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SEARCH TREES: METRIC ASPECTS AND
STRONG LIMIT THEOREMS

BY RUDOLF GRÜBEL

Leibniz Universität Hannover

We consider random binary trees that appear as the output of certain
standard algorithms for sorting and searching if the input is random. We in-
troduce the subtree size metric on search trees and show that the resulting
metric spaces converge with probability 1. This is then used to obtain almost
sure convergence for various tree functionals, together with representations
of the respective limit random variables as functions of the limit tree.

1. Introduction. A sequential algorithm transforms an input sequence
t1, t2, . . . into an output sequence x1, x2, . . . where, for all n ∈ N, xn+1 depends
on xn and tn+1 only. Typically, the output variables are elements of some combi-
natorial family F, each x ∈ F has a size parameter φ(x) ∈ N and xn is an element
of the set Fn := {x ∈ F :φ(x) = n} of objects of size n. In the probabilistic analysis
of such algorithms, one starts with a stochastic model for the input sequence and
is interested in certain aspects of the output sequence. The standard input model
assumes that the ti ’s are the values of a sequence η1, η2, . . . of independent and
identically distributed random variables. For random input of this type, the output
sequence then is the path of a Markov chain X = (Xn)n∈N that is adapted to the
family F in the sense that

P(Xn ∈ Fn) = 1 for all n ∈ N.(1)

Clearly, X is highly transient—no state can be visited twice.
The special case we are interested in, and which we will use to demonstrate an

approach that is generally applicable in the situation described above, is that of
binary search trees and two standard algorithms, known by their acronyms BST
(binary search tree) and DST (digital search tree). These are discussed in detail
in the many excellent texts in this area, for example in [23, 24] and [13]. Various
functionals of the search trees, such as the height [10], the path length [27, 28],
the node depth profile [5–7, 14, 18, 20], the subtree size profile [9, 17], the Wiener
index [25] and the silhouette [19] have been studied, with methods spanning the
wide range from generatingfunctionology to martingale methods to contraction
arguments on metric spaces of probability distributions (neither of these lists is
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complete). Many of the results are asymptotic in nature, where the convergence
obtained as n → ∞ may refer to the distributions or to the random variables them-
selves. As far as strong limit theorems are concerned, a significant step toward a
unifying approach was made in the recent paper [16], where methods from discrete
potential theory were used to obtain limit results on the level of the combinatorial
structures themselves: In a suitable extension of the state space F, the random vari-
ables Xn converge almost surely as n → ∞, and the limit generates the tail σ -field
of the Markov chain. The results in [16] cover a wide variety of structures; search
trees are a special case. It should also be mentioned here that the use of bound-
ary theory has a venerable tradition in connection with random walks; see [22]
and [29].

Our aims in the present paper are the following. First, we use the algorithmic
background for a direct proof of the convergence of the BST variables Xn, as
n → ∞, to a limit object X∞, and we obtain a representation of X∞ in terms of
the input sequence (ηi)i∈N. Second, we introduce the subtree size metric on finite
binary trees. This leads to a reinterpretation of the above convergence in terms
of metric trees. We also introduce a family of weighted variants of this metric,
with parameter ρ ≥ 1, and then identify the critical value ρ0 with the property
that the metric trees converge for ρ < ρ0 and do not converge if ρ > ρ0. The
value ρ0 turns out to also be the threshold for compactness of the limit tree. Third,
we use convergence at the tree level to (re)obtain strong limit theorems for three
tree functionals—the path length, the Wiener index and a metric version of the
silhouette.

These topics are treated in the next three sections, where each has its own intro-
ductory remarks.

2. Binary search trees. We first introduce some notation, mostly specific to
binary trees, then discuss the two search algorithms and the associated Markov
chains and finally recall the results from [16] related to these structures, including
an alternative proof of the main limit theorem.

2.1. Some notation. We write L(X) for the distribution of a random variable
X and L(X|Y = k), L(X|Y), L(X|F) for the various versions of the conditional
distribution of X given (the value of) a random variable Y or a σ -field F . Further,
δc is the one-point mass at c, 1A is the indicator function of the set A [so that
1A(c) = δc(A)], Bin(n,p) denotes the binomial distribution with parameters n ∈N

and p ∈ (0,1), Beta(α,β) is the beta distribution with parameters α,β > 0 and
unif(0,1) = Beta(1,1) is the uniform distribution on the unit interval. We also
write unif(M) = (#M)−1 ∑

c∈M δc for the uniform distribution on a finite set M .
With N0 = {0,1,2, . . .} let

Vk := {0,1}k, V := ⊔
k∈N0

Vk, ∂V := {0,1}∞
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be the set of 0–1 sequences of length k, k ∈ N0, the set of all finite 0–1 sequences
and the set of all infinite 0–1 sequences, respectively. The set V0 has ∅, the “empty
sequence,” as its only element, and |u| is the length of u ∈ V, that is, |u| = k if
u ∈Vk . For each node u = (u1, . . . , uk) ∈ V we use

u0 := (u1, . . . , uk,0),

u1 := (u1, . . . , uk,1),

ū := (u1, . . . , uk−1) if k ≥ 1,

to denote its left and right direct descendant (child) and its direct ancestor (parent).
We write u ≤ v for u = (u1, . . . , uk) ∈ V, v = (v1, . . . , vl) ∈V if k ≤ l and uj = vj

for j = 1, . . . , k, that is, if u is a prefix of v; the extension to v ∈ ∂V is obvious.
The prefix order is a partial order only, but there exists a unique minimum u∧ v to
any two nodes u, v ∈V, their last common ancestor; again, this can be extended to
elements of ∂V. Another ordering on V can be obtained via the function β :V →
[0,1],

β(u) := 1

2
+

k∑
j=1

2uj − 1

2j+1 , u ∈ V.(2)

This will be useful in various proofs, and also in connection with illustrations.
By a binary tree we mean a subset x of the set V of nodes that is prefix stable

in the sense that u ∈ x and v ≤ u implies that v ∈ x. Informally, we regard the
components u1, . . . , uk of u as a routing instruction leading to the vertex u, where 0
means a move to the left, 1 a move to the right and the empty sequence is the
root node. The edges of the tree x are the pairs (ū, u), u ∈ x,u �= ∅. A node is
external to a tree if it is not one of its elements, but its direct ancestor is; we write
∂x := {u ∈ V : ū ∈ x,u /∈ x} for the set of external nodes of x. Finally,

σ(x,u) := #{v ∈ x :u ≤ v}(3)

is the size of the subtree of x rooted at u (or the number of descendants of u in x,
including u).

Let B denote the (countable) set of finite binary trees, Bn := {x ∈ B : #x = n}
those of size (number of nodes) n. The single element of B1 is {∅}, the tree that
consists of the root node only.

2.2. Search algorithms and Markov chains. Let (ti)i∈N be a sequence of pair-
wise distinct real numbers. The BST (binary search tree) algorithm stores these
sequentially into labeled binary trees (xn,Ln), n ∈ N, with xn ∈ Bn and Ln :xn →
{t1, . . . , tn}. For n = 1 we have x1 = {∅} and L1(∅) = t1. Given (xn,Ln), we con-
struct (xn+1,Ln+1) as follows: Starting at the root node we compare the next input
value tn+1 to the value Ln(u) attached to the node u under consideration, and move
to u0 if tn+1 < Ln(u) and to u1 otherwise, until an “empty” node u (necessarily



1272 R. GRÜBEL

an external node of xn) is found. Then xn+1 := xn ∪ {u} and Ln+1(u) := tn+1,
Ln+1(v) := Ln(v) for all v ∈ xn.

