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WEAK APPROXIMATION OF SECOND-ORDER BSDES

BY DYLAN POSSAMAT AND XIAOLU TAN
University of Paris-Dauphine

We study the weak approximation of the second-order backward SDEs
(2BSDEs), when the continuous driving martingales are approximated by dis-
crete time martingales. We establish a convergence result for a class of 2BS-
DEs, using both robustness properties of BSDEs, as proved in Briand, Delyon
and Mémin [Stochastic Process. Appl. 97 (2002) 229-253], and tightness of
solutions to discrete time BSDEs. In particular, when the approximating mar-
tingales are given by some particular controlled Markov chains, we obtain
several concrete numerical schemes for 2BSDEs, which we illustrate on spe-
cific examples.

1. Introduction. Weak approximation is an important technique in stochastic
analysis. A famous and classical result in this spirit is Donsker’s theorem which
stipulates the following. Let ({x)x>1 be a sequence of i.i.d. centered random vari-
ables such that Var(¢1) = 1, and define
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then the process S" converges weakly to a Brownian motion W. In particular,
suppose that f:R — R is a bounded continuous function, we then have the fol-
lowing convergence:

E[f(S7)] = E[f(Wn)]

Similar result have been obtained for diffusion processes defined as solutions to
stochastic differential equations (SDEs in the sequel); see, for example, Jacod and
Shiryaev [15]. We also remind the reader that in this Markovian setting, the value
E[ f(Wr)] can be characterized using the heat equation from the Feynmann—Kac
formula.

Backward stochastic differential equations (BSDEs in the sequel), which were
introduced by Pardoux and Peng [20], as well as the more recent notion of G-
expectation of Peng [21], are particular cases of so-called nonlinear expectations,
and their weak approximation properties have attracted a lot of attention in the
recent years. Hence, in Briand, Delyon and Mémin [6], the authors studied the
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convergence of the solutions of the BSDE when the driving Brownian motion is
approximated by a sequence of martingales. In particular, when the Brownian mo-
tion is approximated by some random walks, they obtained a weak convergence
result similar to the above Donsker’s theorem. More recently, Dolinsky, Nutz and
Soner [9] studied the weak approximation of G-expectation. Since G-expectation
can be considered as a sublinear expectation on the canonical space of continu-
ous trajectories, by the analogue of Donsker’s theorem, they approximated it by a
sequence of sublinear expectations on the canonical space of discrete time paths.
Extending BSDE and G -expectation, the second-order backward SDEs (2BSDEs)
introduced by Soner, Touzi and Zhang [23], can be represented as the supremum of
a family of nonlinear expectations on the canonical space of continuous trajecto-
ries. In particular, it generalizes the Feynmann—Kac formula to the fully nonlinear
case. We are then motivated to extend the weak approximation property to 2BS-
DEs.

We notice that the weak approximation property should be an important prop-
erty of the continuous time dynamic models, when it is the continuous limit of
discrete time models. For example, in finance, it is convenient to use a Brownian
motion to model the evolution of a risky asset, despite the fact that such a price
only exists on discrete time instants. Therefore, it is important to confirm that as
we take the limit of the discrete time model, it converges to the continuous time
model.

Finally, weak approximation is also an important technique in numerical analy-
sis; see, for example, Kushner and Dupuis [17] in the context of stochastic control
problems, and Dolinsky [8] for pricing the financial “game” options. The main
idea is to interpret the numerical scheme as a controlled Markov chain system,
which converges weakly to the continuous time system. We notice also that an-
other point of view is from the PDEs, which characterizes the solution of these
dynamic problems in the Markovian case. A powerful numerical analysis method
in this context is the monotone convergence theorem of Barles and Souganidis [1].
Comparing to the PDE numerical methods, the weak approximation method per-
mits usually to relax regularity and integrability conditions, and also permits to
study the non-Markovian problems as shown in Tan [26].

The main contribution of the paper is to prove a weak approximation property
for a class of 2BSDEs, which can be considered as an extension of Donsker’s
theorem in this nonlinear context. Further, using some controlled Markov chains
as approximating martingales, we obtain some numerical schemes for a class of
2BSDE:s. In particular, these numerical schemes are coherent with the classical
schemes proposed for the nonlinear PDEs in the Markovian cases. We also notice
that these related numerical schemes have been largely tested in the previous liter-
ature; see, for example, Fahim, Touzi and Warin [12], Tan [25], Guo, Zhang and
Zhuo [13], etc.

The rest of the paper is organized as follows. In Section 2, we introduce the
class of 2BSDEs that is studied in the paper, and give first an equivalence result



WEAK APPROXIMATION OF 2BSDES 2537

using two different classes of driving martingales. By considering a sequence of
discrete time equations, we give a general weak approximation result, that is, the
discrete time solution converges to the solution of a class of 2BSDE. Then in Sec-
tion 3, by considering some particular controlled Markov chains, we can interpret
the discrete time equations as numerical schemes, and the weak approximation re-
sult justifies the convergence of the numerical schemes. Section 3.3 is devoted to
some numerical examples, highlighting the convergence of the proposed numer-
ical schemes. In Section 4.1, we complete the proof of the equivalence theorem,
and finally in Section 4.2, we report the proof of the weak approximation theorem.
Throughout the paper, we use the following notation. For every (x, y) € R? x
R¢, we denote by x - y the usual scalar product of x and y, and for any (x, y) €
R¥*4 x R4*4 we denote by x :y := Tr(xy). Similarly, x” will denote the usual
transposition and |x| the Euclidean norm in the corresponding space.

2. The 2BSDE and its weak approximation. In this section, we first intro-
duce the class of second-order BSDEs that we next propose to approximate by the
supremum of a family of BSDEs driven by approximating discrete time martin-
gales. A convergence result is given under sufficient conditions, while the proof is
postponed to other sections.

2.1. A class of 2BSDEs. Let Q :={w € C([0, T], R9):wp = 0} denote the
canonical space of continuous paths on [0, 7] which start at 0, B be the canon-
ical process, I = (F;)o<:<r the canonical filtration and Py the Wiener measure on
Q under which B is a standard Brownian motion. Denote by F* = (E+)0§t§T the
right-continuous filtration defined by F; := ",., F; forall t < T and F; = Fr.

For every probability measure P on (€2, Fr), we denote by F the P-augmented

filtration of I and IF_JFP the P-augmented filtration of F*. Moreover, for any x € 2,
and for any t € [0, T'], we note ||x||; := Supg<,<, |*s|. A probability measure I on
Q such that B is a P-local martingale will be called a local martingale measure.
We recall that by results of Bichteler [3] (see also Karandikar [16] for a simpli-
fied exposition) there are two [F-progressive processes on 2 given by
! 1
(B), :=B,Bl — 2[ BydB! and @ :=limsup—((B); — (B)/¢),
0 el0 €
such that (B) coincides with the P-quadratic variation of B, P-a.s., for all local
martingale measures P.
We consider next a set A such that

2.1 AC S:{ is compact, convex and a > ggly, Va € A,

where S; is the set positive, symmetric d X d matrices and where g9 > 0 is a fixed
constant. We denote by Py the collection of all local martingale measures P such
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that a € A, dP x dt-a.e., and by Ps C Pw the subset consisting of all probability
measures

t
P*:=Pyo (XO‘)_1 where X7 := /0 o,/*dBy, Po-a.s.

for some [F-progressively measurable process « taking values in A.

