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MIXING TIME OF THE CARD-CYCLIC-TO-RANDOM SHUFFLE

BY BEN MORRIS1, WEIYANG NING AND YUVAL PERES

University of California, Davis, University of Washington and Microsoft Research

The card-cyclic-to-random shuffle on n cards is defined as follows: at
time t remove the card with label t mod n and randomly reinsert it back into
the deck. Pinsky [Probabilistic and combinatorial aspects of the card-cyclic-
to-random shuffle (2011). Unpublished manuscript] introduced this shuffle
and asked how many steps are needed to mix the deck. He showed n steps do
not suffice. Here we show that the mixing time is on the order of �(n logn).

1. Introduction. In many Markov chains, such as Glauber Dynamics for the
Ising model, the state space is a set of configurations, and at each step a location
is chosen and updated. An important general question about such chains is what
happens when we move from the world of random updates, where at each step a
location is chosen at random and updated, to systematic scan, when the updates
are done in a more deterministic fashion; see, for example, [2]. On the one hand,
systematic scan is “less random,” so one might expect that the mixing time is
larger. On the other hand, systematic scan can update n sites on n steps, whereas
with random updates n logn steps are required by the coupon collector problem,
so one might expect systematic scan to have a smaller mixing time.

This question has been investigated in the context of the random transpositions
shuffle. In this shuffle, at each step a pair of cards is chosen uniformly at random
and interchanged. In a classical result of Diaconis and Shahshahani [4], the mixing
time of the random transposition shuffle is shown to be asymptotically 1

2n logn.
Mironov [7], Mossel, Peres and Sinclair [8], and Saloff-Coste and Zuniga [10]
analyzed the cyclic-to-random shuffle, which is a systematic scan version of the
random transposition shuffle: at step t the card in position t mod n is interchanged
with a randomly chosen card. They found that the mixing time for this chain is still
on the order of n logn.

In the present paper, we study a systematic scan version of the random-to-
random insertion shuffle. In the random-to-random insertion shuffle, at each step
a card is chosen uniformly at random and then inserted in a uniform random posi-
tion. It was shown in [3, 12] and [11] that the mixing time of this shuffle is on the
order of n logn. Pinsky [9] introduced the following model, called the card-cyclic-
to-random shuffle: at time t remove the card with the label t mod n and insert it in
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a uniform random position. (It is a unique feature of this shuffle that both the labels
of the cards and their positions play a role.) It is not obvious that the mixing time
is greater than n: after n steps the location of each card has been randomized, so
one might expect the whole deck to be close to uniform at time n. However, Pin-
sky showed that the mixing time is indeed greater than n, since the total variation
distance to stationarity at this time converges to 1 as n goes to infinity.

We show that in fact the mixing time is on the order of n logn. To prove the
lower bound we introduce the concept of a barrier between two parts of the deck
that moves along with the cards as the shuffling is performed. Then we show that
the trajectory of this barrier can be well-approximated by a deterministic function
f satisfying

f (x) =
∫ x

x−1
f (s) ds(1)

and we relate the mixing rate of the chain to the rate at which f converges to a
constant. To prove the upper bound, we use the path coupling method of Bubley
and Dyer [1].

REMARK. One can study another systematic scan version of the random-to-
random shuffle where one cycles through the cards by position rather than label.
Consider the shuffle where at time t , the card in position t mod n is removed and
inserted in a uniform random position. Call this the position-cyclic-to-random in-
sertion shuffle. For this shuffle the coupon collector problem implies a lower bound
for the mixing time of order n logn by the following argument (Ross Pinsky, per-
sonal communication): note that the time-reversal of this chain is the shuffle which
at time t picks a uniform card and inserts it to location t mod n. Thus if we start
with the cards in increasing order, then the cards that have never been chosen for
re-insertion by time t form an increasing subsequence of the permutation at time t .
Since the longest increasing subsequence of a uniform permutation is O(

√
n) with

high probability, the mixing time must be at least of order n logn, since this is the
number of steps required to ensure that the number of “uncollected coupons” in
the coupon collector problem is O(

√
n). A matching upper-bound of O(n logn)

follows from the work of Saloff-Coste and Zuniga; see [10], Theorem 4.8.