Now let (ηi)i∈N be a sequence of independent random variables with L(ηi) =
unif(0,1) for all i ∈ N, and let Xn be the random binary tree associated with the
first n of these. By construction, the label functions Ln are monotone with respect
to the β-order of the tree nodes, that is, with β as in (2),

β(u) ≤ β(v) ⇒ Ln(u) ≤ Ln(v) for all n with {u, v} ⊂ Xn.(4)

In particular, if we number the external nodes of Xn from the left to the right,
then the number of the node that receives ηn+1 is the rank of this value among
{η1, . . . , ηn}, hence uniformly distributed on {1, . . . , n + 1}. This shows that the
(deterministic) BST algorithm, when applied to the (random) input (ηi)i∈N, results
in a Markov chain (Xn)n∈N with state space B, start at X1 ≡ {∅} and transition
probabilities

Q
(
x, x ∪ {u}) =

{
1/(1 + #x), if u ∈ ∂x,
0, otherwise.

(5)

In words: We obtain Xn+1 by choosing one of the n + 1 external nodes of Xn

uniformly at random and joining it to the tree. We refer to this construction as the
BST chain.

For the DST (digital search tree) algorithm, the input values are infinite 0–1 se-
quences, that is, elements of ∂V. Given t1, t2, . . . ∈ ∂V we again obtain a sequence
x1, x2, . . . of labeled binary trees, but now we use the components tn+1,k , k ∈ N,
of the next input value tn+1 as a routing instruction through xn, moving to u0 from
an occupied node u ∈ Vk if tn+1,k+1 = 0 and to u1 otherwise. As in the BST case
we assume that the ti’s are the values of a sequence of independent and identically
distributed random variables ηi , where the distribution of the ηi’s is now a prob-
ability measure μ on the measurable space (∂V,B(∂V)), with B(∂V) the σ -field
generated by the projections on the sequence elements, ∂V  t = (tk)k∈N �→ ti ,
i ∈N. This σ -field is also generated by the sets

Au := {v ∈ ∂V :v ≥ u}, u ∈ V.(6)

It is easy to check that the intersection of two such sets is either empty or again of
this form. This implies that μ is completely specified by its values μ(Au), u ∈ V,
and the DST analogue of (5) then is

Q
(
x, x ∪ {u}) =

{
μ(Au), if u ∈ ∂x,
0, otherwise.

(7)

By the DST chain with driving distribution μ we mean a Markov chain (Xn)n∈N
with state space B, start at {∅} and transition mechanism given by (7).
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2.3. Doob–Martin compactification. We refer the reader to Doob’s seminal
paper [12] and to the recent textbook [30] for the main results of, background on
and further references for the boundary theory for transient Markov chains. For the
BST chain the Doob–Martin compactification has recently been obtained in [16]:
It can be described as the closure B̄ of the embedding of B into the compact space
[0,1]V, endowed with pointwise convergence, that is given by the standardized
subtree size functional

B  x �→
(
V  u �→ σ(x,u)

#x

)

with σ as defined in (3). Further, the elements of the boundary ∂B may be repre-
sented by probability measures μ on (∂V,B(∂V)), with convergence xn → μ of a
sequence (xn)n∈N in B meaning that

μ(Au) = lim
n→∞

σ(xn,u)

#xn

for all u ∈V,

and μn(Au) → μ(Au) for all u ∈V if we have a sequence (μn)n∈N of elements of
∂B instead.

The general theory implies that Xn converges almost surely to a limit X∞ with
values in ∂B; [16] also contains a description of L(X∞). The proof given there
does not make use of the algorithmic background, but takes the transition mecha-
nism (5) as its starting point. We now show that this background leads to a direct
proof of Xn → X∞, and to a representation of X∞ in terms of the input sequence.

We need some more notation. On V we define a metric dV by

dV(u, v) := 2−|u∧v| − 1
2

(
2−|u| + 2−|v|), u, v ∈ V.(8)

On V itself this gives the discrete topology, and the completion of V with respect
to dV leads to V̄ := V ∪ ∂V, a compact and separable metric space. This is also
the ends compactification if we regard V as the complete rooted binary tree. We
extend the Au’s to V̄ by

Āu := {v ∈ V̄ :v ≥ u}, u ∈ V.

Because of

Āu := {
v ∈ V̄ :dV(u, v) < 2−|u|} = {

v ∈ V̄ :dV(u, v) ≤ 2−|u|−1}
these sets are open and closed. Further,

{u} = Āu \ (Āu0 ∪ Āu1), Āu ∩ Āv =
⎧⎪⎨
⎪⎩

Āu, if u ≤ v,
Āv, if u ≥ v,
∅, otherwise,

hence {Āu :u ∈ V} is a π -system that generates B(V̄). Together these facts imply
that weak convergence of probability measures μn to a probability measure μ on
(V̄,B(V̄)) is equivalent to

lim
n→∞μn(Āu) = μ(Āu) for all u ∈ V.(9)
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In view of
1

n
σ(Xn,u) = unif(Xn)(Āu)

and X∞(V) = 0 convergence in the Doob–Martin topology is therefore equivalent
to the weak convergence of probability measures on the metric space (V̄, dV) if we
represent finite subsets M of V by the uniform distribution unif(M) on (V̄,B(V̄)).

Moreover, any sequence (μn)n∈N of probability measures on (V̄,B(V̄)) is tight,
as V̄ is compact, and therefore has a limit point by Prohorov’s theorem [2], page 37.
If (μn(Āu))n∈N is a convergent sequence for each u ∈ V, then there is only one
such limit point, which means that μn converges weakly to some probability mea-
sure μ and that (9) holds. Finally, let

τ(u) := inf{n ∈N :Xn  u}, u ∈ V,(10)

be the time that the node u becomes an element of the BST sequence. It is easy to
see that the τ(u)’s are finite with probability 1.

THEOREM 1. Let (Xn)n∈N be the sequence of binary trees generated by the
BST algorithm with input a sequence (ηi)i∈N of independent and identically dis-
tributed random variables with L(η1) = unif(0,1).

(a) With probability 1 the sequence unif(Xn) converges weakly to a random
probability measure X∞ on (∂V,B(∂V)) as n → ∞.

(b) For each u ∈ V, u �= ∅, with i := τ(u) − 1, τ as in (10), and

0 =: η(i:0) < η(i:1) < · · · < η(i:i) < η(i:i+1) := 1

the augmented order statistics associated with η1, . . . , ηi , we have

X∞(Au) = η(i:j+1) − η(i:j) with η(i:j) < ηi+1 < η(i:j+1).

(c) The random variables

ξu := X∞(Au0)

X∞(Au)
, u ∈V,

are independent, and L(ξu) = unif(0,1) for all u ∈V.

PROOF. Let u, τ(u), i and η(i:j), j = 0, . . . , i + 1, be as in part (b) of the
theorem. The order property (4) of the labeled binary search trees implies that for
a node v with label ηk , k > i, the relation v ≥ u is equivalent to η(i:j) < ηk <

η(i:j+1). Hence, by the law of large numbers,

lim
n→∞ unif(Xn)(Āu) = lim

n→∞
#{v ∈ Xn :v ≥ u}

n

= lim
n→∞

#{i < k ≤ n :ηk ∈ (η(i:j), η(i:j+1))}
n

= η(i:j+1) − η(i:j)
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with probability 1 for every u ∈ V. In view of

{u} = {
v ∈ V̄ :d(u, v) < 2−|u|−1}

for all u ∈ V,

the one-point sets with elements from V are open in the topology on V̄. As
unif(Xn) assigns at most the value 1/n to such a set, it follows with the port-
manteau theorem [2], page 11, that any limit point of this sequence is concentrated
on ∂V. Parts (a) and (b) of the theorem now follow with the above general remarks
on weak convergence of probability measures on (V̄,B(V̄)).

