) + (
x − ψ(m)

)+
gλ

x

(
ψ(m),m

)
(5.9)

= gλ(x,m) −
∫ x∨ψ(m)

ψ(m)
(x − ξ)gλ

xx(dξ,m), x ≤ m,(5.10)

where gλ
x denotes the right-derivative of gλ with respect to x, and gλ

xx is the cor-
responding second derivative in the sense of distributions. The existence of these
derivatives is justified by the restriction of the function λ to the set �̂μ defined
in (5.11) below.

Here, vψ(·,m) coincides with the obstacle gλ before the exercise boundary
ψ(m), and satisfies v

ψ
xx(·,m) = 0 in the continuation region (ψ(m),m]. However,

the candidate solution needs to satisfy more conditions. Namely vψ(·,m) must
be above the obstacle and concave in x on (−∞,m], and it needs to satisfy the
Neumann condition in (5.8).

For this reason, our strategy of proof consists of first restricting the minimization
in (5.5) to those multipliers λ in the set

�̂ := {
λ ∈ L

∞ :vψ concave in x and vψ ≥ gλ for some ψ ∈ �λ}
,(5.11)

where the set �λ is defined in (5.14) below so that our candidate solution vψ satis-
fies the Neumann condition in (5.8). Since v(·,m) = gλ(·,m) on (−∞,ψ(m)], it
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follows that gλ is concave on this range, thus justifying that the second derivative
gλ

xx is a well-defined measure for all λ ∈ �̂. Also, by Assumption A, this guaran-
tees that λ′′ is also a well-defined measure.

By formal differentiation of vψ , the Neumann condition reduces to the ordinary
differential equation (ODE)

−ψ ′gλ
xx(ψ,m) = γ (ψ,m)

(5.12)

where γ (x,m) := (m − x)
∂

∂x

{
gm(x,m)

m − x

}

exists a.e. in view of Assumption B. Similarly to Galichon, Henry-Labordère and
Touzi [23], we need for technical reasons to consider this ODE in the relaxed sense.
We then introduce the weak formulation of the ODE (5.12),

ψ(m) < m for all m ∈ R,
(5.13)

−
∫
ψ(E)

gλ
xx

(·,ψ−1)
(dξ) =

∫
E

γ (ψ, ·)(dm) for Borel subsets E ⊂ R,

where ψ is chosen in its right-continuous version and is nondecreasing by the
concavity of gλ, and the nonnegativity of γ implied by Assumption B. In fact, we
shall restrict to those ψ which are continuous and (strictly) increasing, so that the
inverse ψ−1 is a well-defined continuous increasing function. This is the reason
for the condition on ζ ∗ in (5.1), and this restriction is adopted here for the sake of
technical simplicity.

We introduce the collection of all relaxed solutions of (5.12) with the additional
simplifying assumption of continuity

�λ := {
ψ :R→R continuous, increasing, and satisfies (5.13)

}
.(5.14)

Notice that the ODE (5.12), which motivates the relaxation (5.13), does not char-
acterize the free boundary ψ as it is not complemented by any boundary condition.

REMARK 5.3. For later use, we observe that (5.13) implies by direct integra-
tion that the function

x �−→ λ(x) −
∫ x

ψ(X0)

∫ ψ−1(y)

X0

gm(ψ(ξ), ξ)

ξ − ψ(ξ)
dξ dy −

∫ x

ψ(X0)
gx

(
ξ,ψ−1(ξ)

)
dξ

is affine.

PROPOSITION 5.4. Let Assumptions A and B hold true. Then

uλ ≤ vψ for any λ ∈ �̂ and ψ ∈ �λ.

PROOF. By the definition of �λ, the function ψ that we will be manipulating
has a well-defined continuous increasing inverse. We proceed in two steps:
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Step 1. We first prove that vψ is differentiable in m on the diagonal with

vψ
m(m,m) = 0 for all m ∈R.(5.15)

Indeed, since ψ ∈ �λ, it follows from Remark 5.3 that

λ(x) = α0 + α1x +
∫ x

ψ(X0)

∫ ψ−1(y)

X0

gm(ψ(ξ), ξ)

ξ − ψ(ξ)
dξ dy

+
∫ x

ψ(X0)
gx

(
ξ,ψ−1(ξ)

)
dξ

for some constants α0, α1. Plugging this expression into (5.9), we see that for
ψ(m) ≤ x ≤ m,

vψ(x,m) = g
(
ψ(m),m

) −
(
α1 +

∫ m

X0

gm(ψ(ξ), ξ)

ξ − ψ(ξ)
dξ

)(
x − ψ(m)

)

−
(
α0 + α1ψ(m) +

∫ ψ(m)

ψ(X0)

∫ ψ−1(y)

X0

gm(ψ(ξ), ξ)

ξ − ψ(ξ)
dξ dy

+
∫ ψ(m)

ψ(X0)
gx

(
ξ,ψ−1(ξ)

)
dξ

)

= g
(
ψ(m),m

) − α0 − α1x −
∫ m

X0

gm

(
ψ(ξ), ξ

)x − ψ(ξ)

ξ − ψ(ξ)
dξ

−
∫ ψ(m)

ψ(X0)
gx

(
ξ,ψ−1(ξ)

)
dξ

= g
(
ψ(X0),X0

) +
∫ m

X0

gm

(
ψ(ξ), ξ

) ξ − x

ξ − ψ(ξ)
dξ.

Since g is C1 in m by Assumption A, (5.15) follows by direct differentiation with
respect to m.

Step 2. Let τ ∈ T be arbitrary, and define the sequence of stopping times τn :=
τ ∧ inf{t > 0 : |Xt − x| > n}. Since vψ is concave, it follows from the Itô–Tanaka
formula that

vψ(x,m) ≥ vψ(Xτn,Mτn) −
∫ τn

0
vψ
x (Xt ,Mt) dXt −

∫ τn

0
vψ
m(Xt ,Mt) dMt .

Notice that (Mt − Xt) dMt = 0. Then since v
ψ
m(m,m) = 0, it follows that

v
ψ
m(Xt ,Mt) dMt = v

ψ
m(Mt,Mt) dMt = 0, and therefore

vψ(x,m) ≥ vψ(Xτn,Mτn) −
∫ τn

0
vψ
x (Xt ,Mt) dXt .(5.16)

Taking expectations in the last inequality, we see that

vψ(x,m) ≥ E
P0
x,m

[
vψ(Xτn,Mτn)

] ≥ E
P0
x,m

[
gλ(Xτn,Mτn)

]
.(5.17)
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The required result now follows by the dominated convergence, due to the bound-
edness of g and λ and by the arbitrariness of τ ∈ T . �

REMARK 5.5. Inequality (5.16) is the key step in order to determine the
pathwise inequality of Proposition 3.1. Indeed by sending n → ∞ and taking
τ = τψ := inf{t :Xt ≤ ψ(Mt)}, we see that

vψ(x,m) ≥ vψ(Xτ ,Mτ ) −
∫ τ

0
vψ
x (Xt ,Mt) dXt

= g(Mτ ) − λ(Xτ ) −
∫ τ

0
vψ
x (Xt ,Mt) dXt .