2. Statement of main results. Let Xt be a Markov chain on a finite state
space V that converges to the uniform distribution. For probability measures μ

and ν on V , define the total variation distance ‖μ − ν‖ = 1
2

∑
x∈V |μ(x) − ν(x)|,

and define the ε-mixing time

tmix(ε) = min
{
t :

∥∥Px(Xt = ·) − U
∥∥ ≤ ε, for all x ∈ V

}
,

where U denotes the uniform distribution on V .
Recall that in the card-cyclic-to-random shuffle, at time t we remove the card

with label t mod n and then reinsert it into a uniform random location.
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Define a round to be n consecutive such shuffles. Note that the Markov chain
that performs a round of the card-cyclic-to-random shuffle at each step is time-
homogeneous with a doubly-stochastic transition matrix, irreducible and aperi-
odic, and hence converges to the uniform stationary distribution. It follows that
the card-cyclic-to-random shuffle converges to uniform as well. Our main results
show that the mixing time is on the order of logn rounds.

THEOREM 1. There exists c0 such that for any c < c0 and 0 < ε < 1, when
n is sufficiently large, we have

tmix(ε) ≥ cn logn.

Here c0 = 1
2+2a

where a is the smallest positive solution of equations b = ea sinb

and a = ea cosb − 1. Numerically c0 = 0.161875162 . . . .

THEOREM 2. For any ε > 0 and n ≥ 4, we have

tmix(ε) ≤ C(n logn − 2n log ε),

where

C = 1

log 2 − log(e − 1)
= 6.58664655 . . . .

REMARK. Theorems 1 and 2 together establish that the card-cyclic-to-random
shuffle has a pre-cutoff in total variation distance. It is an interesting open problem
to determine if cutoff occurs in this shuffle. For reference on cutoff phenomenon,
see [6], Chapter 18.

Theorems 1 and 2 will be proved in Sections 3 and 4, respectively.

3. Lower bound.

3.1. The barrier. The key idea for the lower bound is to imagine a barrier
between two parts of the deck, that moves along with the cards as the shuffling
is performed. If a card is inserted into the gap that the barrier occupies, we use
the convention that the card is inserted on the same side of the barrier as it was in
the previous step. We illustrate this with the following example. Suppose there is
a deck of 8 cards with a barrier between cards 3 and 5. In the next step, card 7 is
inserted between cards 3 and 5.

2 1 3 | 5 4 6 8 7
2 1 3 | 7 5 4 6 8

Let {σt }∞t=0 be a card-cyclic-to-random shuffle. We think of σt (i) as the position
of card i at time t , where the positions range from 1 at the left to n at the right.
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Define the position of the barrier as the position of the card immediately to its left,
and throughout the present chapter, let Bt be the position of the barrier at time t .
Use the convention that Bt = 0 if at time t the barrier is to the left of all cards. We
will call the pair process (σt ,Bt ) the auxiliary process.

Note that at any time t > n, every card has been reinserted exactly once in the
previous n steps. Furthermore, if a card is reinserted to the left of the barrier, then
it stays there until it is reinserted again. Hence

Bt =
n∑

i=1

1 (the card moved at time t − i is inserted to the left of barrier).(2)

Since the conditional probability that the card at time t is inserted to the left of the
barrier, given Bt , is 1

n
Bt , taking expectations in (2) gives

E(Bt ) = 1

n

n∑
i=1

E(Bt−i).(3)

Define g(t) = E( 1
n
Bt ). Then g satisfies the following moving average condition:

g(t) = 1

n

n∑
i=1

g(t − i)(4)

for t > n. We shall approximate g(t) by f (t/n), where f : R → [0,1] is a contin-
uous function satisfying (1). Our first lemma gives an example of such a function,
which is graphed in Figure 1.

LEMMA 3. There exist a > 0 and b > 2π such that f (x) = 1
2 + 1

2e−ax sin(bx)

satisfies

f ′(x) = f (x) − f (x − 1).(5)

FIG. 1. Graph of f (s).
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Moreover,

f (x) =
∫ x

x−1
f (s) ds(6)

for all x.

PROOF. Since properties (5) and (6) are preserved under shifting and scaling,
it is enough to show that they apply to h(x) = e−ax sin(bx), for suitable a and b.