For the proof of (c) we use the following well-known fact: The conditional
distribution of ηi+1, given η1, . . . , ηi and given that the value lands in an interval
I = (η(i:j), η(i:j+1)) of the augmented order statistics, is the uniform distribution
on I , which implies that unif(0,1) is the distribution of the normalized distance
ξu to the left endpoint of I . For different η-values these relative insertion positions
are independent, hence ξu, u ∈ V, are independent and uniformly distributed on
the unit interval. �

We note the following consequence of the representation in part (c) of the theo-
rem: For a fixed u ∈ V let

∅= u(0) < u(1) < · · · < u(k) = u

with |u(j)| = j for j = 0, . . . , k be the path that connects u to the root node. We
then have

X∞(Au) =
k−1∏
j=0

ξ̃u(j)

(11)

with ξ̃u(j) :=
{

ξu(j), if u(j + 1) = u(j)0,
1 − ξu(j), if u(j + 1) = u(j)1.

Note that the factors ξ̃u(j), j = 0, . . . , k − 1, are independent and that they all have
distribution unif(0,1).

Theorem 1 confirms the view expressed in [30], pages 191 and 218, that in
specific cases embeddings (or boundaries) can generally be obtained directly on
using the then available additional structure; here this turns out to be the algorith-
mic representation of the Markov chain. However, there are two additional benefits
of the general theory: First, because of the space–time property (1) the limit X∞
generates the tail σ -field

T :=
∞⋂

n=1

σ
({Xm :m ≥ n})

associated with the sequence (Xn)n∈N. This may serve as a starting point for
the unification of strong limit theorems for functionals (Yn)n∈N, Yn = (Xn) of
the discrete structures: If Yn converges to Y∞ in a “reasonable” space, then the
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limit Y∞, which is T -measurable, must be a function of X∞; see, for example,
[21], Lemma 1.13. The second general result is extremely useful in the context of
the calculations that arise in specific applications of the theory: The conditional
distribution of the chain (Xn)n∈N given the value of X∞ is again a Markov chain,
where the new transition probabilities can be obtained from the limit value and the
old transition probabilities by a procedure that is known as Doob’s h-transform. In
the present situation it turns out that the conditional distribution of the BST chain,
given X∞ = μ, is the same as that of the DST chain driven by μ. We refer the
reader to [16] for details; the last statement appears there only for a specific μ,
but the generalization to an arbitrary probability measure μ in the boundary is
straightforward. Roughly, the embedded jump chains at the individual nodes are
Pólya urns; for these the boundary has been obtained in [3], and from the general
construction of the Doob–Martin boundary it is clear that the outcome is unaf-
fected by the step from a Markov chain to its embedded jump chain. We collect
some consequences in the following proposition, where

Fn := σ(X1, . . . ,Xn), n ∈ N,(12)

are the elements of the natural filtration of the BST chain.

PROPOSITION 2. With the notation and assumptions as in Theorem 1,

L
(
σ(Xn,u0)|σ(Xn,u) = k, ξu = p

) = Bin(k − 1,p) if k > 0,(13)

and, for all i, j ∈ N0,

L
(
ξu|σ(Xn,u0) = i, σ (Xn,u1) = j

) = Beta(i + 1, j + 1).(14)

Further, the variables (ξu)u∈V are conditionally independent given Fn.

3. Metric aspects. All trees in this paper are subgraphs of the complete binary
tree, which has V as its set of nodes and {(ū, u) :u �= ∅} as its set of edges; in
particular, our trees are specified by their node sets x. In a tree metric d the distance
of any two nodes u, v is the sum of the distances between successive nodes on the
unique path from u to v, which means that such a metric is given by its values
d(ū, u), u ∈ x, u �= ∅. For example, the metric dV in Section 2.3 has dV(ū, u) =
2−|u|−1, and the canonical tree distance dcan is given by dcan(ū, u) = 1. For our
trees the prefix order further leads to

d(u, v) = d(u,∅) + d(v,∅) − 2d(u ∧ v,∅) for all u, v ∈ x.(15)

Metric trees may also be interpreted as graphs with edge weight, where the edge
(ū, u) receives the weight d(ū, u).

Our aim in this section is to rephrase the convergence of the BST sequence as a
convergence of metric trees, and to show that this view leads to convergence with
respect to stronger topologies. The situation here is much simpler than for Aldous’s
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continuum random tree where the Gromov–Hausdorff convergence of equivalence
classes of metric trees is used; see [15] and the references given there. In fact, the
search trees considered here have node sets that grow monotonically to the full V,
so we may define convergence of a sequence ((xn, dn))n∈N of metric binary trees
to (V, d∞) to mean that

lim
n→∞dn(u, v) = d∞(u, v) for all u, v ∈ V,(16)

which of course is equivalent to limn→∞ dn(ū, u) = d∞(ū, u) for all u ∈ V, u �= ∅.
Note that dV and dcan are both local metrics in the sense that d(u, v) does not
depend on the tree x as long as u, v ∈ x.

Motivated by the view in Section 2.3 of finite and infinite binary trees as proba-
bility measures μ on (V̄,B(V̄)), we now introduce the (relative) subtree size met-
ric, which assigns μ(Āu) to the distance of ū and u, that is,

dx(ū, u) = σ(x,u)

σ (x,∅)
for all u ∈ x,u �= ∅,

if x ∈ B, and

dμ(ū, u) = μ(Au) for all u ∈V, u �=∅

for the complete tree and a probability measure μ on (∂V,B(∂V)), where we as-
sume that μ(Au) > 0 for all u ∈ V. Again, there is an algorithmic motivation: In
terms of the BST mechanism, the weight of an edge (ū, u) is the (relative) number
of times this edge has been traversed in the construction of the tree. These metrics
depend on their tree in a global manner.

With this terminology in place we may now rephrase the convergence in Theo-
rem 1 as the convergence in the sense of (16) of the finite metric trees (Xn, dXn) to
the infinite metric tree (V, dX∞), almost surely and as n → ∞.

By construction the Doob–Martin compactification is the weakest topology that
allows for a continuous extension of the functions B  x �→ σ(x,u)/σ (x,∅), u ∈
V. For the analysis of tree functionals stronger modes of convergence turn out to
be useful; for example, do we have uniform convergence in (16)? Also, subtree
sizes decrease along paths leading away from the root node, so we may consider
a weight factor for the distance of a node to its parent that depends on the depth
of the node: For all ρ ≥ 1, we define the weighted subtree size metric with weight
parameter ρ by

dx,ρ(ū, u) := ρ|u|dx(ū, u), dμ,ρ(ū, u) := ρ|u|dμ(ū, u),

in the finite and infinite case, respectively. Of course, with ρ = 1 the subtree size
metric reappears.

THEOREM 3. Let ρ0 = 1.26107 · · · be the smaller of the two roots of the equa-
tion 2e log(ρ) = ρ, ρ > 0. Let Xn, n ∈ N and X∞ be as in Theorem 1.
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(a) For ρ < ρ0, the metric space (V, dX∞,ρ) is compact with probability 1.
(b) For ρ > ρ0, the metric space (V, dX∞,ρ) has infinite diameter with proba-

bility 1.
(c) For ρ < ρ0, the metric spaces (Xn, dXn,ρ) converge uniformly to (V, dX∞,ρ)

as n → ∞ in the sense of

sup
u,v∈Xn

∣∣dXn,ρ(u, v) − dX∞,ρ(u, v)
∣∣ → 0 almost surely and in mean.(17)

(d) For ρ > ρ0, and with dXn,ρ(ū, u) := 0 for u /∈ Xn,

sup
u,v∈V

∣∣dXn,ρ(u, v) − dX∞,ρ(u, v)
∣∣ = ∞ with probability 1.

PROOF. We embed the metric trees into the linear space L(0) of all functions
f :V \ {∅} → R via

x �→ f := (
u �→ dx(ū, u)

)
, x ∈ B;

probability measures μ on (V̄,B(V̄)) become elements of L(0) by identifying μ

with the function u �→ μ(Au). In particular, we now write X∞(u) instead of
X∞(Au). For ρ ≥ 1 let L(ρ) be the set of all f ∈ L(0) with

‖f ‖ρ :=
∞∑

k=1

ρk max|u|=k

∣∣f (u)
∣∣ < ∞.