This inequality induces the pathwise inequality once we identify the optimal λ̂ and
the corresponding free boundary ψ̂ . For the purpose of the pathwise inequality of
Proposition 3.1, the optimal superhedging strategy is identified by using similarly
the iterated values functions (vk)k introduced in Section 5.4 below.

5.3. Multiple-marginals penalized value function. We now continue our gen-
eral methodology and return to the multiple-marginal problem. Our aim is to prove
Theorem 3.5 for the modified robust superhedging problem U

μ

n (ξ), and derive the
robust superhedging bounds for the lookback derivative security

φ
(
X∗

T

)
given the marginals Xti ∼ μi for all i = 1, . . . , n.(5.18)

We recall that the probability measures μi are defined from market prices which
do not admit arbitrage; that is, (2.3) holds.

Our purpose in this section is to analyze the upper bound on the robust super-
hedging cost introduced in Proposition 5.2,

Uμ
n (ξ) = inf

λ∈(L∞)n

{
μ(λ) + uλ(X0,X0)

}
,(5.19)

where

uλ(x,m) := sup
P∈PS

E
P

x,m

[
φλ(Xt,Mtn)

]
and φλ := φ −

n∑
i=1

λi.(5.20)

Our approach is to introduce the sequence of intermediate optimization problems

un(x,m) = φ(m) and uk−1(x,m) = sup
P∈PS

E
P

tk−1,x,m

[
uλ

k(Xtk ,Mtk )
]
,

(5.21)
k ≤ n,

where E
P
tk−1,x,m = E

P[·|(X,M)tk−1 = (x,m)], and

uλ
k(x,m) := uk(x,m) − λk(x) for (x,m) ∈ �.(5.22)

The last iterative sequence of value functions induces uλ = uλ
0. Moreover, by the

Dambis–Dubins–Schwarz theorem (see Proposition 3.1 in [23]), we may convert
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the stochastic control problem in (5.21) into a sequence of optimal stopping prob-
lems

uk−1(x,m) = sup
τ∈T

E
P0
x,m

[
uλ

k(Xτ ,Mτ )
]
.(5.23)

Then, denoting by Sn := {τ = (τ1, . . . , τn) ∈ T : τ1 ≤ · · · ≤ τn}, we see that

Uμ
n (ξ) = inf

λ∈(L∞)n

{
μ(λ) + uλ

0(X0,X0)
}

(5.24)
with uλ

0(x,m) := sup
τ∈Sn

E
P0
x,m

[
φλ(Xτ ,Mτn)

]
.

5.4. Preparation for the upper bound. The function uk−1 corresponds to the
optimization problem considered in Section 5.2 with a payoff g(x,m) = uk(x,m)

depending on the spot and the running maximum. This was our original motivation
for isolating the one-marginal problem.

To solve the multiple marginals problem, we introduce the iterative sequence of
candidate value functions

vn(x,m) := φ(m), vλ
k (x,m) := vk(x,m) − λk(x) and

vk−1(x,m) := vλ
k

(
x ∧ ψk(m),m

) + (
x − ψk(m)

)+
∂+
x vλ

k

(
ψk(m),m

)
(5.25)

= vλ
k (x,m) −

∫ x∨ψk(m)

ψk(m)
(x − ξ)∂xxv

λ
k (dξ,m),

where ∂+
x vλ

k and ∂xxv
λ
k denote the right-derivative and the measure second deriva-

tive, respectively, of vλ
k with respect to x (which are well defined for λ in the sub-

class �̂n introduced below), and ψ = (ψ1, . . . ,ψn) with ψi defined as an arbitrary
solution of the ordinary differential equation

−ψ ′
k∂xxv

λ
k (ψk,m) = γk(ψk,m)

(5.26)

with γk(x,m) := (m − x)∂x

{
∂mvk(x,m)

m − x

}
,

which stays strictly below the diagonal. Notice that, in contrast to the one-marginal
case, we have dropped here the dependence of vk in ψ by simply denoting vk :=
v

ψ
k and vλ

k := v
ψ,λ
k .

Similarly to the one-marginal case, we introduce the weak formulation of this
ODE,

ψk(m) < m for all m ≥ 0,
(5.27)

−
∫
ψ(E)

∂xxv
λ
k

(·,ψ−1
k

)
(dξ) =

∫
E

γk(ψk, ·)(dm) for all E ∈ B(R),
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and we introduce the set

�λ
n := {

ψ :R→R
n with continuous increasing entries

(5.28)
ψk satisfying (5.27), k ≤ n

}
.

We also follow the one-marginal case by restricting the minimization in (5.24) to
those multipliers λ in the set

�̂n := {
λ ∈ (

L
∞)n :vk−1 concave in x and vk−1 ≥ vλ

k for all k ≤ n
}
.(5.29)

LEMMA 5.6. Let φ satisfy (5.1), λ ∈ �̂n and ψ ∈ �λ
n . Then:

(i) for all i = 1, . . . , n, the function vi satisfies Assumptions A and B, that is,
vi is C1 in m, absolutely continuous in x, Lipschitz in m uniformly in x, ∂xxvi

exists as a measure and x �−→ ∂mvi(x,m)/(m − x) is nondecreasing;
(ii) for all i = 1, . . . , n, the function ∂mvi is concave in x;

(iii) uλ(X0,X0) ≤ v0(X0,X0).

PROOF. We first prove (i). First vn = φ satisfies Assumptions A and B as it is
independent of the x-variable, nondecreasing and C1. For the remaining cases, we
proceed by induction, assuming that vi satisfies Assumptions A and B, for some
i ≤ n, and we intend to show that vi−1 does as well. We first observe that the
following condition is also satisfied by vi :

vi(x,m) = φ(m) nondecreasing, or ∂mvi(m,m) = 0,(5.30)

where the first alternative holds for i = n. vi−1 is clearly C1 in m, and by using
the ODE (5.26) satisfied by vi , we directly compute that

∂mvi−1(x,m)

(5.31)

=
⎧⎨
⎩

∂mvi(x,m), for x ∈ (−∞,ψi(m)
]
,

∂mvi

(
ψi(m),m

) m − x

m − ψi(m)
, for x ∈ [

ψi(m),m
]
.

