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CONCENTRATION OF MEASURE FOR BROWNIAN PARTICLE
SYSTEMS INTERACTING THROUGH THEIR RANKS

BY SOUMIK PAL1 AND MYKHAYLO SHKOLNIKOV2

University of Washington and University of California, Berkeley

We consider a finite or countable collection of one-dimensional Brow-
nian particles whose dynamics at any point in time is determined by their
rank in the entire particle system. Using transportation cost inequalities for
stochastic processes we provide uniform fluctuation bounds for the ordered
particles, their local time of collisions and various associated statistics over
intervals of time. For example, such processes, when exponentiated and
rescaled, exhibit power law decay under stationarity; we derive concentration
bounds for the empirical estimates of the index of the power law over large
intervals of time. A key ingredient in our proofs is a novel upper bound on the
Lipschitz constant of the Skorokhod map that transforms a multidimensional
Brownian path to a path which is constrained not to leave the positive orthant.

1. Introduction. Define the set I as {1, . . . ,K} for some K ∈ N or as the set
of natural numbers N and let δi , i ∈ I , be a finite or countable collection of real
constants. Consider the following system of stochastic differential equations:

dXi(t) = ∑
j∈I

δj · 1{Xi(t)=X(j)(t)} dt + dWi(t), i ∈ I.(1.1)

Here, X(1)(t) ≤ X(2)(t) ≤ · · · are the coordinates of the process Xi(t), i ∈ I , in
the increasing order, and W = (Wi : i ∈ I ) is a system of jointly independent one-
dimensional standard Brownian motions. The equations in (1.1) model the move-
ment of the particles by interacting Brownian motions such that at every time point,
if we order the positions of the particles, then the ith ranked particle from the bot-
tom gets a drift δi for every i ∈ I . As time evolves, the Brownian motions switch
ranks and drifts, and, hence, their motion is determined by these time-dependent
interactions. When I is finite, the existence and uniqueness in law of such pro-
cesses is a consequence of Girsanov’s theorem; see, for example, Lemma 6 in [23].
The countable case is subtle and requires constraints on the initial positions of the
particles. In particular, for (1.1) to make sense, the number of particles on every
interval of the form (−∞, x] has to be finite at any point in time with probability
one. We discuss this issue in more detail later in the text.
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Different versions of the particle system in (1.1) have been considered in several
recent articles. Among the more recent ones, see Banner, Fernholz and Karatzas
[3], Banner and Ghomrasni [4], McKean and Shepp [21], Pal and Pitman [23],
Jourdain and Malrieu [18], Chatterjee and Pal [5, 6], Ichiba and Karatzas [16],
Ichiba et al. [17] and Shkolnikov [27, 28]. We refer the reader to the above articles
for the full list of applications of such processes. Related discrete time processes
are studied in the context of the Sherrington–Kirkpatrick model of spin glasses by
Arguin and Aizenman [2], Ruzmaikina and Aizenman [25] and Shkolnikov [26].

The case of distinct drift parameters differs from the latter models in several
remarkable ways. For example, if I = {1, . . . ,K} for some K ∈ N and

1

j

j∑
k=1

δk >
1

K − j

K∑
k=j+1

δk

for all j = 1, . . . ,K −1, then there exists an invariant distribution for the process of
gaps between consecutive particles (X(2)(t) − X(1)(t), . . . ,X(K)(t) − X(K−1)(t)),
t ≥ 0 (see Theorem 8 in [23]) which is not the case if δ1 = · · · = δK . When
I = N, one can consider the so-called Atlas model in which δ1 = δ > 0 and
δi = 0 for every i �= 1 in I . In this case it is shown in [23] that, if the ini-
tial positions of the particles are chosen according to a standard Poisson process
of rate 2δ, then the joint distribution of the gaps between consecutive particles
X(2)(t) − X(1)(t),X(3)(t) − X(2)(t), . . . is the same for all t ≥ 0. However, the
same statement is not true when δi = δ for all i ∈ I ; see Theorem 4.2 in [25].
Moreover, if we consider the motion of the left-most particle X(1)(t), t ≥ 0, in the
Atlas model, no estimates on its growth and fluctuations are known. Our article is
a step in the latter direction. Using techniques from the theory of concentration of
measures we give estimates on fluctuations of the paths of the distances between
ordered particles and associated statistics.

One such statistic is given by the market weights. The latter can be defined for
I = {1, . . . ,K} with an arbitrary K ∈ N and any choice of δ1, . . . , δK by setting

μi(t) = eX(K−i+1)(t)∑K
j=1 eX(j)(t)

, i = 1, . . . ,K(1.2)

for all t ≥ 0. It is clear that for any fixed t the sequence μ1(t), . . . ,μK(t) is a
nonincreasing sequence of positive numbers that add up to one. These numbers,
in econometric models, go by the name of market weights and have an interesting
history.

Fernholz in his 2002 book [13] introduces solutions of (1.1) to model the time
dynamics of the logarithmic market capitalizations of different companies in an
equity market. In other words, he considers a stock market with K companies
whose total worths in stocks are given by exponentials of the one-dimensional
components of the solution of equation (1.1). A major objective of his work is to
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FIG. 1. Capital distribution curves: 1929–1999.

explain the following curious empirical fact. Consider the shape one obtains by
plotting logμi versus log i. This log–log plot is referred to as the capital distri-
bution curve. See Figure 1 above (reproduced from [13]) which shows the capital
distribution curves between 1929 and 1999 for all the major US stock markets
(NYSE, AMEX and NASDAQ) combined. Empirically, the left part of the plot
exhibits nearly linear decay. This corresponds to the market weights, in decreasing
order, displaying power law (or Zipf’s law) decay. More strikingly, the slope of
the decay is nearly constant over eight decades, something truly remarkable in the
volatile world of financial markets.

In [5] the authors explain the linearity by proving (under suitable assumptions)
that the possible limiting stationary laws of the market weights, as K grows to
infinity, are given by a subset of the Poisson–Dirichlet family of distributions. The
masses of this family have a polynomial decay with size, which corresponds to the
linear decay in the log–log plot. However, this does not quite address the temporal
stability of the picture above. Our analysis below captures some of its subtleties.

To analyze the stability of the shape of the capital distribution curve, consider
the process of market weights (μi(t), i = 1, . . . ,K), t ≥ 0 and fix a J � K . At
any point of time t ≥ 0 we introduce the linear regression between the pairs of
data {(log i, logμi(t)), i = 1, . . . , J }, passing through the first point (0, logμ1(t)).
In other words, we deal with regressions of the form

logμ1(t) − logμi(t) = α(t) log i + εi(t), i = 2, . . . , J(1.3)

for fixed values of t ≥ 0. Clearly, the resulting ordinary least squares estimator for
the slope parameter corresponds to the slope of the linear part of the curve at time t

in Figure 1. With a minor abuse of notation we will denote this estimator by α(t).
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Our objective is to estimate the fluctuations of the above parameter when the
spacing process is running close to its stationary law. We choose the Atlas model
to have a specific sequence of drifts δ1, . . . , δK , although other values of the drift
parameters can be easily substituted. We consider initial configurations the spac-
ings of which are close to their unique invariant distribution found in [23]; see
Lemma 3.1 below.

THEOREM 1.1. Let I = {1, . . . ,K}, and consider the Atlas model in which
δ1 = δ and δi = 0 for all i = 2, . . . ,K . Define the initial spacings between the
particles by

X(K)(0) − X(K−i+1)(0) = K

δ
log i, i = 2, . . . ,K.(1.4)

Assume that K is sufficiently large. Fix a J < K/15 and consider the process α(t),
t ≥ 0, of ordinary least squares estimators resulting from regressions in (1.3) for
different values of t . Then the process α(t), 0 ≤ t ≤ δ−2K satisfies the following
concentration of measure property. Let ᾱ = sup0≤s≤δ−2K [α(s)].

Then there are constants mα ∈ R and C > 0 such that

P(ᾱ < mα) ≤ 1/2 + Ce−K/C

and for all positive r sufficiently large, one has

P(ᾱ > mα + r
√

K) ≤ 2 exp
(
− r2δ2

μCα

)
.