Let now & : 2 — R be arandom variable, g : [0, T] x 2 x R x RY x S; — Rdxd
be a function which will play the role of our generator. Then for every P € Py, we
consider the following generalized BSDE under P:

T
y}"=s(B.>—f ¢(s, B, VP, 27.3,) :d(B)s
2.2) !

T
_f 2P dB, — NE + N,
t

.. . —P .
whose solution is a triple of F+ -progressive processes, denoted by (M*, 2, NT),

such that N'F is a IF_+P-martingale orthogonal to B and (2.2) holds true P-a.s. We
shall assume sufficient conditions (see Assumption 2.2 below) to guarantee the ex-
istence and uniqueness of the solution to (2.2) under every P € Py . In particular,
whenever P € Pg, (2.2) turns out to be a classical BSDE whose solution satisfies

NP =0and VP, 2P are ﬁp—progressive. This is due to the fact that by Lemma 8.2
in [22], every probability measures in Pg satisfies the predictable martingale rep-
resentation property and the Blumenthal 0—1 law. This also implies in this case that
yg” 1s a deterministic constant.

The main purpose of the paper is to study the weak approximation of the fol-
lowing optimization problem:

(2.3) Yo := sup yg".
PePs

REMARK 2.1. The above problem Y in (2.3) is related to the solution of the
following 2BSDE, in the sense that Y is the initial value of the ¥ component of
its solution

T
Yt=s<B.>—/ (g(s. B., Yy, Zs, @) :@s) ds
t

T
—/ Zy-dBs+ Kr — K,  Ps-qs.,
t

which has been introduced by Soner, Touzi and Zhang [23]. We also refer to their
Section 3.3 for more details, and simply emphasize here that given the bounded-
ness assumptions we make below, it is not necessary in our setting to work on
the subset P}, of Ps introduced in [23]. We would also like to comment on the
fact that in [23], the solution (Y, Z) is F*-progressive, while we defined the so-

lution to the BSDE (2.2) to be }F_+P—progressive. However, thanks to Lemma 2.4
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=P . LS .
of [22], for any P € Py, any F+ -progressive process X has a P-version X which
is F*-progressive, so that this is not a real difference.

We shall impose the following assumptions on the terminal function & and gen-
erator function g throughout the paper. For ease of notation, and since this function
will be the main focus of our paper, we define the function f:[0, 7] x 2 x R x
RI xS —> R

f@.x,y,z,u) =g, X,y,z,u):u.

ASSUMPTION 2.2. (i) £:Q2 — R is a bounded Lipschitz continuous func-
tion.

(i) The process t —> f(t, X., Y, Z;, vy) is progressively measurable given
progressive processes (X, Y, Z, v), and is uniformly continuous with modulus p
in the sense that for every s <t and x, y, z, u,

|f(t9XS/\'a y» Z, M) - f(svxs/\~9 yv Z, u)‘ S /O(t —S).
(iii) f is uniformly Lipschitz in (X, y,z), that is, for all (¢,x1, X2, y1, 2,
21,22, U),

|f(t7X1s Y1, 21, l/l) - f(taxz’ y2,22, M)| = :U“(“XI _X2||l‘ + |}’1 - )72| + |Z1 _Z2|)’
for some constant p > 0.

(iv) The map u — f(t,X, y, z, u) is convex and uniformly continuous for ev-
ery (1,X,y,2) €[0, T] x Q xR x R4,

(v) We have the following integrability condition, for some constant C > 0:

sup | f(2,%,0,0,u)| <C.
(t,x,u)e[0, TIx2x A

Let us give an existence and equivalence result on the above 2BSDE, whose
proof is postponed to Section 4.1.

THEOREM 2.3.  Suppose that Assumption 2.2 holds true. Then for every P €
Pw, the BSDE (2.2) has a unique solution ¥, 28 N, Moreover, we have

(2.4) Yo:= sup Vi = sup EF[)5].
PePs PePw

REMARK 2.4. Suppose that §(x) = §o(x7) and f(¢,X,y,z,u) = fo(t, X, y,
z, u) for some deterministic functions éO:Rd —> Rand fp:[0, T] x R? x R x
R? x A —> R. In this Markovian case, the value function can be given as the
viscosity solution v(¢, x) of the nonlinear equation

1

(2.5 —0sv — sup(—a D%y — fo(t,x,v, Dv, a)) =0,
acA 2

with terminal condition v(T, x) = &y(x). We refer the reader to the paper by Soner,

Touzi and Zhang [23] for more information.
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2.2. Weak approximation of 2BSDEs. Under every probability measure P €
Ps, the canonical process B is a continuous martingale, which drives the
BSDE (2.2). When this martingale is approximated “weakly” by a sequence of
martingales, it follows by the robustness property for BSDEs proved by Briand,
Delyon and Mémin [6] that the corresponding solutions of the BSDEs driven by
the approximating martingales converge to J* (see their Theorem 12). In the con-
text of 2BSDEs (2.3), the solution is given as the supremum of the family of
solutions to BSDEs driven by the family of martingales (B|p)pepg. Therefore, it is
natural, in order to obtain weak approximation properties, to consider a sequence
of families of BSDEs driven by approximating martingales. In particular, we shall
consider a family of discrete time martingales, motivated by its application in the
numerical approximation described in Section 3.

For every n > 1, we denote by A, = (#)o<k<x a discretization of [0, T'], such
that 0 =15 <t <--- <ty =T.Let|Ay|:=sup; <, —t;{_,), and we suppose
that |A,| — 0 as n —> oo. For ease of presentation, we shall simplify the no-
tation of the time step size At :=1;) —t;/_, into At when there is no ambiguity.
Similarly, we suppress the dependence in n of ¢ and write instead 7.

For every n > 1, let (", 7", P"*) be a probability space containing n indepen-
dent random variables (U)1<k<,. Moreover, we consider a family of functions
(H})1<k<n,n>1 such that every H;' : A x [0, 1] — R4 is continuous in @ and for
some § > 0, we have for any a

E[H] (a,U)] =0,  Var(H}(a,Uy)) = aAt,
(2.6)
E[|H} (a, Up) "] < CAL+2,

where it is understood that the expectation is taken under P".

Define the filtration F”" := (]:z’z)lfksn’ with ]:t’z =0 (Uy,...,U;) and denote
by E, the collection of all F"-predictable A-valued processes e = (ay,, ..., ay ).
Then for every e € E,;, M¢ is defined by

(2.7) M; =" H](a; .U

i<k

REMARK 2.5. An easy example is when Ui is a Gaussian random vector
(d-dimension) with distribution N (0, ;) and H;'(a, u) := au/At. More examples
which induce several different numerical schemes will be given later in Section 3.