First, we show that for suitable choice of a and b we have h′(x) = h(x) −
h(x − 1). By the product rule,

h′(x) = −ae−ax sin(bx) + be−ax cos(bx)(7)

and a calculation shows that

h(x) − h(x − 1) = (
1 − ea cosb

)
e−ax sin(bx) + (

ea sinb
)
e−ax cos(bx).(8)

The quantities (7) and (8) are equal if b = ea sinb and −a = 1 − ea cosb. Solving
for a in the first equation gives

a = log
b

sinb

and substituting this into the second one gives

log
sinb

b
= 1 − b cosb

sinb
.

By the intermediate value theorem, this equation has a solution with b in the inter-
val [2π + π

4 ,2π + π
2 ], since when b = 2π + π

4 the right-hand side is smaller than
the left-hand side, but when b = 2π + π

2 the right-hand side is larger. Furthermore,
since sinb < b when b > 0, we have a = log b

sinb
> 0. (Numerical approximation

gives the solution as b = 7.4615 . . . and a = 2.0888 . . . .)
Next we claim that since h′(x) = h(x) − h(x − 1), we must have h(x) =∫ x

x−1 h(s) ds. To see this, define q̂(x) = ∫ x
x−1 h(s) ds and note that q̂ ′(x) = h′(x).

This implies that h(x) − q̂(x) = C for a constant C. But since a > 0, we have
h(x) → 0 as x → ∞. Consequently q̂(x) → 0 as x → ∞ by the definition of q̂ ,
and so C = 0. �

Recall that g(t) = E( 1
n
Bt ), where Bt is the position of the barrier at time t .

A key part of our proof will be to show that g closely follows the continuous
function f of Lemma 3. However, in order for this to be the case we must start with
a permutation chosen from a certain probability distribution. It is most convenient
to describe this starting permutation as being generated in the first n time steps,
which we call the startup round. In the startup round, we begin with only a barrier.
At time t , for 1 ≤ t ≤ n, we put card t to the left of the barrier with probability
f ( t

n
). The location among the already existing cards in the left-hand (right-hand)
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side of the barrier is arbitrary. We must modify the definition of g to handle the
startup round. Define g : {1,2, . . .} → R by

g(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f

(
t

n

)
, if 1 ≤ t ≤ n;

E

(
1

n
Bt

)
, otherwise.

Thus g satisfies the moving average condition, and because of the insertion
probabilities used in the startup round, g matches f for the first n steps [i.e.,
g(·) = f ( ·

n
) on {1, . . . , n}]. As we show below, this is enough to ensure that g

is well-approximated by f for a number of rounds on the order of logn.

LEMMA 4. There exists a constant C > 0 such that∣∣∣∣g(t) − f

(
t

n

)∣∣∣∣ ≤ C

2n
e2(t+1)/n

for all t > 0.

PROOF. First, note that if t > n, then

g(t + 1) − g(t) = 1

n

n∑
i=1

g(t + 1 − i) − 1

n

n∑
i=1

g(t − i)

= 1

n

(
g(t) − g(t − n)

)
.

Rearranging terms gives

g(t + 1) =
(

1 + 1

n

)
g(t) − 1

n
g(t − n).(9)

Recall that f (x) = 1
2 + 1

2e−ax sin(bx) and a > 0. Some calculus shows that the
second derivative of f is uniformly bounded on [0,∞). Hence

f

(
t + 1

n

)
− f

(
t

n

)
= 1

n
f ′

(
t

n

)
+ O

(
1

n2

)

= 1

n

(
f

(
t

n

)
− f

(
t

n
− 1

))
+ O

(
1

n2

)
,

where the first line follows from Taylor’s theorem and the second line follows from
Lemma 3. Rearranging terms gives

f

(
t + 1

n

)
=

(
1 + 1

n

)
f

(
t

n

)
− 1

n
f

(
t − n

n

)
+ O

(
1

n2

)
.(10)
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Combining (9) and (10) and using the triangle inequality gives∣∣∣∣g(t + 1) − f

(
t + 1

n

)∣∣∣∣
(11)

≤
(

1 + 1

n

)∣∣∣∣g(t) − f

(
t

n

)∣∣∣∣ + 1

n

∣∣∣∣g(t − n) − f

(
t − n

n

)∣∣∣∣ + C

n2

for a universal constant C. We claim that for all t we have∣∣∣∣g(t) − f

(
t

n

)∣∣∣∣ ≤ C

n2

t∑
i=0

(
1 + 2

n

)i

.(12)

