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EXPLICIT SOLUTION OF AN INVERSE FIRST-PASSAGE TIME
PROBLEM FOR LÉVY PROCESSES AND COUNTERPARTY

CREDIT RISK

BY M. H. A. DAVIS AND M. R. PISTORIUS

Imperial College London

For a given Markov process X and survival function H on R+, the in-
verse first-passage time problem (IFPT) is to find a barrier function b :R+ →
[−∞,+∞] such that the survival function of the first-passage time τb =
inf{t ≥ 0 :X(t) < b(t)} is given by H . In this paper, we consider a version of
the IFPT problem where the barrier is fixed at zero and the problem is to find
an initial distribution μ and a time-change I such that for the time-changed
process X ◦ I the IFPT problem is solved by a constant barrier at the level
zero. For any Lévy process X satisfying an exponential moment condition,
we derive the solution of this problem in terms of λ-invariant distributions
of the process X killed at the epoch of first entrance into the negative half-
axis. We provide an explicit characterization of such distributions, which is a
result of independent interest. For a given multi-variate survival function H

of generalized frailty type, we construct subsequently an explicit solution to
the corresponding IFPT with the barrier level fixed at zero. We apply these
results to the valuation of financial contracts that are subject to counterparty
credit risk.

1. Introduction. Financial models incorporating the idea that a firm defaults
on its debt when the value of the debt exceeds the value of the firm were originally
introduced by Merton [30]. Black and Cox [6] extended the Merton model by mod-
elling the time of default as the first time that the value of the firm less the value
of its debt becomes negative. Because “firm value” cannot be directly measured,
later contributors such as Longstaff and Schwartz [29] and Hull and White [18]
have moved to stylized models in which default occurs when some process Y(t)—
interpreted as “distance to default”—crosses a given, generally time-varying, bar-
rier b(t). The risk-neutral distribution of the default time can be inferred from the
firm’s credit default swap spreads, and Hull and White [18] provide a numerical
algorithm to determine b(t) such that the first hitting time distribution H is equal
to this market-implied default time distribution when Y(t) is Brownian motion.

As we will show, these calculations are greatly simplified if, instead of starting
at a fixed point Y(0) = x > 0 and calibrating the barrier b(t) we fix the barrier at
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b(t) ≡ 0 and start Y at a random point Y(0) = Y0, where Y0 has a distribution func-
tion F on R

+, to be chosen. If we combine this with a deterministic time change
then it turns out that essentially any continuous distribution H can be realized in
this way, often with closed-form expressions for F .

In precise terms, the inverse first-passage time (IFPT) problem may be de-
scribed as follows. Let (Y,P μ) be a real-valued Markov process with càdlàg1

paths that has initial distribution μ on R
+ \{0} [i.e., P μ(Y0 ∈ dx) = μ(dx)]. Given

a CDF H on R
+, the IFPT for the process (Y,P μ) is to find a barrier function

b :R+ → [−∞,+∞] such that the first-passage time τY
b of the process Y below

the barrier b has CDF H :

P μ(
τY
b ≤ t

) = H(t), t ∈ R
+, with

(1.1)
τY
b = inf

{
t ∈ R

+ :Yt ∈ (−∞, b(t)
)}

.

Recently, there has been a renewed interest in the IFPT problem, in good part
motivated by the above questions of credit risk modelling. Chen et al. [11] prove
existence and uniqueness of the IFPT of an arbitrary continuous CDF on R

+ for
a diffusion with smooth bounded coefficients and strictly positive volatility func-
tion. In [3, 17, 18, 35, 36], a number of methods have been developed to compute
this boundary, which is in general nonlinear. Zucca and Sacerdote [36] analyse
a Monte Carlo approximation method and a method based on the discretization
of the Volterra integral equation satisfied by the boundary, which was derived in
Peskir [33], while related integral equations are studied in Jaimungal et al. [20].
Avellaneda and Zhu [3] derive a free boundary problem for the density of a diffu-
sion killed upon first hitting the boundary, where the free boundary is the solution
to the IFPT, and Cheng et al. [12] established the existence and uniqueness of a
solution to this free-boundary problem. A related “smoothed” version of the IFPT
problem is considered in Ettinger et al. [15]: for any prescribed life-time it is shown
that there exists a unique continuously differentiable boundary for which a stan-
dard Brownian motion killed at a rate that is a given function of this boundary has
the prescribed life-time.

In this paper, we consider a related inverse problem where the barrier is fixed
to be equal to zero, and the problem is to identify in a given family a stochas-
tic process whose first-passage time below the level zero has the given proba-
bility distribution. For a given Markov process X, the class of stochastic pro-
cesses that we consider consists of the collection (P μ,X ◦ I ) that is obtained by
time-changing X by a continuous increasing function I and by varying the ini-
tial distribution μ of X over the set of all probability measures on the positive
half-line. Here, I :R+ → [0,∞] is a function that is continuous and increasing on
its domain, that is, at all t for which I (t) is finite, and the time-changed process
X ◦ I = {(X ◦ I )(t), t ∈ R

+} is defined by (X ◦ I )(t) = X(I (t)) if I (t) is finite,
and by lim supt→∞ X(t) otherwise.

1càdlàg = right-continuous with left-limits.
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DEFINITION 1.1. For a continuous CDF H on R
+, the randomized and time-

changed inverse first-passage problem (RIFPT) is to find a probability measure μ

on (R+,B(R+)) and an increasing continuous function I :R+ → [0,∞] such that
for the time-changed process Y = X ◦ I the first-passage time into the negative
half-line (−∞,0) has CDF H :

P μ(
τY

0 ≤ t
) = H(t), t ∈ R

+, with
(1.2)

τY
0 = inf

{
t ∈ R

+ :Yt ∈ (−∞,0)
}
.

The fact that the boundary is constant and known is helpful for practical im-
plementation of the model, for example, in subsequent counterparty risk valuation
computations and for the matching of model and market prices.

In this paper, we concentrate on the case where X is a Lévy process satisfying an
exponential moment condition. The class of Lévy processes has been extensively
deployed in financial modelling; see the monograph Cont and Tankov [13]. For
the general theory of Lévy processes, we refer to the monographs Applebaum [2],
Bertoin [5], Kyprianou [25] and Sato [34].

The key step is to determine, for some λ ∈ R+, a λ-invariant distribution for the
process X killed at the first hitting time of 0, which is a result of independent inter-
est; see Definition 2.4 below. If μ is λ-invariant then under P μ, the first-passage
time τX

0 is exponentially distributed with parameter λ, so (μ, I ) with I (t) = t

solves the RIFPT problem when H is Exp(λ). The solution for other continuous
distribution functions H is then obtained by an obvious deterministic time change.

The paper is structured as follows. In Section 2, we formulate the problem and
state the main results for the RIFPT problem, Theorems 2.2 and 2.6. The proof of
Theorem 2.2 is also given, together with an illustrative example where the Lévy
process is drifting Brownian motion. In Section 3, a multi-dimensional version of
the RIFPT theorem is stated for a specific class of multivariate default-time dis-
tributions; its proof follows quite easily given the results of Section 2. The proof
of Theorem 2.6, which is presented in Section 5, involves the relationship be-
tween first-passage times and the so-called Wiener–Hopf factors; these matters are
discussed in Section 4. In Section 6, the results of Theorem 2.6 are illustrated ex-
plicitly for the special case of mixed-exponential Lévy processes (a self-contained
proof of the quasi-invariance in this case, based on residue calculus, is given in the
Appendix). The concluding Section 7 demonstrates the application of our results
to a problem of counterparty risk valuation.

2. IFPT problem formulation and main results. Let (�,F,F,P ) be a fil-
tered probability space with completed filtration F = {Ft }t≥0, and X be an F-Lévy
process, that is, an F-adapted stochastic process with càdlàg paths that has station-
ary independent increments, with X0 = 0 and the property that for each s ≤ t < u

the increment Xu − Xt is independent of Fs . Let {Px, x ∈ R} be the family of
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probability measures corresponding to shifts of the Lévy process X by x and,
more generally, denote by P μ the family of measures with initial distribution (the
distribution of X0) equal to μ; thus Px = P δx where δx is the Dirac measure at
x and P = P0. To avoid degeneracies, we exclude throughout the case that X

has monotone paths. As standing notation, we denote X∗(t) = infs≤t X(s) and
X∗(t) = sups≤t X(s). Below we describe a solution to the RIFPT problem under
the following conditions.

ASSUMPTION 2.1. The Gaussian coefficient σ 2 and Lévy measure ν of X

satisfy at least one of the following conditions:

(i) σ 2 > 0, (ii) ν(−1,1) = +∞,

(iii) ν has no atoms and Sν ∩ (−∞,0) �=∅,

where Sν denotes the support of ν.

When only Assumptions 2.1(iii) holds, the process X is of the form Xt = dt +∑
s∈(0,t] �Xs , where �Xs = Xs − Xs− denotes the jump-size of X at time s, for

some constant d, which is called the infinitesimal drift of X.
The first observation is that for any initial distribution there exists a unique time-

change that solves the RIFPT problem. For a given probability measure μ on the
positive real line, define the function Iμ :R+ → [0,∞] by

Iμ(t) = F
−1
μ

(
H(t)

)
, t ∈ R

+, with(2.1)

F
−1
μ (x) = inf

{
t ∈ R

+ :Fμ(t) < x
}
,(2.2)

where H = 1−H and Fμ denote the survival functions corresponding to the CDF
H and to the CDF of the first-passage time τX

0 of X into the negative half-line
(−∞,0) under the probability measure P μ. Here and throughout this paper, we
use the convention inf∅= +∞.

THEOREM 2.2. Let H be a continuous CDF on R
+, and let μ be a probability

measure on (R+,B(R+)) with μ({0}) = 0. Assume Assumption 2.1 holds and that
μ has no atoms if only Assumption 2.1(iii) is satisfied. Then the function Iμ defined
in (2.1) is the unique time-change such that (μ, Iμ) is a solution of the RIFPT
problem.

For the proof, we need some properties of the distribution of the running infi-
mum.