Then vi−1 inherits the differentiability in m, and x �−→ ∂mvi−1(x,m)/(m − x) is
nondecreasing whenever x �−→ ∂mvi(x,m)/(m − x) is. The remaining properties
follow from the concavity of vi .

We next prove (iii). By the previous step, vi satisfies Assumptions A and B
for all i = 1, . . . , n. Then it follows from Proposition 5.4 that un−1 ≤ vn−1 for all
ψ ∈ �λn . Therefore

un−2(x,m) ≤ sup
τn−1∈T

E
P

x,m

[
vλ
n−1

(
Xτn−1,X

∗
τn−1

)]
,

and we deduce from a second application of Proposition 5.4 that un−2 ≤ vn−2. The
required inequality follows by a backward iteration of this argument.
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We finally prove (ii). From (5.31), we see that ∂mvi−1 is concave in x on
(−∞,ψi(m)) and on (ψi(m),m]. It remains to verify that ∂mvi−1 is concave at
the point x = ψi(m). We directly calculate that

∂xmvi−1
(
ψi(m)−,m

) = ∂xmvi

(
ψi(m)−,m

)
and

∂xmvi−1
(
ψi(m)+,m

) = −∂mvi(ψi(m),m)

m − ψi(m)
.

Then, by the concavity of ∂mvi in x, together with (5.30), we have

∂mvi

(
ψi(m),m

) + ∂xmvi

(
ψi(m)+,m

)(
m − ψi(m)

) ≥ ∂mvi(m,m) ≥ 0,

which implies that ∂xmvi−1(ψi(m)−,m) ≥ ∂xmvi−1(ψi(m)+,m). �

LEMMA 5.7. Let φ satisfy (5.1). Then, for all λ ∈ �̂n and ψ ∈ �λ
n , we have

μ(λ) + uλ(X0,X0) ≤ μ(λ) + v0(X0,X0)

=
n∑

i=1

∫ [
ci(ξ) − c0(ξ)1{ξ<ψi(X0)}

]
λ′′

i (dξ)

−
∫ ∞
ψi(X0)

c0(ξ)∂xxvi(dξ,X0).

PROOF. Denote the LHS:= μ(λ) + uλ(X0,X0). Substituting the expression
of the vi ’s in inequality (iii) of Lemma 5.6, we see that

LHS ≤
n∑

i=1

μi(λi) − λi(X0) −
∫ ∞
ψi(X0)

c0(ξ)∂xxv
λ
i (dξ,X0)

≤
n∑

i=1

∫
λi(ξ)(μi − δX0)(dξ) −

∫ ∞
ψi(X0)

c0(ξ)∂xxv
λ
i (dξ,X0).

Since
∫

ξμi(dξ) = X0, it follows from two integrations by parts that

LHS ≤
n∑

i=1

∫
(ci − c0 + c01[ψi(X0),∞))(ξ)λ′′

i (dξ)

−
∫ ∞
ψi(X0)

c0(ξ)∂xxvi(dξ,X0). �

The following result provides the necessary calculations for the terms which
appear in Lemma 5.7. We denote

ψi := ψi ∧ · · · ∧ ψn for all i = 1, . . . , n,(5.32)

and we set ψn+1(m) := m, m ∈ R.
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LEMMA 5.8. Let φ satisfy (5.1), λ ∈ �̂n, ψ ∈ �λ
n and i ≤ n. Then for any

λ′′
i -integrable function ϕ we have
∫

ϕ(ξ)λ′′
i (dξ) =

∫ (
ϕ(ψi(m))

m − ψi(m)
− 1{i<n}

ϕ(ψi+1(m))

m − ψi+1(m)

)
1{ψi<ψi+1} dφ(m),

i = 1, . . . , n.

PROOF. See Appendix C. �

Plugging these calculations into the estimate of Lemma 5.7 provides:

LEMMA 5.9. Let φ ∈ C1 be bounded nondecreasing, λ ∈ �̂n and ψ ∈ �λ
n .

Then

μ(λ) + uλ(X0,X0) ≤ μ(λ) + v0(X0,X0) =
n∑

i=1

∫ ∞
−∞

1{ψi<ψi+1}Ai(m)dφ(m),

where

Ai := ci(ψi)

m − ψi

− 1{i<n}
ci(ψi+1)

m − ψi+1
.

PROOF. We proceed in two steps:

Step 1. We start by reducing the last integral in Lemma 5.7 to an integral with
respect to λ′′

i . Notice that ∂xxvi(x,m) = 1{i<n}1{x<ψi+1(m)}∂xxv
λ
i+1(x,m). Then∫ ∞

ψi(X0)
c0(ξ)∂xxvi(dξ,X0)

= 1{i<n}
∫ ∞
ψi(X0)

1{ξ<ψi+1(X0)}c0(ξ)∂xxv
λ
i+1(dξ,X0)

= −1{i<n}
∫ ∞
ψi(X0)

1{ξ<ψi+1(X0)}c0(ξ)λ′′
i+1(dξ)

+ 1{i<n}
∫ ∞
ψi(X0)

1{ξ<ψi+1(X0)}c0(ξ)∂xxvi+1(dξ,X0).

By direct iteration, it follows from the fact that vn(x,m) = φ(x) is independent
of x that ∫ ∞

ψi(X0)
c0(ξ)∂xxvi(dξ,X0)

= −1{i<n}
n∑

j=i+1

∫ ∞
ψi(X0)

1{ξ<ψi+1∧ψj (X0)}c0(ξ)λ′′
j (dξ).
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Step 2. By Lemma 5.7, we have μ(λ) + uλ(X0,X0) ≤ A, where, by the first
step,

A :=
∫ (

n∑
i=1

(ci − c01(−∞,ψi(X0)])λ′′
i +

n∑
i=1

n∑
j=i+1

c01[ψi(X0),ψi+1∧···∧ψj (X0)]λ′′
j

)

=
∫ (

n∑
i=1

(ci − c01(−∞,ψi(X0)])λ′′
i +

n∑
j=1

j−1∑
i=1

c01[ψi(X0),ψi+1∧···∧ψj (X0)]λ′′
j

)

=
∫ (

n∑
i=1

(ci − c01(−∞,ψi(X0)])λ′′
i +

n∑
j=1

c01[ψ1∧···∧ψi(X0),ψi(X0)]λ′′
j

)

=
∫ n∑

i=1

(ci − c01(−∞,ψi(X0))
)λ′′

i .

Then it follows from Lemma 5.8 that A = ∑n
i=1

∫
1{ψi<ψi+1}A

0
i dφ, where

A0
i := ci(ψi) − c0(ψi)1{ψi<ψi(X0)}

m − ψi

− 1{i<n}
ci(ψi+1) − c0(ψi+1)1{ψi+1<ψi(X0)}

m − ψi+1
.