Clearly, this gives a family of nested separable Banach spaces, with

B ↪→ L(γ ) ⊂ L(ρ) ⊂ L(0) for 1 ≤ ρ < γ.

We now show that, with the above identification,

E‖X∞‖ρ < ∞ if ρ < ρ0,(18)

P
(

sup
u∈V

ρ|u|X∞(u) = ∞
)

= 1 if ρ > ρ0(19)

and that, for ρ < ρ0 and as n → ∞,

‖Xn − X∞‖ρ → 0 almost surely and in mean.(20)

Clearly, (18) implies that X∞ ∈ L(ρ) with probability 1 if ρ < ρ0.
The basis for our proof of (18) and (19) is the connection of BST trees to branch-

ing random walks, a connection that has previously been used by several authors,
especially for the analysis of the height of search trees; see the survey [11] and
the references given there. Let u(k, j), j = 1, . . . ,2k , be a numbering of the nodes
from Vk such that

β
(
u(k,1)

)
< β

(
u(k,2)

)
< · · · < β

(
u
(
k,2k)),
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with β as defined in (2). The key observation is that the variables

Yk,j := − logX∞
(
u(k, j)

)
, j = 1, . . . ,2k,

are the positions of the members of the kth generation in a branching random walk
with offspring distribution δ2 and with

Z := δ− log ξ + δ− log(1−ξ), L(ξ) = unif(0,1)

for the point process of the positions of the children relative to their parent. Big-
gins [1] obtained several general results for such processes that we now specialize
to the present offspring distribution and point process of relative positions. Let

m(θ) := E

(∫
e−θtZ(dt)

)
= 2

1 + θ

and

m̃(a) := inf
{
eθam(θ) : θ ≥ 0

} = 2ae1−a.(21)

Note that

m̃(a) = m
(
θ(a)

)
with θ(a) = 1

a
− 1,(22)

and that, by definition of ρ0,

ρ < ρ0 ⇐⇒ m̃(logρ) < 1.(23)

Finally, let Z(k)(t) be the number of particles in generation k that are located to
the left of t .

Now suppose that ρ < ρ0. Let α := (ρ + ρ0)/2 and η := log(α). We adapt the
upper bound argument in [1] to our present needs: For all θ > 0 and C > 1, with
γ := log(C),

P
(
αk max|u|=k

X∞(u) > C
)

= P
(

min
1≤j≤2k

Yk,j ≤ kη − γ
)

≤ EZ(k)

(
k

(
η − γ

k

))

≤ exp
(
k

(
η − γ

k

)
θ

)
m(θ)k

= C−θ (
eηθm(θ)

)k
.

By (23), m̃(η) < 1. Choosing the optimal θ = θ(η), which with (22) is easily seen
to be greater than 1, leads to

E
(
αk max|u|=k

X∞(u)
)

≤ 1 +
∫ ∞

1
P

(
αk max|u|=k

X∞(u) > x
)
dx

≤ 1 + m̃(η)k
∫ ∞

1
x−θ(η) dx ≤ c,
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with a finite constant c that does not depend on k. Hence
∞∑

k=1

ρkE
(

max|u|=k
X∞(u)

)
≤ c

∞∑
k=1

(
ρ

α

)k

< ∞,

which in turn implies (18) by monotone convergence.
Suppose now that ρ > ρ0, so that m̃(η) > 1 by (23) for η := logρ. By [1],

Theorem 2,

lim
k→∞

1

k
log

(
#
{
1 ≤ j ≤ 2k :Yk,j ≤ kη

}) = log m̃(η) > 0

with probability 1. In particular, and again with probability 1,

∃k0 ∀k ≥ k0 ∃u ∈ Vk − logX∞(u) ≤ k logρ.

Clearly, this implies (19).
For the proof of (20) we first consider the random variables σ(Xn,u), n ∈ N,

for some fixed u ∈V. We wish to relate these to E[X∞(u)|Fn], with Fn as in (12).
For this, we use the representation of X∞ in terms of (ξu)u∈V given in Section 2.3,
together with Proposition 2. We may assume that k := |u| > 0.

The representation (11), the conditional independence of the ξ̃ -variables
given Fn, and the well-known formula for the first moment of beta distributions
together lead to

E
[
X∞(u)|Fn

] =
k−1∏
j=0

E[ξ̃u(j)|Fn] =
k−1∏
j=0

σ(Xn,u(j + 1)) + 1

σ(Xn,u(j)0) + σ(Xn,u(j)1) + 2
.

In view of

σ(x,u0) + σ(x,u1) + 1 =
{

σ(x,u), if u ∈ x,
1, if u /∈ x,

the product telescopes to

E
[
X∞(u)|Fn

] = σ(Xn,u) + 1

n + 1
for all u ∈ Xn.(24)

We now introduce

Zn :V→R, u �→ E
[
X∞(u)|Fn

]
.

Then (Zn,Fn)n∈N is a vector-valued martingale. For ρ < ρ0 we have by part (a)
of the theorem that X∞ ∈ L(ρ) with probability 1 and that E‖X∞‖ρ < ∞, hence
Zn → X∞ almost surely and in mean in L(ρ) by Proposition V-2-6 in [26].

In our present representation of trees as functions on V we have

Xn(u) =
⎧⎨
⎩

n + 1

n
Zn(u) − 1

n
, if u ∈ Xn,

0, if u /∈ Xn,
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which implies that 0 ≤ Xn ≤ (1 + n−1)Zn for all n ∈ N. As Xn → X∞ pointwise
with probability 1 by Theorem 1 we can now use a suitable version of the dom-
inated convergence theorem, such as that given in [21], Theorem 1.21, to obtain
that Xn converges to X∞ in L(ρ) as n → ∞, again almost surely and in mean.

It remains to show that the tree statements in the theorem follow from the linear
space statements (18), (19) and (20).

For (a) we prove that the limiting metric space is totally bounded. From (18)
and the definition of the norm we obtain for any given ε > 0 a k = k(ε) ∈ N such
that

∞∑
j=k

ρj max|u|=j
X∞(u) < ε,

which by the definition of the weighted subtree size metric means that all nodes v

with |v| ≥ k have a distance from their predecessor at level k that is less than ε. As
there are only finitely many nodes of level less than k this shows that the whole of
V̄ may be covered by a finite number of ε-balls. Of course, this argument is meant
to be applied to each element of a suitable set of probability 1 separately.

For (b) we simply note that (19) implies that, with probability 1,

sup
u∈V,u�=∅

dX∞,ρ(ū, u) = ∞

if ρ > ρ0. This also gives (d).
Finally, for all u ∈V, u �= ∅,

∣∣dXn,ρ(u,∅) − dX∞,ρ(u,∅)
∣∣ ≤ ∑

∅ �=v≤u

∣∣dXn,ρ(v̄, v) − dX∞,ρ(v̄, v)
∣∣

≤
|u|∑
k=1

ρk max|v|=k

∣∣Xn(v) − X∞(v)
∣∣

≤ ‖Xn − X∞‖ρ.

The upper bound does not depend on u, hence (c) follows on using (15). �

We note that the convergence of metric trees considered in Theorem 3 implies
the convergence with respect to the Gromov–Hausdorff distance of the correspond-
ing equivalence classes of metric trees; see [4], Section 7.3.3.