LEMMA 2.3. (i) If X satisfies Assumption 2.1(i) or (ii), the CDF of X∗(t) is
continuous, for any t > 0.

(ii) Alternatively, if only Assumption 2.1(iii) holds, then for any t > 0 the CDF
of X∗(t) is continuous on the set R− \ min{dt,0}, with R− = (−∞,0].
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The proof of Lemma 2.3(i) can be found in Sato [34], Lemma 49.3, and Pečer-
skiı̆ and Rogozin [32], Lemma 1, while Lemma 2.3(ii) follows by conditioning on
the first jump of the process X.

PROOF OF THEOREM 2.2. Denote by c the value 0 or max{−d,0} according
to whether or not X satisfies at least one of the Assumptions 2.1(i) and (ii). The
key observation in the proof is that for any x > 0 the map t �→ Px(τ

X
0 > t) is

(a) strictly decreasing and (b) continuous at any t satisfying ct �= x. To verify
claim (b), it suffices to show that Px(τ

X
0 = t) is zero for any nonnegative t that is

such that ct �= x. The latter follows as consequence of the bound Px(τ
X
0 = t) ≤

P0(X∗(t) = −x) that holds for any strictly positive x and t , and the fact (from
Lemma 2.3) that the CDF of X∗(t) is continuous on (−∞,0] \ {−ct}. To see that
claim (a) is true, we observe that, by the Markov property, we have for strictly
positive x, t and s,

Px

(
τX

0 > t
) − Px

(
τX

0 > t + s
)

= Px

(
τX

0 > t, τX
0 ≤ t + s

)
(2.3)

≥ E
(
1{X∗(t)>−x}P

(
X∗(s) < −x − z

)|z=Xt

)
.

Since for any strictly positive epoch s the random variable Xs has an infinitely
divisible distribution and the support of an infinitely divisible distribution not cor-
responding to the sum of a subordinator and a deterministic drift is unbounded
from below (e.g., [34], Corollary 24.4), it follows that under Assumptions 2.1 we
have

P
(
X∗(s) < −x

) ≥ P(Xs < −x) > 0, s > 0, x ≥ 0.(2.4)

By combining (2.3) and (2.4), we have for any strictly positive x, t and s,

Px

(
τX

0 > t
)
> Px

(
τX

0 > t + s
)
,

and hence (b) holds true.
The above key observation in conjunction with Lebesgue’s dominated conver-

gence theorem and the assumption that μ has no atoms if X does not satisfy As-
sumption 2.1(i) and (ii) imply that the map t �→ Fμ(t) is continuous and strictly
decreasing. Denote by Yμ the time-changed process X ◦ Iμ. Since Iμ is monotone
increasing and continuous, we have

P μ(
τYμ

0 ≥ t
) = P μ(

τX
0 ≥ Iμ(t)

) = Fμ

(
F

−1
μ

(
H(t)

)) = H(t)(2.5)

for t ∈R
+, where we used in the final equality that Fμ is continuous. �

We next turn to the specification of the second degree of freedom, the initial
distribution μ. By an appropriate choice of the randomisation μ the form of the
function Fμ in the specification of the time-change Iμ in (2.1) can be considerably
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FIG. 1. Three graphs of Laplace exponents ψ of Lévy processes satisfying Assumption 2.5, with
−λ∗ = minθ∈[θ,θ ] ψ(θ) = ψ(θ∗), where [θ, θ ] denotes the closure of the domain of ψ . In the left-

hand figure, γ denotes the largest root of the Cramér–Lundberg equation ψ(θ) = 0 and θ∗ < θ

satisfies the equation ψ ′(θ) = 0. In the right-hand figure, θ∗ and θ coincide.

simplified. In particular, the function Fμ is equal to an exponential if μ is taken to
be equal to any quasi-invariant distribution of the process X killed at the epoch of
first-passage below the level 0, the definition of which, we recall, is as follows.

DEFINITION 2.4. For given λ ∈ R
+, the probability measure μ on the mea-

surable space (R+,B(R+)) is a λ-invariant distribution for the process X killed at
the epoch of first entrance into the negative half-axis (−∞,0) if

P μ(
Xt ∈ A, t < τX

0
) = μ(A)e−λt for all A ∈ B

(
R

+)
.(2.6)

The probability measure μ is a quasi-invariant distribution of {Xt, t < τX
0 } if μ is

a λ-invariant distribution of {Xt, t < τX
0 } for some λ ∈ R

+.

To guarantee existence of quasi-invariant distributions, we restrict ourselves in
the subsequent analysis to Lévy processes X that admit a finite exponential mo-
ment.

ASSUMPTION 2.5. The distribution of X1 satisfies the following exponential
moment condition:

E
[
eεX1

]
< 1 for some ε ∈ (0,∞),

where E[·] denotes the expectation under the probability measure P(= P0).

Under Assumption 2.5, there exists a continuum of quasi-invariant distributions
of the process X killed upon the first moment of entrance into the negative half-
axis, which are given in terms of the Laplace exponent and the positive Wiener–
Hopf factor of X.

The Laplace exponent ψ :R → (−∞,∞] of X, given by ψ(θ) = logE[eθX1]
for real θ , is finite valued and convex when restricted to the interior (θ, θ) of
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its maximal domain, where θ = sup{θ ∈ R :E[exp{θX1}] < ∞} and θ = inf{θ ∈
R :E[exp{θX1}] < ∞} (see Figure 1 for plots of Laplace exponents of Lévy pro-
cesses satisfying Assumption 2.5.) Since ψ is a convex lower-semi-continuous
function that under Assumption 2.5 takes a strictly negative value at some ε > 0,
it follows that the infimum of ψ is strictly negative and is attained at some
θ∗ ∈ [θ, θ], that is,

−λ∗ := inf
θ∈[θ,θ ]

ψ(θ) = ψ
(
θ∗)

< 0.(2.7)

On the interval (θ, θ∗] the function ψ is continuous and strictly monotone decreas-
ing with inverse denoted by

φ̄ : [−λ∗,ψ(θ)
) → (

θ, θ∗]
.(2.8)

In particular, we note ψ ′(0+) ∈ [−∞,0) so that the mean E[X1] of X1 is strictly
negative.

The positive Wiener–Hopf factor is the function �+ : (0,∞) × D
+ → C with

D
+ := {u ∈ C :�(u) ≥ 0} given by

�+(q, θ) = E
[
exp

(
iθX∗

e(q)

)]
, q > 0, θ ∈ D

+,(2.9)

with e(q) denoting an Exp(q) random time that is independent of X. In Lemma 4.2,
we show that the function �+ can be uniquely extended to the set {(q, θ) :�(q) ≥
−λ∗,�(θ) ≥ −θ∗} \ {(−λ∗,−θ∗)} (by analytical continuation and continuous ex-
tension); this extension is also denoted by �+.

Consider for any λ ∈ (0, λ∗] the function μ̂λ :R+ →C given by

μ̂λ(θ) = φ̄(−λ)

φ̄(−λ) + θ
· �+(−λ,iθ),(2.10)

where φ̄ denotes the inverse of the Laplace exponent as described above. The
function μ̂λ is the Laplace transform of some probability measure μλ—an ex-
plicit expression for μλ is given in Lemma 5.1. The members of the family
{μλ,λ ∈ (0, λ∗]} are quasi-invariant distributions of {Xt, t < τX

0 }:

THEOREM 2.6. Assume that X is a Lévy process satisfying E[exp(−εX1)] <

1 for some ε ∈ (0,∞). Then, for any λ ∈ (0, λ∗], μ̂λ is the Laplace transform of
some probability measure μλ on (R+,B(R+)), which is the unique λ-invariant
distribution of {Xt, t < τX

0 }, the process X that is killed upon the epoch of first-
passage into the negative half-line (−∞,0).

In the case that X is a mixed-exponential Lévy process, the measures μλ, λ ∈
(0, λ∗], can be shown to be equal to certain mixed-exponential distributions; see
Sections 6.
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Under any of the initial distributions μλ given in Theorem 2.6, the distribution
of the first-passage time τX

0 is exponential, and thus the corresponding survival
function Fμλ and time change Iμλ defined in (2.1) take explicit forms:

Fμλ(t) = exp(−λt), t ∈ R
+, λ ∈ (

0, λ∗]
,

Iμλ(t) = −1

λ
logH(t).

When the survival function H is continuous, Iμλ(t) is equal to a multiple of the
cumulative hazard rate integrated over the interval [0, t].

The combination of Theorems 2.2 and 2.6 immediately yields the following
result.

COROLLARY 2.7. For any given continuous survival function H and λ ∈
(0, λ∗], the RIFPT problem is solved by the pair (μλ, Iμλ), that is,

P μλ
(
τYμλ

0 > t
) = H(t), t ∈ R

+.

2.1. Example. As a simple example, let us consider the case where Xt is
Brownian motion with drift, with initial distribution μ, or equivalently Xt =
X0 + Wt + ηt where Wt is a standard Brownian motion, η ∈ R and X0 ∼ μ is
a random variable independent of {Wt, t ∈ R

+}. In this case,

ψ(θ) = logE
[
eθX1

] = ηθ + 1
2θ2

and θ = −∞, θ = +∞, so the coefficients in (2.7) are θ∗ = −η,λ∗ = 1
2η2 and the

inverse of ψ to the left of θ∗ is

φ(y) = −η −
√

η2 + 2y.

The positive Wiener–Hopf factor is

�+(q, θ) = −i(η −
√

η2 + 2q)

θ − i(η −
√

η2 + 2q)
.