Hereby, μ is an absolute positive constant, and Cα is a positive constant depending
on J and given by

Cα(J ) = J 3 ·
(∑J−1

i=1 log(J !/i!)∑J
i=2(log i)2

)2

.

REMARK. The above result, although novel, does not capture fully the extent
of concentration that is seen in the real world data (see Figure 1). We suspect that
the reason for this is the empirically observed unequal diffusion coefficients of the
ordered particles. See, for example, the discussion in [3] which mentions that the
diffusion coefficient for the ranked particles decays linearly with increasing rank.
Thus, particles at the top are more stable than the average which should lead to
a higher concentration.

REMARK. Another obvious way to improve the bound is to use true station-
arity. One can divide up a long time interval in small subintervals of appropriate
size, use the above theorem on the small intervals and take a union bound. How-
ever, in this case it is not clear if the Gaussian concentration is preserved when the
invariant distribution has exponential tails. However, we expect that variations of
our method and the argument in this remark can lead to exponential concentration
over much larger intervals.
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Next, we set I = N in (1.1) and consider a sequence of drift coefficients
δ1, δ2, . . . which satisfies

δM = δM+1 = · · ·(1.5)

for some M ∈ N. Under the assumption that the sequence of initial positions of the
particles X1(0),X2(0), . . . is deterministic, nondecreasing and such that

lim inf
i→∞

Xi(0)

i
> 0,(1.6)

the system of stochastic differential equations (1.1) has a unique weak solution;
see Proposition 3.1 in [27]. We let L(i,i+1)(t), t ≥ 0, be the local time process
at zero of the process X(i+1)(t) − X(i)(t), t ≥ 0, for each i ∈ N and are inter-
ested in the concentration properties of the vector-valued processes (X(2)(t) −
X(1)(t), . . . ,X(n)(t) − X(n−1)(t)), t ∈ [0, T ], and (L(1,2)(t), . . . ,L(n−1,n)(t)),
t ∈ [0, T ], for arbitrary values of n ∈ N and T ≥ 0, which we consider to be fixed
from now on. For our main result on the latter we introduce the following assump-
tion on the initial particle configuration (X1(0),X2(0), . . .).

ASSUMPTION 1.2. The sequence of initial positions of the particles is nonde-
creasing with probability one, and there exists a deterministic constant c > 0 such
that

Xk(0) − XN(0) ≥ c(k − N)(1.7)

holds for all k ≥ N almost surely, where N = max(n,M).

We note that Assumption 1.2 ensures the existence of a unique weak solution
for the system (1.1) by Proposition 3.1 in [27].

To state our second main theorem we define the norm

‖f ‖T ,2 =
(

1

n − 1

n−1∑
i=1

sup
0≤t≤T

fi(t)
2

)1/2

(1.8)

on the space C([0, T ],Rn−1) of continuous R
n−1-valued functions on [0, T ]

where fi , i = 1, . . . , n − 1, are the component functions of f . Our result then
reads as follows.

THEOREM 1.3. Let Assumption 1.2 be satisfied with a constant c > 0. More-
over, let A be a measurable subset of (C([0, T ],Rn−1),‖ · ‖T ,2) such that

P
(((

L(i,i+1)(t), i = 1, . . . , n − 1
)
, t ∈ [0, T ]) ∈ A

)
> 1

2(1.9)

and for any r > 0 set

Ar =
{
h ∈ C

([0, T ],Rn−1)| inf
h̃∈A

‖h − h̃‖T ,2 ≤ r
}
.(1.10)
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Then, there exists a constant C > 0 depending on c, � = maxj=1,...,M−1 |δj −δM |,
M , n, T and the value of the left-hand side of (1.9) such that for all r > C it holds

P
(((

L(i,i+1)(t), i = 1, . . . , n − 1
)
, t ∈ [0, T ]) /∈ Ar

) ≤ C exp
(
−r4/7 · n2/7c10/7

CT

)
.

Moreover, the same statement is true for the spacings (X(i+1) − X(i), i =
1, . . . , n − 1).

REMARK. The local time of collisions between two consecutive ordered par-
ticles, as considered in Theorem 1.3, is interesting both mathematically and in
applications. Mathematically, say in the Atlas model, the local time (compared to
the case δi = 0, i ∈ I ) measures the push felt by the various particles due to the
drift at the bottom. Its significance in economic models is discussed in Section 13
of [14], which also mentions the somewhat surprising fact that these local times
can indeed be measured from data.

The rest of the article is organized as follows. In the next section we recall
some facts about the concentration of measure phenomenon and the Skorokhod
problem in the orthant, and provide an upper bound on the Lipschitz constant for
the Skorokhod map of interest in Lemma 2.4. The latter is the key to the proofs of
the two main results. Its proof relies on the construction of the Skorokhod map by
Harrison and Reiman [15] and applies to other Skorokhod problems in the orthant
as well. In Section 3 we use a relation between transportation cost inequalities and
the concentration of measure phenomenon to complete the proof of Theorem 1.1
and provide the remainder of the proof of Theorem 1.3 in Section 4.

2. Preliminaries.

2.1. Some facts about measure concentration for stochastic processes. Sup-
pose (X , d) is a complete separable metric space equipped with the Borel
σ -algebra. For a Borel subset A of X and a positive real number r , define the
r-neighborhood of A by

Ar := {
x ∈ X :d(x,A) ≤ r

}
.

We say that a probability measure μ on (X , d) has the measure concentration
property if for any Borel subset A with μ(A) ≥ 1/2 the value of μ(Ar) is very
close to one for large values of r . This closeness is usually expressed as a sub-
Gaussian tail in terms of r .

The concentration of measure phenomenon has become one of the most impor-
tant concepts in modern probability theory. For an excellent introduction to this
area we refer the reader to the beautiful article by Talagrand [29]. A consider-
able effort has been spent by probabilists on identifying distributions that have the
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measure concentration property. A (somewhat dated) survey can be found in the
monograph by Ledoux [19].

One technique for proving the measure concentration property, originally pro-
posed by Marton [20], involves the so-called transportation cost inequalities
(TCI) that we describe below; see also Talagrand [30], Dembo [7], Dembo and
Zeitouni [8]. Consider, as before, a complete separable metric space (X , d) en-
dowed with its Borel σ -algebra. For a real number p ≥ 1 and all probability mea-
sures P and Q on the latter space, define the pth Wasserstein distance

Wp(P,Q) = inf
π

[
Ed

(
X,X′)p]1/p

,

where the infimum is taken over all couplings of a pair of random elements (X,X′)
such that the marginal law of X is P and that of X′ is Q.

Next, fix a particular probability measure P . Suppose there is a constant C > 0
such that for all probability measures Q � P we have

W2(P,Q) ≤
√

2CH(Q | P),(2.1)

where H refers to the relative entropy H(Q | P) = EQ log(dQ/dP ). In this case
we say that P satisfies the quadratic transportation cost inequality (QTCI) with
the constant C.

A function f :X → R will be called Lipschitz if there is a positive constant α

for which ∣∣f (x) − f (y)
∣∣ ≤ αd(x, y), x, y ∈ X .

The smallest such constant α is then referred to as the Lipschitz constant of f .
We shall call a function 1-Lipschitz if α can be taken to be one. Let L denote the
set of all 1-Lipschitz functions on (X , d). The (very short) proof of the follow-
ing theorem can be found in Ledoux [19], page 118, and the original article by
Marton [20].

THEOREM 2.1. Suppose that P satisfies the QTCI with constant C. Then one
has the following concentration estimates for all r ≥ 2

√
2C log 2:

(i) For any measurable set A such that μ(A) ≥ 1/2, it holds

μ(Ar) ≥ 1 − exp
(−r2/8C

)
.(2.2)

(ii) For any f ∈ L, one has

P
(
x :

∣∣f (x) − mf

∣∣ ≥ r
) ≤ 2e−r2/8C,(2.3)

where mf is the median of f with respect to P .