We prove this by induction. For the base case, note that g(t) = f ( t
n
) for t =

1, . . . , n. Now if we suppose that (12) holds for 1, . . . , t , then the two absolute
values on the right-hand side of (11) can be bounded by C

n2

∑t
i=0(1 + 2

n
)i . Hence

∣∣∣∣g(t + 1) − f

(
t + 1

n

)∣∣∣∣ ≤
(

1 + 2

n

)[
C

n2

t∑
i=0

(
1 + 2

n

)i
]

+ C

n2

= C

n2

t+1∑
i=0

(
1 + 2

n

)i

,

which verifies (12) for t + 1. To finish the proof of the lemma, note that

C

n2

t∑
i=0

(
1 + 2

n

)i

= C

n2

(1 + (2/n))t+1 − 1

2/n
≤ C

2n
e2(t+1)/n.

�

3.2. Deviation estimates. In the previous subsection we proved that the ex-
pected barrier location is well-approximated by a continuous function. In the
present subsection we show that the barrier stays reasonably close to its expec-
tation with high probability when the number of rounds is on the order of logn.

Define a configuration as a pair (σ, b), where σ is a permutation and b is a
barrier location. (Thus the state space of the auxiliary process is the set of all
configurations.) We define the insertion distance between two configurations as
the minimum number of cards we would need to remove and re-insert to get from
one configuration to the other. For example, the insertion distance between the two
configurations below is 2. (Move cards 4 and 7.)

2 1 4 3 | 5 6 8 7
2 1 3 7 | 5 4 6 8

LEMMA 5. Let (σ 1
t ,B1

t ) and (σ 2
t ,B2

t ) be auxiliary processes, and define σ̂ i
t =

(σ i
t ,B

i
t ) for i = 1,2. Let d be the insertion distance between σ̂ 1

0 and σ̂ 2
0 . Then

∣∣EB1
t −EB2

t

∣∣ ≤ d

(
1 + 1

n

)t

.
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PROOF. There is a natural coupling of σ 1
t and σ 2

t that we call label coupling.
In label coupling, at time t we choose a label X uniformly at random. If X =
t mod n, then we move card t mod n to the leftmost position in both processes.
Otherwise, we insert card t mod n to the right of the card with label X in both
processes.

Suppose that A = {a1, . . . , ad} is a minimal set of cards that can be moved to
get from σ̂ 1

0 to σ̂ 2
0 . Note that under the label coupling, only in the case when we

move a card not in A can the insertion distance be increased. In such moves, if the
card is put to the right of a card in A, the insertion distance increases by 1, and
otherwise it stays the same. Thus the expected insertion distance after one step is
at most

(d + 1)
d

n
+ d

n − d

n
= d

(
1 + 1

n

)
.

Iterating this argument shows that the expected insertion distance after t steps is
at most d(1 + 1

n
)t . The lemma follows from this, since the barrier can move by at

most one position with each re-insertion. �

We are now ready to state the main lemma of this subsection.

LEMMA 6. Let (σt ,Bt ) be an auxiliary process. Fix c > 0 and suppose T

satisfies n < T ≤ cn logn. Then for any x > 0, we have

P

(∣∣∣∣1

n
BT − g(T )

∣∣∣∣ ≥ x

)
≤ 2 exp

(−x2n1−2c).
PROOF. Fix T with n < T ≤ cn logn. Since g(T ) = 1

n
E(BT ), it is enough to

show that for any x > 0 we have

P
(∣∣BT −E(BT )

∣∣ ≥ x
) ≤ 2 exp

(−x2n−(1+2c)).
Let Ft be the sigma-field generated by the process up to time t , and consider the
Doob martingale

Mt := E(BT |Ft ).