By abuse of notation, we define a continuous time filtration F" = (F}")o<;<7,
with F}' := ]—“t’l’(, Vt € [k, tx+1) and a continuous time martingales M := Mfk, for
all t € [t, tx+1) on (", F", P”) We next consider the completed ﬁltratlon un-
der P", denoted by G" := e . Clearly, G" is right-continuous and complete un-

der P", and M° is a right-continuous, piecewise constant in time, G"-martingale
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for every e € E,,. We notice that the predictable quadratic variation of M¢ is given
by
(Me)tk = Z A(Me>tk = ZaleAtl
i<k i<k
For every n > 1, with the time discretization A,, we introduce the truncated
generator f,(t,X,y,z,a):=g,(t,X,y,z,a):a where
gn(t,X,y,z,a) =g, X, y,2,a) whenever ¢ € [, fx+1)-

Then for every e € E,, and n > 1, we consider the following BSDE:

— T —_—
y;=g(M€)_/ guls. M€, V° Z¢,a) - d(M),
(2.8) . !
—f 26 dAMS — N& + N°,
t

whose solution is a triple of G"-progressive processes (¢, Z¢, N¢) such that V¢
is a G"-martingale orthogonal to M¢, and where M¢ denotes the continuous in-
terpolation of M€ on the interval [0, T]. We then have the following wellposed-
ness result for the BSDE (2.8), which is a direct consequence of Proposition A.1
reported in Section 4.1 and the fact that by taking conditional expectation with re-
spect to G", the component the solution to (2.8) is given explicitly by the following
scheme:

Y, =£ (7).
Vi =BV ] - o (e M2 DG 25 af) A,

-1
(2.9) z¢ _ " [Aygcﬂ (al‘ek) AMI?—H i|
179 Tk At ’
A/\/Iiﬂ = ytiﬂ - E’;k [ylek+1] - Zlek ’ AMliH’

where Ef [-] represents the conditional expectation w.r.t. ;.

LEMMA 2.6. Suppose that Assumption 2.2 holds true. Then for every n > 1
and e € E,, there is a unique solution ()¢, Z¢, N¢) to the BSDE (2.8) such that

" t

27| sup (911 + [ 1) 25 as + (07) | <
0<t<T 0

for some constant C independent of e and n. In particular, ) is a deterministic

constant.

PROOF. The existence and uniqueness is immediate by (2.9). Moreover,
Proposition A.1 gives us the required estimate for n > ng for some ng. Since only
a finite number of values for n remains, the result is immediate by the fact that the
solution given in (2.9) has the required integrability. [
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For every n > 1, denote now
(2.10) Yy == sup ).

eckE,

The next assumption is a monotonicity condition for the discretized BSDEs.

ASSUMPTION 2.7. Forevery e € E, and n > 1, the backward scheme in (2.9)
is monotone, that is, let (Y1, Z1), (M2, Z2) be two solutions of (2.9), then

1 2 1 2
yfk+1§ylk+1 - ylkfytk Vk=o,...,f’l—1.
We now state our main result.

THEOREM 2.8. (i) Suppose that Assumption 2.2 holds true. Then
liminf Yy > Yp.
n—o0

(i1) Suppose in addition that Assumption 2.7 holds and f does not depend on z.
Then

lim Yg =Y.
n—oo

REMARK 2.9. We are not able to show (ii) when the generator depends on z.
This is deeply linked to the fact that there are considerable difficulties to obtain any
convergence results for the z part of the solution. Moreover, since we are working
under many measures, the canonical process is no longer always a Brownian mo-
tion, which prevents us from recovering the strong regularity results of [27], for
instance. We leave this open problem for future research.

In the case where f = 0, the solution of the 2BSDE is the so called G-
expectation of Peng. Then, in particular, the above result generalizes the weak
convergence result for G-expectation in Dolinsky, Nutz and Soner [9]. We shall
report its proof later in Section 4.2.

REMARK 2.10. Let (V!, 21, (32, 2%) be two solutions of (2.9), we have
then clearly

(1= Ly yAD(Vy — Vi)
=Ep [V, — Vi, )1+ Loz ()" AM; )],

k1

(2.11)

where Ly, y (resp., Ly ;) is a R-valued (resp., R?-valued) and Ji,-measurable ran-
dom variable bounded by the Lipschitz constant L 7,y (resp., L,;). Then for At
small enough, the monotonicity condition in Assumption 2.7 holds whenever

|L s H{ (a,, U)| < lay,| V1 <k<n.

In particular, when f is independent of z, Assumption 2.7 always holds true for
At small enough.
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3. Numerical schemes for 2BSDEs. As discussed in Remark 2.4, the so-
Iution of the Markovian 2BSDE (2.3) can be given as viscosity solution of a
parabolic fully nonlinear PDE, for which a comparison principle holds. Several
monotone numerical schemes have been proposed for PDEs in or closed to this
form, for example, the generalized finite difference scheme of Bonnans, Otten-
waelter and Zidani [5], the semi-Lagrangian scheme of Debrabant and Jakob-
sen [7], and the probabilistic scheme of Fahim, Touzi and Warin [12], Guo, Zhang
and Zhuo [13], where the convergence is ensured by the monotone convergence
theorem of Barles and Souganidis [1].

Similar to Tan [26] in the context of non-Markovian control problems, we can
interpret these schemes as a system of controlled Markov chains. Using these con-
trolled Markov chains as the families of driving martingale (M¢).cg, in (2.8), The-
orem 2.8 also justifies the convergence of the corresponding numerical schemes.
Moreover, it permits to extend these numerical schemes to the non-Markovian
case. The aim of this section is to present a general abstract numerical scheme for
2BSDEs, which we then specialize in two particular examples. In particular, these
schemes are coherent with the numerical methods proposed and tested in the pre-
vious literature, for which we can refer to [12, 13, 25], etc. We nonetheless start
by studying the solution to the discrete-time BSDE:s.

3.1. An explicit scheme. We notice that for every fixed e € E, and n > 1, the
backward iteration in (2.9) is in fact the so called implicit scheme for BSDEs. In
practice, we consider also the following explicit scheme:

Ve =&(M°),

(3.1) ygc = Eﬁ [ygcﬂ] - f(tk’ M'e’ E’flk [ygcﬂ]’ Zfek+1’ afk)At,
—1
ge — " A‘y[iﬂ (afi) A1”/?4—1
e Tl At '
Denote
(3.2) Yo = sup J§.

eckE,

The following lemma shows that the implicit and explicit schemes only differ
by an amount proportional to A,,.