The Laplace transform of the λ-invariant distribution is therefore given by

μ̂λ(θ) =
( −η −

√
η2 − 2λ

θ − (η +
√

η2 − 2λ)

)( −η +
√

η2 − 2λ

θ − (η −
√

η2 − 2λ)

)
(2.11)

= 2λ

θ+ − θ−

(
1

θ − θ+
− 1

θ − θ−

)
,

where θ± = η ±
√

η2 − 2λ. The condition η ∈ [−√
2λ,0) is necessary and suffi-

cient for the expression at (2.11) to be the Laplace transform of a probability mea-
sure on R

+, and we note that this is the same as the condition λ ∈ (0, λ∗] of Theo-
rem 2.6. Under this condition μλ is a mixture of exponentials (or a gamma distri-
bution if η = −√

2λ). This special case was presented in our earlier paper [14].
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3. Multi-dimensional RIFPT. Given a joint survival function H : (R+)d →
[0,1] and a d-dimensional Lévy process, a d-dimensional version of the RIFPT
problem is phrased as the problem to find a probability measure on R

d and a
collection of increasing continuous functions I 1, . . . , I d such that the following
identity holds:

P μ(
τY 1

> t1, . . . , τ
Y d

> td
) = H(t1, . . . , td) for all t1, . . . , td ∈ R

+,(3.1)

Y i := X ◦ I i for i = 1, . . . , d.(3.2)

In order to present a solution, we will impose some structure on the joint survival
function H , assuming that it is from the class of multivariate generalised frailty
survival functions that is defined as follows.

DEFINITION. A joint survival function H :Rd+ → [0,1] is called a (d-
dimensional) generalised frailty distribution if there exists a random vector
ϒ = (ϒ1, . . . ,ϒm) for some m ∈ N such that we have

H(t1, . . . , td) = E

[
d∏

i=1

Hi(ti |ϒ)

]
, t1, . . . , td ∈R

+,

where Hi(·|u) :R+ → [0,1], i = 1, . . . , d , u ∈ U
m denotes a collection of survival

functions, where U
m denotes the image of the random vector ϒ .

When we denote by (T1, . . . , Td) a random vector with joint survival func-
tion H , the condition in the definition can be phrased as the requirement that there
exists a finite-dimensional random vector ϒ such that, conditional on ϒ , the ran-
dom variables T1, . . . , Td are mutually independent. In the context of credit risk
modelling, for example, one may interpret the vector ϒ as the common factors
driving the solvency of a collection of d companies (such as economic environ-
ment, as opposed to idiosyncratic factors).

We remark that the terminology “generalised frailty” is extracted from the the-
ory of survival analysis (e.g., Kalbfleisch and Prentice [23]) in which frailty refers
to a common factor driving the survival probabilities of the individual entities. One
of the commonly studied models is that of multiplicative frailty where the frailty
appears as a multiplicative factor in the individual hazard functions, in which
case the conditional individual survival functions Hi(·|u) take the form Hi(·)u
for u ∈ R

+.
Assume henceforth that H is a d-dimensional generalised frailty survival func-

tion, and denote the corresponding collection of conditional survival functions
by {Hi(·|u), i = 1, . . . , d, u ∈ U

m} for some m ∈ N. A solution to the multi-
dimensional IFPT of the survival function H can be constructed by application
of the construction that was used in Corollary 2.7 to the conditional survival func-
tions Hi(·|u). To formulate this result, let {Xi|u, i ∈ {1, . . . , d}, u ∈ U

m} be a col-
lection of independent Lévy processes, each satisfying Assumption 2.5, and denote
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by {μi(·|u), i ∈ {1, . . . , d}, u ∈ U
m} the probability distributions that have Laplace

transforms μ̂i(·|u) given by

μ̂i(θ |u) = φ̄i|u(−λi|u)
φ̄i|u(−λi|u) + θ

· �+
i|u(−λi|u,iθ) for some λi|u ∈ (

0, λ∗
i|u

]
,

where φ̄i|u, �+
i|u, λ∗

i|u are the corresponding left-inverse of the Laplace exponent,

positive Wiener–Hopf factor and minimum of the Laplace exponent of Xi|u, re-
spectively. Finally, let {Ii(·|u), i ∈ {1, . . . ,m}, u ∈ U

m} denote the collection of
time-changes given by

Ii(t |u) = − 1

λi|u
logHi(t |u), t ∈R

+.

The solution of the multi-dimensional IFPT is given as follows.

THEOREM 3.1. It holds

P
(
τY 1

0 > t1, . . . , τ
Y d

0 > td
) = H(t1, . . . , td), t1, . . . , td ∈ R

+, with

Y i(t) = Y
i|ϒ
0 + Xi|ϒ (

Ii(t |ϒ)
)
, i = 1, . . . , d,

where, conditional on ϒ = u ∈ U
m, the random variable Y

i|u
0 follows the probabil-

ity distribution μi(·|u) and is independent of the vector (X1|u, . . . ,Xd|u) of Lévy
processes.

PROOF. By the tower property of conditional expectations and the fact that,
conditional on the random variable ϒ , the set {Y i|ϒ, i = 1, . . . , d} forms a col-
lection of independent random variables, we have for any vector (t1, . . . , td) ∈
(R+)d

P
(
τY 1

0 > t1, . . . , τ
Y d

0 > td
) = E

[
d∏

i=1

P
(
τY i

0 > ti |ϒ)]

= E

[
d∏

i=1

P μi(·|ϒ)(τXi|ϒ
0 > Ii(ti |ϒ)

)]

= E

[
d∏

i=1

Hi(ti |ϒ)

]
= H(t1, . . . , td),

where in the second line we used Corollary 2.7. �
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4. Wiener–Hopf factorization and first-passage times.

4.1. Preliminaries. In this subsection, we set the notation and recall some ba-
sic results concerning the Wiener–Hopf factorization of X. We refer to Sato ([34],
Chapter 9), for a self-contained account of classical Wiener–Hopf factorization
theory of Lévy processes and further references; see also Kuznetsov [24] for a
recent derivation using analytical arguments.

Denote by � the characteristic exponent of X, that is, the unique map � :R →
C that satisfies E[exp{iθXt }] = exp{t�(θ)} for any t ∈ R

+. According to the
Lévy–Khintchine formula, the characteristic exponent is given by

�(θ) = iηθ − σ 2

2
θ2 +

∫
R

[
eiθz − 1 − iθz1{|z|<1}

]
ν(dz), θ ∈ R,(4.1)

where η ∈ R, σ 2 ∈ R
+ is the variance of the continuous martingale part of X, and

ν denotes the Lévy measure of X. Under Assumption 2.5, the random variable
X1 has negative mean and the Lévy measure ν of X satisfies the condition (e.g.,
Sato [34], Theorem 25.3) ∫

(1,∞)
eεxν(dx) < ∞.(4.2)

Furthermore, � can be analytically extended to the interior of the strip

S = {
θ ∈ C :�(θ) ∈ �o ∪ {0}},

where �(θ) denotes the imaginary part of θ and where �o is the interior of the
set � = {θ ∈ R :ψ(θ) < ∞} which is a nonempty interval given Assumption 2.5;
in the case θ = 0 the exponent � also extends continuously to {θ ∈ C :�(θ) = 0}.
The extension of � to S will also be denoted by � . The characteristic exponent �

is given in terms of the Laplace exponent ψ of X by ψ(θ) = �(−iθ) for θ ∈ �.
The probability distributions of the running supremum X∗(t) and infimum

X∗(t) of X up to time t are related to the characteristic exponent � by the Wiener–
Hopf factorization of X, which expresses � as the product of the Wiener–Hopf
factors �+ and �− as follows:

q

q − �(θ)
= �+(q, θ)�−(q, θ), θ ∈ R, q > 0,(4.3)

with �+(q, θ) given in (2.9) and the function �− : (0,∞) × D
− → C with

D
− = {u ∈ C :�(u) ≤ 0}, given by �−(q, θ) = E[exp{iθX∗(e(q))}] for θ ∈ D

−,
where, as before, e(q) denotes an independent exponential random variable with
mean q−1 that is independent of X (e.g., Sato [34], Theorems 45.2, 45.7, Re-
mark 45.9). The factorization (4.3) is a direct consequence of the probabilistic
form of the Wiener–Hopf factorization of X, according to which (i) X∗(e(q)) and
(X − X∗)(e(q)) are independent and (ii) (X − X∗)(e(q)) and X∗(e(q)) have the
same distribution.
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Since, as noted before, X has negative mean under Assumption 2.5, limt→∞ X∗
t

is almost surely finite, and Lebesgue’s dominated convergence theorem implies
that E[exp(iθX∗

e(q))] → E[exp(iθX∗∞)] so that �+(0, θ) := limq↘0 �+(q, θ) is
well defined and equal to E[exp(iθX∗∞)]. It follows thus from the Wiener–Hopf
factorization (4.3) that the limit �−(q, θ)/q for q ↘ 0 exists and is equal to

�−(0, θ)/0 := lim
q↓0

q−1�−(q, θ) = −�(θ)−1 · �+(0, θ)−1, θ ∈ R.(4.4)

The function �+(q, ·) with q ∈ R
+ admits an analytical extension to the domain

S+ := {θ ∈ C :�(θ) > −θ}, while the function �−(q, ·)/q with q ∈ R
+, may be

extended analytically to S− := {θ ∈ C :�(θ) ∈ (−∞,−θ)}. Denoting these ana-
lytical extensions also by �+(q, ·) and �−(q, ·)/q the Wiener–Hopf factoriza-
tion (4.3) continues to hold for all θ in the strip S .

4.2. Wiener–Hopf factorization under the Esscher-transform. In order to es-
tablish that �+(q, s) admits an analytical extension in q as stated in the Introduc-
tion, we first provide a “change-of-variable” formula relating �+ to its counter-
parts under Esscher-transforms of P . We recall that the Esscher transform P

(θ)
x of

the probability measure Px for x ∈ R
+ and θ ∈ � := {θ ∈ R :ψ(θ) < ∞} is the

probability measure that is absolutely continuous with respect to Px with Radon–
Nikodym derivative on Ft given by

dP
(θ)
x

dPx

∣∣∣∣
Ft

= exp
(
θ(Xt − x) − tψ(θ)

)
, θ ∈ �,x ∈ R

+.

Under the measure P
(θ)
x , the process X −X0 is still a Lévy process with a Laplace

exponent ψ(θ) that is given in terms of ψ by

ψ(θ)(s) = ψ(s + θ) − ψ(θ), s + θ ∈ �,(4.5)

and with a positive Wiener–Hopf factor denoted by �+
θ .