In addition to Theorem 2.1, the following lemma will be useful in the later text.
Its (short) proof can be found in Lemma 2.1 of [9].
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LEMMA 2.2. Suppose μ is a measure on a metric space (E,dE) that satisfies
the QTCI with a constant C. Let (F, dF ) be another metric space. If the map
� : (E,dE) → (F, dF ) is Lipschitz, that is,

dF

(
�(x),�(y)

) ≤ αdE(x, y), x, y ∈ E

for some constant α > 0, then μ̃ = μ ◦ �−1 satisfies the QTCI on (F, dF ) with the
constant Cα2.

In this article we are interested in the choice of X = C([0, T ],RK−1), the space
of continuous maps from the interval [0, T ] to R

K−1, where K is the number of
interacting particles as before. The latter space is typically referred to as the path
space. It will be endowed with different variants of the uniform metric which are
described below. We shall use quadratic transportation cost inequalities satisfied
by the laws of stochastic processes with continuous paths, especially multidimen-
sional reflected Brownian motions.

2.2. RBM and the Skorokhod map. The reflected Brownian motions (RBMs)
we are interested in have a constant drift vector, a constant diffusion matrix and are
reflected whenever they hit the boundary of the positive orthant. On each face of
the boundary of the latter the direction of reflection is constant. The theory of such
processes is well developed. In particular, their existence and pathwise unique-
ness follows from the existence of a deterministic transformation mapping Brow-
nian paths to the corresponding reflected paths. This is the so-called Skorokhod
map, whose one-dimensional version is due to Skorokhod. We lift the following
description from the article by Harrison and Reiman [15]. For more details and
generalizations see [10, 11] and [12].

Define C([0,∞),RK−1) as the space of continuous functions x : [0,∞) →
R

K−1, endowed with the topology of the locally uniform convergence. For each
such function x we denote its component functions by xi for i = 1, . . . ,K − 1.
Let CS denote the subset of functions in C([0,∞),RK−1) for which xi(0) ≥ 0,
i = 1, . . . ,K − 1, and let Q = (qij ) be a (K − 1) × (K − 1) matrix with nonnega-
tive entries, zeros on the diagonal and spectral radius strictly less than one.

THEOREM 2.3 ([15]). For each x ∈ CS there exists a unique pair of functions
y, z ∈ C([0,∞),RK−1) satisfying

zj (t) = xj (t) + yj (t) −
K−1∑
i=1

qij yi(t), t ≥ 0,(2.4)

zj (t) ≥ 0, t ≥ 0(2.5)

for all j = 1, . . . ,K −1 and such that for every i = 1, . . . ,K −1, the function yi is
nondecreasing and increases only at those times t for which zi(t) = 0.
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Moreover, suppose that the matrix Q satisfies

‖Q‖cs := max
j=1,...,K−1

K−1∑
i=1

qij < 1.(2.6)

Then y is the unique function in C([0,∞),RK−1) that for all t ≥ 0 satisfies the
vector equation y(t) = sup0≤s≤t [y(s)Q − x(s)]+, and is given by the limit (in the
locally uniform topology) of the following iterative scheme:

y[0](t) ≡ 0,(2.7)

y[i+1](t) = sup
0≤s≤t

(
y[i](s)Q − x(s)

)
+, t ≥ 0.(2.8)

Hereby, the supremum and the positive part are taken componentwise.

It will become apparent later that the matrix Q of our choice will be given by

Q(K−1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
2 0 · · · · · · 0

1
2 0 1

2 0 · · · 0

0
. . .

. . .
. . .

. . .
...

...
. . . 1

2 0 1
2 0

0 · · · 0 1
2 0 1

2

0 · · · · · · 0 1
2 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Since Q(K−1) is a finite, irreducible, substochastic matrix, it is immediate (by
adding an absorbing point) that the spectral norm of Q(K−1) is strictly less than
one. As was shown in [15], this implies that the corresponding Skorokhod map,
which transforms the input path x into the reflected path z (or, the path of the
“local time” y), is Lipschitz with respect to a variant of the norm ‖ · ‖T ,2 defined
in (1.8). We would like to obtain an explicit upper bound on its Lipschitz constant
with respect to the norm ‖ · ‖T ,2.

Note that Q(K−1) does not satisfy assumption (2.6) and, hence, the iterative
scheme of Theorem 2.3 cannot be applied directly to construct the corresponding
Skorokhod map. The way to get around this is to define a (K − 1) × (K − 1)

diagonal matrix

D(K−1) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

w(K−1)

(
1

K

)
0 . . . 0

0 w(K−1)

(
2

K

)
...

...

... · · · . . . 0

0 . . . 0 w(K−1)

(
K − 1

K

)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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with a strictly concave function w(K−1) : [0,1] → [0,∞) such that w(K−1)(u) = 0
if and only if u ∈ {0,1}. Viewing the set of equations in (2.4) for different values
of j as an equation between row vectors, and multiplying both sides of it by the
matrix [D(K−1)]−1 from the right, we obtain the equations

z′
j (t) = x′

j (t) + y′
j (t) −

K−1∑
i=1

rij y
′
i (t), t ≥ 0(2.9)

for j = 1, . . . ,K − 1 where x′ = x[D(K−1)]−1, y′ = y[D(K−1)]−1, z′ =
z[D(K−1)]−1 and

R(K−1) = (rij ) = D(K−1)Q(K−1)[D(K−1)]−1
.(2.10)

Note that the coordinates of x′, y′ and z′ can be computed by a simple rescaling
of the corresponding coordinates of x, y and z, respectively. Moreover, it holds∥∥R(K−1)

∥∥
cs = max

l=1,...,K−1

w(K−1)((l − 1)/K) + w(K−1)((l + 1)/K)

2w(K−1)(l/K)
< 1(2.11)

due to the strict concavity of the function w(K−1). Thus the Skorokhod map cor-
responding to the matrix R(K−1) can be obtained using the iterative scheme of
Theorem 2.3. It would be interesting to determine whether the iterative scheme of
Theorem 2.3 converges in the case of Q(K−1) itself and, if so, to obtain a bound
on the Lipschitz constant of the corresponding Skorokhod map directly in order to
compare it with our bound below. However, at this point we are not able to resolve
this question.

From now on we fix a terminal time T > 0 and equip the space C([0, T ],RK−1)

of continuous RK−1-valued functions on [0, T ] with the norm

‖x‖T ,2 :=
(

1

K − 1

K−1∑
i=1

sup
0≤t≤T

xi(t)
2

)1/2

,(2.12)

where xi , i = 1, . . . ,K − 1, are the component functions of x. We write 	
Q(K−1)

L

and 	
Q(K−1)

R for the maps that take a path x ∈ C([0, T ],RK−1) to the local time
path y ∈ C([0, T ],RK−1) and the reflected path z ∈ C([0, T ],RK−1), respectively,
corresponding to the Skorokhod problem with reflection matrix Q(K−1) defined
above. The following lemma is one of the crucial steps in the proofs of Theorems
1.1 and 1.3. It provides an upper bound on the Lipschitz constant of the Skorokhod
map and is a significant improvement on an earlier attempt by Pal [22].

