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UNIVERSALITY OF COVARIANCE MATRICES

BY NATESH S. PILLAI1 AND JUN YIN2

Harvard University and University of Wisconsin–Madison

In this paper we prove the universality of covariance matrices of the form
HN×N = X†X where X is an M × N rectangular matrix with independent
real valued entries xij satisfying Exij = 0 and Ex2

ij = 1
M

, N , M → ∞. Fur-
thermore it is assumed that these entries have sub-exponential tails or suffi-
ciently high number of moments. We will study the asymptotics in the regime
N/M = dN ∈ (0,∞), limN→∞ dN �= 0,∞. Our main result is the edge uni-
versality of the sample covariance matrix at both edges of the spectrum. In the
case limN→∞ dN = 1, we only focus on the largest eigenvalue. Our proof is
based on a novel version of the Green function comparison theorem for data
matrices with dependent entries. En route to proving edge universality, we
establish that the Stieltjes transform of the empirical eigenvalue distribution
of H is given by the Marcenko–Pastur law uniformly up to the edges of the
spectrum with an error of order (Nη)−1 where η is the imaginary part of the
spectral parameter in the Stieltjes transform. Combining these results with
existing techniques we also show bulk universality of covariance matrices.
All our results hold for both real and complex valued entries.

1. Introduction. In this paper we prove the universality of covariance matri-
ces. Let X = (xij ) be an M ×N data matrix with independent centered real valued
entries with variance M−1,

xij = M−1/2qij , Eqij = 0, Eq2
ij = 1.(1.1)

Furthermore, the entries qij have a sub-exponential decay, that is, there exists
a constant ϑ > 0 such that for u > 1,

P
(|qij | > u

)≤ ϑ−1 exp
(−uϑ ).(1.2)

The covariance matrix corresponding to data matrix X is given by H = X†X. We
will be working in the regime

d = dN = N/M, lim
N→∞d �= 0,∞.
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Thus without loss of generality, we will assume henceforth that for some small
constant θ , for all N ∈ N,

θ < dN < θ−1.

All our constants may depend on θ and ϑ , but we will not denote this dependence.
In this paper we focus on the case where the matrix X has real valued entries which
is a natural assumption for applications in statistics, economics, etc. However all
of the results in this paper also hold for complex valued entries with the moment
condition (1.1) replaced with its complex valued analogue,

xij = M−1/2qij , Eqij = 0, Eq2
ij = 0, E|qij |2 = 1.(1.3)

Furthermore, in some technical results in the present work, the independence of
matrix entries are weakened (see Theorem 3.6), which are the key inputs of [3]
and [33].

Covariance matrices are fundamental objects in modern multivariate statistics
where the advance of technology has led to high-dimensional data. They have man-
ifold applications in various applied fields; see [7, 22–24] for an extensive account
on statistical applications, [21, 28] for applications in economics and [30] in popu-
lation genetics, to name a few. In the regime we study in this paper where N,M are
proportional to each other, the exact asymptotic distribution of the eigenvalues is
not known, except for some cases under specific assumptions on the distributions
of the entries of the covariance matrix, for example, when the entries are Gaussian.
In this context, akin to the central limit theorem, the phenomenon of universality
helps us to obtain the asymptotic distribution of the eigenvalues without having
restrictive assumptions on the distribution on the entries. Borrowing a physical
analogy, as observed by Wigner, the eigenvalue gap distribution for a large com-
plicated system is universal in the sense that it depends only on the symmetry class
of the physical system, but not on other detailed structures.

A fundamental example is the well-studied Wishart matrix (the covariance ma-
trix obtained from a data matrix X consisting of i.i.d. centered Gaussian random
variables) for which one has closed form expressions for many objects of inter-
est including the joint distribution of the eigenvalues. In this paper we prove the
universality of covariance matrices (both at the bulk and at the edges) under the
assumption that entries of the corresponding data matrix are independent, have
mean 0, variance 1 and have a sub-exponential tail decay. This implies that, asymp-
totically, the distribution of the local statistics of eigenvalues of the covariance
matrices of the above kind are identical to those of the Wishart matrix.

Over the past two decades, great progress has been made in proving the uni-
versality properties of i.i.d. matrix elements (standard Wigner ensembles). The
most general results to date for the universality of Wigner ensembles are obtained
in Theorems 7.3 and 7.4 of [10], in which bulk (edge) universality is proved for
Wigner matrices under the assumption that entries have a uniformly bounded 4+ε

(12 + ε) moment for some ε > 0, and then recently improved further by [15]
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and [29]. The key ideas for the universality of Wigner ensembles were developed
through several important steps in [12, 13, 16–18]. The ideas we use in this pa-
per are also adapted from the above cited papers. There are also related results in
[36, 37]. However, the results regarding universality of local statistics for covari-
ance matrices have been obtained only recently, which we survey below.

1.1. Review of previous work. First we review previous results for extreme
eigenvalues. In [1, 2, 40], the authors showed the almost sure convergence of
extreme eigenvalues. In [20], the authors derived the rate of convergence of
the spectrum to the Marchenko–Pastur law. In [34], Soshnikov showed that for
dN = 1 − O(N−1/3), if qij in (1.1) have a symmetric distribution and Gaus-
sian decay, then the largest eigenvalues (appropriately rescaled) converge to the
Tracy–Widom distribution. This condition on dN was replaced with limN→∞ dN ∈
(0,∞) by Péché [31]. Using similar assumptions as in [34] and [31], Feldheim
and Sodin [19] showed that the smallest eigenvalues (appropriately rescaled) con-
verge to the Tracy–Widom distribution for limN→∞ dN �= 1. More recently, for
limN→∞ dN �= 1, Wang [39] proved the Tracy–Widom law for the limiting dis-
tribution of the extreme eigenvalues under the assumption that qij in (1.1) have
vanishing third moment and sufficiently high number of moments. For “square”
matrices, that is, when N = M and thus dN = 1, Tao and Vu [35] proved the uni-
versality of the smallest eigenvalues assuming the matrix entries have sufficiently
high number of moments. The limiting distribution of the smallest eigenvalue for
square matrices with standard Gaussian entries were computed by Edelman [9]. In
our main result below, we show universality of eigenvalues for “rectangular” data
matrices at both edges of the spectrum, assuming only (1.1) and (1.2).

Now we review results for the local statistics of the eigenvalues in the bulk of the
spectrum. It was widely believed until recently that the distribution of the distance
between adjacent eigenvalues is independent of the distribution of qij in (1.1).
In [4] Arous and Péché showed this bulk universality when dN = 1 + O(N−5/48).
Tao and Vu [38] proved that the asymptotic distribution for local statistics at the
bulk corresponding to two covariance matrices are identical, if the entries in these
two matrices have identical first four moments. On the other hand, in [32] and [14],
Péché, Erdós, Schlein, Yau and the second author of this paper showed this bulk
universality under some regularity conditions and decay assumptions on the dis-
tribution of the matrix entries. We also show bulk universality but under weaker
assumptions than those in [32] and [14]; see Remark 1.7 for more details.

1.2. Our key results. Let Xv = [xv
ij ] with independent entries satisfying (1.1)

and (1.2), and let

λv
1 ≥ λv

2 · · ·λv
min{M,N} ≥ 0

denote the nontrivial singular values of the data matrix Xv. Let Pv denote the
probability measure according to which the entries of Xv are distributed. Let Xw,
{λw

k }k≤min{M,N} and P
w be defined analogously. The following is our main result:
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THEOREM 1.1 (Universality of extreme eigenvalues). For limN→∞ dN ∈
(0,∞), there is an ε > 0 and δ > 0 such that for any real number s (which may
depend on N ),

P
v(N2/3(λv

1 − λ+
)≤ s − N−ε)− N−δ

≤ P
w(N2/3(λw

1 − λ+
)≤ s

)
(1.4)

≤ P
v(N2/3(λv

1 − λ+
)≤ s + N−ε)+ N−δ

for N ≥ N0 sufficiently large, where N0 is independent of s. An analogous result
holds for the smallest eigenvalues λ

v,w
min{M,N}, when limN→∞ dN ∈ (0,∞) \ {1}.

In [31, 34] and [19], Soshnikov, Péché, Feldheim and Sodin proved that for the
covariance matrices whose entries have a symmetric probability density function
(which includes the Wishart matrix), the largest and smallest k eigenvalues after
appropriate centering and rescaling converge in distribution to the Tracy–Widom
law.3 We have the following immediate corollary of Theorem 1.1:

COROLLARY 1.2. Let X with independent entries satisfying (1.1) and (1.2),
and let limN→∞ dN ∈ (0,∞). For any fixed k > 0, we have(

Mλ1 − (
√

N + √
M)2

(
√

N + √
M)((1/

√
N) + (1/

√
M))1/3

, . . . ,

Mλk − (
√

N + √
M)2

(
√

N + √
M)((1/

√
N) + (1/

√
M))1/3

)
−→ TW1,

where TW1 denotes the Tracy–Widom distribution. An analogous statement holds
for the smallest eigenvalues, when limN→∞ dN ∈ (0,∞) \ {1}.

REMARK 1.3. Clearly, our result covers the case where the matrix entries
have Gaussian divisible distribution (see [39], Section 2) and the case where the
support of the distribution of the matrix entries consists of only two points. Using
these two cases and the results of [39], the sub-exponential-decay assumption in
Corollary 1.2 can be replaced with the existence of sufficiently high number of
moments. For details, see the discussion below the Theorem 2.2 of [39]. However
we believe that all of our results can be proved under a uniform bound on pth mo-
ments of the matrix elements (say p = 4 or 5), using the methods in [10] and [29];
we will pursue this elsewhere.