LEMMA 3.1. There is a constant C independent of n > 1 such that
|YS = Y| < ClAl.
PROOF. It is enough to prove that there is some constant C > 0 independent

of n > 1 and e € E,, such that

Ve = VE| < ClAl.
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First, by (2.9) and (3.1) and the Lipschitz property of the generator f, it is clear
that for every 0 < k <n — 1, there are bounded g;; -random variables «y and S
such that

(yfi _ytek) :E?k[yfiﬂ _ylekﬂ] +ak(y/f _Egc[y;c+l]) + B - (Zfekﬂ _chﬂ)
=1+ ADEL [V, = Vo, )1+ A +axAD) ™ B - AMiy1)]
+ f(te. MO VS 25 al) AL,

Then using the Young inequality (a + b < (1+ )/h)a2 + 1+ ﬁ)b2 and the
Cauchy—Schwarz inequality, we get for some constant C independent of e and k,
Se 2 Se  \2
Vi =Yp) =0 +yAn +CANE [V, — Vi,,) ]
+Cf (e, M2 VYL 25 af) AP

Taking expectations en each side and using the Lipschitz property of f, we get
Se 2 Se (2
Eo[(V = Vi) 1= Eg[d +CAn(Vy,, = Vi,,)]
+ CAPER[| M + [ + |24
Finally, it is enough to conclude using the Gronwall lemma together with the esti-

mates given by Lemma 2.6. [J

For every n > 1, we can reformulate the problem (2.10) for Y and (3.2) for 175’
as a numerical scheme defined on

A= U {tk} x Rdx(k+1)

0<k<n

Forevery n > 1, (fx,X) € A" and a € A, we define M %2 ¢ RI**+2) py

1,X, .
MF* =x;, for every i <k,
Ie.X,a ,__ prlk.X,a n
M = M 4 B (@, Usp).

We then define u” : A, — R and #" : A;, —> R by the following backward iter-
ations. The terminal conditions are given by

W (1, X) 1= 0" (1, X) = £(R) Vx € R4X (D)
and the backward iteration for u" and #" are given by, for all x € R¢**+1,

u" (tx, X) = sup u, (t, X),
acA

(33) ”g (t/ﬂ X) = E[M (tk+19 Mlk,X,a)] - f(tk’ ﬁa MZ (tka X)v Dug(tk’ X)a Cl)At,
u(feq Mtk’x’“)a_lAM,i’g’r’i’“}
At ’

Dul (tx, X) 1= E|:
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and
" (1, X) = sup ity (1, X) — f (tk, X, iy (1, X), Dig (1, X), a) At),
acA
(34) IZZ (lk, X) = E[ﬂ (tk—l-] , Mtk,x,u)]’
u(t , Mk-X.a a—lAMtk,X,a
D!} (tx, X) ::E[ (Ut A)t k+1 }

We have the following dynamic programming result.

PROPOSITION 3.2. Let Assumption 2.7 hold true, then

i"(0,0) =Y and u"(0,0)=Y}.

PROOF. It is in fact a standard result from the dynamic programming princi-
ple; see, for example, Bertsekas and Shreve [2] for a detailed presentation on this
subject. We also notice that the arguments are almost the same in Theorem 3.4 of
Tan [26] for a similar problem. [

3.2. Concrete numerical schemes of 2BSDE. By constructing the driving mar-
tingales (M°).ck, as afamily of controlled Markov chain, we can also compute the
solution of (2.10) using a backward iteration, under some monotonicity conditions.
In particular, it can be considered as a numerical scheme for the 2BSDE (2.3). For
particular choices of functions (H}')i<k<n,n>1, We may obtain some numerical
schemes, including a finite difference scheme and a probabilistic scheme.

3.2.1. Finite difference scheme. Let us stay in the one-dimensional case d = 1
for notational simplicity, where Ax € R is the parameter of the space discretiza-
tion. Denote p, := aAt/Ax?, suppose that p, < 1/2 for all a € A. Clearly, for
every n > 1 and space discretization Ax, we can construct a function H" : A x
[0, 1] — {—Ax,0, Ax} such that, for any uniformly distributed random vari-
able U

P'[H"(a,U) = Ax]|=P"[H"(a,U) = —Ax] = pq,

and P"[H"(a,U) = 0] = 1 — 2p,. Let H}' := H", and denote x** := (xo, ...,
Xk, Xp £ Ax) and xk0 — (x0, ..., Xk, x) forevery x = (xq, ..., xx). Then it follows
by a direct computation that the numerical iteration in (3.4) turns to be

1
(.5) %) = i1, x0) + Sup{iaDzﬁ — i, D, @) 1. x)},
acA

where il (t, X) = ii (tk41, X0) + Sa At D%ii(1r, x), with
i (g1, XY — 20 (g1, X) + @i (tg1, X5 7)
Ax?

D%ii(t, X) =
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and

~ k4 o k,—

Uiy, X07) —u(tpg1,X°7)
2Ax '

Di(t, x) =

REMARK 3.3. (i) For the above choice of (H}')1<x<n, Assumption 2.7 holds
true whenever Ax < Ly .

(ii) To ensure that p, := aAt/Ax? < 1/2, we should choose Ax ~ /At.
Moreover, the family of functions (H;')o<k<, associated with the finite difference
scheme satisfies condition (2.6).

(iii) In the high dimensional case d > 1, the construction of finite difference
scheme will be harder in general. We refer to Kushner and Dupuis [17] in the case
where all @ € A are diagonal dominant, and also to Bonnans, Ottenwaelter and
Zidani [5] in general cases.

3.2.2. Probabilistic scheme. For parabolic nonlinear PDEs including (2.5),
Fahim, Touzi and Warin [12] proposed a probabilistic scheme, which was reinter-
preted and generalized in a non-Markovian stochastic control context in Tan [26].
We can easily adapt this probabilistic scheme in our context.

Letag e S'dF be a fixed constant, denote oy = aé/ 2 Suppose that for all a € A,
a>ay and 1-— %(a —ao)ao_1 > 0.

For every n > 1, denote p, : A x R — R by

1 | _
3.6) onla, x) = G AP [og 112 exp(—EAx leaO 1)c)r;,,(a,x),

with
m(a,x):=(1—1a-ay' +1At7"a -ao_lxxT(aoT)_l).

It is easy to verify that x — p, (a, x) is a probability density function for every
a € A. Then following Tan [26], we can construct H"(a, x) which is continuous
in a and such that H"(a, U) is a random variable of density function p,(a, x)
whenever U ~ U[0, 1].

To make Assumption 2.7 hold true, we suppose in addition that f is independent
of z (see Remark 2.10). Define then the family of functions (H}')1<k<, by H]' =
H". We can then rewrite i, in (3.4) by the following: let AW ~ N (0, Atly),

ity (t, X) = B[ (tk+1, (%, xx + H" (a, U)))]
= E[i(tk11, (X, Xk +agAW))ny(a, agAW)]
= E[ﬁ(tk+1 , (X, xp + aoAW))]

1 - _
+ EAM -E[u(lk+1, (x, x —|—a0AW))(00T) !