LEMMA 4.1. For any q ∈ R
+ and θ ∈ � with ψ(θ) < q , we have

�+(q, s) = �+
θ (q − ψ(θ), s + iθ)

�+
θ (q − ψ(θ),iθ)

,

(4.6)

�−(q, s) = �−
θ (q − ψ(θ), s + iθ)

�−
θ (q − ψ(θ),iθ)

,

for s ∈ S+ and s ∈ S−, respectively. In particular, we have for any q ∈ R
+ and

λ ∈ (0, λ∗]
�±(q, s) = �±

r (q + λ, s + ir)

�±
r (q + λ,ir)

, r = φ̄(−λ),(4.7)

for s ∈ S+ and s ∈ S−, respectively.
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PROOF. By changing measure from P to P (θ), we find with ζ = q − ψ(θ)

�+(q, s) =
∫ ∞

0
qe−qtE

[
eisX∗

t
]
dt = q

ζ

∫ ∞
0

ζe−ζ tE(θ)[e−θXt eisX∗
t
]
dt

= q

ζ
E(θ)[e−θ

(
Xe(ζ )−X∗

e(ζ )

)
ei(s+iθ)X∗

e(ζ )
]

= q

ζ
E(θ)[e−θ

(
Xe(ζ )−X∗

e(ζ )

)]
E(θ)[ei(s+iθ)X∗

e(ζ )
]

= q

ζ
�−

θ (ζ,iθ)�+
θ (ζ, s + iθ) = �+

θ (ζ,iθ)−1�+
θ (ζ, s + iθ),

where we used the probabilistic form of the Wiener–Hopf factorization of X and
the form (4.5) of ψθ in the third and fourth lines. The identity concerning �− is
derived in an analogous manner. Finally, equality (4.7) follows by taking θ = r in
(4.6). �

LEMMA 4.2. The functions �+(u, v) and �−(u,w) can be uniquely extended
by analytical continuation and continuous extension to the respective domains

V+ := {
(u, v) ∈ C

2 :�(u) ≥ −λ∗,�(v) ≥ −θ∗} \ {(−λ∗,−iθ∗)}
,

V− := {
(u,w) ∈ C

2 :�(u) ≥ −λ∗,�(w) ≤ 0
}
.

In particular, denoting these extensions again by �+ and �− we have continuity
in λ of �+(−λ,iu) on (0, λ∗] for each u ∈R

+ and it holds

�+(−λ,iu) = �+
r (0,i(u + r))

�+
r (0,ir)

, r = φ̄(−λ),λ ∈ (
0, λ∗)

,(4.8)

λ

λ + �(u)
= �+(−λ,u)�−(−λ,u), λ ∈ (0, λ∗].(4.9)

PROOF. The Wiener–Hopf factor �+(q, s) is well known to be holomorphic
and nonzero on the domain D := {(q, s) ∈ C

2 :�(q) > 0,�(s) > 0} and continu-
ous on the closure D. The identity in (4.6) implies that at any (q, s) ∈ D the power
series in (q, s) of �+(q, s) and L(q, s) := �+

θ∗(q − ψ(θ∗), s + iθ∗)/�+
θ∗(q −

ψ(θ∗),iθ∗) are equal. Since L is holomorphic on the interior of V+ and continu-
ous on V

+, it follows that the function �+(q, s) can be uniquely extended by ana-
lytical continuation and continuous extension to the set V+. In particular, it follows
that the function λ �→ �+(−λ,iθ) is continuous on (0, λ∗], and we have consis-
tency with (4.8) by construction of the extension. The proof of the extension of �−
to V

− is similar and omitted. By multiplying the functions in (4.7) with q = −λ

and using the form of �−
r (0, θ)/0 [see (4.4)], it follows that the product in the

right-hand side of (4.9) is equal to {−�r(u + ir)}−1{−�r(ir)} = λ/[�(u) + λ]
[in view of (4.5)]. �
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5. Proof of Theorem 2.6. We show first that μ̂λ is the Laplace transform
of a probability measure μλ and identify this measure in terms of the invariant
distribution of the reflected process Z := X − X∗ ∧ 0 (with x ∧ 0 = min{x,0} for
x ∈ R) under a certain Esscher transform.

We recall that, since Zt and X∗
t have the same distribution under P0 for each

fixed t ≥ 0 (by the time-reversal property of Lévy processes, e.g., Bertoin [5],
Proposition VI.3) and, under Assumption 2.5, X∗

t converges to an almost surely
finite limit X∗∞ as t → ∞, the limit P(Z∞ ∈ dx) := limt→∞ P0(Zt ∈ dx) is well
defined and has characteristic function �+(0, θ) = E[exp(iθX∗∞)]. It is straight-
forward to verify that the measure P(Z∞ ∈ dx) is the unique invariant probability
distribution of the reflected process Z.

For any λ ∈ (0, λ∗), we specify the measure μλ on (R+,B(R+)) by

μλ(dx) = cr · r exp(−rx)P (r)(Z∞ ≤ x)dx, x ∈ R
+, with

(5.1)
cr = 1/E(r)[exp(−rZ∞)

]
, r = φ̄(−λ),

where φ̄ denotes the inverse of the Laplace exponent as described above, and where
we used that the mean E(r)[X1] of X is strictly negative under P (r). Here, the
normalising constant cr is such that any of the measures μλ has unit mass. We also
define a measure μλ∗ as the limit in distribution of μλ for λ ↗ λ∗ [the existence of
this limit is verified in Lemma 5.1(ii)]. We next verify that the function μ̂λ defined
in (2.10) is equal to the Laplace transform of the measure μλ.

LEMMA 5.1. (i) For any λ ∈ (0, λ∗), the Laplace transform of μλ is given by∫ ∞
0

e−θxμλ(dx) = φ̄(−λ)

φ̄(−λ) + θ
· �+

r (0,i(θ + r))

�+
r (0,ir)

, r = φ̄(−λ) and(5.2)

�+(−λ,iθ) = �+
r (0,i(θ + r))

�+
r (0,ir)

,(5.3)

where φ̄ denotes the inverse of the Laplace exponent as described above.
(ii) μ̂λ∗ := limλ↗λ∗ μ̂λ is the Laplace transform of a probability measure and

μ̂λ∗ = φ̄(−λ∗)
φ̄(−λ∗) + θ

· �+(−λ∗,iθ
)
.(5.4)

PROOF. (i) It is straightforward to verify from (5.1) that μλ is equal to a con-
volution

μλ(dx) = cr

∫
[0,x]

r exp
(−r(x − y)

)
E(r)[exp(−rZ∞)I{Z∞∈dy}

]
dx,

(5.5)
x ∈ R

+, r = φ̄(−λ),

so that we obtain the expression (2.10) by taking Laplace transform in x in (5.5).
Equation (5.3) directly follows from Lemma 4.2.
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(ii) As φ̄(−λ) and λ �→ �+(−λ,iθ) are continuous on (0, λ∗], we have thus
from (2.10) and (4.8) that μ̂λ(θ) converges to the expression on the right-hand
side of (5.4) as λ ↗ λ∗, for any θ ∈ R

+. Since μ̂λ∗(0) → 1 when θ ↘ 0, the
continuity theorem (e.g., Feller [16], Theorem XIII.1.2) implies that μ̂λ∗ is the
Laplace transform of a probability measure, μλ∗ say, and μλ converges weakly
to μλ∗ . �

We next establish for any λ ∈ (0, λ∗] the λ-invariance of the measure μλ for the
killed process {Xt, t < τX

0 } by deriving the joint asymptotic distribution of Zt and
X∗(t), under the initial distribution μλ, as t tends to infinity, conditional on X∗(t)
being positive, and identifying the asymptotic marginal distribution corresponding
to X∗(t) as exponential.

PROPOSITION 5.2. Let λ ∈ (0, λ∗], r = φ̄(−λ) and θ, η ∈R
+.

(i) As t → ∞, P μλ(X∗(t) ≥ y|X∗(t) ≥ 0) → e−ry for y ∈ R
+, and we have

Eμλ
[
e−θZt−ηX∗(t)|X∗(t) ≥ 0

] −→ �+(−λ, θ) · φ̄(−λ)

φ̄(−λ) + η + θ
,(5.6)

eλtP μλ
(
X∗(t) ≥ 0

) −→ 1.(5.7)

(ii) The probability measure μλ is a λ-invariant distribution for {Xt, t < τX
0 }.

PROOF. (i) We consider first the case λ ∈ (0, λ∗). We find by inserting the
definition (5.1) of μλ, changing measure from P to the Esscher transform P (r)

and interchanging the order of integration (justified by Fubini’s theorem)

Eμλ
[
e−θZt−ηX∗(t)1{X∗(t)≥0}

]
=

∫
R+

∫
[0,x]

re−rxcrP
(r)(Z∞ ∈ dy)E0

[
e−θ(Zt+x)−η

(
X∗(t)+x

)
1{X∗(t)≥−x}

]
dx

= cr

∫
R+

∫
[0,x]

re−(r+η+θ)xP (r)(Z∞ ∈ dy)e−λt

× E
(r)
0

[
e−(θ+r)Zt−(η+r)X∗(t)1{X∗(t)≥−x}

]
dx

= e−λt(5.8)

× cr

∫
R+

∫ ∞
y

re−(r+η+θ)x

× E
(r)
0

[
e−(θ+r)Zt−(η+r)X∗(t)1{X∗(t)≥−x}

]
dx P (r)(Z∞ ∈ dy)

= e−λt · r

r + η + θ

×
∫
R+

crE
(r)
0

[
e−(θ+r)Zt−(η+r)

{(
y+X∗(t)

)∨0
}]

P (r)(Z∞ ∈ dy),
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for θ ∈ R
+, with x ∨ 0 = max{x,0} for x ∈ R

+ and, as before, cr =
1/E(r)[exp(−rZ∞)] and r = φ̄(−λ). Since the integrand in (5.8) tends to
crE

(r)
0 [e−(r+θ)Z∞] when t tends to infinity [which is equal to �+(−λ,iθ)

by (4.8)], we deduce by an application of Lebesgue’s dominated convergence
theorem that also the integral tends to this constant. Taking η = θ = 0 in (5.8)
yields (5.7), and subsequently dividing (5.8) by P μλ(X∗(t) ≥ 0) yields (5.6). Fi-
nally, we note that the first assertion in (i) is a direct consequence of the continuity
theorem (e.g., Feller [16], Theorem XIII.1.2) and (5.6) (with θ = 0).