REMARK 1.4. Theorem 1.1 can be extended to obtain universality of finite
correlation functions of extreme eigenvalues. For example, we have the following

3Here we use the term Tracy–Widom law as in [34].
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extension of (1.4): for any fixed k,

P
v(N2/3(λv

1 − λ+
)≤ s1 − N−ε, . . . ,N2/3(λv

k − λ+
)≤ sk − N−ε)− N−δ

≤ P
w(N2/3(λw

1 − λ+
)≤ s1, . . . ,N

2/3(λw
k − λ+

)≤ sk
)

(1.5)
≤ P

v(N2/3(λv
1 − λ+

)≤ s1 + N−ε, . . . ,

N2/3(λv
k − λ+

)≤ sk + N−ε)+ N−δ

for all sufficiently large N . The proof of (1.5) is similar to that of (1.4), and we
will not provide details, except stating the general form of the Green function
comparison theorem (Theorem 4.4) needed in this case. We remark that edge uni-
versality is usually formulated in terms of joint distributions of edge eigenvalues in
the form (1.5) with fixed parameters s1, s2, . . . , etc. Our result holds uniformly in
these parameters, that is, they may depend on N . However, the interesting regime
is |sj | ≤ O((logN)log logN); otherwise, the rigidity estimate obtained in (3.6) will
give stronger control than (1.5).

The first step toward proving Theorem 1.1 is to obtain a strong local Marcenko–
Pastur law, a precise estimate of the local eigenvalue density in the optimal scale
N−1+o(1). We state and prove this in Theorem 3.1. This theorem is our key techni-
cal tool for proving rigidity of eigenvalues (see Theorem 3.3) and universality. En
route to this, we also obtain precise bounds on the matrix elements of the corre-
sponding Green function. All of our results regarding the strong Marcenko–Pastur
law do not require independence of the entries of the data matrix, but need only
weak dependence as will be explained in Section 3. An important technical in-
gredient required for the estimates for our strong Marcenko–Pastur law and the
rigidity of eigenvalues is an abstract decoupling lemma (Lemma 7.3) for weakly
dependent random variables, proved in Section 7.

Using the strong Marcenko–Pastur law and the existing results (such as [16] and
Theorem 2.1 in [14]), we also show bulk universality holds for covariance matrices
in almost optimal scale:

THEOREM 1.5 (Universality of eigenvalues in bulk). Let Xv,Xw be as defined
before. Assume that limN→∞ dN ∈ (0,∞)\{1}. Let E ∈ [λ−+r, λ+−r] with some
r > 0. Then for any ε > 0, N−1+ε < b < r/2, any fixed integer n ≥ 1 and for any
compactly supported continuous test function O :Rn →R, we have

lim
N→∞

∫ E+b

E−b

dE′

2b

∫
Rn

O(α1, . . . , αn)
(
p

(n)
vN − p

(n)
w,N

)
(1.6)

×
(
E′ + α1

N	c(E)
, . . . ,E′ + αn

N	c(E)

)∏
i

dαi

	c(E)
= 0,

where p
(n)
v,N and p

(n)
w,N are the n-points correlation functions of the eigenvalues of

(Xv)†Xv and (Xw)†Xw, respectively.
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REMARK 1.6. As in Remark 1.3, using the four moment theorem in [38], the
sub-exponential-decay assumption for the matrix entries can be replaced with the
existence of a sufficiently high number of moments.

REMARK 1.7. Compared to the results obtained in [14, 32], our Theorem 1.5
is an improvement on two fronts: (i) in [14, 32], for (1.6), the authors required that

Mk∑
i=1

∣∣∂i
x logu0(x)

∣∣≤ Ck

(
1 + |x|)Ck

for some Mk and Ck , where u0 is the probability density function of the matrix
entries; see formulas (1.3)–(1.5) in [32] and formula (3.6) in [14]. (ii) We show
that the bulk university holds in almost optimal scale: b = N−1+ε . In the main
theorem of [14], bulk universality was shown for b ∼ O(1).4 We also note that
in [32], the integral in (1.6) is not required. On the other hand, the proof in [32]
does not work for covariance matrices with real valued entries.

REMARK 1.8. Our result heavily relies on the Theorem 2.1 of [14], but we are
able to show universality up to this optimal scale, mainly because of our stronger
results on the strong local Marcenko–Pastur law and the rigidity result for eigen-
values obtained in Theorems 3.1 and 3.3, respectively.

REMARK 1.9. Tao and Vu [38] derived bulk universality without the integral
in (1.6), but they required that the matrix entries of the two covariance matrices
have identical first four moments.

1.3. Main ideas. The approach we take in this paper to prove universality is
the one developed in a recent series of papers [10–14, 16–18]; however, there are
some important differences which we highlight below. Our proof of the above re-
sult proceeds via the Green function comparison theorem as in the case of Wigner
matrices; however, unlike Wigner matrices, the elements within the same column of
a covariance matrix are not independent. In order to address this key difficulty, we
introduce new ideas and establish a novel version of the Green function compari-
son theorem. In particular, in Theorem 4.5 (see Section 6) we give sufficient criteria
for proving edge universality for matrix ensembles of the form Y †Y for a generic
data matrix Y with dependent entries (e.g., correlation matrices). This enables us
to show the edge universality for covariance matrices when limN→∞ dN ∈ (0,∞),
under the assumption that the first two moments of the matrix entries are equal to
that of the standard Gaussian. Our method is also useful for establishing univer-
sality for a huge class of matrix ensembles with dependent entries. For example,
in a recent paper [3], Bao, Pan and Zhou used our method to show universality

4For two quantities a, b we write a ∼ b to denote cb ≤ a ≤ Cb for some c,C > 0.
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for a class of correlation matrices. For more general edge universality results for
correlation matrices, see a later paper [33], which is also based on our Green func-
tion comparison theorem. As mentioned above, for our strong Marcenko–Pastur
law, we use an abstract decoupling lemma (Lemma 7.3) for weakly dependent
random variables. This lemma is novel and is applicable in other settings such as
non-Hermitian ensembles [5].

For proving bulk universality of eigenvalues, we follow the general approach
for the universality of Gaussian divisible ensembles [10, 11, 16, 18, 25, 26] by
embedding the covariance matrix into a stochastic flow of matrices and so that
the eigenvalues evolve according to a distinguished coupled system of stochastic
differential equations, called the Dyson Brownian motion [8]. An important idea
in the papers mentioned above is to estimate the time to local equilibrium for the
Dyson Brownian motion with the introduction of a new stochastic flow, the lo-
cal relaxation flow, which locally behaves like a Dyson Brownian motion but has
a faster decay to global equilibrium. This approach, first introduced in [13, 14],
eliminates entirely the usage of explicit formulas. We will also follow this route
and use the strong local Marcenko–Pastur law to show that the time for the Dyson
Brownian motion (corresponding to the covariance matrix) to reach local equilib-
rium is about O(N−1). Once we prove this result, all that remains to be done is
to show that the local statistics at t = O(N−1) coincide with those of the initial
matrix, that is, t = 0. To achieve this, we again use the Green function comparison
method. Roughly speaking, the Green function comparison method exploits the
fact that the equilibrium time is very “small” [O(N−1)], and therefore the first few
moments of the matrix entries at time t = N−1 will be nearly identical to those at
t = 0.

1.4. Comments on other limiting regimes of dN . The assumption
limN→∞ dN ∈ (0,∞) is mostly for simplicity, and we believe that with some
more effort, most of our results can be extended to the case limN→∞ dN = {0,∞}.
This will be pursued in our future works.

However, we believe that universality at the soft edge for limN→∞ dN = 1 will
be much harder. There is a singularity of the eigenvalue density at x = 0. More pre-
cisely, the typical distance between adjacent eigenvalues near x = 0 is O(N−2).
For studying the smallest eigenvalue one needs to overcome several obstacles:
(1) The usual moment method which estimates E(X†X)k with large k ∈ N does
not work in obtaining bounds for the smallest eigenvalue. (2) For the “square
case” (N = M), in [35] the authors proceeded via analyzing X−1 directly; this
strategy seems out of reach for the nonsquare case. (3) In fact, as in [5, 6], one
can prove that the m(z) does satisfy the local Marchenko–Pastur law in the case
limN→∞ dN = 1 up to the scale η � (N |mc|)−1. Note η = (N�mc)

−1 is the scale
of individual eigenvalue. At the soft edge (i.e., for largest eigenvalues), it can be
shown that �mc ≤ |mc|, and thus we have a strong estimate on m(z) in the scale
which is small enough for estimating the distribution of single eigenvalue. But at
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the hard edge �mc ∼ |mc|, so our method used for estimating mc at the soft edge
cannot be directly applied to the hard edge. It is proved in [5, 6] that the density of
eigenvalues satisfy the Marchenko–Pastur law. (Only the case dN = 1 is proved in
[5, 6], but the result can be easily extended to the case limN→∞ dN = 1.) For the
distribution of the smallest eigenvalues, the only universality result we know is in
[35], as mentioned above.

Finally we note that the authors in [29] recently showed a necessary and suf-
ficient condition on the edge universality of Wigner matrices. Based on this, we
conjecture that for the edge universality of covariance matrices whose entries are
i.i.d., the necessary and sufficient condition on the distribution of the matrix entries
is given by lims→∞ s4

P(|q12| ≥ s) = 0.

1.5. Organization of the paper. In Section 2 we set notation and give some
basic definitions. In Section 3 we give statements of the strong version of the
Marcenko–Pastur law, rigidity and delocalization of eigenvectors. In Sections 4
and 5, we prove, respectively, the edge and bulk universality results. In Sec-
tions 6–8 we give proofs of the strong Marcenko–Pastur law and rigidity of eigen-
values. In Section 7, we state and prove an abstract decoupling lemma for weakly
dependent random variables which is used to prove the strong Marcenko–Pastur
law.