AW AW — Aty 1]
X (of .
A2 0
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Therefore, the explicit numerical scheme (3.4) can be rewritten in the follow-
ing way: in a probability space (€0, FO,PY), let XV := (aoWi, ... a()W, ) €
RI*(+D) where W is a standard d-dimensional Brownian motion. Let X denote
continuous time process obtained by linear interpolation of the discrete time pro-
cess XY The terminal condition is given by Y,n = S(X ), and the backward itera-
tion:

(3.7) Yy =By [V, 1+ AtG(te, X0, By [Vit11, Ty,),

with

AWy 1AW — Atly
1 + k+1 -1
- Etk |:Yfk+1 (UO ) A2 % ]

and

1 1
G, x,y,y):= sup(f(t,x, y+za- yAt,a) + ~a- y).
aclU 2 2
Notice that the above scheme is closely related to the scheme proposed by Fahim,
Touzi and Warin [12] for nonlinear PDEs.

3.3. Numerical examples. We provide here some numerical tests on the
schemes proposed in Section 3.2. Let d = 1 for simplicity, we shall consider two
different equations with the following generators fi and f3:

(3.8) fit,x,y,z,a) = in[f<{rya} for some compact set K C R,
re

(39 folt,x,y.z,a) = 5((Vaz +b/Ja)”)’ —zb— 1b?/a,

and the terminal condition is given by

T + T +
(3.10) g(x):=K1+(f0 x,dt—Kl) —(fo x,dt—Kz) ,

for some constant K| < K>.
We would like to point out to the reader that the first example of second-order
BSDE with generator (3.8) is motivated by a differential game type of problem

sup inf E[exp(/T Fedg ds)S(X,a)},

acATEK

while the second example with generator (3.9) is taken from the robust utility max-
imization problem studied by Matoussi, Possamai and Zhou [19] (see the generator
in their Theorem 4.1, when the set A, is chosen to be [0, +00)). We also insist on
the fact that the generator f> depends on the z variable and is of quadratic growth,
so that our general convergence result does not apply in this setting. Nonetheless,
as shown by the numerical results below, our numerical schemes still converge in



2548 D. POSSAMATI AND X. TAN

this case, leading us to the natural conjecture that convergence also holds in this
more general setting.

Moreover, with the above terminal condition (3.10), by adding the variable
M. := [yX,; dt in the diffusion system, we can also characterize the solution of the
2BSDE by the following degenerate PDE on v: (¢, , x,m) € [0, T] x R> — R:

(3.11) d + x v + sup<la8§xv + f(t,x, v, v, a)> =0,
acA 2
with terminal condition v(T, x,m) :== K| + (m — K1)* — (m — K»>) ™.

For each of the two 2BSDEs, we implemented the finite difference scheme given
by (3.5) and the probabilistic scheme (3.7). As a comparison, we also implemented
PDE (3.11) with a splitting finite difference scheme, that is to split it into two
PDEs:

1
0 +xd,v=0 and 0;+ sup(—aé)2

2 xxv"i‘f(t»X,U,axv,a)):O,
acA

and then to solve the two PDEs sequentially with classical finite-difference
scheme. Since each equation is one-dimensional, the associated classical finite-
difference scheme is bound to be a good benchmark for our schemes. We imple-
mented the numerical schemes on a computer with 2.4 GHz CPU and 4G memory.

In the following two low-dimensional examples, we choose Xg = 0.2, K =
[—1,1], K1 =—0.2, K, =0.2 and A =[0.04, 0.09], corresponding to a volatility
uncertainty in [0.2, 0.3]. Using difference time-discretization with time step At,
the numerical solutions of schemes (3.5) and (3.7) are quite stable and closed to
the PDE numerical results w.r.t. the relative error. In Figures 1 and 2 below, we
give the numerical solutions with different time discretization. The line PDE-FD
denotes the splitting finite-difference method on the PDE (3.11), 2BSDE-FD de-
notes the finite-difference scheme (3.5) on the 2BSDE, and 2BSDE-Proba refers to
the probabilistic scheme (3.7) on the 2BSDE. For the probabilistic scheme, we use
a simulation-regression to estimate the conditional expectation arising in the back-
ward iteration (3.7). When At = 0.02, a single computation takes 1.72 seconds for
PDE-FD, 1.92 seconds for 2BSDE-FD, and 103.2 seconds for the 2BSDE-Proba
method (using 2 x 10° simulations in the simulation-regression method). In this
two-dimensional case, it is not surprising that the finite-difference scheme is much
less time-consuming comparing to the probabilistic scheme.

4. Proof of the convergence result.

4.1. Proof of Theorem 2.3. (i) The wellposedness of the BSDE (2.2) is a al-
ready proved in Proposition A.1.

(i1) We fix a filtered probability space (QO, FO, 7O, PY), where the filtration FY
satisfies the usual hypotheses. Let P, denote the collection of all martingale prob-
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0.147+

0.146+

0.1454
— PDE-FD
— 2BSDE-FD
— 2BSDE-Proba

0.144+

0.1434

0.142+

T T 1
0.01 0.02 0.03 0.04 0.05

FI1G. 1. The comparison of numerical solutions for 2BSDE with generator (3.8). The faire value
should be very closed to 0.146, and the probabilistic scheme seems more volatile comparing to the
other schemes.

ability measures P € Py such that the density process a is piecewise constant,
that is to say a, = 3} ay lie[y.n.p)» AP X dt-a.e., for some time discretization
O=ty<---<t,=T.Let M bea Fo—martingale, whose distribution lies in Py .

0.1354

0.1304

0.1257

0.1207 —— PDE-FD
—— 2BSDE-FD
— 2BSDE-Proba

0.1154

0.1104

0.1054

FIG. 2. The comparison of numerical solutions for 2BSDE with generator (3.9). The faire value
should be closed to 0.129. For finite-difference scheme, when At is greater than 0.025, we need to
use a coarser space-discretization to ensure the monotonicity (similar to the classical CFL condi-
tion), which makes a big difference to the numerical solutions for the case At < 0.25. However, the
convergence as At — 0 is still obvious.
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We can approximate M by a sequence M" such that P° o (M")~! € P, and

T —_—
EPU \a;’—a,\zdt} — 0 and E[ sup M} - M,[] — o,
0 n——+00

0<t<T n——+400
where a;' 1= d(lgl# and a; := d%)’ . Then in the spirit of Proposition A.3, we have
sup E[Yy] = sup E[Yg].
PePy PePy

Further, we claim that for every P, € P,

(4.1) E[Vy"] < Yo := sup Vj.
PePyg

It follows that

sup E[)5]= sup E[J5] < sup ;.
PePw PePy, PePyg
By the trivial inequality Yo < suppep, E[V] 1, we get (2.4).