The case λ = λ∗ can be treated by following the line of reasoning in the previous
paragraph, replacing throughout the measure 1R+(y)cre−ryP r(Z∞ ∈ dy) by the
one with Laplace transform �+(−λ∗,iθ).

(ii) The continuity theorem and (5.6) (with η = 0) implies that we have
Eμλ[f (Xt)|X∗(t) ≥ 0] → ∫

R+ f (x)μλ(dx) as t → ∞ for any continuous bounded
function f on R

+. The Skorokhod embedding theorem implies that this conver-
gence remains valid for any function f that is bounded and continuous on R

+ \ C

with C a countable set, which satisfies μλ(C) = 0 by absolutely continuity of μλ.
Thus, by the Markov property and (5.7) we have for t, θ ∈ R

+

Eμλ
[
e−θXt 1{X∗(t)≥0}

]
= lim

s→∞ eλs
∫
R+

Ex

[
e−θXt 1{X∗(t)≥0}

]
P μλ

(
Xs ∈ dx,X∗(s) ≥ 0

)
(5.9)

= lim
s→∞ eλsEμλ

[
e−θXt+s 1{X∗(t+s)≥0}

]
= e−λt lim

s→∞Eμλ
[
e−θXt+s |X∗(t + s) ≥ 0

] = e−λt · μ̂λ(θ).

Inverting Laplace transforms on the left-hand side and right-hand side of (5.9)
shows that the measure μλ satisfies (2.6) in Definition 2.4, and the proof is com-
plete. �

With the above results in hand, we now move to the question of uniqueness of
the quasi-invariant distributions.

PROPOSITION 5.3. For any λ in the interval (0, λ∗], there exists a unique
probability measure on (R+,B(R+)) that satisfies the relation

μ(A) = q + λ

q
P μ[

Xe(q) ∈ A,e(q) < τX
0

]
, A ∈ B

(
R

+)
, q > 0.(5.10)

The proof rests on a contraction argument.

PROOF OF PROPOSITION 5.3. Again we consider first the case λ ∈ (0, λ∗).
By changing measure from P to the Esscher transform P (θ∗), the right-hand side
of (5.10) can be expressed as∫

R+

∫
R+

(q + λ)e−qte−λ∗tE(θ∗)
x

[
e−θ∗(Xt−x)1{t<τX

0 }
]
dt μ(dx).
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Denote by M the collection of measures m on the measure space (R+,B(R+))

that satisfy the conditions

the measure m̃ given by m̃(dx) := e−θ∗xm(dx) satisfies m̃
(
R

+) = 1, and(5.11) ∫
R+

Px

(
e(q) < τX

0
)
m̃(dx) = q

q + λ
.(5.12)

The set M is nonempty as it contains the measure mλ := eθ∗xμλ(dx) (which
is the case since μλ is a λ-invariant distribution of {Xt, t < τX

0 } by Proposi-
tion 5.2). Furthermore, M is a closed subset of the space P∗ of measures m

on R
+ satisfying the integrability condition

∫
R+ e−θ∗xm(dx) < ∞, which is a

Banach space under the norm given by ‖π − π ′‖ := supϒ |π(f ) − π ′(f )| with
ϒ := {f ∈ L0(R+) : |f (x)| ≤ e−θ∗x ∀x ∈ R

+} which is contained in the set
L0(R+) of real-valued Borel-functions with domain R

+.
Next, we let H be the operator H :M → P∗ given by

(Hm)(A) = q + λ

q∗
∫
R+

∫
R+

q∗e−q∗tP (θ∗)
x

(
Xt ∈ A, t < τX

0
)

dt m(dx),

(5.13)
A ∈ B

(
R

+)
,m ∈ M,

where q∗ = q + λ∗. We note that any λ-invariant distribution μ of {Xt, t < τX
0 }

gives rise to a fixed point of H in M: denoting by m∗ the Borel measure on
R

+ given by m∗(dx) = eθ∗xμ(dx), it is straightforward to verify by a change-
of-measure argument that the equality in (5.10) can be equivalently rephrased as
m∗ = Hm∗. We show next that the operator H is a contraction on M.

First, we verify that H maps M to itself. Indeed, for any m ∈ M, the measure
m′ on R

+ given by m′(dx) = e−θ∗x(Hm)(dx) (a) has unit mass and (b) satisfies the
condition in (5.12). To see that (a) holds we observe that, by changing the measure
back from P (θ∗) to P , we get

m′(A) = q + λ

q
P m̃(

Xe(q) ∈ A,e(q) < τX
0

) = P m̃(
Xe(q) ∈ A|e(q) < τX

0
)
,

with the measure m̃ defined in (5.11), where the second equality follows
from (5.12). Furthermore, an application of the Markov property shows

P m′(
τX

0 > e(q)
) = Em̃[

PXe(q)

(
τX

0 > e(q)
)|τX

0 > e(q)
]

= P m̃(
τX

0 > e(q) + e′(q)|τX
0 > e(q)

)
= P m̃(

τX
0 > e′(q)

) = q

q + λ
,

where e′(q) and e(q) denote independent Exp(q)-random times that are indepen-
dent of X, and where the second line holds as τX

0 ∼ Exp(λ) under P m̃ [since m̃

satisfies (5.12)]. Hence, also property (b) holds true.
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Second, we note that the definition of H yields the estimate

‖Hm1 −Hm2‖ ≤ q + λ

q∗ ‖m1 − m2‖ < ‖m1 − m2‖, m1,m2 ∈ M,

where in the second inequality we used that q + λ is strictly smaller than q∗.
Thus, an application of Banach’s contraction theorem shows that there exists a

unique measure π∗ in M that satisfies the relation π∗ = Hπ∗, which implies the
asserted uniqueness for λ ∈ (0, λ∗).

We next consider the boundary case λ = λ∗. The proof in this case follows
by a modification of above argument. Since the function v → �(−iv) is ana-
lytic in a neighbourhood of θ∗ in the complex plane and −λ∗ = �(−iθ∗), and
nonconstant analytic functions map open sets to open sets, it follows that for any
sufficiently small ε > 0 and any λε satisfying λε − λ∗ ∈ (0, ε] there exists an υ in
a neighbourhood of θ∗ in the complex plane such that �(−iυ) = −λε . Fix such
an ε and a corresponding λε and υ = υε . By repeating above argument, replac-
ing the Esscher-transform P (θ∗) by the complex-valued change of measure P (υε),
we find that the corresponding map Hε [defined by the right-hand side of (5.13)
with (λ∗, θ∗) replaced by (λε, υε)] is still a contraction but now on the set Mε

of complex valued measures m = m1 + im2 satisfying the condition m̃(R+) = 1
and (5.12) with the Borel-measure m̃ on R

+ now given by m̃(dx) = e−υεxm(dx).
Specifically, Hε is a contraction in the Banach space Pε of complex valued mea-

sures m satisfying the condition | ∫
R+ e−υεxm(dx)| < ∞, with respect to the norm

‖π − π ′‖ε := supϒε
|π(f ) − π ′(f )| where the supremum is taken over the subset

ϒε := {f ∈ L0(C) : |f (x)| ≤ |e−υεx | ∀x ∈ R
+} of the set L0(C) of complex-valued

Borel functions with domain R
+. Thus, also in the case λ = λ∗, Banach’s contrac-

tion theorem yields the existence of a unique probability measure satisfying (5.10),
and the proof is complete. �

PROOF OF THEOREM 2.6. Let λ in (0, λ∗] be arbitrary. In Lemma 5.1 it is
shown that μλ is the Laplace transform of the probability measure μλ. Further-
more, it follows by combining Propositions 5.2 and 5.3 that the probability mea-
sure μλ is the unique λ-invariant distribution for the process {Xt, t < τX

0 }. �

6. Mixed-exponential Lévy processes. We next identify explicitly the quasi-
invariant distributions for the class of mixed-exponential Lévy processes that are
killed upon first entrance into the negative half-axis. We recall that a mixed-
exponential Lévy process X = {Xt, t ∈ R

+} is a jump-diffusion given by

Xt = X0 + ηt + σWt +
Nt∑

j=1

Uj , t ∈R
+,(6.1)

where W is a Wiener process, η ∈ R and σ > 0 denote the drift and the volatility,
and N is a Poisson process with rate � that is independent of W . The series (Uj )j∈N
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consists of IID random variables that are independent of W and N and follow a
double-mixed-exponential distribution, which is a probability distribution on R

with PDF given by

f (x) = pf+(x) + (1 − p)f−(x)

with f±(x) =
m±∑
k=1

a±
k α±

k e−α±
k |x|1R+(±x), x ∈ R,

where p is a number in the unit interval [0,1] and f+ and f− are themselves prob-
ability density functions that are linear combinations of m+ and m− exponentials,
respectively, with real-valued weights a+

1 , . . . , am+ and a−
1 , . . . , a−

m− and strictly
positive parameters α+

1 , . . . , α+
m+ and α−

1 , . . . , α−
m− . To ensure that the functions

f+ and f− are PDFs the parameters {a±
k , k = 1, . . . ,m±} need to satisfy certain

restrictions; necessary and sufficient conditions for f+ and f− to be PDFs are

p±
1 > 0,

m±∑
k=1

p±
k α±

k ≥ 0 and
l∑

k=1

p±
k α±

k ≥ 0 ∀l = 1, . . . ,m±,

respectively (see Bartholomew [4]).
The characteristic exponent of the Lévy process X − X0 is given by

�(θ) = −σ 2

2
θ2 + iηθ + �p

m+∑
k=1

a+
k

iθ

α+
k − iθ

− �(1 − p)

m−∑
j=1

a−
j

θi

α−
j + θi

.