The subtree size metric also leads to a visualization of search trees: We use the
function β defined in (2) to map nodes to points in the unit interval, and above
the x-coordinate β(u) we draw a line parallel to the y-axis from dXn(ū,∅) to
dXn(u,∅). In order to obtain a visually more pleasing result we may add lines
that run parallel to the x-axis, connecting nodes with the same parent. In Fig-
ure 1 we have carried this out for the trees arising from two separate input se-
quences for the BST algorithm, with the data obtained from alternating blocks of
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FIG. 1. The metric tree for the odd (upper part) and even (lower part) π -data, for n = 50 (left) and
n = 100 (right), respectively; see text for details.

length 10 of digits in the decimal expansion of π − 3. The upper part refers to the
odd and the lower to the even numbered blocks. In both cases we have given the
trees for n = 50 and n = 100, and with ρ = 1. Vertically, the trees are from the
same distribution; moving horizontally to the right, we have almost sure conver-
gence.
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4. Tree functionals. In this section we show how the above results can be
used in connection with the asymptotic analysis of tree functionals. Here is the
recipe: We start with a functional Yn = n(Xn) of the trees, with (deterministic)
functions n on Bn that have values in some separable Banach space (L,‖ · ‖).
We suspect that Yn converges almost surely to some limit variable Y∞ as n → ∞.
We know that if this is the case, then Y∞ = (X∞) for some  defined on ∂B

(as always, almost surely). We do not know what  is, but if we manage to
rewrite the n’s in terms of subtree sizes, then Theorem 1 may lead to an edu-
cated guess. On that basis we next consider �n(Xn) = E[(X∞)|Fn], assuming
that E‖(X∞)‖ < ∞. This gives an L-valued martingale. By the associated con-
vergence theorem we then have that Ỹn := �n(Xn) converges to Y∞ almost surely
and in mean. Finally, a simple inspection of �n − n may reveal that Ỹn − Yn is
asymptotically negligible—indeed, if Yn converges to Y∞, then Ỹn − Yn must tend
to 0.

In the first three subsections we work out the details of the above strategy for
path lengths, for a tree index and for an infinite dimensional tree functional. The
final subsection is a collection of remarks on other functionals and related tree
structures, indicating further applications of the method, but also its limitations.
The potential-theoretic approach can provide additional insight; for example, we
will relate a martingale introduced in connection with tree profiles to Doob’s h-
transform.

Throughout this section we abbreviate X∞(Au) to X∞(u).

4.1. Path length. The first tree functional we consider is the internal path
length,

IPL(x) := ∑
u∈x

|u|, x ∈ B,(25)

which may be rewritten as

IPL(x) = ∑
u∈x,u �=∅

σ(x,u) = ∑
u∈x

σ (x,u) − #x.(26)

Let

H(0) := 0, H(n) :=
n∑

i=1

1

i
for all n ∈ N,

be the harmonic numbers. It is well known that

lim
n→∞

(
H(n) − logn

) = γ,

where γ ≈ 0.57722 is Euler’s constant. We need two auxiliary statements; we omit
the (easy) proofs.
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LEMMA 4. For all i, j ∈ N0,

�(i + j + 2)

�(i + 1)�(j + 1)

∫ 1

0
xi(1 − x)j log(x) dx = H(i) − H(i + j + 1).

For a random variable η with distribution Beta(i + 1, j + 1) Lemma 4 leads to

E
(
η log(η)

) = i + 1

i + j + 2

(
H(i + 1) − H(i + j + 2)

)
.(27)

The next lemma is a summation by parts formula for binary trees.

LEMMA 5. For any function ψ : V→R,∑
u∈x

(
ψ(u) − ψ(u0) − ψ(u1)

) = ψ(∅) − ∑
u∈∂x

ψ(u) for all x ∈ B.

Major parts of the following theorem are known; we will give details later in
order to be able to refer to the proof for a comparison of the methods used. Let
(Xn)n∈N be the BST chain, and let X∞ be its limit, as in Theorem 3.

THEOREM 6. Let C : (0,1) →R be defined by

C(s) := 1 + 2
(
s log(s) + (1 − s) log(1 − s)

)
.

(a) The limit

Y∞ := ∑
u∈V

X∞(u)C

(
X∞(u0)

X∞(u)

)

exists almost surely and in quadratic mean.
(b) As n → ∞,

1

n
IPL(Xn) − 2 logn → 2γ − 4 + Y∞,(28)

almost surely and in quadratic mean.

PROOF. From the representation of X∞ given in Section 2.3, we know that
the random variables

ξu := X∞(u0)

X∞(u)
, u ∈ V,

are independent and uniformly distributed on the unit interval, and that X∞(u) is
a function of the ξv’s with v < u. In particular, for all nodes u, the two factors in
the sum appearing in the definition of Y∞ are independent. Let Gk be the σ -field
generated by the ξu’s with |u| ≤ k, and put

Yk := ∑
u∈V,|u|≤k

X∞(u)C

(
X∞(u0)

X∞(u)

)
, k ∈ N.
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Then these properties lead to

E[Yk+1|Gk] = Yk + E

[ ∑
|u|=k+1

X∞(u)C

(
X∞(u0)

X∞(u)

)∣∣∣Gk

]

= Yk + ∑
|u|=k+1

X∞(u)EC(ξu)

= Yk,

where we have used the fact that EC(ξu) = 0. Further, with the same arguments,

E
[
(Yk+1 − Yk)

2|Gk

] = E

[( ∑
|u|=k+1

X∞(u)C(ξu)

)2∣∣∣Gk

]

= ∑
|u|=k+1

X∞(u)2EC(ξu)
2,

so that

E(Yk+1 − Yk)
2 = ∑

|u|=k+1

EX∞(u)2EC(ξu)
2.

We also have κ := EC(ξu)
2 < ∞, and using (11) we get

EX∞(u)2 = (
Eξ2

∅

)k = 3−k,

so that

E(Yk+1 − Yk)
2 = 2k3−kκ for all k ∈N.(29)

Taken together these calculations show that (Yk,Gk)k∈N is an L2-bounded martin-
gale, and an appeal to the corresponding martingale limit theorem completes the
proof of (a). In particular, Y∞ is well defined, and even has finite second moment.

For the proof of (b) let Zn := E[Y∞|Fn], n ∈ N, so that (Zn,Fn)n∈N is again a
martingale bounded in L2. Our plan is to show that Zn is sufficiently close to the
transformed internal path length that appears in (28).

Using again the stochastic structure of X∞ we are thus led to consider the con-
ditional expectations E[X∞(u)|Fn] and E[C(ξu)|Fn], u ∈ V and n ∈ N. From
Proposition 2 we know that, for all u ∈ Xn,

L(ξu|Fn) = Beta
(
σ(Xn,u0) + 1, σ (Xn,u1) + 1

)
,

and that the ξu’s are conditionally independent given Fn. Hence Lemma 4 can be
applied [see also (27)], resulting in

E
[
C(ξu)|Fn

] = 1 + 2τ(Xn,u0) + 2τ(Xn,u1)

σ (Xn,u0) + σ(Xn,u1) + 2
(30)

− 2H
(
σ(Xn,u0) + σ(Xn,u1) + 2

)
,
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where the function τ : B×V →R is given by

τ(x,u) := (
σ(x,u) + 1

)
H

(
σ(x,u) + 1

)
.

For each fixed n ∈ N, almost sure convergence of E[Yk|Fn] to E[Y∞|Fn] as k →
∞ follows from

∥∥E[Yk|Fn] − E[Y∞|Fn]
∥∥

2 ≤ ‖Yk − Y∞‖2,

the upper bound in (29) and the Borel–Cantelli lemma. Together with the condi-
tional independence of X∞(u) and C(ξu) given Fn, this leads to

Zn = ∑
u∈V

E
[
X∞(u)|Fn

]
E

[
C(ξu)|Fn

]
.(31)

From (30) we obtain E[C(ξu)|Fn] = 0 for u /∈ Xn, and, clearly,

σ(Xn,u0) + σ(Xn,u1) + 1 = σ(Xn,u) for all u ∈ Xn.(32)

Taken together, (24), (30), (31) and (32) lead to

Zn = ∑
u∈Xn

σ(Xn,u) + 1

n + 1

(
1 + 2τ(Xn,u0) + 2τ(Xn,u1)

σ (Xn,u) + 1
− 2H

(
σ(Xn,u) + 1

))
,

which in turn gives

Zn = 1

n + 1

(
IPL(Xn) + 2n

) − 2

n + 1

∑
u∈Xn

(
τ(Xn,u) − τ(Xn,u0) − τ(Xn,u1)

)
.