LEMMA 2.4. For all natural numbers K ≥ 2 the map 	
Q(K−1)

L is Lipschitz on
C([0, T ],RK−1) with respect to the norm ‖ · ‖T ,2 defined in (2.12). Moreover, its
Lipschitz constant Lip(K−1)

L satisfies

Lip(K−1)
L ≤ 2 · (K − 1)5/2(2.13)

for all K large enough.
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PROOF. We fix a natural number K as in the statement of the lemma and will
prove the inequality (2.13) for that value of K . From the considerations preceding
the lemma we know that for each g ∈ C([0, T ],RK−1) the map 	R(K−1)

L corre-
sponding to the Skorokhod problem with reflection matrix R(K−1), evaluated at g,
is given by the limit of the iterative scheme of Theorem 2.3 with input g, restricted
to the interval [0, T ]. Now, let g̃ be another function in C([0, T ],RK−1), for each
k ∈ N define f k and f̃ k as the results of the kth step of the iterative scheme of The-
orem 2.3 with inputs g and g̃, respectively, and set f and f̃ for 	R(K−1)

L (g) and

	R(K−1)

L (g̃), respectively. Finally, define the norm ‖·‖T ,max on C([0, T ],RK−1) by

‖x‖T ,max = max
i=1,...,K−1

sup
0≤t≤T

∣∣xi(t)
∣∣,(2.14)

where xi , i = 1, . . . ,K − 1, denote the component functions of a function x ∈
C([0, T ],RK−1) as before. By applying the triangle inequality, the fact that the
operation of taking the positive part is 1-Lipschitz and the definition of the norm
‖ · ‖cs in (2.6), one obtains the following chain of inequalities:∥∥f k+1 − f̃ k+1∥∥

T ,max

= max
i=1,...,K−1

sup
0≤t≤T

∣∣∣ sup
0≤s≤t

((
f k(s)R(K−1))

i − gi(s)
)
+

− sup
0≤s≤t

((
f̃ k(s)R(K−1))

i − g̃i(s)
)
+
∣∣∣

≤ max
i=1,...,K−1

sup
0≤t≤T

sup
0≤s≤t

∣∣((f k(s)R(K−1))
i − gi(s)

)
+

− ((
f̃ k(s)R(K−1))

i − g̃i(s)
)
+
∣∣

≤ max
i=1,...,K−1

(
sup

0≤t≤T

∣∣(f k(t)R(K−1))
i − (

f̃ k(t)R(K−1))
i

∣∣
+ sup

0≤t≤T

∣∣gi(t) − g̃i(t)
∣∣)

≤ ∥∥R(K−1)
∥∥
cs · max

i=1,...,K−1
sup

0≤t≤T

∣∣f k
i (t) − f̃ k

i (t)
∣∣+ ‖g − g̃‖T ,max.

Taking the limit k → ∞ and rearranging terms we conclude

‖f − f̃ ‖T ,max ≤ 1

1 − ‖R(K−1)‖cs

· ‖g − g̃‖T ,max.(2.15)

Recalling that the map 	
Q(K−1)

L can be obtained from the map 	R(K−1)

L by
a rescaling of the coordinates of RK−1 according to the matrix D(K−1) [see equa-
tion (2.9)], we deduce∥∥	Q(K−1)

L (g) − 	
Q(K−1)

L (g̃)
∥∥
T ,max ≤ 


1 − ‖R(K−1)‖cs

· ‖g − g̃‖T ,max,(2.16)
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where


 = maxl=1,...,K−1 w(K−1)(l/K)

minl=1,...,K−1 w(K−1)(l/K)
.(2.17)

Thus, the obvious equivalence of norm inequalities between the norms ‖ · ‖T ,max
and ‖ · ‖T ,2 on C([0, T ],RK−1) show∥∥	Q(K−1)

L (g) − 	
Q(K−1)

L (g̃)
∥∥
T ,2 ≤ ∥∥	Q(K−1)

L (g) − 	
Q(K−1)

L (g̃)
∥∥
T ,max

≤ 


1 − ‖R(K−1)‖cs

· ‖g − g̃‖T ,max

≤ (K − 1)1/2


1 − ‖R(K−1)‖cs

· ‖g − g̃‖T ,2.

Since the functions g and g̃ were chosen arbitrarily in C([0, T ],RK−1), we con-
clude

Lip(K−1)
L ≤ (K − 1)1/2


1 − ‖R(K−1)‖cs

.(2.18)

To complete the proof, we consider a K ≥ 4 and need to bound the right-
hand side in (2.18) from above for a suitable function w(K−1) in the definition
of the matrix D(K−1). We let w(K−1)(x) = 1 + x(1 − x) for x ∈ [K−1,1 −
K−1], set w(K−1)(0) = w(K−1)(1) = 0 and interpolate linearly on [0,K−1] and
[1 − K−1,1]. It is not hard to check that for this choice 
 = 5

4+4K−1(1−K−1)
and

‖R(K−1)‖cs ≤ 1 − 4
5K2 due to (2.11). Combining these with (2.18) and choosing

K large enough, we end up with (2.13). �

3. Concentration of the shape of the market weights. Consider the particle
system in (1.1) with I = {1, . . . ,K} for some K ∈ N and a choice of constants
δ1, . . . , δK that satisfy the following condition. Setting δ̄ = 1

K

∑K
i=1 δi , one has

αj :=
j∑

i=1

(δ̄ − δK−i+1) > 0, j = 1, . . . ,K − 1.(3.1)

In our analysis of the market weights we will use the following result from [23].

LEMMA 3.1. Under condition (3.1) the process of spacings(
ξi(t) : i = 1, . . . ,K − 1

)
(3.2)

:= (
X(K−i+1)(t) − X(K−i)(t) : i = 1, . . . ,K − 1

)
, t ≥ 0,

has a unique stationary distribution which is that of independent exponential ran-
dom variables with rates 2αi , for i = 1, . . . ,K − 1. Moreover, the system of spac-
ings is reversible at equilibrium.
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A situation in which the above lemma applies is given by the Atlas model with
δ1 = δ > 0 and δi = 0 for all i = 2, . . . ,K . In that case one easily computes

αj =
j∑

i=1

(
δ

K

)
= δj

K
, j = 1, . . . ,K − 1.(3.3)

Thus, under the stationary distribution we have

E
[
ξj (t)

] = K

2δj
, j = 1, . . . ,K − 1,

E
[
X(K−i+1)(t) − X(K−j+1)(t)

] = K

2δ

j−1∑
l=i

1

l
≈ K

2δ
log(j/i), 1 ≤ i < j ≤ K

for all t ≥ 0.
Next, consider the linear regression in (1.3). The corresponding ordinary least

squares estimator for the slope parameter is given by the formula

α(t) =
∑J

i=2(log i)(logμ1(t) − logμi(t))∑J
i=2 log2 i

=
∑J

i=2(log i)(X(K)(t) − X(K−i+1)(t))∑J
i=2 log2 i

=
∑J

i=2(log i)
∑i−1

j=1 ξj (t)∑J
i=2 log2 i

(3.4)

=
∑J−1

j=1 ξj (t)
∑J

i=j+1 log i∑J
i=2 log2 i

=
∑J−1

i=1 (logJ !/i!)ξi(t)∑J−1
i=1 log2(i + 1)

.

We use this formula in the proof below.

PROOF OF THEOREM 1.1. The proof is broken down into several steps.

Step (1) A quadratic transportation cost inequality for the process of spacings
is derived in the Atlas model with K particles.

Step (2) Next, we assume K to be very large compared to J . We prove a local-
ization lemma that shows that the process α(t), 0 ≤ t ≤ δ−2K , is determined only
by the particles corresponding to the 5J topmost indices with very high probabil-
ity.

Step (3) Finally, we show that the law of the 5J particles in step 2 is ap-
proximately that of another rank-based process, so that we can use the estimates
obtained in step 1, with K replaced by 5J , to bound concentration of measure
probabilities under the event constructed in step 2.

Step 1. Consider the process (X(1)(t), . . . ,X(K)(t)), t ∈ [0, T ], of ordered par-
ticles in the system (1.1) with I = {1, . . . ,K}. From Lemma 4 in [23] we know
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that there exist i.i.d. standard Brownian motions β1, . . . , βK such that for all
i = 1, . . . ,K it holds

dX(i)(t) = δi dt + dβi(t) + 1
2 dL(i−1,i)(t) − 1

2 dL(i,i+1)(t),
(3.5)

t ∈ [0, T ]
with Li,i+1(t), t ∈ [0, T ], being the local time process at zero of the process
X(i+1)(t) − X(i)(t), t ∈ [0, T ] for i = 1, . . . ,K − 1 and the convention L0,1(t) =
LK,K+1(t) = 0 for all t ∈ [0, T ].