We next observe from the increase of ψi that for m ≥ X0, we have ψi(m) ≥
ψi(X0), implying that 1{ψi<ψi(X0)} = 1(−∞,X0]1{ψi<ψi(X0)}. It also follows that

on {ψi < ψi+1}, we have 1{ψi+1<ψi(X0)} = 1(−∞,X0]1{ψi+1<ψi(X0)}. The result fol-
lows since by (5.1) we have dφ(m) ≡ 0 on (−∞,X0]. �

5.5. Proof of U
μ

n (ξ) = μ(λ̂) under (5.1), Assumption � of [41] and Assump-
tions A, B. Step 1. We first show that U

μ

n (ξ) ≤ μ(λ̂). Given the results of
Lemma 5.9, we prove in this first step that the pointwise minimization in (3.5)
can be achieved by some vector of Lagrange multipliers λ̂ = (λ̂, . . . , λ̂) ∈ �̂n, thus
implying that our required upper bound satisfies

Uμ
n (ξ) ≤

∫ ∞
X0

n∑
i=1

(
ci(ζ

∗
i (m))

m − ζ ∗
i (m)

− ci(ζ
∗
i+1(m),m)

m − ζ ∗
i+1(m)

1{i<n}
)

dφ(m).(5.33)

In order to define λ̂, we take the family of functions ψ̂i given by the boundaries ξi

constructed by Obłój and Spoida [41], so that

ψ̂1 := b−1
1 and ψ̂ i := ψ̂i ∧ · · · ∧ ψ̂n = ζ ∗

i , 1 < i ≤ n.

Recall that b−1
1 is the minimizer in (2.12) and is also the right-continuous inverse

of the barycentre function of μ1; see (6.2) below. Also, under Assumption � of
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Obłój and Spoida [41], ψ̂ are continuous. Moreover, direct verification reveals that
the functions λ̂i solve the system of ODEs (5.26). The required result follows from
our additional assumption in (5.1) that λ̂ is bounded.

Step 2. Now we prove that the equality U
μ

n (ξ) = μ(λ̂) holds. In Section 4.2 we
recalled the n-marginal embedding τ1, . . . , τn of Obłój and Spoida [41]. In their
Theorem 2.6 they compute the law of X∗

τn
as

P
[
X∗

τn
≥ m

] = Kn(m) = C(m);(5.34)

see also (4.6) and (4.7).
By definition of U

μ
n (ξ) in (5.2), it follows that

U
μ

n (ξ) ≥ E
P0

[
φ

(
X∗

τn

)] (5.34)=
∫
(X0,∞)

C(m)dφ(m).(5.35)

Furthermore, it follows that we have equalities throughout in (5.3). �

6. The Azéma–Yor embedding solves the one-marginal problem. In this
subsection, we return to the one-marginal context of Section 5.2 with the intention
of revisiting the recent result of Hobson and Klimmek [27] in this setting. Our
emphasis is again on the efficiency of the stochastic control approach in the present
setting. Therefore, similarly to the previous section, our assumptions below will be
much stronger than what one could achieve directly with the pathwise approach.
The endpoints of the support of the distribution μ are denoted by

�μ := sup
{
x :μ

([x,∞)
) = 1

}
and rμ := inf

{
x :μ

(
(x,∞)

) = 0
}
.(6.1)

We introduce the so-called barycentre function

b(x) :=
∫
[x,∞) yμ(dy)

μ([x,∞))
1{x<rμ} + x1{x≥rμ}, x ∈ R.(6.2)

The solution of Azéma and Yor [3, 4] to the Skorokhod embedding problem is

τ̂ := inf
{
t ≥ 0 :X∗

t ≥ b(Xt)
} = inf

{
t ≥ 0 :Xt ≤ b−1(

X∗
t

)}
,(6.3)

as recalled in Section 2.7. Plugging ψ̂ := b−1 into the ODE (5.13), we obtain the
function

λ̂(x) :=
∫ x

�μ

∫ y

�μ
gm

(
ξ, b(ξ)

) μ(dξ)

μ([ξ,∞))
dy +

∫ x

�μ
gx

(
ξ, b(ξ)

)
dξ ;

(6.4)
x ∈ (−∞, rμ

)
,

whose well-posedness will be guaranteed by the following condition.

ASSUMPTION C. λ̂ is well defined and bounded. Moreover, the function g

has a measure second partial derivative with respect to x satisfying

gxx(dx,m) − gxx

(
dx, b(x)

) ≤ γ
(
x, b(x)

)
b′(dx) whenever b(x) ≤ m.
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Similarly to the previous section, we focus on the robust superhedging problem
U

μ
1 (ξ), as introduced in (5.2), and re-expressed in (5.5).

THEOREM 6.1. Let ξ = g(XT ,X∗
T ) for some payoff function g satisfying As-

sumptions A, B and C. Then the pair (λ̂, τ̂ ) is a solution of the problem U
μ
1 (ξ)

in (5.5) and

U
μ
1 (ξ) = μ(λ̂) + J (λ̂, τ̂ ) = E

P0
[
g
(
Xτ̂ ,X

∗
τ̂

)]
.

The remaining part of this section is dedicated to the proof of this result. Our
starting point is the result of Proposition 5.4 which provides an upper bound for the
value function U

μ
1 (ξ) for every choice of a multiplier λ ∈ �̂ and a corresponding

solution ψ ∈ �λ of the ODE (5.13),

U
μ
1 (ξ) ≤ μ(λ) + vψ(X0,X0) for all λ ∈ �̂ and ψ ∈ �λ.(6.5)

Alternatively, for any choice of a nondecreasing function ψ with ψ(m) < m for all
m ∈ R, we may define a corresponding multiplier function λ by (5.13), or equiv-
alently by (5.12), in the distribution sense. Then ψ ∈ �λ. If in addition vψ is
concave in x and above the corresponding obstacle gλ, then λ ∈ �̂, and we may
conclude by Proposition 5.4 that U

μ
1 (ξ) ≤ μ(λ) + vψ . The next result exhibits

this bound for the choice ψ = b−1, the right-continuous inverse of the barycentre
function.

PROPOSITION 6.2. Let ξ = g(XT ,X∗
T ) for some payoff function g satisfying

Assumptions A, B and C. Then

U
μ
1 (ξ) ≤ μ(λ̂) + J (λ̂, τ̂ ) = E

P0
[
g
(
Xτ̂ ,X

∗
τ̂

)]
.

PROOF. It is immediately checked that ψ̂ := b−1 ∈ �λ̂. Moreover, by As-
sumption C and the subsequent discussion, we see that λ̂ ∈ �̂. In view of the pre-
vious discussion, the required inequality follows from Proposition 5.4 once we
prove that vψ̂ is concave, and that vψ̂ ≥ gλ̂.