Lemma 5 can be applied to the second sum, and the assertion finally follows from
τ(Xn,∅) = (n + 1)H(n + 1) and τ(Xn,u) = 1 for u ∈ ∂Xn. �

Almost sure convergence of the standardized internal path length for the BST
sequence has been obtained in [27], and convergence in distribution, together with
a fixed point relation for the limit distribution, in [28]. Our method may been
seen as an amalgamation of Régnier’s martingale approach and Rösler’s approach,
where the latter has come to be known as the contraction method in the analysis
of algorithms: We obtain a strong limit, but we do not need to “find the martin-
gale” (a task familiar to many an applied probabilist). The approach suggested in
the present paper, to look at convergence of the full objects via a suitable comple-
tion of the state space of the underlying combinatorial Markov chain, leads to a
representation of the almost sure limit. This gives the martingale by projection via
conditional expectations, and from the representation one can also read off a fixed
point relation for the distribution of the limit.
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4.2. The Wiener index. The canonical graph distance dcan(u, v) of any two
nodes u and v in a finite connected graph G with node set V is the minimum
length of a path (sequence of edges) that connects u and v in G. The sum of these
distances is the Wiener index of the graph,

WI(G) := 1

2

∑
(u,v)∈V ×V

dcan(u, v),(33)

introduced by the chemist H. Wiener. Some background together with pointers to
the literature is given in [25], which is also our main reference in this subsection.
Among other results it is shown in [25] that for the BST sequence (Xn)n∈N the
rescaled Wiener indices,

Wn := 1

n2 WI(Xn) − 2 logn,

converge in distribution as n → ∞.
Again, we project a suitable functional (X∞) of the limit tree X∞ to a func-

tion E[(X∞)|Fn] of Xn that is sufficiently close to Wn. This will give a strong
limit theorem, that is, it turns out that the rescaled Wiener indices in fact converge
almost surely for the random binary trees generated by the BST algorithm for i.i.d.
input, and it will also lead to a representation of the limit W∞ as a function of X∞.

We begin by rewriting the Wiener index in terms of subtree sizes, similar to the
transition from (25) to (26) in the analysis of the internal path length. For a binary
tree x, ∑

(u,v)∈x×x

|u ∧ v| = ∑
u∈x

σ (x,u)2.(34)

This may be proved by induction, using the left and right subtrees in the induction
step; see [8], page 70. Using (15), (26), (33) and (34) we now obtain

WI(Xn) = n IPL(Xn) + n2 − ∑
u∈Xn

σ(Xn,u)2.(35)

It is a benefit of working with almost sure convergence that we can deal with the
constituents on the right-hand side of (35) separately (which means that we can
make use of Theorem 6), whereas in connection with convergence in distribution
one needs to consider the joint distribution of IPL(Xn) and WI(Xn); see [25].

THEOREM 7. The series

Z∞ := ∑
u∈V

X∞(u)2(36)

converges almost surely and in quadratic mean, and, as n → ∞,

1

n2 WI(Xn) − 2 logn → W∞(37)
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again almost surely and in quadratic mean, where the limit is given by

W∞ := 2γ − 3 + Y∞ − Z∞,(38)

with Y∞ as in Theorem 6.

PROOF. Almost sure convergence in (36) follows with Theorem 3, and the
moment calculations below show that EZ2∞ < ∞. In particular,

Zn := E[Z∞|Fn] → Z∞
almost surely and in quadratic mean. Again, the Markov property implies that Zn

can be written as a function of Xn. In order to obtain this function we first consider
a fixed node u ∈ V.

From (11) we get

X∞(u)2 =
k−1∏
j=0

ξ̃2
u(j).

From (14) and the known formula for the second moment of beta distributions we
obtain, considering the cases u(j + 1) = u(j)0 and u(j + 1) = u(j)1 separately,

E
[
ξ̃2
u(j)|Fn

]

= (σ (Xn,u(j + 1)) + 1)(σ (Xn,u(j + 1)) + 2)

(σ (Xn,u(j)0) + σ(Xn,u(j)1) + 2)(σ (Xn,u(j)0) + σ(Xn,u(j)1) + 3)
.

Using the conditional independence statement in Proposition 2, we see that we
have a telescoping product again, so that

E
[
X∞(u)2|Fn

] = (σ (Xn,u) + 1)(σ (Xn,u) + 2)

(n + 1)(n + 2)
for all u ∈ Xn ∪ ∂Xn.

The set V \ Xn can be written as the disjoint union of the subtrees rooted at the
n + 1 external nodes of Xn, and we have

E
[
ξ2
u |Fn

] = E
[
(1 − ξu)

2|Fn

] = 1
3 for all u /∈ Xn.

Therefore,∑
u/∈Xn

E
[
X∞(u)2|Fn

]

= 1

(n + 1)(n + 2)

∑
u∈∂Xn

(
σ(Xn,u) + 1

)(
σ(Xn,u) + 2

) ∑
v∈V,v≥u

(
1

3

)|v|−|u|

= 2

(n + 1)(n + 2)

∑
u∈∂Xn

∞∑
k=0

2k

(
1

3

)k

= 6

n + 2
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in view of σ(Xn,u) = 0 for u ∈ ∂Xn. Taken together this gives

Zn = 1

(n + 1)(n + 2)

∑
u∈Xn

(
σ(Xn,u) + 1

)(
σ(Xn,u) + 2

) + 6

n + 2
.

Using (26) we get∑
u∈Xn

(
σ(Xn,u) + 1

)(
σ(Xn,u) + 2

) = ∑
u∈Xn

σ(Xn,u)2 + 3 · IPL(Xn) + 5n

so that, with (35),

1

(n + 1)(n + 2)
WI(Xn) = n

(n + 1)(n + 2)
IPL(Xn) + n2

(n + 1)(n + 2)
− Zn + Rn,

where Rn tends to 0 almost surely and in quadratic mean. From Theorem 6 we
know that

1

n
IPL(Xn) − 2 logn → 2γ − 4 + Y∞

in the same sense. Combining the last two statements we obtain (37), with W∞ as
in (38). �

4.3. Metric silhouette. In our third application we consider an infinite-
dimensional tree functional.

Each element v = (vk)k∈N of ∂V defines a path through a binary tree via the
sequence (v(k))k∈N of nodes given by v(k) = (v1, . . . , vk), k ∈ N. In [19] the “sil-
houette” Sil(x) of x ∈ B was introduced in an attempt to obtain a search tree ana-
logue of the famous Harris encoding of simply generated trees: with each path v,
we record its exit level when passing through x, that is,

Sil(x)(v) := min
{
k ∈ N : v(k) /∈ x

}
, v ∈ ∂V.

The tree silhouette can be visualized as a function on the unit interval via the binary
expansion

� : [0,1) → ∂V, t �→ (vk)k∈N with vk := ⌈
2k+1t

⌉ − 2
⌈
2kt

⌉
.(39)

It was shown in [19] that for the BST chain (Xn)n∈N some smoothing is necessary
to obtain an interesting limit for the stochastic processes (Sil(Xn)(�(t)))0≤t<1 as
n → ∞.

We have seen in the previous sections that for search trees it makes sense to
replace the canonical tree distance implicit in the above definition of Sil(x) by
the subtree size metric. A corresponding variant of the silhouette is the metric
silhouette,

mSil(x)(v) :=
∞∑

k=1

σ
(
x, v(k)

)
, v ∈ ∂V.
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Again, our aim is to obtain a strong limit theorem in the BST situation, together
with a representation of the limit as a function of X∞. In addition, and going be-
yond the individual arguments v ∈ ∂V, we regard mSil(Xn) as a random function
on ∂V. With dV as in (8) this is a compact and separable metric space (V is open
in the completion V̄ that we introduced in Section 2.3). We write C(∂V, dV) for
the space of continuous functions f : ∂V→R. Together with

‖f ‖∞ := sup
v∈∂V

∣∣f (v)
∣∣,

this is a separable Banach space.
Remember that the values of X∞ are probability measures on (∂V,B(∂V)). Let

�∞ : ∂V→ [0,∞] be defined by

�∞(v) := −
∫
∂V

log2
(
dV(u, v)

)
X∞(du), v ∈ ∂V.