Hence, for all i = 1, . . . ,K − 1 one has the dynamics

d
(
X(i+1)(t) − X(i)(t)

) = (δi+1 − δi) dt + dβi+1(t) − dβi(t)

+ dL(i,i+1)(t) − 1
2 dL(i+1,i+2)(t) − 1

2 dL(i−1,i)(t)

on [0, T ]. In particular, we can conclude from this representation as in Section 2
of [23] that the process(

X(2)(t) − X(1)(t), . . . ,X(K)(t) − X(K−1)(t)
)
, t ∈ [0, T ],

is a reflected Brownian motion in the (K − 1)-dimensional positive orthant with
reflection matrix Q(K−1) in the sense of Section 1 in [15]. By reversing the labeling
we see that the process ξ(t) := (ξ1(t), . . . , ξK−1(t)), t ∈ [0, T ], is also an RBM in
the positive orthant with reflection matrix Q(K−1). Thus, the process ξ can be
obtained as the image of the process γ ∗(t) := (βi+1(t) + δi+1t − βi(t) − δit, i =
1, . . . ,K − 1), t ∈ [0, T ], under the map 	

Q(K−1)

R .
By Theorem 6 in [22] the process of independent Brownian motions (β1(t) +

δ1t, . . . , βK(t)+ δKt), t ∈ [0, T ], satisfies a QTCI with respect to the norm ‖ · ‖T ,2
with the constant 4K−1T . Moreover, the map that takes the vector of these Brow-
nian motions to the process γ ∗(t), t ∈ [0, T ], is Lipschitz with respect to the norm
‖ · ‖T ,2 with Lipschitz constant 2

√
K/(K − 1). Hence, by Lemma 2.2 the pro-

cess γ ∗(t), t ∈ [0, T ], satisfies a QTCI with respect to the norm ‖ · ‖T ,2 with the
constant

C∗
K(0) := 16K−1T

K

K − 1
= 16(K − 1)−1T .(3.6)

Now, we will use Lemma 2.4. Consider equation (2.4) with the matrix Q(K−1)

for a fixed value of t and two different unconstrained processes x and x̃. Writing

y, ỹ, z, z̃ for 	
Q(K−1)

L (x), 	
Q(K−1)

L (x̃), 	
Q(K−1)

R (x), 	
Q(K−1)

R (x̃), respectively, we
easily deduce∣∣zj (t) − z̃j (t)

∣∣ ≤ ∣∣xj (t) − x̃j (t)
∣∣

+
(

max
i=1,...,K−1

|yi − ỹi |
)

·
K−1∑
i=1

∣∣(I (K−1) − Q(K−1))
ij

∣∣
︸ ︷︷ ︸

≤2

,

t ∈ [0, T ],
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where I (K−1) is a (K − 1) × (K − 1) identity matrix. Hence,

‖z − z̃‖T ,max ≤ ‖x − x̃‖T ,max + 2‖y − ỹ‖T ,max.(3.7)

On the other hand, due to (2.16) and the bounds following it in the proof of
Lemma 2.4 we get

‖y − ỹ‖T ,max ≤ 2(K − 1)2‖x − x̃‖T ,max(3.8)

for all K ≥ 4. Putting inequalities (3.7) and (3.8) together we obtain

‖z − z̃‖T ,max ≤ (
1 + 4(K − 1)2) · ‖x − x̃‖T ,max

(3.9)
≤ 5(K − 1)2‖x − x̃‖T ,max

for all K ≥ 4. Recall that by applying the map 	
Q(K−1)

R to the paths of the process
γ ∗ and by reversing the order of the coordinates thereafter, one gets the process ξ .
Combining this observation with Lemma 2.2, (3.6) and (3.9), we see that the pro-
cess ξ(t), t ∈ [0, T ], satisfies a QTCI with respect to the norm ‖ · ‖T ,max with the
constant

C∗
K := 400(K − 1)3T .(3.10)

Now, we restrict ourselves to the first (J − 1) coordinates of the process ξ ,
since only those appear in (3.4). By Lemma 2.2 the vector-valued process
(ξ1(t), . . . , ξJ−1(t)), t ∈ [0, T ], also satisfies a QTCI with respect to the norm
‖ · ‖T ,max with the constant C∗

K .
Step 2. Consider the formula for α(t) in (3.4). The value of α(t) depends only

on the top J spacings, whereby we have assumed that J is very much smaller
than K . In this case, for a large enough m and with high probability, the top J pro-
cesses during the time interval [0, T ] are identical to the top J processes among
the processes which start off at the top J +m positions at time zero. The following
lemma makes this idea precise. �

LEMMA 3.2. Consider the particle system of Theorem 1.1, and for all m ∈ N

define σm as the first time t at which, for some i ≥ J + m and some 1 ≤ j ≤ J ,
it holds XK−i+1(t) = X(K−j+1)(t). Then, there exists a uniform constant C > 0
such that for all K ≥ C, we have

P
(
σ4J+1 ≤ δ−2K

) ≤ CJK1/2e−K/C.(3.11)

PROOF. For any T > 0, the event {σm ≤ T } implies that for some i ≥ J + m

and some 1 ≤ j ≤ J , the processes XK−i+1 and XK−j+1 cross paths during the
time interval [0, T ]. Using the union bound and bounding the drift of the lower
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particle by the constant δ, we have the following estimate:

P(σm ≤ T ) ≤
K∑

i=J+m

J∑
j=1

P

(
sup

0≤t≤T

(
WK−i+1(t) − WK−j+1(t)

)
≥ −δT + XK−j+1(0) − XK−i+1(0)

)
(3.12)

≤ J

K∑
i=J+m

P

(
sup

0≤t≤T

(
WK−i+1(t) − WK−J+1(t)

)
≥ −δT + XK−J+1(0) − XK−i+1(0)

)
.

Next, we use the fact that the supremum of a standard Brownian motion up to
time T has the same law as the absolute value of a normal random variable with
mean zero and variance T . Thus with a standard normal random variable Z, one
has

P

(
sup

0≤t≤T

(
WK−i+1(t) − WK−J+1(t)

) ≥ −δT + XK−J+1(0) − XK−i+1(0)
)

= P

(√
2T |Z| ≥ K

δ
log(i/J ) − δT

)
= 2�	

((
K

δ
√

2T
log(i/J ) − δ

√
T

2

)
+

)
.

Here, �	 is the one minus the cumulative distribution function of a standard
normal random variable.

Plugging this into (3.12), we get

P(σm ≤ T ) ≤ 2J

K∑
i=J+m

�	
((

K

δ
√

2T
log(i/J ) − δ

√
T

2

)
+

)
.(3.13)

We note that for m = 4J + 1 and T = δ−2K we may omit taking the positive
part in the latter formula. Moreover, for this choice there exists a uniform constant
C > 0 such that for all K ≥ C the latter upper bound can be estimated from above
further by

2J

K∑
i=J+m

�	
(

K

Cδ
√

T
log

(
i

J

))

≤ 2J

K∑
i=J+m

Cδ
√

T

K
log

(
i

J

)−1

exp
(
− K2

Cδ2T
log

(
i

J

)2)

≤ 2J

K∑
i=J+m

Cδ
√

T

K
log

(
i

J

)−1( i

J

)−K2/(Cδ2T )

≤ CJδ
√

T exp
(
− K2

Cδ2T

)

≤ CJK1/2 exp
(
−K

C

)
,
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where we have been increasing the value of C suitably in every step. �

Step 3. Consider the particle system of Theorem 1.1. We proceed with another
localization lemma.

LEMMA 3.3. Define σ̃m to be the first time t at which, for some i ≥ m, we
have Xi(t) = X(1)(t). Then, there exists a uniform constant C > 0 such that

P
(
σ̃2K/3+1 ≤ δ−2K

) ≤ CK1/2e−K/C.

PROOF. With m = 2K/3 + 1, and letting Z be a standard normal random
variable and �	 be one minus its cumulative distribution function as before, we
have

P
(
σ̃m ≤ δ−2K

) ≤
K∑

i=m

P

(
sup

0≤t≤δ−2K

(
W1(t) − Wi(t)

) ≥ −δ−1K + Xi(0) − X1(0)
)

=
K∑

i=m

P

(
δ−1

√
2K|Z| ≥ δ−1K log

(
K

K − i + 1

)
− δ−1K

)

=
K∑

i=m

2�	
((√

K

2
log

(
K

K − i + 1

)
−

√
K

2

)
+

)

= 2
K−m+1∑

i=1

�	
(√

K

2
log

(
K

i

)
−

√
K

2

)
.