2. Preliminaries. Define

H := X†X, G(z) := (H − z)−1 = (
X†X − z

)−1
,

(2.1)
m(z) := 1

N
TrG(z), G(z) := (

XX† − z
)−1

.

Since the nonzero eigenvalues of XX† and X†X are identical and XX† has M −N

more (or N − M less) zero eigenvalues,

TrG(z) − TrG(z) = M − N

z
.(2.2)

We will often need to consider minors of X defined below:

DEFINITION 2.1 (Minors). For T ⊂ {1, . . . ,N} we define X(T) as the (M ×
(N − |T|)) minor of X obtained by removing all columns of X indexed by i ∈ T.
Note that we keep the names of indices of X when defining X(T),(

X(T))
ij := 1(j /∈ T)Xij .

The quantities G(T)(z), G(T)(z), λ
(T)
α , u(T)

α , v(T)
α , etc. are defined similarly us-

ing X(T). Furthermore, we abbreviate (i) = ({i}) as well as (iT) = ({i} ∪ T). We
also set

m(T)(z) := 1

N

∑
i /∈T

G
(T)
ii (z).(2.3)
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We denote the ith column of X by xi , which is an M × 1 vector. Recall λ+, λ−
from (2.8). For z = E + iη, set

κ := min
(|λ+ − E|, |E − λ−|).(2.4)

Throughout the paper we will use the letters C,Cζ , c to denote generic positive
constants whose precise value may change from one occurrence to the next but
independent of everything else.

Define the Green function of X†X by

Gij (z) =
(

1

X†X − z

)
ij

, z = E + iη, E ∈ R, η > 0.(2.5)

The Stieltjes transform of the empirical eigenvalue distribution of X†X is given by

m(z) := 1

N

∑
j

Gjj (z) = 1

N
Tr

1

X†X − z
.(2.6)

We will be working in the regime

d := dN := N/M, lim
N→∞d �= 0,∞.(2.7)

For our results at the hard-edge (smallest eigenvalues) and for bulk universality
results, we will further require that limN→∞ dN �= 1. Define

λ± := (1 ± √
d)2.(2.8)

The Marchenko–Pastur law [27] (henceforth abbreviated by MP) is given by

	c(x) = 1

2πd

√
[(λ+ − x)(x − λ−)]+

x2 .(2.9)

We define mc(z), z ∈C, as the Stieltjes transform of 	c, that is,

mc(z) =
∫
R

	c(x)

(x − z)
dx.(2.10)

The function mc depends on d and has the closed form expression

mc(z) = 1 − d − z + i
√

(z − λ−)(λ+ − z)

2dz
,(2.11)

where √ denotes the square root on the complex plane whose branch cut is the
negative real line. One can check that mc(z) is the unique solution of the equation

mc(z) + 1

z − (1 − d) + zdmc(z)
= 0

with �mc(z) > 0 when �z > 0. Define the normalized empirical counting function
by

n(E) := 1

N
#{λj ≥ E}.(2.12)
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Let

nc(E) :=
∫ ∞
E

	c(x)dx(2.13)

so that 1 − nc(·) is the distribution function of the MP law.
By the singular value decomposition of X, there exist orthonormal bases

{u1,u2, . . . ,uM} ⊂ C
M and {v1, . . . ,vN } ⊂R

N such that

X =
M∑

α=1

√
λαuαv†

α =
N∑

α=1

√
λαuαv†

α,(2.14)

where λ1 ≥ λ2 · · ·λmax{M,N} ≥ 0, λα = 0 for min{N,M} + 1 ≤ α ≤ max{N,M},
and we let vα = 0 if α > N and uα = 0 for α > M . We also define the classical
location of the eigenvalues with 	c as follows:∫ λ+

γj

	c(x)dx =
∫ +∞
γj

	c(x)dx = j/N.(2.15)

Define the parameter

ϕ := (logN)log logN.(2.16)

For ζ ≥ 0, define the set

S(ζ ) := {
z ∈ C : 1d>1(λ−/5) ≤ E ≤ 5λ+, ϕζN−1 ≤ η ≤ 10(1 + d)

}
.(2.17)

Note that mc ∼ 1 in S(0). Also the cases d > 1 and d < 1 are not symmetric in
the above definition. Actually the proof of universality in the case d > 1 is much
harder, since it has many zero eigenvalues. This issue can be easily avoided if
matrix entries are independent since X†X and XX† have the same nonzero eigen-
values. Since, in the strong Marcenko–Pastur law established next section, we do
not assume independence unlike previous works, the proof is more difficult.

DEFINITION 2.2 (High probability events). Let ζ > 0. We say that an event
� holds with ζ -high probability if there exists a constant C > 0 such that

P
(
�c)≤ NC exp

(−ϕζ )(2.18)

for large enough N .

The next lemma collects the main identities of the resolvent matrix elements
G

(T)
ij and G(T)

ij (z).

LEMMA 2.3 (Resolvent identities).

Gii(z) = 1

−z − z〈xi ,G(i)(z)xi〉 , i.e.,
〈
xi ,G(i)(z)xi

〉= −1

zGii(z)
− 1,(2.19)

Gij (z) = zGii(z)G
(i)
jj (z)

〈
xi ,G(ij)(z)xj

〉
, i �= j,(2.20)

Gij (z) = G
(k)
ij (z) + Gik(z)Gkj (z)

Gkk(z)
, i, j �= k.(2.21)
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PROOF. The proof is straightforward and needs only elementary linear alge-
bra; see Lemma 3.2 of [18]. �

3. Strong Marchenko–Pastur law. Our goal in this section is to estimate the
following quantities:

�d := max
k

|Gkk − mc|, �o := max
k �=�

|Gk�|, � := |m − mc|,(3.1)

where the subscripts refer to “diagonal” and “off-diagonal” matrix elements. All
these quantities depend on the spectral parameter z and on N , but for simplicity
we suppress this in the notation.

For simplicity of exposition, henceforth in this section we focus on the
limN dN �= 1 case. The proof of the distribution of the largest eigenvalue in the
case limN→∞ dN = 1 is a simple extension of our proof of the case limN→∞ dN ∈
(0,∞)\{1}. Therefore, we will give only a brief discussion at the end of Section 4.

The following is the main result of this section and our main technical tool for
establishing universality. It holds for both real and complex valued entries. The
proof of the results in this section is given in Sections 6–8.

THEOREM 3.1 (Strong local Marchenko–Pastur law). Let X = [xij ] with en-
tries xij satisfying (1.1) and (1.2), and let limN→∞ dN ∈ (0,∞) \ {1}. For any
ζ > 0 there exists a constant Cζ such that the following events hold with ζ -high
probability:

(i) The Stieltjes transform of the empirical eigenvalue distribution of H satis-
fies ⋂

z∈S(Cζ )

{
�(z) ≤ ϕCζ

1

Nη

}
.(3.2)

(ii) The individual matrix elements of the Green function satisfy

⋂
z∈S(Cζ )

{
�o(z) + �d ≤ ϕCζ

(√�mc(z)

Nη
+ 1

Nη

)}
.(3.3)

(iii) The smallest nonzero and largest eigenvalues of X†X satisfy

λ− − N−2/3ϕCζ ≤ min
j≤min{M,N}λj ≤ max

j
λj ≤ λ+ + N−2/3ϕCζ .(3.4)

(iv) Delocalization of the eigenvectors of X†X,

max
α : λα �=0

‖vα‖∞ ≤ ϕCζ N−1/2.(3.5)
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REMARK 3.2. To our knowledge, there are two weaker versions of the above
theorem previously established in [14, 20]. In [14] the error term obtained in (3.2)
is of order (Nη)−1/2/(κ + (Nη)−1/2)1/2 [see (2.4)] and similar comments apply
for the results in [20], whereas we need the above stronger estimates for our work,
especially for edge universality.

The main theorem above is then used to obtain the following results:

THEOREM 3.3 (Rigidity of the eigenvalues of covariance matrix). Recall
γj in (2.15). Let X = [xij ] with entries xij satisfying (1.1) and (1.2) and
limN→∞ dN ∈ (0,∞) \ {1}. For any 1 ≤ j ≤ N , let

j̃ = min
{
min{N,M} + 1 − j, j

}
.

For any ζ > 0 there exists a constant Cζ such that

|λj − γj | ≤ ϕCζ N−2/3j̃−1/3(3.6)

and ∣∣n(E) − nc(E)
∣∣≤ ϕCζ N−1(3.7)

hold with ζ -high probability for any 1 ≤ j ≤ N .

The above two results are stated under the assumption that the matrix entries are
independent. The independence assumption (of the elements in each column vector
of X) required in Theorems 3.1 and 3.3 can be replaced with a large deviation
criteria as will be explained below.

Let us first recall the following large deviation lemma for independent random
variables; see [17], Appendix B for a proof.

LEMMA 3.4 (Large deviation lemma). Suppose ai are independent, mean 0
complex variables, with E|ai |2 = σ 2 and have a sub-exponential decay as in (1.2).
Then there exists a constant ρ ≡ ρ(ϑ) > 1 such that, for any ζ > 0 and for any
Ai ∈ C and Bij ∈C, the bounds∣∣∣∣∣

M∑
i=1

aiAi

∣∣∣∣∣≤ (logM)ρζ log logMσ‖A‖,(3.8)

∣∣∣∣∣
M∑
i=1

�aiBiiai −
M∑
i=1

σ 2Bii

∣∣∣∣∣≤ (logM)ρζ log logMσ 2

(
M∑
i=1

|Bii |2
)1/2

,(3.9)

∣∣∣∣∣∑
i �=j

�aiBij aj

∣∣∣∣∣≤ (logM)ρζ log logMσ 2
(∑

i �=j

|Bij |2
)1/2

(3.10)

hold with ζ -high probability.