Applying Lemma 5 to the case of two configurations that differ by one insertion
gives

|Mt − Mt−1| ≤
(

1 + 1

n

)T −t

for t with 1 ≤ t ≤ T . Thus the Azuma–Hoeffding bound gives

P
(∣∣BT −E(BT )

∣∣ ≥ x
) = P

(∣∣MT −E(MT )
∣∣ ≥ x

)
(13)

≤ 2 exp
( −x2

2
∑T

t=1 b2
t

)
,
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where bt = (1 + 1
n
)T −t . Let r = (1 + 1

n
)2. The sum in (13) can be written as

T −1∑
i=0

ri = rT − 1

r − 1
≤ n

2
rT ,(14)

since r − 1 = 2
n

+ 1
n2 ≥ 2

n
. Since T < cn logn, quantity (14) is at most

n

2

(
1 + 1

n

)2cn logn

≤ 1

2
n1+2c.

Substituting this into (13) yields the lemma. �

3.3. Proof of the lower bound. Recall that f (s) = 1
2 + 1

2e−as sin(bs), for a =
2.0888 . . . and b = 7.4615 . . . . The rough idea for the lower bound is as follows.
Note that if c is sufficiently small and s < c logn, then the fluctuation of f (s)

between s and s +1 is of higher order than n−1/2. Thus in the corresponding round
of the card-cyclic-to-random shuffle, there will be an interval of cards where the
probability of inserting to the left of the barrier is detectably high. Before we give
the proof, we recall Hoeffding’s bounds in [5].

THEOREM 7. Let X1, . . . ,Xk be samples from a population of 0s and 1s, and
let p = E(X1) be the proportion of 1s in the population. Then for α > 0,

P

(
k∑

i=1

Xi − kp ≥ α

)
≤ e−2α2/k.(15)

Bound (15) applies whether the sampling is done with or without replacement.

PROOF OF THEOREM 1. Let c > 0 be small enough so that

c <
1

2 + 2a
.(16)

Fix T with n < T < cn logn and let x = T/n. Suppose that sin(bx) ≤ 0. The case
sin(bx) > 0 is similar. Since b > 2π , there exist x1, x2 with x − 1 < x1 < x2 < x,
such that

bx1 = 2πk + π/4 and bx2 = 2πk + 3π/4

for an integer k. Note that for s ∈ [x1, x2] we have

f (s) ≥ 1
2 + βe−as ≥ 1

2 + βn−ac,(17)

where β = 1
2 sin(π/4). The second inequality holds because x ≤ c logn.

Let A be the event that
∣∣ 1
n
Bt − f (t/n)

∣∣ ≤ β
4 n−ac for all t with T − n < t ≤ T .

Note that since T < cn logn, substituting T into the upper bound of Lemma 4
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implies that if t ≤ T , then |g(t) − f (t/n)| < Bn2c−1, for a constant B > 0. Since
2c − 1 < −ac by (16), for sufficiently large n we have

Bn2c−1 <
β

8
n−ac

and hence |g(t) − f (t/n)| < β
8 n−ac for t ≤ T . Hence

P
(
Ac) ≤ P

(∣∣∣∣1

n
Bt − g(t)

∣∣∣∣ >
β

8
n−ac, for some t with T − n < t ≤ T

)

≤ 2n exp
(
−

[
β

8
n−ac

]2

n1−2c

)
(18)

= 2n exp
(
−β2

64
n1−2c(a+1)

)
,

where the second inequality follows from Lemma 6 and a union bound. Since
1 − 2c(a + 1) > 0 by (16), quantity (18), and hence P(Ac), converges to 0 as
n → ∞.

Let I = {t mod n :nx1 < t < nx2} and m = |I |. Since x2 −x1 = π/2b, there is a
constant λ > 0 such that m ≥ λn for sufficiently large n. Let S be the set of cards in
I (i.e., cards whose label is in I ) placed in one of the leftmost 
(1

2 + 3β
4 n−ac)n� po-

sitions between times nx1 and nx2. Note that the distribution of |S| stochastically
dominates the Binomial(m, 1

2 + 3β
4 n−ac) distribution. Thus Hoeffding’s bounds

give

P

(
|S| < m

2
+ β

2
mn−ac

)
≤ exp

(−2((β/4)mn−ac)2

m

)
(19)

≤ exp
(
−β2

8
λn1−2ac

)
,

where the second line follows from the fact that m ≥ λn. Since 1−2ac > 0 by (16),
the quantity (19) converges to 0 as n → ∞.