Note that we could drop the positive part in the last identity due to our as-
sumption m = 2K/3 + 1. Now, we estimate the latter upper bound further by
K�	(K1/2/C) ≤ CK1/2 exp(−K/C). This finishes the proof of the lemma. �

To complete the proof of Theorem 1.1, we recall from [23] that a weak solution
for the Atlas model as in Theorem 1.1 can be obtained by the following application
of Girsanov’s Theorem. Let Z1, . . . ,ZK be independent Brownian motions such
that Zi(0) = Xi(0), i = 1, . . . ,K . Set T = δ−2K , and let Q0 denote their joint
law during the time interval [0, T ] on the canonical sample space of continuous
R

K -valued functions on [0, T ] with the usual Brownian filtration. Consider the
martingale

M(t) =
K∑

i=1

∫ t

0
1{Zi(s)=Z(1)(s)} dZi(s), t ≥ 0.

Note that its quadratic variation at any fixed time t ≥ 0 is given by

〈M〉(t) =
(

K∑
i=1

∫ t

0
1{Zi(s)=Z(1)(s)}

)
ds = t,
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since two independent Brownian particles can simultaneously be the leftmost ones
only on a set of Lebesgue measure zero. Hence, by Lévy’s characterization of
Brownian motion, the process M is a standard Brownian motion under Q0. If we
now change the measure to Qδ according to the formula

dQδ

dQ0 = exp
(
δM(T ) − δ2T

2

)
,(3.14)

then, under Qδ , the law of the process (Z1(t), . . . ,ZK(t)), t ∈ [0, T ], is that of the
Atlas model during the time interval [0, T ].

Let FT denote the σ -algebra generated by the entire process (Z1(t), . . . ,

ZK(t)), t ∈ [0, T ]. Clearly, one has the decomposition

FT = GT ∨HT ,

where GT is the σ -algebra generated by the top 5J indexed coordinate processes(
ZK−5J+1(t), . . . ,ZK(t)

)
, t ∈ [0, T ],

HT is the σ -algebra generated by the rest of the coordinate processes and ∨ refers
to the smallest σ -algebra containing the two.

By our assumption, 5J < K/3. Hence, the process (Z1(t), . . . ,Z2K/3+1(t)),
t ∈ [0, T ], is measurable with respect to HT . For any fixed t ∈ [0, T ] define

Z̃(1)(t) = min
i=1,...,2K/3+1

Zi(t).

Then, the process Z̃(1)(t), t ∈ [0, T ], is also measurable with respect to HT .
Now, consider an arbitrary GT -measurable function F such that 0 ≤ F ≤ 1. To

simplify the notation, we will denote expectations with respect to the measures Q

and Qδ by Q(·) and Qδ(·), respectively. By Lemma 3.3 and the change of measure
formula (3.14) we have

Qδ(F ) ≤ Qδ(F1{σ̃2K/3+1>T }) + Qδ(1{σ̃2K/3+1≤T })
(3.15)

≤ Q0(FeδM(T )−δ2T/21{σ̃2K/3+1>T }
)+ CK1/2e−K/C.

Now, on the set {σ̃2K/3+1 > T }, the process M(t), t ∈ [0, T ], is identical to the
process M̃(t), t ∈ [0, T ], where the latter is defined by

M̃(t) =
2K/3+1∑

i=1

∫ t

0
1{Zi(s)=Z̃(1)(s)} dZi(s), t ∈ [0, T ].

Hence, it holds

Q0(FeδM(T )−δ2T/21{σ̃2K/3+1>T }
) = Q0(FeδM̃(T )−δ2T/21{σ̃2K/3+1>T }

)
≤ Q0(FeδM̃(T )−δ2T/2).
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Note that M̃(T ) is measurable with respect to HT while F is measurable with
respect to GT . Moreover, under Q0, the σ -algebras GT and HT are independent of
each other. Using this observation and 〈M̃〉(T ) = T , we obtain

Q0(FeδM̃(T )−δ2T/2) = Q0(F )Q0(eδM̃(T )−δ2T/2) = Q0(F ).

Combining this with the previous inequality and (3.15), we get

Qδ(F ) ≤ Q0(F ) + CK1/2e−K/C.(3.16)

For the rest of the argument we will assume that the particles indexed by the top
5J indices are independent Brownian motions starting from their respective initial
conditions, the idea being that all probabilities under the actual measure Qδ can be
bounded from above as in (3.16).

Back to the K particles Atlas model, consider the event {σ4J+1 > δ−2K} as in
Lemma 3.2. On this event, during the time interval [0, δ−2K] the top J processes
are identical to the top J processes among those that started at the top 5J positions
at time zero. Let Y ′

1, . . . , Y
′
5J be the ranked processes XK−5J+1, . . . ,XK in the

increasing order. Also, set

α′(t) =
∑J

i=2(log i)(Y ′
5J (t) − Y ′

5J+1−i (t))∑J
i=2 log2 i

, t ≥ 0.

Then, by Lemma 3.2,

P
(
α(t) = α′(t), for all 0 ≤ t ≤ δ−2K

) ≥ 1 − CJK1/2e−K/C.(3.17)

We now prove a concentration of measure property for α′(t), t ∈ [0, δ−2K].
Relying on (3.16), we can assume first that XK−5J+1, . . . ,XK evolve according to
independent standard Brownian motions. If we let(

ξ ′
i (t) : i = 1, . . . , J − 1

) = (
Y ′

5J−i+1(t) − Y ′
5J−i (t) : i = 1, . . . , J − 1

)
,

t ∈ [
0, δ−2K

]
,

then (ξ ′
1(t), . . . , ξ

′
J−1(t)), t ∈ [0, δ−2K] can be viewed as a vector of (J − 1) com-

ponent processes of a reflected Brownian motion in the (5J )-dimensional positive
orthant with zero drift vector and a constant diffusion matrix.

By (3.10) and the paragraph following it, we know that the process ξ ′(t),
t ∈ [0, δ−2K], satisfies a QTCI with respect to the norm ‖ · ‖δ−2K,max with the
constant μ′J 3δ−2K . Here, we have abbreviated 53 × 400 by μ′.

Note that for any fixed t ∈ [0, δ−2K], α′(t) can be written in terms of ξ ′(t) as

α′(t) =
∑J−1

i=1 ξ ′
i (t)

∑J
j=i+1 log j∑J

i=2 log2 i
=

∑J−1
i=1 ξ ′

i (t) log(J !/i!)∑J
i=2 log2 i

.
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Hence, the function that takes the paths of ξ ′(t), t ∈ [0, δ−2K], to the paths
of α′(t), t ∈ [0, δ−2K], is Lipschitz with respect to ‖ · ‖δ−2K,max norms with the
Lipschitz constant

C̃α(J ) =
∑J−1

i=1 log(J !/i!)∑J
i=2 log2 i

.

It follows that the random variable ᾱ′ := sup0≤t≤δ−2K α′(t) can be viewed as the
image of ξ ′(t), t ∈ [0, δ−2K], under a Lipschitz function with the Lipschitz con-
stant C̃α(J ). Thus, by Lemma 2.2 its law satisfies a QTCI with the constant

C̃α(J )2μ′J 3δ−2K.

Let mα be the median of ᾱ′ under Q0. Setting μ = 8μ′, we deduce from Theo-
rem 2.1 and (3.16),

Qδ(ᾱ′ > mα + r
√

K
) ≤ exp

(
− r2δ2

μC̃α(J )2J 3

)
+ CK1/2e−K/C

for all r greater than a constant depending only on J and δ. Combining this es-
timate with (3.17), bounding J by K and suitably increasing the value of C we
get

Qδ(ᾱ > mα + r
√

K) ≤ exp
(
− r2δ2

μC̃α(J )2J 3

)
+ Ce−K/C.