(1) We first verify that vψ̂ is concave. By direct computation using the expres-
sion of λ̂ in (6.4) together with the identity

b′(dx)

b(x) − x
= μ(dx)

μ([x,∞))
,

we see that

gλ̂
xx(dx,m) = gxx(dx,m) − gxx

(
dx, b(x)

) − γ
(
x, b(x)

)
b′(dx)(6.6)

in the distribution sense. By Assumption C, it follows that x �−→ gλ̂(x,m) is con-
cave on (−∞, ψ̂(m)]. Since vψ̂ (·,m) is linear on [ψ̂(m),m] and C1 across the
boundary ψ̂ , this proves that vψ̂ is concave.
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(2) We next check that vψ̂ ≥ gλ̂. Since equality holds on (−∞, ψ̂(m)], we only
compute for x ∈ [ψ̂(m),m] that

(
vψ̂ − gλ̂)

(x,m) =
∫ x

ψ̂(m)

(
gλ̂

x

(
ψ̂(m),m

) − gλ̂
x (ξ,m)

)
dξ

= −
∫ x

ψ̂(m)

∫ ξ

ψ̂(m)
gλ̂

xx(dy,m)dξ.

By (6.6), this provides

(
vψ̂ − gλ̂)

(x,m)

= −
∫ x

ψ̂(m)

(
gx(ξ,m) − gx

(
ξ, b(ξ)

) −
∫ ξ

ψ̂(m)

gm(y, b(y))

b(y) − y
b′(dy)

)
dξ

=
∫ x

ψ̂(m)

∫ ξ

ψ̂(m)

(
gxm

(
ξ, b(y)

) + gm(y, b(y))

b(y) − y

)
b′(dy) dξ

=
∫ x

ψ̂(m)

(∫ x

y
gxm

(
ξ, b(y)

) + gm(y, b(y))

b(y) − y

)
dξ b′(dy)

=
∫ x

ψ̂(m)

(
b(y) − x

)(gm(x, b(y))

b(y) − x
− gm(y, b(y))

b(y) − y

)
b′(dy) ≥ 0,

where the last inequality follows from the nondecrease of b and x �−→ gm(x,m)/

(m − x) (Assumption B), together with the fact that b(y) ≥ x for ψ̂(m) ≤ y ≤
x ≤ m. �

PROOF OF THEOREM 6.1. To complete the proof of the theorem, it remains
to prove that

inf
λ∈�μ

{
μ(λ) + uλ(X0,X0)

} ≥ E
P0
X0,X0

[
g
(
Xτ̂ ,X

∗
τ̂

)]
.

To see this, we use the fact that the stopping time τ̂ defined in (6.3) is a solution of
the Skorokhod embedding problem; that is, Xτ̂ ∼ μ and (Xt∧τ̂ )t≥0 is a uniformly
integrable martingale; see Azéma and Yor [3, 4]. Moreover X∗

τ̂
is integrable. Then,

for all λ ∈ �μ, it follows from the definition of uλ that uλ(X0,X0) ≥ J (λ, τ̂ ), and
therefore

μ(λ) + uλ(X0,X0) ≥ μ(λ) +E
P0
X0,X0

[
g
(
Xτ̂ ,X

∗
τ̂

) − λ(Xτ̂ )
]

= E
P0
X0,X0

[
g
(
Xτ̂ ,X

∗
τ̂

)]
. �

We conclude this section by a formal justification that the function b−1 appears
naturally if one searches for the best upper bound in (6.5).
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Step 1. using expression (5.10) of vψ , we directly compute that

μ(λ) + uλ(X0,X0)

= μ
(
g(·,X0)

) + μ
(
gλ(·,X0)

) −
∫ X0

ψ(X0)
gλ

xx(ξ,X0)(X0 − ξ) dξ

= μ
(
g(·,X0)

) +
∫

gλ
xx(ξ,X0)

(
c(ξ) − c0(ξ)1{ξ≤ψ(X0)}

)
dξ

= μ
(
g(·,X0)

) +
∫

gλ
xx

(
ξ,ψ−1(ξ)

)(
c(ξ) − c0(ξ)1{ξ≤ψ(X0)}

)
dξ

+
∫ (

gxx(ξ,X0) − gxx

(
ξ,ψ−1(ξ)

))(
c(ξ) − c0(ξ)1{ξ≤ψ(X0)}

)
dξ,

where the second equality follows from two integrations by parts together with
the fact that

∫
xμ(dx) = X0; see step 1 of the proof of Lemma 3.2 of Galichon,

Henry-Labordère and Touzi [23]. Then, by using ODE (5.13) satisfied by ψ to
change variables in the last integral, we see that

μ(λ) + uλ(X0,X0)

= μ
(
g(·,X0)

) +
∫ {−γ

(
ψ(m),m

) + G
(
ψ(m),m

)
ψ ′(m)

}
δ
(
ψ(m),m

)
dm,

where we denoted

δ(x,m) := c(x) − c0(x)1{m≤X0}, c0(x) := (X0 − x)+

and

G(x,m) := gxx(x,X0) − gxx(x,m).

Step 2. The expression of μ(λ) + vψ derived in the previous step only involves
the function ψ ∈ �λ. Forgetting about all constraints on ψ , we treat our mini-
mization problem as a standard problem of calculus of variations. The local Euler–
Lagrange equation for this problem is

d

dx
(Gδ)(ψ,m) = −(γ δ)x(ψ,m) + (Gδ)x(ψ,m)ψ ′.

Since (Gδm)(x,m) = 0, this reduces to

0 = (Gmδ + γ δx + γxδ)(ψ,m)

= (m − ψ)γ (ψ,m)
∂

∂x

{
δ(x,m)

m − x

}
x=ψ

.

This shows formally that the solution of the minimization problem

min
ξ<m

δ(x,m)

m − x
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provides a solution to the local Euler–Lagrange equation. Finally, the solution of
the above minimization problem, as recalled in Section 2.7, is known to be given
by the right inverse barycenter function b−1; see also the proof of Lemma 3.3
in [23].

APPENDIX A: PROOF OF LEMMA 3.4

Note that we may restrict to optimizing in (3.5) over b−1(m) ≤ ζ1 ≤ · · · ≤ ζn ≤
m. Indeed, fix some ζ as in (3.5) with ζ1 = · · · = ζi < min{ζi+1, b

−1(m)}. Then
all the terms featuring ζj for j ≤ i reduce simply to ci(ζi)/(m − ζi) which is
nonincreasing for ζi ≤ b−1

i (m) by the discussion of (2.12). It follows that we
may only decrease the value of the objective in (3.5) by setting ζ1 = · · · = ζi =
min{ζi+1, b

−1(m)}. In consequence the problem in (3.5) reduces to minimization
of a continuous function in a compact subset of Rn and admits a minimizer ζ ∗(m)

with ζ ∗
1 (m) ≥ b−1(m).