UNIVERSALITY OF COVARIANCE MATRICES 947

REMARK 3.5. When M ∼ N , equation (3.8) yields that for any ζ > 0,
|∑M

i=1 aiAi | ≤ ϕCζ σ‖A‖ for some Cζ > 0 with ζ -high probability. Here ϕ is as
defined in (2.16).

Next we extend Theorems 3.1 and 3.3 by relaxing the independence assumption.

THEOREM 3.6. Let X = [xij ] be a random matrix with E(x2
ij ) = 1/M and

limN→∞ dN ∈ (0,∞) \ {1}. Assume that the column vectors of the matrix X are
mutually independent. Furthermore, suppose that for any fixed j ≤ N , the random
variables defined by ai = xij ,1 ≤ i ≤ M , satisfy the large deviation bounds (3.8),
(3.9) and (3.10), for any Ai ∈ C and Bij ∈ C and some ζ > 0. Then the conclusions
of Theorems 3.1 and 3.3 hold for the random matrix X.

Thus Theorem 3.6 extends the universality results to a large class of matrix
ensembles. For instance, let hij be a sequence of i.i.d. random variables, and set

xij = hij√∑M
i=1 h2

ij

, 1 ≤ i ≤ M,1 ≤ j ≤ N.(3.11)

Thus the entries of the column vector (x1j , x2j , . . . , xMj ) are not independent,
but exchangeable. Clearly E(x2

ij ) = 1
M

. The random variables xij given by (3.11)
are called self normalized sums and arise in various statistical applications. For
instance, the matrix X = [xij ] constructed above is called the correlation matrix
(see [22, 33]) and is often preferred in applications such as principal component
analysis (PCA) due to the scale invariance of the correlation matrix.

PROOF OF THEOREM 3.6. In the proofs of Theorems 3.1 and 3.3, we use only
the large deviation properties of ai = xij and the fact that E(x2

ij ) = 1/M , instead
of independence and sub-exponential decay. Therefore the proofs of Theorems 3.1
and 3.3 in fact yield Theorem 3.6. �

4. Universality of eigenvalues at edge. In this section we give the proof
of edge universality stated in Theorem 1.1. For simplicity, we focus on the case
limN→∞ dN ∈ (0,∞) \ {1} first and return to the limN→∞ dN = 1 at the end of
this section. The proof is loosely based on Theorem 2.4 of [18] which is an analo-
gous result for Wigner matrices, but in our case there is a key difference: the entries
within the same column of the matrix H = X†X are dependent. To address this dif-
ficulty, we give a novel argument involving the Green function comparison. In the
following we consider the largest eigenvalue λ1, but the same argument applies to
the smallest nonzero eigenvalue as well. Also for the rest of this section, let us fix
a constant ζ > 0.

For any E1 ≤ E2 let

N (E1,E2) := #{E1 ≤ λj ≤ E2}
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denote the number of eigenvalues of the covariance matrix X†X in [E1,E2]
where X is a random matrix whose entries satisfy (1.1) and (1.2). By Theo-
rems 3.1 and 3.3 (rigidity of eigenvalues), there exists a positive constant Cζ such
that

|λ1 − λ+| ≤ ϕCζ N−2/3,(4.1)

N
(
λ+ − 2ϕCζ N−2/3, λ+ + 2ϕCζ N−2/3)≤ ϕ2Cζ(4.2)

hold with ζ -high probability. Using these estimates, we can assume that the pa-
rameter s in (1.4) satisfies

−ϕCζ ≤ s ≤ ϕCζ .(4.3)

Set

Eζ := λ+ + 2ϕCζ N−2/3(4.4)

and for any E ≤ Eζ define χE := 1[E,Eζ ] to be the characteristic function of the
interval [E,Eζ ]. For any η > 0 we define

θη(x) := η

π(x2 + η2)
= 1

π
� 1

x − iη
(4.5)

to be an approximate delta function on scale η. In the following elementary lemma
we compare the sharp counting function N (E,Eζ ) = TrχE(H) by its approxima-
tion smoothed on scale η. Notice that for any � > 0,

TrχE−� ∗ θη(H) = N
1

π

∫ Eζ

E−�
�m(y + iη)dy.

Let us fix ε > 0 and set

η1 = N−2/3−9ε.(4.6)

LEMMA 4.1. For any ε > 0, set �1 := N−2/3−3ε . Then for any E satisfying

|E − λ+| ≤ 3
2ϕCζ N−2/3,(4.7)

where the constant Cζ is as in (4.1)–(4.4), the bound∣∣TrχE(H) − TrχE ∗ θη1(H)
∣∣≤ C

(
N−2ε +N (E − �1,E + �1)

)
(4.8)

holds with ζ -high probability.

PROOF. From inequalities (4.1), (4.2) above, and (6.13) and (the first line of)
(6.17) of [18] we obtain∣∣TrχE(H) − TrχE ∗ θη1(H)

∣∣
≤ C

(
N (E − �1,E + �1) + N−5ε)(4.9)

+ CNη1(Eζ − E)

∫
R

1

y2 + �2
1

�m(E − y + i�1)dy.



UNIVERSALITY OF COVARIANCE MATRICES 949

By definition,
∫
R

�m(E − y + i�1)dy = O(1). For any fixed small enough c > 0,∫
|y|≥ε

1

y2 + �2
1

�m(E − y + i�1)dy = O
(
c−2).

On the interval |y| ≤ c we use (3.2), that is,

�m(E − y + i�1) ≤ �mc(E − y + i�1) + ϕCζ

N�1

and the elementary estimate �mc(E − y + i�1) ≤ C
√

�1 + |E − y − λ+|. Using
the definitions of �1 and η1 it can be shown that (see inequality (6.18) of [18])

Nη1(Eζ − E)

∫
R

1

y2 + �2
1

�m(E − y + i�1)dy ≤ N−2ε.

Now the lemma follows from (4.9). �

Let q :R→R+ be a smooth cutoff function such that

q(x) = 1 if |x| ≤ 1/9,

q(x) = 0 if |x| ≥ 2/9

and we assume that q(x) is decreasing for x ≥ 0. Then we have the following
corollary for Lemma 4.1 (which is the counterpart of Corollary 6.2 in [18]):

COROLLARY 4.2. Let �1 be as in Lemma 4.1, and set � := 1
2�1N

2ε =
1
2N−2/3−ε . Then for all E such that

|E − λ+| ≤ ϕCζ N−2/3,(4.10)

where the constant Cζ is as in (4.1)–(4.4), the inequality

TrχE+� ∗ θη1(H) − N−ε ≤ N (E,∞) ≤ TrχE−� ∗ θη1(H) + N−ε(4.11)

holds with ζ -high probability. Furthermore, there exists N0 ∈ N independent of E

such that for all N ≥ N0,

Eq
(
TrχE−� ∗ θη1(H)

)
(4.12)

≤ P
(
N (E,∞) = 0

)≤ Eq
(
TrχE+� ∗ θη1(H)

)+ Ce−ϕ
Cζ

.

PROOF. For any E satisfying (4.10) we have Eζ − E � � thus |E − λ+ −
�|N2/3 ≤ 3

2ϕCζ [see (4.7)]; therefore (4.8) holds for E replaced with y ∈ [E−�,E]
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as well. We thus obtain

TrχE(H) ≤ �−1
∫ E

E−�
dy Trχy(H)

≤ �−1
∫ E

E−�
dy Trχy ∗ θη1(H)

+ C�−1
∫ E

E−�
dy
[
N−2ε +N (y − �1, y + �1)

]
≤ TrχE−� ∗ θη1(H) + CN−2ε + C

�1

�
N (E − 2�,E + �)

holds with ζ -high probability. From (3.7), (4.10), �1/� = 2N−2ε and � ≤ N−2/3,
we gather that

�1

�
N (E − 2�,E + �) ≤ N1−2ε

∫ E+�

E−2�
	c(x)dx + N−2ε(logN)L1 ≤ 1

2
N−ε

holds with ζ -high probability, where we estimate the explicit integral using the
fact the integration domain is in a CN−2/3ϕCζ -vicinity of the edge at λ+. We have
thus proved

N (E,Eζ ) = TrχE(H) ≤ TrχE−� ∗ θη1(H) + N−ε.

Using (4.1) we can replace N (E,Eζ ) by N (E,∞) with a change of probability

of at most O(e−ϕ
Cζ

). This proves the upper bound of (4.11), and the lower bound
can be proved similarly.

When event (4.11) holds, the condition N (E,∞) = 0 implies that TrχE+� ∗
θη1(H) ≤ 1/9. Thus we have

P
(
N (E,∞) = 0

)≤ P
(
TrχE+� ∗ θη1(H) ≤ 1/9

)+ Ce−ϕ
Cζ

.(4.13)

Together with the Markov inequality, this proves the upper bound in (4.12). For
the lower bound, we use

Eq
(
TrχE−� ∗ θη1(H)

)≤ P
(
TrχE−� ∗ θη1(H) ≤ 2/9

)
≤ P

(
N (E,∞) ≤ 2/9 + N−ε)= P

(
N (E,∞) = 0

)
,

where we used the upper bound from (4.11) and the fact that N (E,∞) is an inte-
ger. This completes the proof of Corollary 4.2. �

4.1. Green function comparison theorem. Let Xv = [xv
ij ], with the entries xv

ij

satisfying (1.1) and (1.2), H v = Xv†Xv, and let Gv(z) = (Xv†Xv − z)−1 = (H v −
z)−1 be the Green function corresponding to Xv. Define the matrices Xw, Hw and
the Green function Gw(z) analogously. Define mv(z) = 1

N
TrGv(z) and mw(z) =
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1
N

TrGw(z). The operators Ev,Ew denote the expectations under the distributions
of Xv and Xw, respectively.