The observation that the sum of the last two summands is smaller than twice the
first summand for all sufficiently large K yields

Qδ(ᾱ > mα + r
√

K) ≤ 2 exp
(
− r2δ2

μC̃α(J )2J 3

)
.

We note that mα is not the median of ᾱ under Qδ . However, by (3.16) and (3.17)
one has

Qδ(ᾱ < mα) ≤ Q0(ᾱ < mα) + Ce−K/C ≤ Q0(ᾱ′ < mα

)+ Ce−K/C

≤ 1/2 + Ce−K/C,

where we have been increasing the value of C suitably in every step. This com-
pletes the proof of Theorem 1.1.

4. The infinite rank-based system. This section is devoted to the proof of
Theorem 1.3. The first step in the proof is to understand the dynamics of the pro-
cess (X(1)(t), . . . ,X(n)(t)), t ∈ [0, T ], of the n leftmost particles in the particle
system of Theorem 1.3.

LEMMA 4.1. There exist stopping times 0 = τN ≤ τN+1 ≤ · · · such that the
following are true:
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(a) limm→∞ τN+m = ∞ with probability one.
(b) For each m ∈ N there exists a system of i.i.d. standard Brownian motions

β
(m)
1 , . . . , β

(m)
n such that for all i = 1, . . . , n one has the dynamics

dX(i)(t ∧ τN+m) = 1{τN+m≥t}δi dt + dβ
(m)
i (t ∧ τN+m)

+ 1
2 dL(i−1,i)(t ∧ τN+m) − 1

2 dL(i,i+1)(t ∧ τN+m)

on [0, T ]. Hereby, a ∧ b denotes min(a, b) for any two real numbers a, b.

PROOF. We define inductively the sets �N ⊂ �N+1 ⊂ · · · and the stopping
times 0 = τN ≤ τN+1 ≤ · · · by

�N+m = {
k ≥ 1|∃1 ≤ i ≤ N,0 ≤ s ≤ τN+m :Xk(s) = X(i)(s)

}
,(4.1)

τN+m+1 = inf
{
s ≥ τN+m|∃1 ≤ i ≤ N,k /∈ �N+m :Xk(s) = X(i)(s)

}
(4.2)

for all m = 0,1, . . . . The proof of Proposition 3.1 in [27] shows that, with prob-
ability one, it holds limm→∞ τN+m = ∞ and the sets �N+m are finite for all
m = 0,1, . . . . Moreover, the same proof implies that for each such number m the
paths of the process X(1)(t ∧ τN+m), . . . ,X(n)(t ∧ τN+m), t ∈ [0, T ], are given
by the paths of the n leftmost particles in a particle system as in (1.1) with
I = {1, . . . , |�N+m|}, which is stopped at time τN+m. Hence, by Lemma 4 in [23]
we conclude that assertion (b) of the lemma is true for our choice of the stopping
times 0 = τN ≤ τN+1 ≤ · · · . �

Next, fix a K ∈ N and let X′
(1), . . . ,X

′
(K) be the ranked particles in the sys-

tem (1.1) with I = {1, . . . ,K}. Also, let L′
(1,2), . . . ,L

′
(K−1,K) be the local time

processes at zero of the spacings processes in that system. Recall the definition of
the norm ‖ · ‖T ,2 in (1.8). From Lemma 2.4 we can deduce the following concen-
tration of measure property of the finite particle system.

COROLLARY 4.2. Let A be a measurable subset of (C([0, T ],Rn−1),‖ ·‖T ,2)

such that

P
(((

L′
(1,2)(t), . . . ,L

′
(n−1,n)(t)

)
, t ∈ [0, T ]) ∈ A

) ≥ 1
2(4.3)

and for any r > 0 set

Ar =
{
h ∈ C

([0, T ],Rn−1)∣∣ inf
h̃∈A

‖h̃ − h‖T ,2 ≤ r
}
.(4.4)

Then, there exists a constant C > 0, so that for all r ≥ C K5/2T 1/2

n1/2 it holds

P
(((

L′
(1,2)(t), . . . ,L

′
(n−1,n)(t)

)
, t ∈ [0, T ]) /∈ Ar

) ≤ exp
(
− r2n

CK5T

)
.

Moreover, the same statement is true for the spacings (X′
(i+1) − X′

(i),

i = 1, . . . , n − 1).
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PROOF. From the considerations in step 1 of the proof of Theorem 1.1 we see
that the process (

L′
(1,2)(t), . . . ,L

′
(n−1,n)(t)

)
, t ∈ [0, T ],(4.5)

can be obtained by applying 	
Q(K−1)

L and then the canonical projection of
C([0, T ],RK−1) onto C([0, T ],Rn−1) to the process(

(δ2 − δ1)t + β ′
2(t) − β ′

1(t), . . . , (δK − δK−1)t + β ′
K(t) − β ′

K−1(t)
)
,

(4.6)
t ∈ [0, T ].

Hereby, the Brownian motions β ′
1, . . . , β

′
K are defined analogously to the Brown-

ian motions β1, . . . , βK in the proof of Theorem 1.1. There, we have seen that the
process in (4.6) satisfies a QTCI with respect to the norm ‖ ·‖T ,2 with a constant of
the form CT/K . Combining Lemmas 2.2 and 2.4, we conclude that a QTCI with
a constant of the form

C

(√
K

n

)2

· (K5/2)2 · T

K
= C

K5T

n
(4.7)

applies to the process in (4.5) with respect to the norm ‖ · ‖T ,2. Hence, from The-
orem 2.1 we obtain the concentration of measure result for the local times.

To show the corresponding result for the spacings, we recall from step (1) of the
proof of Theorem 1.1 that the process(

X′
(2)(t) − X′

(1)(t), . . . ,X
′
(n)(t) − X′

(n−1)(t)
)
, t ∈ [0, T ],(4.8)

is the image of the process in (4.6) under the successive application of the map

	
Q(K−1)

R and the canonical projection of C([0, T ],RK−1) onto C([0, T ],Rn−1).
Moreover, we can rewrite (2.4) as(

	
Q(K−1)

R (h)
)
(t) = h(t) + (

I (K−1) − Q(K−1))((	Q(K−1)

L (h)
)
(t)

)
,

(4.9)
t ∈ [0, T ]

for all h ∈ C([0, T ],RK−1), where I (K−1) is the (K −1)×(K −1) identity matrix.
It follows that for all h1, h2 ∈ C([0, T ],RK−1), one has the estimates∥∥(	Q(K−1)

R (h2)
)− (

	
Q(K−1)

R (h1)
)∥∥

T ,2

≤ ‖h2 − h1‖T ,2

+ ∥∥(I (K−1) − Q(K−1))((	Q(K−1)

L (h2)
)
(·) − (

	
Q(K−1)

L (h1)
)
(·))∥∥T ,2

≤ ‖h2 − h1‖T ,2 + 3
√

2

2
· ∥∥(	Q(K−1)

L (h2)
)− (

	
Q(K−1)

L (h1)
)∥∥

T ,2

≤ (
1 + 3

√
2(K − 1)5/2)‖h2 − h1‖T ,2.
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In the second inequality we have combined the fact that the matrix I (K−1) −
Q(K−1) is tridiagonal with the elementary inequality (a1 + a2 + a3)

2 ≤ 3(a2
1 +

a2
2 + a2

3), a1, a2, a3 ∈ R. The third inequality is a consequence of Lemma 2.4.
Now, it follows from Lemma 2.2 that the process in (4.8) satisfies a QTCI with

respect to the norm ‖ · ‖T ,2 with the constant(√
K − 1

n − 1

)2

· (1 + 3
√

2(K − 1)5/2)2 · 16T

K − 1
≤ C

K5T

n
.(4.10)

The result of the corollary for the spacings is a consequence of this and Theo-
rem 2.1. �

The last ingredient in the proof of Theorem 1.3 is an estimate on how fast the
stopping times 0 = τN ≤ τN+1 ≤ · · · in the proof of Lemma 4.1 grow to infinity in
terms of the initial positions of the particles.