We finally verify that m �−→ ζ ∗(m) can be chosen to be measurable. Indeed,
for a fixed m, the set F(m) of minimizers in (3.5) is closed, and for any closed
K ⊂ R

n, {m :F(m) ∩ K �= ∅} is equal to {m :C(m) = CK(m)} where CK is given
as C in (3.5) but with a further requirement that (ζ1, . . . , ζn) ∈ K . Both C and CK

can be obtained through countable pointwise minimization of continuous functions
and hence are measurable, as is {m :C(m) = CK(m)}. Existence of a measurable
selector for F now follows from Kuratowski and Ryll-Nardzewski measurable se-
lection theorem; see, for example, Wagner [51], Theorem 4.1.

APPENDIX B: ON LOCAL MARTINGALES WITH SIMPLE INTEGRANDS

We now report a characterization of martingales defined as stochastic integrals
with simple integrands, which was used in Remark 3.7 and the proof of Theo-
rem 3.5.

Let {Xt, t ∈ [0, T ]} be a (P, {Ft }0≤t≤T )-martingale, 0 = t0 < t1 < · · · < tn = T

a partition of [0, T ] and Hti an Fti -measurable r.v. for all i = 0, . . . , n − 1. Our
interest is in the process

Yt :=
n∑

i=1

Hti−1(Xt∧ti − Xt∧ti−1), t ∈ [0, T ].

Since X is a martingale, it follows that Y is a local martingale. The following result
is an easy adaptation of a similar result for finite discrete-time local martingales
reported in Jacod and Shiryaev [30].

LEMMA B.1. The process Y is a martingale if and only if Y−
T is integrable.

PROOF. The necessary condition is obvious. We now assume Y−
T is integrable

and consider the sequence of stopping times

τk := T ∧ min
{
ti : 0 ≤ i ≤ n, |Hti | ≥ k

}
, k ∈ N.
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Clearly, (τk)k≥1 is a localizing sequence for the local martingale Y , taking values
in the finite set {t0, . . . , tn}.

We first show that Yt is integrable for all t ∈ [0, T ]. By the Jensen inequality,
we have

Y−
t ≤ E

[
Y−

T |Ft

]
on {τk > tn−1}.

This shows that E[Y−
t ] < ∞ by sending k → ∞. We continue estimating

E
[
Y+

t

] = E

[
lim inf
k→∞ Y+

t∧τk

]
≤ lim inf

k→∞ E
[
Y+

t∧τk

]
= lim inf

k→∞ E
[
Yt∧τk

+ Y−
t∧τk

]
= lim inf

k→∞ E
[
Y−

t∧τk

]

≤
n∑

i=0

E
[
Y−

t∧ti

]
< ∞,

where we used Fatou’s lemma, the fact that Y.∧τk
is a martingale starting from

the origin and the crucial property that the localizing sequence takes values in the
finite set {ti}0≤i≤n. Hence E|Yt | < ∞ for all t ∈ [0, T ].

We next show that Y satisfies the martingale property. Clearly, it is sufficient to
prove the martingale property on each interval [ti−1, ti]. For ti−1 ≤ s ≤ t ≤ ti , it
follows from the martingale property of the stopped process Y.∧τk

, together with
the fact that the localizing sequence takes values in the finite set {ti}0≤i≤n, that
E[Yt |Fs] = Ys on {τk > s}. The required result follows immediately by sending
k → ∞. �

APPENDIX C: PROOF OF LEMMA 5.8

We start with the computation of γi(ψi, ·), as defined in (5.26), in terms of φ

and the ψi’s.

LEMMA C.1. For all i < n, we have γi(ψi(m),m) = φ′(m)
m−ψi(m)

1{ψi<ψi+1}.

PROOF. By direct differentiation of (5.25), we see that

∂mvi−1(x,m) = ∂mvi

(
x ∧ ψi(m),m

)
+ (

x − ψi(m)
)+[

∂xxvi

(
ψi(m),m

)
ψ ′

i (m) + ∂xmvi

(
ψi(m),m

)]
.

Using the ODE satisfied by ψi , this provides

∂mvi−1(x,m) = ∂mvi

(
x ∧ ψi(m),m

)
− (x − ψi(m))+

m − ψi(m)
∂mvi

(
x ∧ ψi(m),m

)
(C.1)

= m − x ∨ ψi(m)

m − ψi(m)
∂mvi

(
x ∧ ψi(m),m

)
.
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Since ∂mvi is concave in x, we also compute by differentiating this expression that

∂mxvi−1(x,m) = 1{x<ψi(m)}∂mxvi

(
x ∧ ψi(m),m

)
(C.2)

+ 1{x>ψi(m)}
−1

m − ψi(m)
∂mvi

(
x ∧ ψi(m),m

)
a.e.

From the expression of γi , it follows from (C.1) and (C.2) that

γi−1(x,m) = 1{x<ψi(m)}γi(x,m) = · · · = 1{x<ψi(m)}γn(x,m)

= 1{x<ψi(m)}
φ′(m)

m − x
a.e. �

PROOF OF LEMMA 5.8. Recall that ψ ∈ �λ
n so that both ψi and ψ−1

i are
continuous and increasing. For any integrable function ϕ, the claim∫

ϕ(ξ)λ′′
i (dξ)

=
∫ (

ϕ(ψi(m))

m − ψi(m)
1{ψi(m)<ψi+1(m)}

−
k∑

j=i+1

ϕ(ψj (m))

m − ψj(m)
1{ψi(m)<ψj (m)=ψj (m)}

)
dφ(m)(C.3)

+
∫

ϕ(ξ)
[
∂xxvk

(
ξ,ψ−1

i (ξ)
) − ∂xxvk

(
ξ,

(
ψ−1

i+1 ∨ · · · ∨ ψ−1
k

)
(ξ)

)]
× 1{ψ−1

i (ξ)>(ψ−1
i+1∨···∨ψ−1

k )(ξ)} dξ,

which will be proved below by induction, implies the required result for k = n,
and uses the fact that vn = φ is independent of x.

We start verifying (C.3) for k = i + 1. From the expression of vi in (5.25), we
have

vj = vλ
j+1 on

{
x < ψj+1(m)

}
and

(C.4)
∂xxvj = 0 on

{
x > ψj+1(m)

}
,

where vλ
j = vj − λj .