(iii) It remains now to prove the claim (4.1). We follow closely the random-
ization argument in Step 3 of the proof of Proposition 3.5 of Dolinsky, Nutz and
Soner [9]. We emphasize that the proof in [9] only uses the fact that the set where
the density of the quadratic variation of the canonical process is both convex and
compact, which is the case for our set A. We notice that under P, € Py, the canon-
ical process B is a martingale such that the density of its quadratic variation is
piecewise constant. Let us denote it by

n—1
o =Y gy gy Oak),
k=0

where the (k) are F; -measurable. Further, denote W, := fo O cl2 d Bg, which

is clearly a P;-Brownian motion. Then by exactly the same arguments as in the
step 3 of the proof of Proposition 3.5 of [9], we can consider a probability space
(Q F. P equipped with a Brownian motion W and i.i.d. uniformly distributed r.v.
(Uk)1<k <n» independent of W, and construct, usmg regular conditional probability
measures, random variables ¢ (k) which are O'(U], 1<j<k) \/O'(Ws, 0<s<t)-
measurable and such that the following equality holds:

the law of (W’ (&(i))05i5n—1) under ]f]’ = the law of
(W, (@(i))g<i<,_1) under Py.

Define next the martingale

~ t n 1 ~
M, ::/O (Zl[,k ) () (@) /2) s, Pas.
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We deduce that Po M~ =P}, Let us moreover consider the family of conditional
probability measures (Pc)ce[o 1j» of P w.r.t. the sub-o-field O'(Uk, 1<k<n)and

define P, := IE” o M~1. We have that P, € Ps for every ¢ € [0, 1]". It follows that

E[Vy"]< sup Yy < sup V5.
cel0, 1] PePs

which justifies the claim (4.1), and we hence complete the proof.

4.2. Proof of the convergence theorem. To prove Theorem 2.8, we shall first
provide some technical lemmas.

LEMMA 4.1. Let the functions H}' satisfy (2.6), then there are some constants
6 > 0 and C > 0 such that for every e € E,;, n > 1,

(4.2) E[|M|*°]<C and |af|<C  V1<k<n,P"-as.
In particular this implies that for every e € E,,
4.3) (M®), —(M¢), < C((t —$)+ |Aul)a, P"-a.s.

Moreover, any sequence (M®"),>1, with e, € E,,VYn > 1, is relatively compact and
any limit of the sequence lies in Py .

PROOF. Letn>1and 0 <s <t <T, we can suppose without loss of gener-
ality that t — s > |A,| by (2.6). Then for every e € E,,,
E[ sup (Mg — m¢)*]

S<r=<t

< CE[([M°], = [M<]) "]

1+8/2
§C]E[( 3 |H,.”(e,-,U,-)|2> }

§<t; <t

—C(t— s)1+8/2E[<i S |H (e, Ui)/\/A_t|2>l+8/2]

=) S

§C(t—s)1+3/2E[— > |Hl~"(ei,U,~)/\/E|2+5]

(rt—s5) s<t;<t

<C(t —5)1+92,

where the first inequality follows from BDG inequality, the second from Jensen’s
inequality and the last from (2.6). It follows that (4.2) and (4.3) hold true, and
hence any sequence (M"),>1 such that ¢, € E, is relatively compact (see, e.g.,
Stroock and Varadhan [24]). Finally, let IP be a limit probability measure, it follows
by exactly the same argument as in Lemma 3.3 of Dolinsky, Nutz and Soner [9]
that P € Py, which completes the proof. [
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LEMMA 4.2. Let u" be defined in (3.4) and (3.3), then there is constant C
independent of n such that

(4.4) |t (1, x1) — u" (1, X5) | < C(Ix1 — Xalx +V1A4])-

PROOF. (i) Suppose that u” (x4 1, X) is Lipschitz in x with Lipschitz constant
Li41, let x!, x? € Rk then using the same argument as in (2.11), we have for
everya € A,

| (1, x") — ulh (1. X%) |
E[|AM|]At

<(1—LsyAn~! <1 FLpa—

+ Lf,xAt> x! —x?.
It follows that for some constant C independent of #,

|u" (5, X)) — u" (tx, X*)| < Liy1(1 4+ C A1),

which implies that " is Lipschitz in x uniformly for all (#;)o<k<, and all n > 1.
(i1) By the Lipschitz property of 1", we have immediately

t,X, -1 Ik, X,a
M(tk-l-la MeX a)a AM[k_H ]
At ’

Dul (tx, X) 1= E[

is uniformly bounded, which implies that f(#, X, u’} (t, X), Du’, (t¢, X), a) is uni-
formly bounded. It follows by the expression (3.3) that

|u" (tr, x) — u" (tr41, X*)| < CV At O

PROPOSITION 4.3. Let Assumption 2.7 hold. We have the following proper-
ties:

(i) For every n > 1, there is e € E, such that the solution (yeZ, Zez,/\/eﬁ)
of (2.8) satisfies yfk" = u"(ty, M), P"-a.s.
(i1) The sequence ()767;),,21 is tight, and (foi?)nzl is uniformly bounded.

PROOF. (i) Let n > 1 be fixed, using the continuity of H;' in a and the dom-
inated convergence theorem, a —— u/; (t, X) is continuous, where u/, is defined
by (3.3). Since A is compact, there is always an optimal a for the maximization
problem (3.3). It is then enough to use a classical measurable selection theorem to
construct the required optimal ¢ € E,,.

(i1) Notice that since we assumed that Assumption 2.7 holds, we can apply
Proposition 3.2. Therefore, by (3.3) and using (4.4), it follows immediately that

n €, n €, eny—1 €y
(M (tk-l—]’ Mtk+1 —u (tk’ Ml‘k ))(atk ) AMtk+] ]

Ze;: =" |:
tk fk Aty
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is uniformly bounded. Further, using the expression (3.3) with direct computation,
we can easily verify that

E) (V)] < car.

for some constant C independent of n, which implies, since Ve is a pure jump
process that

(Vor), <Ctx, o1 <t <.

Finally, we notice that the deterministic nondecreasing process

n—1

G"(5):=C Y tis1 L 001) (),
k=0

converges weakly to the deterministic process s — Cs as n — oo. Then it is
enough to apply Theorem 2.3 of Jacod, Mémin and Métivier [14] for the tightness
of (ye»’i )n>1, where their condition C1 holds for the nondecreasing process G".

g

REMARK 4.4. In the context of BSDE, Ma, Protter, San Martin and Tor-
res [18] gave a similar tightness result for their numerical solutions, which is also
a key step to prove the convergence of their numerical scheme.

Finally, we are ready to provide the proof of Theorem 2.8 in two steps.

PROOF OF THEOREM 2.8. Part (i). Let us consider the BSDE (2.2) under

- . =P P
some probability measure P € Pgs. In this case, we know that F = FW" | for
some P-Brownian motion W' and thus that thanks to the predictable representa-

——P
tion property, we can write for some FW -predictable process a
t
B = f al2aw?,  Pas.
0
We may now always approach the process a by a sequence (a”),>o of

piecewise-constant processes, over a grid (t,i7 )o<k<p, Whose mesh goes to 0, in
the sense that

P
Ez,pk € ]-}ZVP foreachO<k<p and
T
}EP[/ &j/z—(&f)‘/zfds] — 0.
0 p—>—+00

Next, since there is a priori no reason that the applications w —— &,}Z (w) has any
regularity, we further approximate (by classical density arguments) the random
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variables (&i)osks p by Lipschitz-continuous functionals (&zi’n)OSks p such that
the following convergence holds true:
Pri~=p _ ~p.n|2
E*fla] —al" ] — o.
Let us finally denote by a” := a’". For every n > 1, let now (Q", 7", P") be
a probability space containing n independent random variables (U)i<k<pn, and
consider the following discrete-time martingale defined exactly as in Section 2,
with functions H}' satisfying (2.6):
My:=0 and M,

Tet1

= M} + H}(a (WF"), U),
where WP is a discretized version of W' defined by

Wy " =0 and Wy =Wr" 4 () P(WEHL @ (WP, U).