LEMMA 4.3. Let the Assumption 1.2 be satisfied with a constant c > 0. Then
for all natural numbers m ≥ maxj=1,...,M−1 |δj−δM |T

c
+ 1 (= �T

c
+ 1) one has the

inequality

P(τN+m ≤ T ) ≤ NT

c(cm − c − �T )
· exp

(
− 1

2T
(cm − c − �T )2

)
.(4.11)

In particular, there exists a constant C(c,M,n,T ,�) > 0 independent of m such
that

P(τN+m ≤ T ) ≤ C(c,M,n,T ,�)e−(c2/(3T ))m2
, m ∈ N.(4.12)

PROOF. We fix a natural number m as in the first statement of the lemma
and note that on the event {τN+m ≤ T } there exist numbers 1 ≤ i ≤ N and j ≥
N + m such that the particle, which was the ith from the left in the initial particle
configuration, appears on the right or at the same position as the particle, which
was the j th from the left in the initial particle configuration, at a time t ∈ [0, T ].
Using this observation, the union bound and the definition of � (see the statement
of Theorem 1.3), one has the chain of inequalities

P(τN+m ≤ T ) ≤
N∑

i=1

∞∑
j=N+m

P

(
sup

0≤t≤T

(
Wi(t) − Wj(t)

) ≥ −�T + Xj(0) − Xi(0)
)

≤ N

∞∑
j=N+m

P

(
sup

0≤t≤T

(
W1(t) − Wj(t)

) ≥ −�T + Xj(0) − XN(0)
)
.

From Bernstein’s inequality for Brownian motion (see page 145 in [24]), As-
sumption 1.2 and the assumption m ≥ �c

T
+ 1 it follows that the latter expression
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can be bounded further by

N

∞∑
j=N+m

exp
(
−(Xj (0) − XN(0) − �T )2

2T

)

≤ N

∞∑
k=m

exp
(
−(ck − �T )2

2T

)
= N

∞∑
k=m

exp
(
− c2

2T

(
k − �T

c

)2)

≤ N

∫ ∞
m−1

exp
(
− c2

2T

(
y − �T

c

)2)
dy.

Next, we note that the latter integral is equal to the probability that a standard

normal random variable exceeds m−1−(�T/c)√
T /c

multiplied by
√

2π(T /c2). Using this

and the standard estimate∫ ∞
y

e−z2/2 dz ≤ 1

y
e−y2/2, y > 0,(4.13)

one ends up with the first statement of the lemma.
Finally, to see (4.12), it suffices to observe that the argument of the exponential

function on the right-hand side of inequality (4.11) is a quadratic polynomial in m,
in which the coefficient of m2 is given by c2

2T
. �

We can now prove the following refined version of Theorem 1.3.

PROPOSITION 4.4. Let the sets A and Ar , r > 0, be defined as in The-
orem 1.3, and let the constant C(c,M,n,T ,�) be as in Lemma 4.3. More-
over, let m1 ∈ N be such that for all natural numbers m ≥ m1 the value of
C(c,M,n,T ,�)e−(c2/(3T ))m2

is less or equal to the difference between the left-
hand and the right-hand side of inequality (1.9). Then there is a uniform constant
C > 0 such that the following is true. If one defines C1 as the smallest positive real
number such that

n1/7C
2/7
1

c2/7 ≥ Cm1 and ∀r ≥ C1 : r ≥ C
(N + m(r) − 1)5/2T 1/2

n1/2(4.14)

with m(r) = n1/7r2/7

c2/7 , then there exists a constant C2 > 0 depending on c, �, M , n,
T and the value on the left-hand side of (1.9) such that for all r ≥ C1 it holds

P
(((

L(1,2)(t), . . . ,L(n−1,n)(t)
)
, t ∈ [0, T ]) /∈ Ar

) ≤ C2 exp
(
−r4/7 · n2/7c10/7

CT

)
.

Moreover, the same statement is true for the spacings (X(i+1) − X(i), i =
1, . . . , n − 1).
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PROOF. We only provide the proof for the local times, since the proof for the
spacings is the same. To this end, we fix an r as in the statement of the proposition,
let C > 0 be a constant whose value will be chosen later, and set

m̃1 = 1

C

n1/7r2/7

c2/7 , K1 = N + m̃1.(4.15)

We assume from now on that r is such that m̃1 is an integer. If this is not the case,
one merely needs to replace m̃1 by the smallest integer which is larger than m̃1.
Moreover, we note that the inequality r1 ≥ C1 and the first inequality in (4.14)
imply m̃1 ≥ m1.

Next, we recall the definition of the stopping time τK1 and observe

P
(((

L(1,2)(t), . . . ,L(n−1,n)(t)
)
, t ∈ [0, T ]) /∈ Ar

)
≤ P

(((
L(1,2)(t), . . . ,L(n−1,n)(t)

)
, t ∈ [0, T ]) /∈ Ar, τK1 ≥ T

)
+ P(τN+m̃1 ≤ T )

≤ P
(((

L(1,2)(t), . . . ,L(n−1,n)(t)
)
, t ∈ [0, T ]) /∈ Ar, τK1 ≥ T

)
+ C(c,M,n,T ,�)e−(c2/(3T ))m̃2

1,

where the last inequality is a consequence of Lemma 4.3.
To obtain an upper bound on the first summand, which we call term (*), we

remark first that for all triples of indices 1 ≤ i < j < k it holds

P
(∃t ∈ [0, T ] :X(i)(t) = X(j)(t) = X(k)(t)

) = 0.(4.16)

Indeed, arguing as in the proof of Lemma 4.1, but replacing N by max(k,M), we
deduce the existence of stopping times 0 = τ̃max(k,M) ≤ τ̃max(k,M)+1 ≤ · · · tending
to infinity almost surely and such that for each l ∈N the dynamics of the k leftmost
particles, stopped at τ̃max(k,M)+l , is given by the dynamics of the k leftmost parti-
cles in a finite particle system as in (1.1), stopped at τ̃max(k,M)+l . Hence, (4.16) is
a consequence of the considerations in Section 2.2 of [16], Proposition 1 in [16]
and the fact that a countable union of P-null sets is P-null set.

Next, we recall from the proof of Lemma 4.1 that for each m ∈ N the paths
of the process X(1)(t ∧ τN+m), . . . ,X(n)(t ∧ τN+m), t ∈ [0, T ], are the paths of
the n leftmost particles in a particle system as in (1.1) with |�N+m| particles,
stopped at τN+m. Moreover, (4.16) shows that |�N+m| = N + m. Thus, on the
event {τK1 ≥ T } the paths of the process(

L(1,2)(t), . . . ,L(n−1,n)(t)
)
, t ∈ [0, T ],

can be written as the composition of the map 	
Q(K1−1)

L with the canonical projec-
tion of C([0, T ],RK1−1) onto C([0, T ],Rn−1) applied to the paths of the process(

(δ2 − δ1)t + β
(m̃1)
2 (t) − β

(m̃1)
1 (t), . . . , (δK1 − δK1−1)t + β

(m̃1)
K1

(t) − β
(m̃1)
K1−1(t)

)
,

t ∈ [0, T ],
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where β
(m̃1)
1 , . . . , β

(m̃1)
K1

are i.i.d. standard Brownian motions defined in Lemma 4.1.
Hence, following the proof of the first statement of Corollary 4.2, and using the
second inequality in (4.14), we conclude that term (*) is bounded from above by
exp(−r2 n

CK5
1 T

) for a C > 0 large enough.

All in all, we have shown that P(((L(1,2)(t), . . . ,L(n−1,n)(t)), t ∈ [0, T ]) /∈ Ar)

is bounded from above by

exp
(
−r2 n

CK5
1T

)
+ C(c,M,n,T ,�)e−(c2/(3T ))m̃2

1 .

Plugging in the values of m̃1 and K1 one observes that the leading order term in
the variable r is the same for both exponents on the right-hand side of the lat-
ter inequality and is of the form −r4/7 · n2/7c10/7

CT
. This yields the proposition and

completes the proof of Theorem 1.3. �
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