This is the logarithmic potential of the random measure X∞ with respect to dV;
see [29], page 62. Finally, we recall that a real function f on the metric space
(∂V, dV) is said to be (globally) Hölder continuous with exponent α if there exists
a constant C < ∞ such that

∣∣f (u) − f (v)
∣∣ ≤ CdV(u, v)α for all u, v ∈ ∂V.

THEOREM 8. Let α0 := log2 ρ0 = 0.33464 . . . with ρ0 as in Theorem 3.

(a) E‖�∞‖∞ < ∞.
(b) With probability 1, �∞ is Hölder continuous with exponent α for all α <

α0.
(c) As n → ∞,∥∥∥∥1

n
mSil(Xn) − �∞

∥∥∥∥∞
→ 0 almost surely and in mean.

PROOF. Because of dV(u, v) = 2−|u∧v| for all u, v ∈ ∂V we have
− log2 dV(u, v) ∈ N0 and

− log2 dV(u, v) ≥ k ⇐⇒ u ∈ Av(k)

for all k ∈ N so that

�∞(v) =
∞∑

k=1

X∞
(
v(k)

)
for all v ∈ ∂V.(40)

Now let α be as in the statement of the theorem; we may assume that α > 0.
Let ρ := 2α . By Theorem 3 there exists a set of probability 1 such that for
all ω in this set, C(ω) := ‖X∞(ω)‖ρ < ∞. We fix such an ω and drop it from
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the notation. Because of X∞(u) ≤ Cρ|u| for all u ∈ V and (40), we then have
�∞(v) ≤ C

∑∞
k=1 ρ−k for all v ∈ ∂V, which implies

‖�∞‖∞ ≤ 1

ρ − 1
‖X∞‖ρ.

In particular, E‖�∞‖∞ < ∞ by (18) in the proof of Theorem 3.
Similarly, if u, v ∈ ∂V are such that |u ∧ v| = k, then

∣∣�∞(u) − �∞(v)
∣∣ =

∞∑
j=k+1

X∞
(
u(j)

) +
∞∑

j=k+1

X∞
(
v(j)

)

≤ 2C

∞∑
j=k+1

ρ−j = 2Cρ−k

ρ − 1
≤ 2C

ρ − 1
dV(u, v)α

by definition of ρ. This proves (b).
For the proof of (c) we first consider the random functions �n defined by

�n(v) := E
[
�∞(v)|Fn

]
, v ∈ ∂V.

With J := Sil(Xn)(v) we get, using monotone convergence for conditional expec-
tations and Fn-measurability of J ,

�n(v) =
J∑

k=1

E
[
X∞

(
v(k)

)|Fn

] +
∞∑

k=J+1

E
[
X∞

(
v(k)

)|Fn

]

=
J∑

k=1

σ(Xn, v(k)) + 1

n + 1
+ σ(Xn, v(J )) + 1

n + 1

∞∑
k=J+1

(
1

2

)k−J

= 1

n + 1

(
mSil(Xn)(v) + J

) + 1

n + 1
.

Here we have used our formula (24) for E[�∞(u)|Fn] and its extension to nodes
outside Xn that can be obtained as in the proof of Theorem 7.

Let h(x) = max{|u| : u ∈ x} be the height of x ∈ B. Taking the supremum over
v ∈ ∂V we get ∥∥∥∥�n − 1

n + 1
mSil(Xn)

∥∥∥∥∞
≤ h(Xn) + 1

n + 1
.

It is easy to show that the right-hand side converges to 0 with probability 1
(see [10] for techniques and results on the height), so it remains to prove that
�n converges almost surely and in mean to �∞ in the separable Banach space
(C(∂V, dV),‖ · ‖∞). This, however, is again immediate from the vector-valued
martingale convergence theorem given in [26], page 104. �

Figure 2 shows the metric silhouette for the trees in Figure 1. Note that the
continuity in Theorem 8 refers to the space (∂V, dV); for example, (tn)n∈N with
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FIG. 2. The metric silhouette for the odd (left) and even (right) π -data, with n = 50 (blue) and
n = 100 (black).

tn = 1
2 + (−1)n 1

n
for all n ∈ N is a Cauchy sequence with respect to euclidean

distance, but its inverse under the function � defined in (39) that we used for the
illustration is not a Cauchy sequence in (∂V, dV). Loosely speaking, the function β

“flattens” the node set V.

4.4. Other functionals and tree structures. The fill (or saturation) level F(x)

and height H(x) of a tree x ∈ B are defined by

F(x) = max
{
k ∈ N0 : {0,1}k ⊂ x

}
, H(x) = max

{|u| : u ∈ x
}
,

respectively. For these tree functionals, the following asymptotic results are well
known:

F(Xn)

logn
→ α−,

H(Xn)

logn
→ α+ as n → ∞,(41)

both almost surely. Here α− = 0.373 . . . and α+ = 4.311 . . . are the two solutions
of the equation x log(2e/x) = 1. The survey [11] gives details and references, and
explains the relation to branching processes.

In situations such as these, where the almost sure limit is a constant, projection
on the sub-σ -fields Fn would simply return the constant, hence no simplification
arises.



METRIC SEARCH TREES 1293

Both the fill level and height of a tree as well as its path length (see Section 4.1)
can be written as functionals of the tree’s node profile. Recall that |u| denotes the
length of u ∈V. Let

v(x, k) := #
{
u ∈ ∂x : |u| = k

}
, w(x, k) := #

{
u ∈ x : |u| = k

}
be the number of external (resp., internal) nodes of x ∈ B at depth k. Applied to
the BST sequence (Xn)n∈N, this gives sequences (Vn)n∈N and (Wn)n∈N of ran-
dom functions on the nonnegative integers via Vn(k) = v(Xn, k) and Wn(k) =
w(Xn, k), the external and internal node profile of the binary search tree. Clearly,

F(Xn) = min
{
k ∈N : Vn(k) > 0

} − 1,

H(Xn) = max
{
k ∈N : Wn(k) > 0

}
and

IPL(Xn) =
∞∑

k=1

kWn(k),

so such profiles go some way toward a unifying approach to tree functionals and
indeed, they have been studied extensively; see [5–7, 14, 18, 20]. A crucial role
in [5–7, 20] is played by a parametrized family of martingales introduced in [20].
In order to connect this to the point of view of the present paper we rephrase the
basic idea using our terminology and notation.

Fix some z ∈ R+. The external profile Vn of Xn can be regarded as the counting
density of a random finite measure on N with total mass n + 1 and value

Yn :=
∞∑

k=1

Vn(k)zk = ∑
u∈∂Xn

z|u|

at z of its generating function. Let v be the random node that is added to Xn to
obtain Xn+1. It is easy to see that

Yn+1 = Yn + z|v|(2z − 1).

In the BST mechanism the node v is chosen uniformly at random from the n + 1
external nodes of Xn, hence

E[Yn+1|Fn] = E

[ ∑
v∈∂Xn

(
Yn + z|v|(2z − 1)

)
1{Xn+1=Xn∪{v}}

∣∣∣Fn

]

= YnE

[ ∑
v∈∂Xn

1{Xn+1=Xn∪{v}}
∣∣∣Fn

]

+ (2z − 1)E

[ ∑
v∈∂Xn

z|v|1{Xn+1=Xn∪{v}}
∣∣∣Fn

]
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= Yn + 2z − 1

n + 1

∑
v∈∂Xn

z|v|

= n + 2z

n + 1
Yn,

which means that (Mn,Fn)n∈N with

Mn := C(n)Yn, C(n) :=
n−1∏
k=1

k + 1

k + 2z
for all n ∈ N,

is a martingale. Obviously, the martingale is strictly positive whenever z > 0. Be-
cause of the space–time property it can therefore be written as Mn = h(Xn) with
some positive harmonic function h on B, which depends on z > 0, and which in
the present context is given by

h(x) = C(#x)
∑
u∈∂x

z|u|.