Step 1. To see that (C.3) holds true with k = i + 1, we first decompose the
integral so as to use the ODE satisfied by ψi ,∫

ϕλ′′
i = −

∫
ϕ(ξ)∂xxv

λ
i

(
ξ,ψ−1

i (ξ)
)
dξ +

∫
ϕ(ξ)∂xxvi

(
ξ,ψ−1

i (ξ)
)
dξ

=
∫

ϕ
(
ψi(m)

)
γi

(
ψi(m),m

)
dm +

∫
ϕ(ξ)∂xxvi

(
ξ,ψ−1

i (ξ)
)
dξ.
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Substitute the expression of γi(ψi, ·) from Lemma C.1, and use (C.4) for the sec-
ond integral,∫

ϕλ′′
i =

∫
ϕ(ψi(m))

m − ψi(m)
1{ψi(m)<ψi+1(m)} dφ(m)

+
∫

ϕ(ξ)∂xxv
λ
i+1

(
ξ,ψ−1

i (ξ)
)
1{ψ−1

i+1(ξ)<ψ−1
i (ξ)} dξ

=
∫

ϕ(ψi(m))

m − ψi(m)
1{ψi(m)<ψi+1(m)} dφ(m)

+
∫

ϕ(ξ)∂xxv
λ
i+1

(
ξ,ψ−1

i+1(ξ)
)
1{ψ−1

i+1(ξ)<ψ−1
i (ξ)} dξ

+
∫

ϕ(ξ)
[
∂xxv

λ
i+1

(
ξ,ψ−1

i (ξ)
) − ∂xxv

λ
i+1

(
ξ,ψ−1

i+1(ξ)
)]

× 1{ψ−1
i+1(ξ)<ψ−1

i (ξ)} dξ.

Then, by using again ODE (5.13) satisfied by ψi+1 together with the expression of
γi+1(ψi+1, ·) from Lemma C.1, we get∫

ϕλ′′
i =

∫
ϕ(ψi(m))

m − ψi(m)
1{ψi(m)<ψi+1(m)} dφ(m)

−
∫

ϕ(ψi+1(m))

m − ψi+1(m)
1{ψi(m)<ψi+1(m)=ψi+1(m)} dφ(m)

+
∫

ϕ(ξ)
[
∂xxv

λ
i+1

(
ξ,ψ−1

i (ξ)
) − ∂xxv

λ
i+1

(
ξ,ψ−1

i+1(ξ)
)]

× 1{ψ−1
i+1(ξ)<ψ−1

i (ξ)} dξ,

which we recognize to be the required equality (C.3) for k = i + 1.
Step 2. We next assume that (C.3) holds for some k < n − 1, and verify it for

k+1. For simplicity, we denote ψ−1
i+1,j := ψ−1

i+1 ∨· · ·∨ψ−1
j . By (C.4), we compute

that

A :=
∫

ϕ(ξ)
[
∂xxvk

(
ξ,ψ−1

i (ξ)
) − ∂xxvk

(
ξ,ψ−1

i+1,k(ξ)
)]

1{ψ−1
i (ξ)>ψ−1

i+1,k(ξ)} dξ

=
∫

ϕ(ξ)1{ψ−1
i (ξ)>ψ−1

i+1,k(ξ)}

× [{
∂xxvk+1

(
ξ,ψ−1

i (ξ)
) − λ′′

k+1(ξ)
}
1{ψ−1

k+1(ξ)<ψ−1
i (ξ)}

− {
∂xxvk+1

(
ξ,ψ−1

i+1,k(ξ)
) − λ′′

k+1(ξ)
}
1{ψ−1

k+1(ξ)<ψ−1
i+1,k(ξ)}

]
dξ

=
∫

ϕ(ξ)1{ψ−1
i (ξ)>ψ−1

i+1,k(ξ)}

× [
1{ψ−1

i+1,k(ξ)<ψ−1
k+1(ξ)<ψ−1

i (ξ)}∂xxv
λ
k+1

(
ξ,ψ−1

i (ξ)
)
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+ 1{ψ−1
k+1(ξ)<ψ−1

i+1,k(ξ)}

× {
∂xxvk+1

(
ξ,ψ−1

i (ξ)
) − ∂xxvk+1

(
ξ,ψ−1

i+1,k(ξ)
)}]

dξ

=
∫

ϕ(ξ)1{ψ−1
i (ξ)>ψ−1

i+1,k(ξ)}

× [
1{ψ−1

i+1,k(ξ)<ψ−1
k+1(ξ)<ψ−1

i (ξ)}∂xxv
λ
k+1

(
ξ,ψ−1

k+1(ξ)
)

+ 1{ψ−1
i+1,k(ξ)<ψ−1

k+1(ξ)<ψ−1
i (ξ)}

× {
∂xxv

λ
k+1

(
ξ,ψ−1

i (ξ)
) − ∂xxv

λ
k+1

(
ξ,ψ−1

k+1(ξ)
)}

+ 1{ψ−1
k+1(ξ)<ψ−1

i+1,k(ξ)}

× {
∂xxvk+1

(
ξ,ψ−1

i (ξ)
) − ∂xxvk+1

(
ξ,ψ−1

i+1,k(ξ)
)}]

dξ.

Putting together the two last terms, we see that

A =
∫

ϕ(ξ)1{ψ−1
i (ξ)>ψ−1

i+1,k(ξ)}

× [
1{ψ−1

i+1,k(ξ)<ψ−1
k+1(ξ)<ψ−1

i (ξ)}∂xxv
λ
k+1

(
ξ,ψ−1

k+1(ξ)
)

+ 1{ψ−1
k+1(ξ)<ψ−1

i (ξ)}

× {
∂xxv

λ
k+1

(
ξ,ψ−1

i (ξ)
) − ∂xxv

λ
k+1

(
ξ,ψ−1

i+1,k+1(ξ)
)}]

dξ.

Finally, using ODE (5.26) satisfied by ψk+1 in the first term, together with the
expression of γk+1(ψk+1, ·) from Lemma C.1, we see that

A = −
∫

ϕ
(
ψk+1(m)

) ϕ(ψk+1(m))

ψk+1(m) − m
1{ψi(m)<ψk+1(m)=ψk+1(m)} dφ(m)

+
∫

ϕ(ξ)
[
∂xxv

λ
k+2

(
ξ,ψ−1

i (ξ)
) − ∂xxv

λ
k+2

(
ξ,ψ−1

i+1,k+2(ξ)
)]

× 1{ψ−1
i (ξ)>ψ−1

i+1,k+1(ξ)} dξ,

which is precisely the required expression in order to justify that (C.3) holds for
k + 1. �

APPENDIX D: PROOFS FOR STATEMENTS IN SECTION 4.2

PROOF OF LEMMA 4.1. Fix m > Z0, and write for notational convenience
ζi = ζi(m), ηi = ηi(m). Let n1 < · · · < nk = n be such that

ζ1 = · · · = ζn1 < ζn1+1 = · · · = ζn2 < · · · < ζnk−1+1 = · · · = ζnk
= ζn = ηn.
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Then by

Ztj ≥ ζj �⇒ Ztl ≥ ζj ∀l ≥ j

for all j ≤ n, which follows directly from the definitions (4.4) and (4.5), we obtain
by identifying the terms as in the proof of Proposition 3.1,

ϒn(Z,m, ζ ) =
k∑

j=1

((Ztnj
− ζi)

+

m − ζnj

+ 1{Z∗
tnj−1

<m≤Z∗
tnj

}
m − Ztnj

m − ζnj

)

−
k−1∑
j=1

((Ztnj
− ζnj+1)

+

m − ζnj+1

+ 1{m≤Z∗
tnj

,ζnj+1≤Ztnj
}
Ztnj+1

− Ztnj

m − ζnj+1

)
.