As the function � is rational, it admits an analytical continuation to the comple-
ment in the complex plane of the finite set {−iα+

1 , . . . ,−iα+
m+,iα−

1 , . . . ,iα−
m−},

which is again denoted by � . The mixed-exponential Lévy process satisfies As-
sumption 2.5 precisely if the parameters satisfy the restriction

ψ ′(0) = η + �p

m+∑
k=1

a+
k

α+
k

− �(1 − p)

m−∑
k=1

a−
k

α−
k

< 0.(6.2)

The Wiener–Hopf factors associated to X are given by (from Lewis and
Mordecki [26])

�+(q, θ) = 1

(1 − iθ/(ρ+
0 (q)))

m+∏
k=1

(1 − iθ/α+
k )

(1 − iθ/(ρ+
k (q)))

,

(6.3)

�−(q, θ) = 1

(1 − iθ/(ρ−
0 (q)))

m−∏
k=1

(1 + iθ/α−
k )

(1 − iθ/(ρ−
k (q)))

,

for q > 0, where ρ+
k (q), k = 0, . . . ,m+, and ρ−

j (q), j = 0, . . . ,m−, are the roots
of the Cramér–Lundberg equation

�(−iθ) − q = 0(6.4)
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with positive and negative real parts, respectively (where multiple roots are listed
as many times as their multiplicity). By analytical continuation and continuous
extension it follows that the expressions in (6.3) remains valid for q ∈ [−λ∗,0].
The quasi-invariant distributions are expressed in terms of these ingredients as
follows.

PROPOSITION 6.1. For any λ ∈ (0, λ∗]

μ̂λ(θ) = φ̄(−λ)

φ̄(−λ) + θ
· ρ+

0 (−λ)

ρ+
0 (−λ) + θ

m+∏
j=1

(1 + θ/α+
j )

(1 + θ/(ρ+
j (−λ)))

(6.5)

is the Laplace transform of the λ-invariant probability distribution μλ of {Xt, t <

τX
0 }, where ρ+

k (−λ), k = 0, . . . ,m+, denote the roots ρ of �(−iρ) = −λ with
�(ρ) > φ̄(−λ).

In the Appendix, we present a self-contained proof of the λ-invariance of μλ

based on residue calculus.

REMARK 6.2. In the case that the roots ρ+
k (−λ) are all distinct the probabil-

ity measure μλ is a mixed-exponential distribution that can be obtained from the
Laplace transform μ̂λ by partial fraction decomposition and termwise inversion:

μλ(dx) = 1R+(x) · mλ(x)dx,
(6.6)

mλ(x) = A−
0 φ̄(−λ)e−φ̄(−λ)x +

m+∑
k=0

A+
k ρ+

k (−λ)e−ρ+
k (−λ)x.

Here, the constants A+
k , k = 0, . . . ,m+, and A−

0 := A+
−1 are given by

A+
k =

(
1 − ρ+

k (−λ)

α+
k

)
·

m+∏
j=−1,j �=k

(1 − ρ+
k (−λ)/α+

j )

(1 − ρ+
k (−λ)/(ρ+

j (−λ)))
,(6.7)

where ρ+
−1(−λ) := φ̄(−λ) and the constants α+

−1 and α+
0 are to be taken equal to

+∞ [so that the factors (1 + ρ+
k (−λ)/α+

0 ) and (1 + ρ+
k (−λ)/α+

−1) in the product
are equal to 1].

REMARK 6.3. The class of mixed-exponential Lévy processes is dense in the
class of all Lévy processes [in the sense of weak convergence in the Skorokhod
topology J1 on the Skorokhod space D(R)], which can be seen as follows. It is
well known (see, e.g., Jacod and Shiryaev [19], Corollary VII.3.6) that a sequence
of Lévy processes converges weakly precisely if the values at time t = 1 con-
verge in distribution. The corresponding infinitely divisible distributions may be
approximated arbitrarily closely by a sequence of compound Poisson distributions
CP(Fn, �n) where the distributions Fn may be chosen to be double-mixed exponen-
tial distributions as the latter form a dense class in the sense of weak convergence
in the set of all probability distributions on the real line (see Botta and Harris [8]).
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7. Application to credit-risk modelling. With the results on inverse first-
passage time problems in hand, we next turn to an application of these results
to the problem of counterparty risk valuation. As noted in the Introduction, in the
structural approach that was initially proposed by Black and Cox [6] the time of
default of a firm is defined as the first epoch that the value of the firm falls be-
low the value of its debt, which in the setting of [6] is equal to the hitting time of
a geometric Brownian motion to some level. Subsequent studies such as [3, 18]
present stylized “default barrier models” for the time of default as the epoch of
first-passage of a stochastic process over a default barrier.

A credit default swap (CDS) is a commonly traded financial contract that pro-
vides insurance against the event that a specific company defaults on its financial
obligations. An important problem for a financial institution is to ensure that the
model-values of traded credit derivatives (such as the CDS) that are recorded in its
books are consistent with market quotes. In a default-barrier model for the value
of the CDS, one is led to the inverse problem of identifying the boundary that will
equate model- and market-values.

Apart from featuring in the valuation of credit derivatives such as the CDS, the
credit risk of a company may also affect the value of other assets in the portfolio,
especially in the cases where the company in question acts as counterparty in a
trade. The quantification of this type of risk, named counterparty risk, requires the
joint modelling of asset values and the risk of default of the company in question
(see Cesari et al. [10] for background on counterparty risk). Various aspects of the
modelling of counterparty risk in default barrier models have been investigated,
for instance, in [7, 9, 15, 27, 28, 31]; in these papers, the model and market quotes
are matched by calibration of the model parameters. Next, we present an explicit
example of the valuation of a call option under counterparty risk in a default-barrier
model that is by construction consistent with a given risk-neutral probability of
default, using the solution to the RIFPT problem given in Corollary 2.7.

7.1. Valuation of a call option under counterparty risk. This problem involves
three entities, a company A, whose stock price is denoted by St , a bank B and the
bank’s counterparty C. The problem under consideration is the fair valuation of
the counterparty risk to B resulting from a transaction in which C has sold to B a
European call option on the stock of company A. We consider the situation where
only C is default risky while A and B are free of default risk—in the finance
literature the call option is in this case referred to as a vulnerable call option (first
labelled such by Johnson and Stultz [22]; see also Jarrow and Turnbull [21] for
an application to zero-coupon bond valuation). Then B , as the owner of the call
option, is exposed to counterparty risk, namely the potential loss that is incurred if
its counterparty C goes into default before the maturity T of the call option, and
fails to deliver the pay-off of the call option. If τ denotes the epoch of default of C,
then the fair value π of the potential loss of the holder of the option (discounted to
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time 0 at the risk-free rate r) and the so-called expected positive exposure Pt are
given by

� = E[Vτ 1{τ≤T }],(7.1)

Pt = E[Vτ |τ = t], t ∈ [0, T ],(7.2)

where Vτ denotes the value at time τ of a T -maturity call-option with strike K on
the value of stock, discounted to time 0:

Vτ = e−rτE
[
e−r(T −τ)(ST − K)+|Fτ

]
.(7.3)

The conditional expectation in (7.2) is understood as the regular version of the
conditional expectation E[Vτ |τ ] [under Assumption 7.1(iii) below this conditional
expectation can just be defined in the usual way for continuous random variables].
We will phrase the model in terms of two independent Lévy processes X and Z

satisfying Assumption 2.5. Throughout this section, we work under the following
additional assumptions.

ASSUMPTION 7.1. (i) We have θX < −1, θX > 1 + α, θZ > 1 + α for some
α > 0.

(ii) The CDF H has a continuous density h, and satisfies H(T ) > 0 and λ∗
X >

− logH(T )/H(T ), where λ∗
X denotes the maximizer in (2.7).

(iii) For any x > 0, there exists a collection of measures {pt,x(dy), t ∈ R
+} on

(R−,B(R−)) satisfying pt,x(dy)dt = P(XτX−x
∈ dy, τX−x ∈ dt).

Let the credit-worthiness of the counterparty C be described by the distance-
to-default Y , in the sense that the default of C occurs at the first moment that the
process Y falls below the level 0. We assume that the process Y is given in terms
of X by

Yt = Y0 + XI(t), I (t) = IμX

λ0
(t) = T · logH(t)

logH(T )
, t ∈ [0, T ],(7.4)

Y0 ∼ μX
λ0, λ0 = −T −1 · logH(T ),(7.5)

where, as before, Y0 is independent of X and μX
λ0 denotes the λ0-invariant distribu-

tion of {Xt, t < τX
0 }. Here, we have chosen λ0 so as to normalise the ratio I (T )/T

to unity. Note that the CDF of the first-passage time τY
0 of the process Y defined

in (7.4) is given by H [in view of Corollary 2.7 and Assumption 7.1(ii)].
In the case that the price process S is independent of credit index process Y ,

we note that the expectation in (7.1) is just equal to the integral of the expectation
E[Vt ] against the measure H(dt). Next, we consider an instance of the comple-
mentary case that S and Y are dependent. More specifically, we assume that S is
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given by⎧⎪⎨⎪⎩
St = S0 exp

{
(r − d)t + Lt − κt,I (t)(−i)

}
, t ∈ [0, T ], S0 > 0,

Lt = ρXI(t) + Zt, ρ ∈ [−1,1],
κt1,t2(u) = �Z(u)t1 + �X(uρ)t2, �(u) ∈ [−1 − α,0],

(7.6)

where �Z and �X denote the characteristic exponents of the Lévy processes X

and Z and r and d denote the risk-free rate and the dividend yield, respectively.
The degree of dependence between the stock price process S and the credit index
process Y is controlled by the parameter ρ. Note that κt has been specified such
that the discounted stock-price process with reinvested dividends e−rt [edtSt ] is a
martingale. In the following result, a semi-analytical expression is derived for π

and P(t) in terms of an inverse Fourier-transform F−1
ξ and an inverse Laplace-

transform L−1
q with respect to ξ and q , respectively.