By (17), on the event A the position of the barrier is greater that (1
2 + 3β

4 n−ac)n

between times nx1 and nx2. Furthermore, since f (T
n
) ≤ 1

2 , on the event A we have

BT ≤ (1
2 + β

4 n−ac)n. Combining these two facts shows that every card in S has

position at most (1
2 + β

4 n−ac)n on the event A. (Here we are using the fact that
every card inserted to the left of the barrier between times nx1 and nx2 must also
be to the left of the barrier at time T .)

Now let Y be the number of cards in I having position at most (1
2 + β

4 n−ac)n at
time T . Then

P

(
Y ≤ m

2
+ β

2
mn−ac

)
≤ P

(
|S| ≤ m

2
+ β

2
mn−ac

)
+ P

(
Ac),(20)

which converges to 0 as n → ∞ by (18) and (19).
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To complete the proof, let Yu be the number of cards in I whose position is at
most n

2 + β
4 n1−ac in a uniform random permutation.

Hoeffding’s bounds imply that

P

(
Yu >

m

2
+ β

2
mn−ac

)
≤ exp

(−2((β/4)mn−ac)2

m

)
(21)

≤ exp
(
−β2

8
λn1−2ac

)

for sufficiently large n. Since 1−2ac > 0, quantity (21) converges to 0 as n → ∞.
Combining this with (20), we conclude that tmix(ε) ≥ cn logn for large enough n.

�

4. Upper bound. We use the path coupling technique introduced by Bubley
and Dyer [1]. Let Sn be the permutation group and G = (Sn,E), where an edge
exists between two permutations if and only if they differ by an adjacent transpo-
sition. The path metric on G is defined by

ρ(x, y) = min{length of η :η is a path from x to y}.
Define

diam(G) = sup
x,y

ρ(x, y).

The following theorem is from [1]. See also [6], Chapter 14.

THEOREM 8. Suppose that there exists α > 0 such that for each edge {x, y}
in G there exists a coupling (X1, Y1) of the distributions P(x, ·) and P(y, ·) such
that

Ex,yρ(X1, Y1) ≤ ρ(x, y)e−α.

Then

tmix(ε) ≤ − log ε + log(diam(G))

α
.

For a permutation x, define σx
t to be the card-cyclic-to-random shuffle starting

at x. Our mixing time upper bound follows from the following lemma.

LEMMA 9. If permutations x and y differ by an adjacent transposition and
n ≥ 4, there is a coupling of σx

n and σ
y
n such that

Eρ
(
σx

n , σ y
n

) ≤ e−α,

where α = 2(log 2 − log(e − 1)).
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PROOF. There is another natural coupling of two card-cyclic-to-random pro-
cesses besides label coupling; we call this second coupling position coupling. In
position coupling, the card is inserted into the same locations in both processes.
Now assume that for some i < j , the permutation x can be obtained from y by
transposing the cards with label i and j , as shown below. In the diagram, the kth
X in the top row represents the same card as the kth X in the bottom row.

x : X X X i j X X X

y : X X X j i X X X

The coupling strategy is divided into 3 stages, corresponding to t in {1, . . . , i − 1},
{i, . . . , j − 1} and {j, . . . , n}, respectively.

Stage 1. Moving cards 1, . . . , i − 1. In this stage use position coupling. As is
shown by Diagram 1 below, at the end of this stage we still have two permutations
that differ only by a transposition of i and j . However, there may have been some
cards inserted between cards i and j ; we represent these cards with a’s.

σx
i−1 : X X i a a j X X

σ
y
i−1 : X X j a a i X X

Diagram 1

Stage 2. Moving cards i, . . . , j − 1. In this stage we use label coupling. At the
end of this stage, some cards might have been inserted into the group of a’s. We
denote such cards with α′’s. In addition, some cards might have been inserted be-
tween card j and the first X to the right of the card j . We represent them with b’s.
Diagram 2 shows a typical pair of permutations after stage 2.

σx
j−1 : X X a α′ a α′ j b b X X

σ
y
j−1 : X X j b b a α′ a α′ X X

Diagram 2

Stage 3. Moving cards j, . . . , n. Here we use label coupling again. Cards in-
serted into the group of a’s and α′’s are represented with a∗∗’s, and cards inserted
into the group of b’s are represented with β ′s. See Diagram 3 below. Notice that
the a’s, α′’s and a∗∗’s maintain the same relative order in σx

n and as in σn, and
similarly for the b’s and β ′’s.