Moreover, the distribution P h of the corresponding h-transform, which is the
Markov chain with transition probabilities

ph(x, y) = 1

h(x)
p(x, y)h(y), x, y ∈ B,

is such that for all n ∈ N the restriction P h
Fn

of P h to Fn has density

dP h
Fn

dPFn

= 1

2z
h(Xn)

with respect to the restriction PFn to Fn of the distribution P of the original BST
chain. Here we have used that both chains start with the tree X1 = {∅}, and that
h({∅}) = 2z. A straightforward calculation yields

ph(
x, x ∪ {v}) = 1

n + 2z

∑
u∈∂x z|u| + z|v|(2z − 1)∑

u∈∂x z|u|(42)

for all x ∈ B, v ∈ ∂x. Note that this agrees with the transition mechanism of the
BST chain if z = 1/2 or z = 1. For general z > 0 a corresponding chain may be
constructed by a marking mechanism that makes use of an additional spine vari-
able. This idea was introduced in the context of branching processes; for search
trees it has been used in [6], to which paper we refer for more details. The fol-
lowing direct construction of a Markov chain with transitions as in (42) may be
of interest: Given Xn, we choose an external node u with probability proportional
to z|u|. With probability (2z)/(n + 2z) we then accept u as the node v to be added
to Xn; if u is rejected, then v is chosen uniformly at random from the other n

external nodes of Xn.
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In the first three subsections of the present section we began our analysis by
relating the functionals in question to the subtree sizes. As the latter fully describe
the tree this must also be possible in the profile context. For x ∈ B, z > 0 let

z(x) := ∑
u∈x

σ (x,u)z|u|.

Each v ∈ Vk+1 with v̄ ∈ x is either an internal or an external node of x, which
means that v(x, k + 1) = 2w(x, k) − w(x, k + 1). Also, the number of internal
nodes with depth at least k is the sum of all subtree sizes of the nodes with level
exactly equal to k, that is,

∑
u∈x,|u|=k σ (x,u) = ∑∞

j=k w(x, j). Taken together, this
gives

∞∑
k=1

v(x, k)zk =
(

2z − 3 + 1

z

)
z(x) +

(
2 − 1

z

)
#x + 1,

which leads to

Yn =
(

2z − 3 + 1

z

)
z(Xn) +

(
2 − 1

z

)
n + 1

(note that the bracketed term vanishes for z = 1/2 and z = 1). This could serve as
the basis for an analysis along the lines of the first three subsections. We do not
pursue this here but show instead that the general theory can be used to obtain an
interpretation of the function that represents the limit of Jabbour’s martingale in
terms of the Doob–Martin limit of the BST sequence: Recall that Mn/(2z) is the
density associated with the change of measure from PFn to P h

Fn
. If the convergence

Mn → M∞ is in L1 (see below), then M∞/(2z) is a density of P h with respect
to P . Thus we have M∞ = 2z(X∞), with  a density of the distribution of X∞
under the transformed measure P h with respect to the distribution of X∞ under
the original P .

It is shown in [6] that L1-convergence holds if and only if the parameter z is
inside a specific bounded interval I = (c−, c+), that M∞ ≡ 0 if z /∈ I , and that,
with α+, α− as in (41), c− = α−/2 and c+ = α+/2. These two phase transitions are
related to the asymptotics of the maximum and minimum node size respectively at
a specific level of the limit X∞: If z is too small, then nodes close to the root are
favored too much by ph; if z is too large, then too much weight is given to nodes
far away from the root. In both cases P h is then singular with respect to P . For
the weighted subtree size metric considered in Section 3 only one of these caveats
matters in that node sizes must not be inflated too much. Hence there is only one
such phase transition, which should be related to the height constant, and indeed,
a straightforward calculation shows that ρ0 = (2e)/α+.

Finally, let us mention that the approach toward strong asymptotics of dynamic
data structures that we have developed in detail for binary search trees should be
applicable in many related situations. The necessary modifications may be minor,
such as for the discounted path length that appears in [19], or straightforward, as
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for the random recursive trees that are often treated in parallel with binary trees
(see, e.g., [25] for the Wiener index), or they may be challenging, for example,
when we wish to amplify the weak convergence results for node depth profiles
obtained in [14] for a wide class of trees to strong limit theorems as we have done
for the Wiener index in Section 4.2. Of course, convergence in distribution and
convergence along paths are rather different phenomena; see Figures 1 and 2. It is
interesting that for a given dynamical structure we may have a strong limit theorem
(with nontrivial limit) for some aspects (functionals), but not for others; see [9] for
such results in connection with the subtree size profile of binary search trees.

Acknowledgment. I thank the referee for the stimulating comments, and for
providing several valuable references.
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[22] KAĬMANOVICH, V. A. and VERSHIK, A. M. (1983). Random walks on discrete groups:
Boundary and entropy. Ann. Probab. 11 457–490. MR0704539

[23] KNUTH, D. E. (1973). The Art of Computer Programming. Vol. 3: Sorting and Searching.
Addison-Wesley, Reading, MA. MR0445948

[24] MAHMOUD, H. M. (1992). Evolution of Random Search Trees. Wiley, New York. MR1140708
[25] NEININGER, R. (2002). The Wiener index of random trees. Combin. Probab. Comput. 11 587–

597. MR1940122
[26] NEVEU, J. (1975). Discrete-Parameter Martingales, Revised ed. North-Holland, Amsterdam.

MR0402915
[27] RÉGNIER, M. (1989). A limiting distribution for quicksort. RAIRO Inform. Théor. Appl. 23

335–343. MR1020478
[28] RÖSLER, U. (1991). A limit theorem for “Quicksort.” RAIRO Inform. Théor. Appl. 25 85–100.

MR1104413
[29] WOESS, W. (2000). Random Walks on Infinite Graphs and Groups. Cambridge Tracts in Math-

ematics 138. Cambridge Univ. Press, Cambridge. MR1743100
[30] WOESS, W. (2009). Denumerable Markov Chains: Generating Functions, Boundary Theory,

Random Walks on Trees. EMS, Zürich. MR2548569

INSTITUT FÜR MATHEMATISCHE STOCHASTIK

LEIBNIZ UNIVERSITÄT HANNOVER

POSTFACH 6009
30060 HANNOVER

GERMANY

E-MAIL: rgrubel@stochastik.uni-hannover.de

http://www.ams.org/mathscinet-getitem?mr=2454562
http://www.ams.org/mathscinet-getitem?mr=2291961
http://www.ams.org/mathscinet-getitem?mr=2569807
http://www.ams.org/mathscinet-getitem?mr=1848787
http://www.ams.org/mathscinet-getitem?mr=1464694
http://www.ams.org/mathscinet-getitem?mr=0704539
http://www.ams.org/mathscinet-getitem?mr=0445948
http://www.ams.org/mathscinet-getitem?mr=1140708
http://www.ams.org/mathscinet-getitem?mr=1940122
http://www.ams.org/mathscinet-getitem?mr=0402915
http://www.ams.org/mathscinet-getitem?mr=1020478
http://www.ams.org/mathscinet-getitem?mr=1104413
http://www.ams.org/mathscinet-getitem?mr=1743100
http://www.ams.org/mathscinet-getitem?mr=2548569
mailto:rgrubel@stochastik.uni-hannover.de

	Introduction
	Binary search trees
	Some notation
	Search algorithms and Markov chains
	Doob-Martin compactiﬁcation

	Metric aspects
	Tree functionals
	Path length
	The Wiener index
	Metric silhouette
	Other functionals and tree structures

	Acknowledgment
	References
	Author's Addresses