PROPOSITION 7.2. The values π and Pt , t ∈ [0, T ], are given by

� =
∫ T

0
N(t)

h(t)

λ0H(t)
dt, Pt = N(t)

λ0H(t)
,(7.7)

N(t) = erT F−1
ξ

(
Dt,T (u)Ct(u)

)
(k), u = 1 + α + iξ,(7.8)

Ct(u) = (
λ0H(t)

)−1 exp
{
(r − t)tu − κt,I (t)(−i)u + �Z(−iu)t

}
(7.9)

×L−1
q

(
fρu(q)

)
(t),

Dt,T (u) = exp{κT,I (T )(−iu) − κt,I (t)(−iu)}
u(u − 1)

,(7.10)

with k = logK/c′, c′ = exp(−rT + (r − d)(T − t) − κT (−i) + κt (−i)).

The proof relies on the following auxiliary result:

LEMMA 7.3. For any u with �(u) ∈ [0, θX) and t ∈ [0, T ] we have, with
τ = τY

0 ,

E
[
euXI(τ) |τ = t

] = 1

λ0H(t)
L−1

q

(
fu(q)

)(
I (t)

)
,

(7.11)

fu(q) =
∫
R+

μX
λ0(dx)E

[
e
uX

τX−x
−qτX−x ]

.

In particular, for u satisfying in addition �(u) ∈ [0, θZ ∧ θX/ρ) we have

E
[
Su

τ |τ = t
]

= Su
0

λ0H(t)
(7.12)

× exp
{
(r − d)tu − κt (−i)u + �Z(−iu)t

} · (
L−1

q fρu(q)
)
(t).
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The function fu(q) can be explicitly expressed in terms of the Wiener–Hopf
factor �− of X and μX

λ0 by deploying the Pečerskiı̆–Rogozin identity [see the ex-
pression (A.6) in the Appendix].

PROOF OF LEMMA 7.3. The spatial homogeneity of the Lévy process
X and the definition of the stopping time τ yield P(XI(τ) ∈ dy, τ ∈ dt) =∫

μ(dx)P (XτX−x
∈ dy, τX−x ∈ dI (t)). Since the CDF of τY

0 is given by H , it fol-
lows thus by Bayes’ lemma that the conditional expectation in the left-hand side
of (7.11) can be expressed as

E
[
euXI(τ) |τ = t

] = 1

h(t)

∫
R+

μX
λ0(dx)

∫
R

euxpI (t),x(dy)I ′(t).(7.13)

The form of the derivative I ′(t) = h(t)/[λ0H(t)] then implies that the right-hand
side of (7.13) and (7.11) are equal. The identity in (7.12) follows now as a direct
consequence of the form of S in given in (7.6) and the independence of Z and τ .

�

PROOF OF PROPOSITION 7.2. Note first that the form of π is obtained by inte-
grating Pt against h(t) over the interval [0, T ], performing the change of variables
u = I (t) and using the observation I ′(t) = h(t)/[λH(t)].

The independence of the increments of logS implies

Pt = E
[
Gτ,Sτ (k)|τ = t

]
, Gt,s(k) = s ′e−rT · E[(

eLT −Lt − ek)+]
,

s′ = sc′, c′ = exp
(
(r − d)(T − t) − κT (−i) + κt (−i)

)
, k = log

(
K/s′).

By a standard Fourier transform argument, it can be shown that Gt,s(k) admits
an explicit integral representation in terms of the characteristic exponents of X

and Z. More specifically, since the dampened function k �→ exp(αk) · Gt,s(k) and
its Fourier transform are integrable, the Fourier inversion theorem implies

Gt,s(k) = exp(−αk)
[
F−1

ξ

(
G∧

t,s

)]
(k),

(7.14)
G∧

t,s(ξ) = s′ · Dt,T (1 + α + iξ), ξ ∈ R,

where Dt,T (1 + α + iξ) is given in (7.10). By an interchange of the expectation
and integration (justified by Fubini’s theorem), we find that Pt , t ∈ [0, T ], is equal
to

Pt = c′

2π

∫
R

E
[
S1+α+iξ

τ |τ = t
] ·

(
K

c′
)−α−iξ

Dt,T (1 + α + iξ)dξ.(7.15)

The expression for Pt in (7.8) then follows by inserting the expression in (7.12) in
Lemma 7.3. �
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7.2. Extensions. We end this section with a brief description of a number of
possible extensions and related problems in the current model setting. First, we
mention that, in addition to the case of the call option that was considered above, it
is of interest to value the counterparty risk for other instances of commonly traded
securities in foreign exchange, fixed income, equity or commodity markets, such
as swap contracts which are contracts involving regular payments of both parties
that entered into the contract. Second, we recall that in the setting above it was
assumed that parties A (the company that issued the stock) and B (the bank) were
free of default risk. The case where two of three or all three parties are subject
to default is a natural extension that is applicable in many situations. Such an ex-
tension may still be treated in the current setting deploying the solution of the
multi-dimensional IFPT in Theorem 3.1. Finally, especially of interest to financial
market practitioners will be the development of an efficient numerical implemen-
tation of the model. In the interest of brevity, these questions are left for future
research.

APPENDIX: PROOF OF QUASI-INVARIANCE BY RESIDUE CALCULUS

In this section, we provide an alternative proof of the λ-invariance of the prob-
ability measure μλ in the case that X is a mixed-exponential Lévy process. We
observe first (in Proposition A.2) that a probability measure μ is a λ-invariant
distribution of {Xt, t < τX

0 } precisely if its Laplace transform μ̂ satisfies the iden-
tity

μ̂(θ) · q

q + λ
= �+(q,iθ) · 1

2πi

∫ a+i∞
a−i∞

μ̂(−u)�−(q,−iu)
du

u + θ
,

(A.1)
q > 0.

By an application of Cauchy’s residue theorem, we verify subsequently that the
Laplace transform μ̂λ given in (6.5) satisfies the identity in (A.1) for any fixed
q > 0.

For the ease of presentation, we restrict to the case that both the roots ρ of the
equation �(−iρ) = −λ and those of the equation �(−iρ) = q are distinct; the
case of multiple roots can be dealt with by similar arguments.

A.1. Integral identity. We give next an expression in terms of a Bromwich-
type integral for the Laplace transform of X(e(q)) on the set {X∗(e(q)) ≥ 0} un-
der a given initial distribution μ and use this to derive an integral equation satis-
fied by the Laplace transform of a λ-invariant distribution. To derive these expres-
sions, we first express the Laplace transform of the function Kθ,q :R+ → R given
by

Kθ,q(x) = Ex

[
e−θX

(
e(q)

)
1{τX

0 >e(q)}
]
, x ∈ R

+,

for given positive q and θ , in terms of the Wiener–Hopf factors �+ and �−.
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LEMMA A.1. (i) For θ, q > 0 and x ∈ R
+ we have

Kθ,q(x) = �+(q,iθ) · E0
[
e−θX∗

(
e(q)

)
1{X∗(e(q))≥−x}

]
.(A.2)

(ii) The Laplace transform K̂θ,q of Kθ,q is given by

K̂θ,q(u) = �+(q,iθ)�−(q,−iu)

θ + u
, u ∈ R

+.(A.3)

PROOF. (i) The independence of the random variables (X − X∗)(e(q)) and
X∗(e(q)) under P0 (from the probabilistic form of the Wiener–Hopf factorization)
and the fact that the events {τX

0 > e(q)} and {X∗(e(q)) ≥ 0} are equal Px -a.s. for
any nonnegative x [i.e., the probability Px(�) of the difference � of these two sets
is 0] imply that we have

Kθ,q(x) = Ex

[
e−θX

(
e(q)

)
1{τX

0 >e(q)}
] = e−θxE0

[
e−θX

(
e(q)

)
1{X∗(e(q))≥−x}

]
= e−θxE0

[
e−θ

{
(X−X∗)

(
e(q)

)+X∗
(
e(q)

)}
1{X∗(e(q))≥−x}

]
= e−θxE0

[
e−θ(X−X∗)

(
e(q)

)]
E0

[
e−θX∗

(
e(q)

)
1{X∗(e(q))≥−x}

]
for any nonnegative real x, which yields (A.2) in view of the fact that the Laplace
transform of (X − X∗)(e(q)) is given by �+(q,iθ).

(ii) In view of (A.2), the Laplace transform K̂θ,q is equal to

K̂θ,q(u) = �+(q,iθ)E0

[∫ ∞
0

e−(u+θ)xe−θX∗
(
e(q)

)
1{X∗(e(q))≥−x} dx

]
= �+(q,iθ)E0

[
e−θX∗

(
e(q)

) ∫ ∞
−X∗(e(q))

e−(u+θ)x dx

]

= �+(q,iθ)
1

θ + u
E0

[
euX∗

(
e(q)

)]
, u ∈ R

+,

which yields (A.3) by definition of the Wiener–Hopf factor �−. �

PROPOSITION A.2. Let μ be a probability measure on R
+ \{0} without atoms

and denote by μ̂ its Laplace transform. Assume that there are c > 0, C > 0 and
a ∈ �o satisfying μ̂(−a) < ∞ and∣∣μ̂(−u)

(
1 + |u|c)∣∣ < C for all u with �(u) = a.(A.4)

(i) For any q, θ ∈ R
+, q �= 0, we have the identities

Eμ[
e−θX

(
e(q)

)
1{X∗(e(q))≥0}

]
(A.5)

= �+(q,iθ) · 1

2πi

∫ a+i∞
a−i∞

μ̂(−u)�−(q,−iu)
du

u + θ
,
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Eμ[
e
−qτX

0 +θ(X
τX
0

−X0)]
(A.6)

= 1

2πi

∫ a+i∞
a−i∞

μ̂(−u + θ)

(
1 − �−(q,−iu)

�−(q,−iθ)

)
du

u − θ
.

(ii) Let λ ∈ (0, λ∗]. The measure μ is a λ-invariant distribution of the process
{Xt, t < τX

0 } if and only if μ̂ satisfies the collection of equations

μ̂(θ) · q

q + λ
= �+(q,iθ) · 1

2πi

∫ a+i∞
a−i∞

μ̂(−u)�−(q,−iu)
du

u + θ
,

(A.7)
q > 0.