Also notice from (4.5) that θη(H) = 1
π
�m(iη). Corollary 4.2 bounds the prob-

ability of N (E,∞) = 0 in terms of the expectations of two functionals of Green
functions. In this subsection, we show that the difference between the expectations
of these functionals with respect to the two ensembles Xv and Xw is negligible as-
suming their second moments match. The precise statement is the following Green
function comparison theorem on the edges. All statements are formulated for the
upper spectral edge λ+, but identical arguments hold for the lower spectral edge
λ− as well.

THEOREM 4.3 (Green function comparison theorem on the edge). Let
F :R→R be a function whose derivatives satisfy

max
x

∣∣F (α)(x)
∣∣(|x| + 1

)−C1 ≤ C1, α = 1,2,3,4(4.14)

with some constant C1 > 0. Then there exists ε0 > 0, N0 ∈ N depending only on
C1 such that for any ε < ε0 and N ≥ N0 and for any real numbers E, E1 and E2

satisfying

|E − λ+| ≤ N−2/3+ε, |E1 − λ+| ≤ N−2/3+ε, |E2 − λ+| ≤ N−2/3+ε

and η = N−2/3−ε , we have∣∣EvF
(
Nη�mv(z)

)−E
wF

(
Nη�mw(z)

)∣∣≤ CN−1/6+Cε, z = E + iη(4.15)

and ∣∣∣∣EvF

(
N

∫ E2

E1

dy �mv(y + iη)

)
−E

wF

(
N

∫ E2

E1

dy �mw(y + iη)

)∣∣∣∣(4.16)

≤ CN−1/6+Cε.

Theorem 4.3 holds in much greater generality. We state the following extension
which can be used to prove (1.5), the generalization of Theorem 1.1. The class of
functions F in the following theorem can be enlarged to allow some polynomially
increasing functions similar to (4.14). But for our application of the above theorem
to prove (1.5), the following form is sufficient.

THEOREM 4.4. Suppose that the assumptions of Theorem 1.1 hold. Fix any
k ∈ N+ and let F :Rk → R be a bounded smooth function with bounded deriva-
tives. Then there exists ε0 > 0, N0 ∈ N depending only on C1 such that for any
ε < ε0 and N ≥ N0, there exists δ > 0 such that for any sequence of real numbers
Ek < · · · < E1 < E0 with |Ej −λ+| ≤ N−2/3+ε , j = 0,1, . . . , k, and η = N−2/3−ε
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we have ∣∣∣∣EvF

(
N

∫ E0

E1

dy �m(y + iη), . . . ,N

∫ E0

Ek

dy �m(y + iη)

)
(4.17)

−E
wF

(
mv → mw)∣∣∣∣≤ N−δ,

where in the second term the arguments of F are changed from mv to mw and all
other parameters remain unchanged.

PROOF. The proof of Theorem 4.4 is similar to that of Theorem 4.3 and will
be omitted. �

Before proceeding further, let us state the following theorem which gives suffi-
cient criteria for proving edge universality for matrix ensembles of the form Y †Y

for various types of data matrices Y . Let YM×N = [yij ],ZM×N = [zij ] be two ma-
trix ensembles, and set HY = Y †Y,HZ = Z†Z. Define the corresponding Green
functions GY = (HY − z)−1,GZ = (HZ − z)−1 and denote their respective em-
pirical Stieltjes transforms by mY , mZ .

THEOREM 4.5. Assume that the matrices Y,Z satisfy the conclusions stated
in items (i), (ii) and (iii) of Theorem 3.1. Furthermore, assume that mY and mZ

satisfy the conclusions of Theorems 4.3 and 4.4. Then the asymptotic eigenvalue
distribution of the matrices HY ,HZ at the edge are identical; that is, the conclu-
sions of Theorem 1.1 are satisfied with Xv = Y and Xw = Z.

REMARK 4.6. Thus our results can be used to show edge universality for
cases far beyond covariance matrices. In [33] we use Theorem 4.5 to prove the
edge universality of correlation matrices.

PROOF OF THEOREM 4.5. An inspection of the proofs will reveal that, for
the arguments used in our application of the Green function comparison method
to go through, all we need are the strong MP law and the rigidity of eigenvalues
[items (i), (ii) and (iii) of Theorem 3.1] and Theorems 4.3 and 4.4. �

Recall that all discussion so far in this section has been under the assump-
tion that limN→∞ dN ∈ (0,∞) \ {1}. Now we first prove Theorem 1.1 when
limN→∞ dN ∈ (0,∞) \ {1}, assuming that Theorem 4.3 holds and then give the
proof of Theorem 4.3. Finally we return to prove Theorem 1.1 for limN→∞ dN = 1
at the end of this section.

PROOF OF THEOREM 1.1 FOR THE CASE limN→∞ dN = (0,∞)\ {1}. Define
Eζ as in (4.4) with a constant Cζ such that (4.1) and (4.2) hold. Therefore we
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can assume that (4.3) holds for the parameter s. Let E := λ+ + sN−2/3 so that
|E − λ+| ≤ ϕCζ N−2/3. Using (4.12), for any sufficiently small ε > 0, we have

E
wq

(
TrχE−� ∗ θη1(H)

)≤ P
w(N (E,∞) = 0

)
with

� := 1
2N−2/3−ε, η1 := N−2/3−9ε.

Recall that by definition

TrχE−� ∗ θη1(H) = N
1

π

∫ Eζ

E−�
�m(y + iη1)dy.

Bound (4.16) applied to the case E1 = E − � and E2 = Eζ shows that there exists
δ > 0, such that

E
vq
(
TrχE−� ∗ θη1(H)

)≤ E
wq

(
TrχE−� ∗ θη1(H)

)+ N−δ.(4.18)

Then applying the right-hand side of (4.12) in Lemma 4.2 to the left-hand side
of (4.18), we have

P
v(N (E − 2�,∞) = 0

)≤ E
vq
(
TrχE−� ∗ θη1(H)

)+ C exp
(−cϕO(1)).

Combining these inequalities, we have

P
v(N (E − 2�,∞) = 0

)≤ P
w(N (E,∞) = 0

)+ 2N−δ(4.19)

for sufficiently small ε > 0 and sufficiently large N . Recalling that E = λ+ +
sN−2/3, this proves the first inequality of (1.4) and, by switching the roles of v,w,
the second inequality of (1.4) as well. This completes the proof of Theorem 1.1.

�

PROOF OF THEOREM 4.3. We need to compare the matrices H v and Hw.
Instead of replacing the matrix elements one by one (NM times) and comparing
their successive differences, the key new idea here is to estimate the successive
difference of matrices which differ by a column. Indeed for 1 ≤ γ ≤ N , denote by
Xγ the random matrix whose j th column is the same as that of Xv if j < γ and
that of Xw otherwise; in particular X0 = Xv and XN = Xw. As before, we define

Hγ = X†
γ Xγ .

We will compare Hγ−1 with Hγ using the following lemma. For simplicity, we
denote

m̃(i)(z) = m(i)(z) − (Nz)−1.

LEMMA 4.7. For any random matrix X whose entries satisfy (1.1) and (1.2),
if |E − λ+| ≤ N−2/3+ε and N−2/3 � η ≥ N−2/3−ε for some ε > 0, then we have

EF
(
Nη�m(z)

)−EF
(
Nη�m̃(i)(z)

)= A
(
X(i),m1,m2

)+ N−7/6+Cε,(4.20)

where the functional A(X(i),m1,m2) depends only on the distribution of X(i) and
the first two moments m1,m2 of

√
Mxji = √

M(X)ji (1 ≤ j ≤ M).
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Notice that X
(γ )
γ is equal to X

(γ )
γ−1. We also have that the first two moments of

the entries of Xv and Xw are identical. Thus Lemma 4.7 implies that

EF

(
η�Tr

1

Hγ−1 − z

)
−EF

(
η�Tr

1

Hγ − z

)
= O

(
N−7/6+Cε).(4.21)

Now the proof of Theorem 4.3 now can be completed via a simple telescoping
argument.Thus to finish the proof of Theorem 4.3, all that needs to be shown is
Lemma 4.7 which is proven below. �

PROOF OF LEMMA 4.7. Fix ζ > 0, ε > 0 and, without loss of generality,
assume that i = 1. Recall that N−2/3 � η ≥ N−2/3−ε and |E − λ+| ≤ N−2/3+ε .
First, we claim the following bounds for G(1) and G(1):∣∣〈x1,

(
G(1)(z)

)2x1
〉∣∣≤ N1/3+Cε, z = E + iη(4.22) ∣∣[G(1)(z)

]
ij

∣∣≤ NCε,
(4.23) ∣∣[[G(1)(z)

]2]
ij

∣∣≤ N1/3+Cε, z = E + iη

with ζ -high probability for some C > 0. In the above, x1 denotes the first column
of the matrix X. In (4.23) we allow i = j . The proof of these bounds is postponed
to the end.

Now using (2.19) and (2.21), we have

TrG − TrG(1) + z−1 = (
G11 + z−1)+ 〈x1,X

(1)G(1)G(1)X(1)†x1〉
−z − z(x1,G(1)(z)x1)

(4.24)
= zG11

〈
x1,

(
G(1))2(z)x1

〉
.

Define the quantity B to be

B = −zmc

[〈
x1,G(1)(z)x1

〉− ( −1

zmc(z)
− 1

)]
.(4.25)

By (2.19),

B = −zmc

[( −1

zG11(z)
− 1

)
−
( −1

zmc(z)
− 1

)]
= mc − G11

G11
.