Tk+1
Consider now the following BSDE under P"

P T Py T
=601 = [ gus. M2yl ) dl) = [ alzld W = Np N

which is clearly in the same form of BSDE (2.8), and hence y; < Y.

We know that WP converges weakly to W', Using Skrorohod theorem and
changing the probability space under which we are working, it is clear with
Lemma 4.1 that we may assume without loss of generality that W actually
converges to WF strongly in S? (see also Corollary 14 in Briand, Delyon and
Mémin [6] for similar arguments). Moreover, since the filtrations are Brownian
filtrations, we know from [6] (see their Proposition 3) that the corresponding fil-
trations also converge.! Then, using the uniform continuity of g in ¢, we can apply
Theorem 12 in [6] to obtain that

lim y? =P,

Therefore, we get

liminf Y > liminf y? = ¥
n—oo 0 = 500 Y0 yo’

which implies the first assertion of Theorem 2.8. [

To prove the second part of Theorem 2.8, we shall consider the weak limit of
the triplet (M e , yeZ‘ , aez)nzl introduced in Proposition 4.3. Let us first introduce
the associated canonical space. For the process (M 6;5, yefi ), it is natural to con-
sider the spaces of all cadlag paths on [0, T'] equipped with Skorokhod topology
C([0, T1,R%) and D([0, T], R) (let us refer to Billinsley [4] for a presentation of

UIn the sense that, if (FNo<t<r denotes the natural filtration of W and (F;)p</<r that of wr,
then for every A € Fr, E[14|F}'] converges u.c.p. to E[14|F;].
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this canonical space). For (aez )n>1, we follow Kushner and Dupuis [17] in their
numerical analysis to use the canonical space of measure valued processes (see
also El Karoui, Huu Nguyen and Jeanblanc-Picqué [10], or El Karoui and Tan [11]
for a more detailed presentation). More precisely, since an take values in com-
pact set A, we define M as the space of all measures m on [0, T] x A such that
the marginal distribution of m on [0, T] is the Lebesgue measure. By disintegra-
tion, m can be write as m(dt,da) = m;(da) dt, where every m; is a probability
measure on A, which can be viewed as measure-valued processes. We then take
Q:=C(0, T],R%) x D([0, T], R) x M as canonical space, with canonical process
(M, Y, m) and the canonical filtration F = (F,)o<,<7 generated by the canonical
process. For every ¢ € le (RY x R), we define a process on

cl (M, m) ::w(ﬁ,)—/(:/A%a:DZgo(Ms)nas(da,ds),
and another process

D,(M,Y,m) = Y,+/0t/Af(s,M.,?s,a)ﬁzs(da,ds),
as well as

DM, Y, m) = Y,—i—/othfn(s,M.,ys,a)n'fzs(da,ds),

for every n > 1. Notice that for every jxezl t > 0, the two random variables C;p and
D; are both bounded continuous in (M, ), m).

PROOF OF THEOREM 2.8.  Part (ii). Let us take the sequence (e}),>1 intro-
duced in Proposition 4.3, we denote (M": , yeii, a‘n ) by (M", V", a’") to simplify
the presentation. Then

limsup )y = limsup Y.

n—> 00 n—00
Denote
n—1
m"(dt,da) = 162:%)5“;;( (da) dtlies t41)-

Let P" denote the law on  induced by (M", )", m") in probability space
(Q", F™*, P"), where M" is the linear interpolation of (Mg )o<k<n- Since
(M", Y")>1 is tight (by Proposition 4.3 which uses Assumption 2.7) and A is
a compact set, then (@n)nzl is relatively compact. Let P™ be a limit probability
measure, we claim that

4.5) C%(M,m) and D(M, Y, i) are both F—martingales under P*°.
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Let 0<s <t<T and V¥ : C([O,T_],]Rd) x D(0,T],R) x M — R be a
bounded continuous function which is Fs-measurable. Then by the definition of
(M"™, V") in (2.8), it is clear that

EF [w(M, Y, m)(C{ (M, in) - C¢ (M, )] =
and
EF [w(M, Y, ) (D} (M, Y, ) — DI (M, Y, )] =
Since the functionals ¥, C{ and D; are all bounded continuous, by taking the limit
n — 00, it follows that
E° (WM. Y. m)(Cf (M. i) — C¢ (M, )] =
and
EF[W(M, Y, ) (D(M, Y, i) — Dy (M, ¥, )] =

which implies claim (4.5) by the arbitrariness of W and s <.

It follows that there exists some probability space (2%, F*,P*) containing the
processes (M*, V*, m*) whose distribution is P”. Let F* = (F)o<i<T be the
right-limit of the filtration generated by (M*, Y*, m*), completed under P* and let
af = [, am}(da) (notice that a* also takes values in A, since this set is assumed to
be convex). Then M* is a martingale w.r.t. F* with quadratic variation [ a; ds and
D(M*, Y*, m*) is a martingale w.r.t. F* by claim (4.5). Further, by the convexity

of f in a, we have
[ Fexy amida = 5.x.5.00)

It follows that )V} — fé f(s, M*, V¥, af)ds is a bounded F*-submartingale.

Next, since this is a bounded submartingale, applying Doob—Meyer decompo-
sition and the orthogonal decomposition for the F*-martingales gives us the exis-
tence of a F*-predictable process Z*, a cadlag F*-martingale N'*, orthogonal to
M* and a nondecreasing process * such that

T T T T
yf:g—/ f(s,M.*,yS*,a;k)ds—/ Zde;—/ d/v:—/ dK*,
t t t t
P*-a.s.

Consider now ()7*, 2*,/\7 *) the unique solution of the following BSDE un-
der P*:

- T - T T -
y;ﬂ:g—/t Fls, M*, ;",a;‘)ds—/t Z:dMs*_/z AN,

(4.6)
P*-a.s.
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We now claim that we necessarily have
@.7) EY (V5] = EV [¥5].
This implies that
limsup Y = limsup ygn —E (V5] < P DNJS ] < sup IE]P)D%D ]= sup ygj’ ,

n— 00 n— 00 PePy PePy
which proves the desired property.

It remains now to prove the claim (4.7). It follows from a classical linearization
argument, which we give for completeness. Using the fact that f is uniformly
Lipschitz in y, we may define bounded F*-progressively measurable process A
such that, P*-a.s.