σx
n : X X a α′ a∗∗ a a∗∗ α′ b β ′ b X X

σ
y
n : X X b β ′ b a α′ a∗∗ a a∗∗ α′ X X

Diagram 3

For t ≤ n, let At be the number of a’s, α′’s and a∗∗’s, and let Bt be the number
of b’s and β ′’s, after card t has been moved. Note that

ρ
(
σx

n , σ y
n

) ≤ AnBn.
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Thus we are left to estimate E(AnBn).
Initially we have A0 = B0 = 0. Recall that in the first stage we use position

coupling. For t ≤ i − 1 we have Bt = 0, and At satisfies

P(At+1 = At |At) = n − At − 1

n

and

P(At+1 = At + 1|At) = At + 1

n
.

This implies

E(At+1 + 1|At) = (At + 1)

(
1 + 1

n

)
.(22)

Hence

EAi−1 =
(

1 + 1

n

)i−1

− 1.(23)

Recall that we use label coupling in the second stage. For i ≤ t ≤ j − 1, we
have the following transition rule:

P(At+1 = At,Bt+1 = Bt |At,Bt) = n − At − Bt − 1

n

and

P(At+1 = At + 1,Bt+1 = Bt |At,Bt) = At

n

and

P(At+1 = At,Bt+1 = Bt + 1|At,Bt) = Bt + 1

n
.

This implies

E
(
At+1(Bt+1 + 1)|At,Bt

) = At(Bt + 1)

(
1 + 2

n

)
.

Recall that Bt = 0 for all t ≤ i − 1. Thus we have

EAj−1(Bj−1 + 1) = EAi−1

(
1 + 2

n

)j−i

.(24)

Note that for t with i ≤ t < j we have

E(At+1|At) = At

(
1 + 1

n

)
.(25)

Thus EAj−1 = EAi−1(1 + 1
n
)j−i . Combining this with (24) and (23) gives

EAj−1Bj−1 =
((

1 + 1

n

)i−1

− 1
)((

1 + 2

n

)j−i

−
(

1 + 1

n

)j−i)
.(26)
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For j ≤ t ≤ n we have the following transition probabilities:

P(At+1 = At,Bt+1 = Bt |At,Bt ) = n − At − Bt

n
;

P(At+1 = At + 1,Bt+1 = Bt |At,Bt ) = At

n
;

P(At+1 = At,Bt+1 = Bt + 1|At,Bt ) = Bt

n
.

This implies

E(At+1Bt+1|At,Bt) = AtBt

(
1 + 2

n

)
.

Using (26), we obtain

EAnBn =
((

1 + 1

n

)i−1

− 1
)[(

1 + 2

n

)j−i

−
(

1 + 1

n

)j−i](
1 + 2

n

)n−j+1

.

Since 1+ 2
n

≤ (1+ 1
n
)2, the expression in square brackets is at most (1+ 1

n
)j−i ((1+

1
n
)i−j −1). Thus if we define β and γ so that i = βn and j = γ n, calculation yields

that

EAnBn ≤ (
eβ − 1

)
eγ−β(

eγ−β − 1
)
e2(1−γ ),

if 0 ≤ β ≤ log 2, and

EAnBn ≤ (
eβ − 1

)
eγ−β(

eγ−β − 1
)
e2(1−γ )

(
1 + 2

n

)
,

if log 2 < β ≤ 1. The former expression is maximized, for γ and β with 0 ≤ β ≤
γ ≤ 1, by ( e−1

2 )2. The maximum occurs when γ = 1 and β = log 2e
e+1 . Notice that

log 2e
e+1 < log 2. Therefore, if α = 2(log 2 − log(e − 1)), then

E(AnBn) ≤ e−α

for all 0 ≤ β ≤ γ ≤ 1 and n ≥ 4, which completes the proof. �

PROOF OF THEOREM 2. We apply Theorem 8 to a round of the card-cyclic-
to-random shuffle. Since the diameter of Sn with respect to adjacent transpositions
is n(n−1)

2 < n2, substituting the α of Lemma 9 into Theorem 8 gives

tmix(ε) ≤ 1

log 2 − log(e − 1)

(
logn − 1

2
log ε

)
. �
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