Therefore, it is enough to prove the claim for the case

ζ1 = η1 < ζ2 = η2 < · · · < ζn = ηn.

By the same induction as in the proof of Proposition 3.1 it remains to prove that
(Z,Z∗) achieves equality in (4.1), (4.2) and (4.3). As for equality in (4.1) we note
that

Z∗
t1

≥ m �⇒ Zt1 ≥ ζ1 and Z∗
t1

< m �⇒ Zt1 ≤ ζ1.

Equality in (4.2) holds by

Z∗
tn−1

≥ m, Ztn−1 ≥ ζn �⇒ Ztn ≥ ζn,

Z∗
tn−1

≥ m, Ztn−1 < ζn �⇒ Ztn < ζn,

which one verifies using the definition of the iterated Azéma–Yor-type embedding.
Similarly, equality in (4.3) holds by

Z∗
tn−1

< m, Z∗
tn

≥ m �⇒ Ztn ≥ ζn,

Z∗
tn−1

< m, Z∗
tn

< m �⇒ Ztn ≤ ζn.

The claim follows. �

PROOF OF EQUATION (4.6). Finally, we argue that (4.6) holds under Assump-
tion � of Obłój and Spoida [41]. Let ζ̃i (m) := minj≥i ηj (m).

First fix m ∈ (X0, r
μn) such that ζ̃n(m) < m. Then Lemma 4.1 and Proposi-

tion 3.2 yield

P
[
Z∗

tn
≥ m

] = E
[
ϒn(Z,m, ζ̃ )

] ≤ C(m).

Next we show that under Assumption � this inequality is strict whenever ζ ∗(m) �=
ζ̃ (m). This will be a contradiction to the optimality of ζ ∗ since, by invoking the
embedding property Zti ∼ μi , we must have E[ϒn(Z,m, ζ̃ )] ≥ C(m).
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Case A. ζ̃j (m) > ζ ∗
j (m). Assume initially that m ∈ (X0, r

μj ]. Then on the set{
Ztj > ζ ∗

j (m),Z∗
tj

< m
} ⊇ {

Z∗
tj

∈OA,Z∗
tn

∈ OA

} =: ZA,

where OA ⊆ [X0,m) is a (suitable) open interval, we obtain

ϒn

(
Z,m, ζ ∗) ≥ ϒj

(
Z,m, ζ ∗) (4.3)

> 1{m≤Z∗
tj

} = 1{m≤Z∗
tn

}
Lemma 4.1= ϒn(Z,m, ζ̃ ).

Note that E[ϒn(Z,m, ζ ∗)] = C(m). It follows that if P[ZA] > 0, then
E[ϒn(Z,m, ζ̃ )] < C(m) as required. However, this is clear by the assumption
that m ∈ (X0, r

μj ] and elementary properties of Brownian motion.

If m > rμj , then by Lemma 4.1 we get E[ϒj(Z,m, ζ̃ )] = 0. If
∑j

i=1(
ci(ζ

∗
i )

m−ζ ∗
i

−
ci (ζ

∗
i+1)

m−ζ ∗
i+1

1{i<n}) > 0, then E[ϒj(Z,m, ζ ∗)] > 0 and hence

E
[
1{Ztn<m}ϒn

(
Z,m, ζ ∗)] ≥ E

[
1{Ztn<m}ϒj

(
Z,m, ζ ∗)]

> 0

= E
[
1{Ztn<m}ϒn(Z,m, ζ̃ )

]
.

If
∑j

i=1(
ci(ζ

∗
i )

m−ζ ∗
i

− ci(ζ
∗
i+1)

m−ζ ∗
i+1

1{i<n}) = 0, then a contradiction to Assumption � is ob-

tained if ζ ∗
j (m) < ζ̃j (m).

Case B. ζ̃j (m) < ζ ∗
j (m). We can, without loss of generality, take m ∈ (X0, r

μj ].
Indeed, if this is not the case, then we set j ′ ≥ j such that ζ̃j (m) = ζ̃j+1(m) =
· · · = ζ̃j ′(m) = ηj ′(m) < ζ̃j ′+1(m). For this j ′ we then have ζ̃j ′(m) < ζ ∗

j ′(m) and
m ∈ (X0, r

μj ′ ] as ηj ′(m) < m.
Then on the set{

Ztj < ζ ∗
j (m),Z∗

tj
≥ m

} ⊇ {
Z∗

tj
∈OB

} =: ZB,

where OB ⊆ [m,∞) is a (suitable) open interval, we obtain

ϒn

(
Z,m, ζ ∗) ≥ ϒj

(
Z,m, ζ ∗) (4.3)

> 1 = 1{m≤Z∗
tj

} = 1{m≤Z∗
tn

}
Lemma 4.1= ϒn(Z,m, ζ̃ ),

which yields a contradiction in a similar fashion to case A because P[ZB] > 0.
Now consider ζ̃n(m) = m. We assume for simplicity of the argument that

ζ̃n−1(m) < ζ̃n(m). (By, e.g., use of Lemma A.1 of Obłój and Spoida [41], the
general case can be reduced to this case.) Then optimality of ζ ∗

n (m) yields

cn(z) − cn−1(z)

m − z

∣∣∣∣
z=ζ ∗

n (m)

≤ cn(z) − cn−1(z)

m − z

∣∣∣∣
z=ζ̃n(m)=m

.

From this a direct contradiction to Assumption � is obtained if ζ ∗
n (m) �= ζ̃n(m).

Hence ζ ∗
n (m) = ζ̃n(m). Then ζ ∗

1 , . . . , ζ ∗
n−1 are also optimal for the n − 1 marginal

problem (3.5). Further, the n − 1 marginal Azéma–Yor embedding coincides with
the n marginal iterated Azéma–Yor embedding until time tn−1. Hence, by induc-
tion, ζ ∗

i (m) = ζ̃i (m) for all i < n. �
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Acknowledgments. The title is borrowed from Hobson [29] and Brown, Hob-
son and Rogers [11].
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