From (3.3), we obtain that

|B| ≤ N−1/3+2ε � 1,(4.26)

with ζ -high probability. Therefore, we have the identity

G11 = mc

B + 1
= mc

∑
k≥0

(−B)k.(4.27)

Define y with the left-hand side of (4.24),

y := η
(
TrG − TrG(1) + z−1)(4.28)
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so that we have

Nη�m(z) = Nη�m̃(1)(z) + y.(4.29)

Using (4.24) and (4.27) we obtain

y = ηzG11
〈
x1,

(
G(1))2x1

〉= ∞∑
k=1

yk, yk := ηzmc(−B)k−1〈x1,
(
G(1))2x1

〉
.

Since z and mc are O(1), together with (4.22) and (4.26) we see that the bounds

|yk| ≤ O
(
N−k/3+Cε) and |y| ≤ O

(
N−1/3+Cε)(4.30)

hold with ζ -high probability. Consequently, using (4.29), the expansion

F
(
Nη�m(z)

)− F
(
Nη�m̃(1)(z)

)
(4.31)

=
3∑

k=1

1

k!F
(k)(Nη�m̃(1)(z)

)
(�y)k + O

(
N−4/3+Cε)

holds with ζ -high probability.
Now we estimate each of the three terms (k = 1,2,3) on the right-hand side

of (4.31) individually. First, using (4.30) we obtain that

F (3)(Nη�m̃(1)(z)
)
(�y)3 = F (3)(Nη�m̃(1)(z)

)
(�y1)

3 + O
(
N−4/3+Cε)(4.32)

holds with ζ -high probability. Moreover, we have

E1(�y1)
3 = E1(ηzmc)

3〈x1,
(
G(1))2x1

〉3
(4.33)

= (ηzmc)
3

M∑
k1,...,k6=1

E1

( 6∏
i=1

xki1

) 3∏
i=1

[(
G(1))2]

k2i−1,k2i
,

where E1 is the expectation value with respect to x1, the first column of X. Recall
that mk denotes the kth moment of

√
Mxj1. If there is an index ki which is different

from all the others in the product
∏6

i=1 xki1, then

E1

( 6∏
i=1

xki1

)
= 0 = m1

and if each ki appears exactly twice, then

E1

( 6∏
i=1

xki1

)
= m3

2.

Isolating the above two cases from the sum (4.33), we have

E1(�y1)
3 = Ã3

(
X(1),m1,m2

)
+ (ηzmc)

3
∑
A

E1

( 6∏
i=1

xki1

)[(
G(1))2]

k1k2

[(
G(1))2]

k3k4

[(
G(1))2]

k5k6
,
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where A denotes the set of indices ki ∈ {1,2, . . . ,M} such that (1) no ki appears
exactly once in the product

∏6
i=1 xki1 and (2) there is an index ki which appears at

least three times. Clearly, the functional Ã3(X
(1),m1,m2) depends only on X(1),

m1 and m2. Furthermore, it readily follows that

#A ≤ CN2.

Then using (4.23) and the bounds on mk’s, it follows that

E1(�y1)
3 = Ã3

(
X(1),m1,m2

)+ O
(
N−2+Cε).(4.34)

It is easy to prove that |Nη�m̃(1)| ≤ NCε with ζ -high probability. Using (4.32)
and the fact that m̃(1) depends only on X(1), we have

EF (3)(Nη�m̃(1)(z)
)
(�y)3 = A3

(
X(1),m1,m2

)+ O
(
N−4/3+Cε),(4.35)

where A3(X
(1),m1,m2) depends only on the distribution of X(1), m1 and m2.

Now we estimate the term with F (2) in (4.31). As in (4.32), we have

F (2)(Nη�m̃(1)(z)
)
(�y)2

(4.36)
= F (2)(Nη�m̃(1)(z)

)[
(�y1)

2 + 2(�y1)(�y2)
]+ O

(
N−4/3+Cε).

By definition,

E1(�y1)
2 + 2(�y1)(�y2)

= C1(z)η
2〈x1,

(
G(1))x1

〉〈
x1
(
G(1))2x1

〉2 + C2(z)η
2〈x1

(
G(1))2x1

〉2
,

where C1(z), C2(z) = O(1) are constants which depend only on z and mc(z).
Using the bounds on G(1) in (4.23), as in (4.34), we have

E1
[
(�y1)

2 + (�y1)(�y2)
]= Ã2

(
X(1),m1,m2

)+ O
(
N−5/3+Cε),

where Ã2(X
(1),m1,m2) depends only on the distribution of X(1), m1 and m2.

Then with (4.36), as in (4.35), we conclude that

EF (2)(Nη�m̃(1)(z)
)
(�y)2 = A2

(
X(1),m1,m2

)+ O
(
N−4/3+Cε)(4.37)

for some functional A2 which depends only on the distribution of X(1), m1 and m2.
Finally we estimate the term F (1) in (4.31). As in (4.32), we have

F (1)(Nη�m̃(1)(z)
)
(�y)2

(4.38)
= F (1)(Nη�m̃(1)(z)

)[�y1 + �y2 + �y3] + O
(
N−4/3+Cε).

A similar argument as in (4.37) and (4.35) yields

EF (1)(Nη�m̃(1)(z)
)
(�y) = A1

(
X(1),m1,m2

)+ O
(
N−4/3+Cε).(4.39)

Inserting (4.39), (4.37) and (4.35) into (4.31), we obtain (4.20). Now to complete
the proof of Lemma 4.7 we need to prove (4.22) and (4.23).
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For (4.22), using the large deviation lemma (Lemma 3.4), we obtain that for any
ζ > 0, ∣∣(x1

(
G(1))2x1

)∣∣ ≤ ϕCζ
(
N−1 Tr

∣∣G(1)
∣∣4)1/2

≤ ϕCζ

(
1

N

∑
α

1

|λ(1)
α − z|4

)1/2

(4.40)

≤ ϕCζ

(
1

Nη2

∑
α

1

|λ(1)
α − z|2

)1/2

= ϕCζ

(
1

Nη3 �m(1)(z)

)1/2

with ζ -high probability. Then using (3.2) we have (4.22). For (4.23), we note that

G(1) = 1

X(1)(X(1))† − z
.

Comparing with (2.5), we see that the pair {G(1), (X(1))†} plays the role of {G,X}.
Since

√
M

N−1(X(1))† is just an (N −1)×M random data matrix, whose entries have

variance (N − 1)−1, the results in (3.3) also hold for G(1) with slight changes. One
can easily obtain that

max
ij

∣∣[G(1)]
ij

∣∣≤ C, max
i �=j

∣∣[G(1)]
ij

∣∣≤ CN−1/3+Cε

with ζ -high probability showing (4.23) and finishing the proof of Lemma 4.7 and
consequently we have proved Theorem 4.3. �

PROOF OF THEOREM 1.1 FOR THE CASE limN→∞ dN = 1. Note that this
proof holds only for the largest eigenvalues. Without loss of generality, set 1/2 ≤
dN ≤ 2. First, in the proof of estimates in (3.2) and (3.3) of m(z), we never used
the assumption limN→∞ dN �= 1 directly. We only needed the property of mc(z)

listed in Lemma 6.5. One can easily check that if �z ≥ ε for some constant ε

independent of N , then mc(z) also satisfies the properties in Lemma 6.5, even if
limN→∞ dN = 1. Therefore for any fixed ε > 0, expressions (3.2) and (3.3) still
hold with ζ -high probability if we replace

⋂
z∈S(Cζ ) with

⋂
z∈S(Cζ ) and �z≥ε .

Next, in step 1 in the proof of (3.4), using the estimate of m(z) from (3.2)
and (3.3), and properties on mc(z) in Lemma 6.5, we obtain that for any ζ > 0,
there exists some Dζ > 0 such that

max{λj :λj ≤ 5λ+} ≤ λ+ + N−2/3ϕ4Dζ(4.41)

holds with ζ -high probability. In the proof, we used only the estimates of m(z)

from (3.2) and (3.3) for z ∈ S(Cζ ) and �z ∈ [λ+,5λ+]. Now, using our modified



958 N. S. PILLAI AND J. YIN

version of (3.2) and (3.3) (obtained by replacing
⋂

z∈S(Cζ ) with
⋂

z∈S(Cζ ) and �z≥ε),
(4.41) can be easily extended to the case limN→∞ dN = 1.

Now, we claim that when limN→∞ dN = 1, λ1 ≤ 5λ+ holds with ζ -high proba-
bility. The M × N data matrix can be considered as a minor of a matrix X̃, which
(1) is an M × Ñ matrix with limÑ→∞ Ñ/M ≥ 1 + c for some fixed c > 0, (2) sat-
isfies the condition of Theorem 1.5. Let λ1, λ̃1 be the largest eigenvalue of X†X

and X̃†X̃. By definition and Theorem 1.5, for small enough c we have

λ1 ≤ λ̃1 ≤ 5λ+.

Combining the above two statements we obtain that for any ζ > 0, there exists
some Dζ > 0 such that with ζ -high probability

λ1 ≤ λ+ + N−2/3ϕ4Dζ .(4.42)

Likewise, step 2 [formula (8.6)] in the proof of (3.4) can also be extended to

∣∣(n(E1) − n(E2)
)− (

nc(E1) − nc(E2)
)∣∣≤ C(logN)ϕCζ

N
,

E1,E2 ∈ [λ+/2, λ+]
since the proof relies only on the estimates of m(z) for z ∈ S(Cζ ) and �z ∈
[E1,E2] given by our modified version of (3.2) and (3.3). Together with (4.42),
we obtain that for any fixed ε > 0, the rigidity result (3.6) holds for j ≤ (1 − ε)N ,
and (3.7) holds for E ≥ ε.