REMARK A.3. The identity in (A.5) is also valid if instead of (A.4) we require
|q−1�−(q,−iu)|(1 + |u|c)| < C uniformly over all q > 0 and u with �(u) = a.
We note that the boundedness of |�−(q,−iu)|(1+|u|) over the set of q > 0 and u

with �(u) = a is equivalent to the condition that the Lévy process X creeps down-
wards. This observation follows from the fact that X creeps downward precisely if
the descending ladder height process has nonzero infinitesimal drift.

PROOF. It follows from (A.4) that the function x �→ eθxKθ,q(x) is nonde-
creasing on R

+ (and has thus at most countably many points of discontinuity). The
Laplace inversion theorem yields that, at any point of continuity x, Kθ,q(x) is equal
to the integral of the right-hand side of the identity in (A.3) over the Bromwich
contour �(u) = a, that is,

Kθ,q(x) = �+(q,iθ) · 1

2πi

∫ a+i∞
a−i∞

eux�−(q,−iu)
du

u + θ
.(A.8)

The identity in (A.5) follows by integrating (A.8) against μ(dx) and interchanging
the order of integration. This interchange follows by an application of Fubini’s
theorem which is justified in view of the estimate∫

(0,∞)

∫ 0+i∞
0−i∞

∣∣∣∣eux �−(q,−iu)

u + θ

∣∣∣∣ duμ(dx)

(A.9)

≤
∫
(0,∞)

μ(dx) ·
∫
R

C
θ + |u|

(u2 + θ2)(1 + |u|c) du < ∞.

To derive this estimate, we used the bound in (A.4), that μ is a probability measure
and the observations (a) 1/(u + d) = (ū + d)/(|�(u)|2 + |�(u) + d|2) for any
d ∈ R and u ∈ C, with ū denoting the complex conjugate of u, and (b) | exp{ux}| =
exp{�(u)x} for any x ∈ R and u ∈ C. Hence, the proof of the identity in (A.5) is
complete.



2410 M. H. A. DAVIS AND M. R. PISTORIUS

The identity in (A.6) can be proved by an analogous line of reasoning (the de-
tails of which are omitted) by deploying the Pečerskiı̆–Rogozin identity∫ ∞

0
e−uxEx

[
e
−qτX

0 +θX
τX
0

]
dx = 1

u − θ

(
1 − �−(q,−iu)

�−(q,−iθ)

)
,

(A.10)
u ∈R

+;
for a proof, see, for example, Sato [34], Theorem 49.2, or Alili and Kyprianou [1],
Section 3.1, for a probabilistic proof.

(ii) The assertion follows from Definition 2.4 by noting that (a) the left-hand
side and right-hand side of (A.7) are equal to the double Laplace transforms
in (t, x) of the measures m

(1)
t and m

(2)
t on (R+,B(R+)) given by m

(1)
t (dx) =

exp(−λt)μλ(dx) and m
(2)
t (dx) = P μλ(Xt ∈ dx, t < τX

0 ), respectively [by (A.5)]

and (b) for any Borel set A, m
(1)
t (A) and m

(2)
t (A) are continuous and càdlàg at any

t > 0, respectively. �

A.2. Residue calculus. We next describe the form of the integrand of the
Bromwich integral in (A.1) in the case of a mixed-exponential Lévy process and
μ = μλ. Since the positive Wiener–Hopf factor and the function μ̂λ(θ) are both
rational [cf. (2.10) and (6.3)] also the function f :C+ →C given by

f (u) = fθ,λ,q(u) = �+(q,iθ)μ̂λ(−u)�−(q,−iu)

u + θ
(A.11)

is rational, for any triplet (θ, λ, q) with θ ∈ (θ, θ), λ ∈ (0, λ∗] and q > 0. More-
over, the collection of poles of f is finite and given by P+ ∪P− with

P+ = {
φ̄(−λ)

} ∪ {
ρ+

k (−λ);k = 0, . . . ,m+} ⊂ C
++,

(A.12)
P− = {−θ, ρ−

j (q), j = 0, . . . ,m−} ⊂ C
−−,

where we denote C
−− := {u ∈ C :�(u) < a} and C

++ := {u ∈ C :�(u) > a}
where a is some fixed arbitrary number in the interval (0, φ̄(−λ)).

Denote by C+
T the contour with clockwise orientation consisting of the segment

IT = {u ∈C :�(u) ∈ [−T ,T ],�(u) = a} and the semi-circle that joins a−iT and
a + iT such that C+

T is contained in the set {u ∈ C :�(u) ≥ a}. For T sufficiently
large, the contour C+

T encloses all the poles in the set P+. Next, we evaluate the
contour integral of f over the curve C+

T .

LEMMA A.4. Assume that all the elements of the sets P+ and P− are distinct.
Then, for any T > 0 sufficiently large, and any q, θ ∈ R

+ \ {0} and λ ∈ (0, λ∗] we
have

I+
o (T ) :=

∮
C+

T

f = q

q + λ
μ̂λ(θ),(A.13)
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FIG. 2. Pictured is the complex plane with an example of the two contours C+
T (grey) and C−

T

(black) and the poles in P+ and P−. The contour C+
T has a clockwise orientation and encloses the

poles p ∈P+ while the contour C−
T has anti-clockwise orientation and encloses the poles p ∈P−.

where f is given in (A.11). Furthermore, we have

1

2πi

∫ a+i∞
a−i∞

f (u)du = q

q + λ
μ̂λ(θ), a ∈ (

0, φ̄(−λ)
)
.(A.14)

In particular, for any λ ∈ (0, λ∗], μλ satisfies the identity in (A.1).

REMARK A.5. By arguments that are analogous, the ones given below in the
proof of Lemma A.4, it may be verified that the identity in (A.13) remains valid
if one replaces C+

T by the contour C−
T consisting of the segment IT and the semi-

circle that joins a − iT and a + iT such that C−
T is contained in the set {u ∈

C :�(u) ≤ a} (see Figure 2).

PROOF OF LEMMA A.4. By Cauchy’s residue theorem, the integral I+
o (T ) of

the function f over the curve C+
T is for all T sufficiently large equal to

I+
o (T ) = 1

2πi

∑
p∈P+

n
(
C+

T ,p
)
Resp(f ),(A.15)

where Resp(f ) denotes the residue of the function f at the pole p and, for any
p ∈ C and any curve � : [0,2π ] → C, n(�,p) denotes the winding number of �

around p. Note that we have n(C+
T ,p) = −1 for any p ∈ P+ (see Figure 2).

Since by assumption the poles are all distinct, the residues at the poles p ∈ P+
satisfy

Resp(f ) = 2πi · lim
s→p

(s − p)f (s), p ∈P+.(A.16)
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Inserting the explicit form of f into (A.16) we find by straightforward algebra

�+(q,iθ)−1 Resp(f )

2πi
= −A+(p) · p

p + θ
, p ∈ P+,(A.17)

with

A+(p) = �−(q,−ip)
φ̄(−λ)

φ̄(−λ) − p

∏m+
k=1(1 − p/α+

k )∏m+
k=0,k �=j (1 − p/(ρ+

k (−λ)))
.(A.18)

By using these explicit expressions, we next verify that the following key-identity
holds true:

1

2πi

∑
p∈P+

(−1) · Resp(f )

�+(q,iθ)
= R(θ) := q

q + λ

μ̂λ(θ)

�+(q,iθ)
.(A.19)

This identity follows from (A.17) and the following partial-fraction decomposition
of R(θ):

R(θ) = q

q + λ

[
m+∑
j=0

A+(
ρ+

j (−λ)
) ρ+

j (−λ)

ρ+
j (−λ) + θ

(A.20)

+ A+(
φ̄(−λ)

) φ̄(−λ)

φ̄(−λ) + θ

]
,

where the coefficients A+(φ̄(−λ)) and A+(ρ+
j (−λ)), j = 0, . . . ,m+ are given

by (A.18).
We next show in two steps that (A.20) holds.
(a) As a first step, we record the relation

�−(
q,−iρ+

j (−λ)
) = q

q + λ
�+(

q,−iρ+
j (−λ)

)−1
, λ ∈ (0, λ∗].(A.21)

To see why this holds true, note that, for any q > 0 and λ ∈ (0, λ∗], it follows
by analytical extension that the Wiener–Hopf identities in (4.3) remains valid for
any θ ∈ C except some finite set [namely, the sets of roots ρ of the equation
�(ρ) = q]. Substituting θ → −ip (p ∈ P+) in (4.3) and using that by defini-
tion �(−iρ+

j (−λ)) = −λ we obtain the relation (A.21).
(b) Inserting the explicit forms of �+(q,iθ) and μ̂λ(θ) [given in (6.3)

and (6.5)] into (A.19), we find

R(θ) = q

q + λ
· φ̄(−λ)

φ̄(−λ) + θ

m+∏
k=0

1 + θ/(ρ+
k (q))

1 + θ/(ρ+
k (−λ))

.

It is a matter of algebra to verify that R(θ) admits a partial-fraction decompo-
sition of the form (A.20) for some coefficients A+(φ̄(−λ)) and A+(ρ+

j (−λ)),
j = 0, . . . ,m+. Furthermore, by deploying the identity on the left-hand side of
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(A.21), it is easy to show that these coefficients are equal to the expression given
in (A.17), so that (A.20) is established.

Combining (A.15) and (A.19) shows that for all T sufficiently large, we have

I+
o (T ) = q

q + λ
μ̂λ(θ).

Finally, we note that the integral I+
c (T ) over the semi-circles only (i.e., over

C+
T \ IT ) tends to zero as T → ∞, since the length of the semi-circles C+

c (T )

is proportional to T while we have the bound maxu∈C+
c (T ) |f (u)| ≤ C+/T 2 for

some constant C+ > 0. Thus, we conclude that I+
o (T ) converges to the right-hand

side of (A.14) as T tends to infinity, and the proof is complete. �
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