T T T T
8V; == [ novras— [ szzam;— [ a@az)+ [k,
t t t t
where
SYF i=Yr— Y. 8ZFi=Zr—2zZF  SNF=N*— N

Then denote A; := exp(— fé Asds). Applying It6’s formula to A,8);" and re-
membering that M* is orthogonal to A™* and N*, we deduce that

T
EF [6)p] = EF [/ A dlcs] >0,
0

which completes the proof. [J

APPENDIX

We provide here some classical results on BSDEs which are used in the paper.
Let us start by stating a general wellposedness result for BSDEs in an abstract
setting, which will encompass all the cases considered in this paper.

PROPOSITION A.1. Let (20, F,P) be a complete probability space carrying
a square integrable continuous martingale M, adapted to a complete and right-
continuous filtration FO := (]:tO)OSIST and a sequence of square-integrable cadlag
martingales M" adapted to some filtration F" := (F]')o<;<1 which are complete
and right-continuous for each n. Let fy and f, be functions from [0, T] x Qg x
R x R? 1o R and assume furthermore that:

(1) (M) is absolutely continuous with respect to the Lebesgue measure, with a
density (as)o<s<r taking values in A.
(i1) There exists a deterministic sequence (a,),>0 converging to 0 such that

(M"), = (M"); <C(t — s +ap)la, 0<s<t<T,P-a.s.,

for some C > 0.
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(iii) Foreach (y, z), fo(-, M., v, z) [resp., fn(-, M, y, 2)] is progressively mea-
surable with respect to FO (resp., F™).
(iv) There is a constant v > 0 such that for each n > 0 and each (t, y, y’, z,7')

| fot, M., y,2) — fo(t, M., y".2)| <u(ly = ¥'|+ |z = 7)),
|fat, M2y, 2) = fult. M,y ) < u(ly =Y + |z =)

(v) Forall (y,z), foand f, are continuous int.

Then, for n large enough, the following BSDEs under P

Al V=& ffo<sM Vo, Z) d(M fz dM, — Ny + N,

(A.2) yt”:g—/t Fa(s, Mﬁ,yg,,zg)dW"),—/t Z!-dM; — N7 + N7,

where N (resp., N™) is a cadlag FO-martingale (resp., F"-martingale) orthogonal
to M (resp., M), have a unique solution such that

T
EP[ sup |y,|2+/ |as1/225|2ds+(f\/)r] <C,
0<t<T 0

I/\

£ sup 1P [ 2@ )+ | < c

0<t<T

for some constant C > 0 independent of n.

PROOF. This is actually a direct consequence of the proof of existence via
fixed point arguments in [6]. Indeed, the assumptions above imply directly that
their assumptions H1, H2 and H3 hold, with the exception that we do not assume
that M" converges to M and that our martingale M can be written as

t
M, =/0 al’aw;,

where W is (P, F®)-Brownian motion.

However, by looking carefully at their proofs of Theorem 9 and Corollary 10,
it is easy to see that they can be carried out with the exact same arguments in
our setting to obtain the desired results for the BSDE (A.2) for n large enough.
Moreover, since the martingale M satisfies their assumption (H1)(ii) with a con-
stant C :=sup, 4 |a| and a deterministic sequence a, = C|A,|, we can once again
follow their proof of existence to obtain easily that existence, uniqueness and the
desired estimates also hold for (A.1). [

We will now provide a particular robustness result for BSDEs. We go back to the

. =P .
canonical space (€2, Fr) and fix a measure P € Py. We let W be a F+ -Brownian
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motion under P, (a5)o<s<r be a F-progressively measurable process and (a”),>0
a sequence of F-progressively measurable processes such that

T
(A3) EP[/O }a;’—as{zds} — 0.

n——+00

We next define the following F_pr—martingales under P:
t
M, = / asl/deS and
0

o t
M :=/ (a”)1/2dWs, P-as.
0

)
Notice that we than have immediately that M" converges to M in the sense that

(A4) EF| sup |M, - M| — 0.

0<t<T n——+o00
We would like to approximate the BSDE
T T,
V=g [ F6 M Za)ds - [ @) PZ - dW - Nr + N,
(A.5) ' '
P-a.s.

by the following one for n > 0:

-~ T —_— -~ -~
Y] =&, _/z f(s,M", Y Z al)ds

)
(A.6)
T 125 Sn o
—/ @)\ 2" aw, — N2+ N, Paas.,
t

for some Fr-measurable random variable &, converging to & in L2(P).

REMARK A.2. Notice that existence and uniqueness for these BSDEs are
once again guaranteed by Proposition A.1.

We have the following result, which can be proved using classical stability ar-
guments for BSDEs. We nonetheless give the proof for completeness.

PROPOSITION A.3. Let Assumptions 2.2 hold. Then we have

—~ T —~ —~~
JEP|: sup |Y,”—)),|2+/0 |Zf—Zt|2ds+<N”—N)T] — 0.



2560 D. POSSAMATI AND X. TAN

PROOF. Let us apply It6’s formula to e”t (Y” V)2, for some constant 7 to
be fixed later. We obtain, using the fact that N" and N are orthogonal to W

e"t( -V) —i—/ "\ (al 1/2 aSI/ZZS|2ds+/ e”%z’(ﬁ”—N)s
t
S€"T|§n—5|2—2/ &1 (7 - )),)
t
(A7) x (f (s, M”,Ys”,Z;’, al) — f(s,M., Y, Z, a5))ds

— / T = VP ds -2 / ~ V(@) P2~ al2,) - aw,

[ v n)

Next, using the uniform continuity of f in # and its Lipschitz continuity in
(x, ¥, 7), we have for some modulus of continuity p and using the trivial inequality
ab < ea* + %bz for any ¢ > 0

T —~ —_— —~ —~
/ enS(Y;l _ys)(f(s» Mn’ Y:la Z?aa?) - f(s5 M-’ ySsZS5aS))dS
t

T —~ —_ —~ —~ —~ —~
< [ eI (o BT ZE ) — fls ML T 22 )| ds
t

T -~
+/ ens|YSn_yS||f(s M,Y:’Zn ) f(s7M~vy§‘sZS‘9aS‘)|ds
(A.8) ! .
sc(ji - Ml + [ pal —a)ds)
t

L ,
+<C+—>/ Y — V| ds
e) Ji

T . 5
+8/ e Z8 — Z|” ds.
t

Using the fact that a” and a are uniformly bounded, if we take the expectation
in (A.7) and use the estimate (A.8), we obtain by choosing 1 large enough and
e<l1

-~ T P -~
a7 - uf+ [ 120 - 2P s+ (7 - N,

. T
< CEP[V;‘H _ P |3 — M| +f0 P(a — as)ds]

By the dominated convergence theorem and using the fact that &, converges to
& and M" to M, the right-hand side above goes to 0. Now the proof can be finished
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by taking the supremum in ¢ in (A.7) and using the BDG inequality. Since this part
is classical, we refrain from writing its proof. [J
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