Therefore, we conclude that (4.1) and (4.2) hold with ζ -high probability for
the case limN→∞ dN = 1. Now to obtain Theorem 1.1 when limN→∞ dN = 1, one
needs only to repeat the argument in this section. We note that in the proof of (4.9),
we used (3.2), but only for z’s such that �z is very close to λ+, which is covered
by our modified version of (3.2). Similarly for Corollary 4.2, we used (3.7) but
only for E’s which are very close to λ+. Therefore, we obtain Theorem 1.1 in the
case limN→∞ dN = 1. �

5. Universality of eigenvalues in bulk. In this section, our goal is to prove
Theorem 1.5. This follows from our key technical result in Section 3 and the usual
arguments using the ergodicity of the Dyson Brownian motion mentioned in the
Introduction. Throughout this section we assume that limN→∞ dN ∈ (0,∞) \ {1}.
Again, we note that our arguments are valid for both real and complex valued
entries.

First, we consider a flow of random matrices Xt satisfying the following matrix
valued stochastic differential equation

dXt = 1√
M

dβt − 1

2
Xt dt,(5.1)
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where βt is a real matrix valued process whose elements are standard real val-
ued independent Brownian motions. The initial condition X0 = X = [xij ] satisfies
(1.1) and (1.2). For any fixed t ≥ 0, the distribution of Xt coincides with that of

Xt
d= e−t/2X0 + (

1 − e−t )1/2
V,(5.2)

where V is a real matrix with Gaussian entries which have mean 0 and variance
1/M . The singular values of the matrix Xt also satisfy a system of coupled SDEs
which is also called the Dyson Brownian motion (with a drift in our case). More
precisely, let

μ = μN(dw) = e−Hβ
W (w)

Zβ

dw,

Hβ
W (w) = β

[
N∑

i=1

w2
i

2d
− 1

N

∑
i<j

log
∣∣w2

j − w2
i

∣∣(5.3)

−
(

1

d
− 1 + 1 − β−1

N

) N∑
i=1

log |wi |
]

denote the joint distribution of the singular values of X when the matrix X has
independent Gaussian entries (so that X†X is a Wishart random matrix). In (5.3),
the constant β takes values {1,2} with β = 2 for complex entries and β = 1 for
real valued entries. Also, Zβ is the normalization constant so that μ is a probability
measure. Denote the distribution of the singular values at time t by ft (w)μ(dw).
Then ft satisfies

∂tft = LWft ,(5.4)

where

LW = LW
β,N =

N∑
i=1

1

2N
∂2
i +

N∑
i=1

(
−βwi

2d
+ β

N

∑
j �=i

wi

w2
i − w2

j

(5.5)

+ 1

2

(
β

(
1

d
− 1

)
+ β − 1

N

)
1

wj

)
∂i.

For any n ≥ 1 we define the n-point correlation functions (marginals) of the prob-
ability measure ft dμ by

p
(n)
t,N (w1,w2, . . . ,wn) =

∫
RN−n

ft (w)μ(w)dwn+1 · · ·dwN.(5.6)

With a slight abuse of notation, we will sometimes also use μ to denote the density
of the measure μ with respect to the Lebesgue measure. The correlation functions
of the equilibrium measure are denoted by

p
(n)
μ,N(w1,w2, . . . ,wn) =

∫
RN−n

μ(w)dwn+1 · · ·dwN.(5.7)
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Now we are ready to prove the strong local ergodicity of the Dyson Brownian
motion which states that the correlation functions of the Dyson Browian motion
p

(n)
t,N and those of the equilibrium measure p

(n)
μ,N are close:

THEOREM 5.1. Let X = [xij ] with entries xij satisfying (1.1) and (1.2). Let
E ∈ [λ− + r, λ+ − r] with some r > 0. Then for any ε′ > 0, δ > 0, 0 < b = bN <

r/2, any integer n ≥ 1 and for any compactly supported continuous test function
O :Rn →R we have

sup
t≥N−1+δ+ε′

∣∣∣∣∣
∫ E+b

E−b

dE′

2b

∫
Rn

dα1 · · ·dαnO(α1, . . . , αn)
1

	c(E)n

(
p

(n)
t,N − p

(n)
μ,N

)

×
(
E′ + α1

N	c(E)
, . . . ,E′ + αn

N	c(E)

)∣∣∣∣∣(5.8)

≤ CnN
2ε′[

b−1N−1+ε′ + b−1/2N−δ/2],
where p

(n)
t,N and p

(n)
μ,N , (5.6) and (5.7), are the correlation functions of the eigenval-

ues of the Dyson Brownian motion flow (5.2) and those of the equilibrium measure,
respectively, and Cn is a constant.

REMARK 5.2. Notice that if we choose δ = 1−2ε′ and thus t = N−ε′
, then we

can set b ∼ N−1+8ε′
so that the right-hand side of (5.8) vanishes as N → ∞. From

the MP law we know that the spacing of the eigenvalues in the bulk is O(N−1) and
thus we see that Theorem 5.1 yields universality with almost no averaging in E.

PROOF OF THEOREM 5.1. The proof follows from the main result in [14]
(Theorem 2.1) which states that the local ergodicity of Dyson Brownian mo-
tion (5.8) holds for t ≥ N−2a+δ for any δ > 0 provided that there exists an a > 0
such that

sup
t≥N−2a

1

N
E

N∑
j=1

(
λj (t) − γj

)2 ≤ CN−1−2a(5.9)

holds with a constant C uniformly in N . Here
√

λj (t) is the singular value of the
matrix Xt given in (5.2). Condition (5.9) is a simple consequence of (3.6) as long
as a< 1/2.

Strictly speaking, there are four assumptions in the hypothesis of Theorem 2.1
in [14]. Assumptions I and II of Theorem 2.1 in [14] are automatically satisfied in
the setting that the Dyson Brownian motion is generated by flows on the covari-
ance matrix ensembles. Assumption IV of Theorem of [14] states that the local
density of the singular values of Xt in the scale larger than N−1+c for any c > 0,
is bounded above by a constant. As in [14] this follows from the large deviation
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estimate (3.2) since a bound on �m(z), z = E + iη, can be easily used to prove an
upper bound on the local density of eigenvalues in a window of size η about E.
As usual, the additional condition in [14] on the entropy Sμ(ft0) ≤ CNm for some
constant m for t0 = N−2a, holds due to the regularization property of the Ornstein–
Uhlenbeck process. Thus for a given 0 < ε′ < 1, choosing a = 1/2 − ε′/2,A = ε′
in the second part of Theorem 2.1 in [14] and using (3.6), we obtain (5.9) and the
proof is finished. �

For any ε > 0, applying Theorem 5.1 with δ = 1 − 2ε, ε′ = ε and b = −1 + 8ε,
we obtain universality for all ensembles with the matrix elements distributed ac-
cording to M−1/2ξt with

ξt = e−t/2ξ0 + (
1 − e−t )1/2

ξG,(5.10)

where the matrix ξG has independent Gaussian random variables with mean 0
and variance 1, t ∼ N−ε , and the initial condition ξ0 has entries satisfying our
conditions (1.1) and (1.2). In other words, for t ∼ N−ε the random matrices ξt

which are distributed according to (5.10) have the same correlation functions as
that of the matrix with Gaussian entries, averaged on a length of O(N−1+8ε).
Thus in order to prove Theorem 1.5, it remains to find a random matrix ξ̃t of
the form (5.10) (with time t = N−ε) whose eigenvalue correlation functions well
approximate that of the spectrum of the given matrix X satisfying (1.1) and (1.2).

The requirements on entries of the matrix ξ̃t are just mean zero, variance one
and subexponential decay; however, it turns out that for any fixed X and ε, one
may find a ξ̃0 such that ξ̃t satisfies (5.10), with t ∼ N−ε , and the entries [̃ξt ]ij have
mean 0, variance 1 and the same third moment as those of the (rescaled) initial
condition

√
MX. Moreover ξ̃t can be chosen in such a way so that its entries have

fourth moment very close to those of X. More precisely, Lemma 3.4 in [16] yields
that for any given matrix X satisfying (1.1) and (1.2) and t ∼ N−ε , there exists
a matrix ξ̃t of the form (5.10) such that for 1 ≤ k ≤ 3,

E
√

Mxk
ij = E[̃ξt ]kij ,

∣∣E(
√

Mxij )
4 −E[̃ξt ]4

ij

∣∣≤ Ct ∼ N−ε.

Now to finish the proof of Theorem 1.5, it remains only to show that that the
correlation functions of the eigenvalues of two matrix ensembles at a fixed energy
[i.e., for a fixed value of E = �(z)] are identical up to the scale 1/N provided that
the first four moments of the matrix elements of these two ensembles are almost
identical in above sense. To achieve this, as shown for the Wigner matrices [17]
(see Sections 8.6–8.13 of [17]), it is enough to show that the corresponding Green
functions are close for these two matrix ensembles. This is the content of the fol-
lowing theorem which we call, following [17], the Green function comparison
theorem.

Recall the matrices Xv,Xw,H v,Hw and the Green functions Gv,Gw from Sec-
tion 4.
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THEOREM 5.3. Assume that the first three moments of xv
ij and xw

ij are identi-
cal, that is,

E
(
xv
ij

)u = E
(
xw
ij

)u
, 0 ≤ u ≤ 3

and the difference between the fourth moments of xv
ij and xw

ij is much less than 1,
say ∣∣E(√Mxv

ij

)4 −E
(√

Mxw
ij

)4∣∣≤ N−δ(5.11)

for some given δ > 0. Let ε > 0 be arbitrary, and choose an η with N−1−ε ≤ η ≤
N−1. For any sequence of positive integers k1, . . . , kn, set complex parameters

zm
j = Em

j ± iη, j = 1, . . . , ki, m = 1, . . . , n,

with an arbitrary choice of the ± signs and λ− + κ ≤ |Em
j | ≤ λ+ − κ for

some κ > 0. Let F(x1, . . . , xn) be a function such that for any multi-index α =
(α1, . . . , αn) with 1 ≤ |α| = ∑ |αi | ≤ 5 and for any ε′ > 0 sufficiently small, we
have

max
{∣∣∂αF (x1, . . . , xn)

∣∣ : max
j

|xj | ≤ Nε′}≤ NC0ε
′
,(5.12)

max
{∣∣∂αF (x1, . . . , xn)

∣∣ : max
j

|xj | ≤ N2
}

≤ NC0(5.13)

for some constant C0.
Then there is a constant C1, depending on α,

∑
i ki and C0 such that for any

η with N−1−ε ≤ η ≤ N−1 and for any choices of the signs in the imaginary part
of zm

j , ∣∣∣∣∣EF

(
1

Nk1
Tr

[
k1∏

j=1

Gv(z1
j

)]
, . . . ,

1

Nkn
Tr

[
kn∏

j=1

Gv(zn
j

)])−EF
(
Gv → Gw)∣∣∣∣∣

(5.14)
≤ C1N

−1/2+C1ε + C1N
−δ+C1ε,

where in the second term the arguments of F are changed from the Green functions
of H v to Hw, and all other parameters remain unchanged.

Once again we note the equivalence of (5.8) and (5.14) as discussed in [17]
(Sections 8.6–8.13). The only difference is that in [17], the equivalence is proved
for Wigner matrices, but the arguments are easily adapted for covariance matrices.
Thus to complete the proof of Theorem 1.5, all that remains is Theorem 5.3 which
is proved below.

PROOF OF THEOREM 5.3. The proof is very similar to Lemma 2.3 of [17].
The only differences are a few simple linear algebraic identities. Therefore, we
will only prove the simple case of k = 1 and n = 1.
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Fix a bijective ordering map on the index set of the independent matrix ele-
ments,

φ :
{
(i, j) : 1 ≤ i ≤ M,1 ≤ j ≤ N

}→ {1, . . . ,MN}
and define the family of random matrices Xγ , 0 ≤ γ ≤ MN ,

[Xγ ]
ij

= [
Xv]

ij , φ(i, j) > γ,

= [
Xw]

ij , φ(i, j) ≤ γ.

In particular we have X0 = Xv and XMN = Xw. Denote Hγ , Gγ and Gγ as

Hγ = X†
γ Xγ , Gγ = (Hγ − z)−1, Gγ = (

Xγ X†
γ − z

)−1
.

First, using the delocalization result (3.5) and the rigidity of eigenvalues (3.6), it is
easy to have the following estimate on the matrix elements of the resolvent:

max
γ

max
k,l

max
η≥N−1−ε

max
κ≥c

∣∣[Gγ (z)
]
kl

∣∣+ ∣∣[Gγ (z)
]
kl

∣∣≤ NCε(5.15)

with ζ -high probability for any ζ > 0. For instance, for γ = 0, we have the identity

G0(z) =∑N
α=1

v†
αvα

λα−z
where λα,vα are the eigenvalues and eigenvectors of H0. By

the delocalization result (3.5), we obtain

∣∣G0(z)
∣∣≤ ϕCζ

N

N∑
α=1

1

|λα − z| .

We write the above sum as∑
α

1

|λα − z| =∑
k

∑
α∈Ik

1

|λα − z| ≤∑
k

|Ik| 1

|λα − E| + η
,(5.16)

where Ik is the set of all α such that

N−12K−1 ≤ (λα − E) ≤ N−12K.

By the rigidity of eigenvalues we obtain that |IK | ≤ C2K with ζ -high probability.
Substituting this bound in (5.16) yields the estimate (5.15).

Recall that xi denotes the ith column of X. For 1 ≤ i ≤ N , using straightforward
algebra, it is easy to check that

G(i)
kl = Gkl + (Gxi )k(x

†
i G)l

1 − 〈xi ,G(z)xi〉 , Gkl = G(i)
kl − (G(i)xi )k(x

†
i G(i))l

1 + 〈xi ,G(i)(z)xi〉 .(5.17)

From (2.19) we obtain〈
xi ,G(i)(z)xi

〉= −1 + −1

zGii

,
〈
xi ,G(z)xi

〉= 1 + zGii,(5.18)

Gxi = G(i)xi

1 + 〈xi ,G(i)(z)xi〉 = −zGiiG(i)xi .(5.19)
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Furthermore, from (2.20) it follows that〈
xi ,G(i)xj

〉= 〈
xi ,G(ij)xj

〉− 〈xi ,G(ij)xj 〉〈xj ,G(ij)xj 〉
1 + 〈xj ,G(ij)xj 〉

= 〈xi ,G(ij)xj 〉
1 + 〈xj ,G(ij)xj 〉 = −zG

(i)
jj

〈
xi ,G(ij)xj

〉= −Gij

Gii

.

Similarly

〈xi ,Gxj 〉 = −zGii

〈
xi ,G(i)xj

〉= zGij ,(5.20)

which implies that 〈
xi ,G(i)xj

〉= Gij

Gii

, 〈xi ,Gxj 〉 = −zGij .(5.21)

Let xi be the ith row of X. By symmetry, the above identities also hold if one
switches {G,xi} and {G, xi}.

Combining the above identities with (5.15), we obtain the bound

max
γ

max
k,l

max
η≥N−1−ε

max
κ≥c

∣∣[Gγ (z)
]
kl

∣∣+ ∣∣[Xγ Gγ (z)
]
kl

∣∣+ ∣∣[Gγ X†
γ (z)

]
kl

∣∣
(5.22)

+ ∣∣[Xγ Gγ X†
γ (z)

]
kl

∣∣≤ NCε,

with ζ -high probability.
Consider the telescopic sum of differences of expectations

EF

(
1

N
Tr

1

Hw − z

)
−EF

(
1

N
Tr

1

H v − z

)
(5.23)

=
MN∑
γ=1

[
EF

(
1

N
Tr

1

Hγ − z

)
−EF

(
1

N
Tr

1

Hγ−1 − z

)]
.

Let E(ij) denote the matrix whose matrix elements are zero everywhere except at
the (i, j) position, where it is 1, that is, E

(ij)
k� = δikδj�. Fix a γ ≥ 1, and let (i, j)

be determined by φ(i, j) = γ . We will compare Hγ−1 with Hγ . Note that these
two matrices differ only in the (i, j) matrix element, and they can be written as

Xγ−1 = Q + V, V := xv
ijE

(ij), Xγ = Q + W, W := xw
ijE

(ij)

with a matrix Q that has zero matrix element at the (i, j) position. Define the
Green functions

R = 1

Q†Q − z
, S = 1

Hγ−1 − z
, T = 1

Hγ − z
.

The following lemma is at the heart of the Green function comparison first estab-
lished in [17] (subsequently used in [10, 16, 18]) which states that the difference
of smooth functionals of Green functions of two matrices which differ by a single
entry can be bounded above as a function of its first four moments. �
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LEMMA 5.4. Let mk be the kth moment of
√

Mxv
ij , then

E

[
F

(
1

N
TrS

)
− F

(
1

N
TrR

)]
(5.24)

= A(Q,m1,m2,m3) + N−5/2+Cε + Ã(Q)m4

for a functional A(Q,m1,m2,m3) which depends only on the distribution of Q

and m1,m2,m3. The constant Ã(Q) depends only on the distribution of Q and
satisfies the bound ∣∣Ã(Q)

∣∣≤ N−2+Cε.

Before giving the proof of Lemma 5.4, let us use it to conclude the foregoing
argument in the proof of Theorem 5.3. Note that the matrices Hγ and Q also differ
by one entry, and therefore applying Lemma 5.4 yields

E

[
F

(
1

N
TrT

)
− F

(
1

N
TrR

)]
(5.25)

= A(Q,m1,m2,m3) + N−5/2+Cε + Ã(Q)m′
4,

where m′
4 is the fourth moment of

√
Mxw

ij (by hypothesis, the first three moments

of xw
ij are identical to those of xv

ij ). Since |m′
4 −m4| ≤ N−δ by hypothesis, we have

EF

(
1

N
Tr

1

Hγ − z

)
−EF

(
1

N
Tr

1

Hγ−1 − z

)
≤ CN−5/2+Cε + CN−2−δ+Cε.

Using the above estimate and summation over γ yields [see (5.23)]

EF

(
1

N
Tr

1

H v − z

)
−EF

(
1

N
Tr

1

Hw − z

)
≤ CN−1/2+Cε + CN−δ+Cε,

obtaining precisely what we set out to show in (5.14). The proof can be easily
generalized to functions of several variables. Thus to conclude the proof of Theo-
rem 5.3, we just need to give the proof of Lemma 5.4.

PROOF OF LEMMA 5.4. We first claim that the estimate (5.15) holds for the
Green function R as well. To see this, from the resolvent expansion we obtain

R = S + S
(
V †X + X†V + V †V

)
S + · · · + [

S
(
V †X + X†V + V †V

)]9
S

+ [
S
(
V †X + X†V + V †V

)]10
R.

Since the matrix V has only at most one nonzero entry, when computing the (k, �)

matrix element of the matrix identity above, each term is a finite sum involving
matrix elements of S, XS, SX†, XSX† or R (only for the last term) and xv

ij .
Using the bound (5.22) for the S matrix elements, the subexponential decay for
xv
ij and the trivial bound |Rij | ≤ η−1, we obtain that the estimate (5.15) holds
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for R. Similarly by expanding XR, RX and XRX, we can obtain (5.22) for XR,
RX and XRX, QR, RQ and QRQ.

Now we prove (5.24). By the resolvent expansion,

S = R − R
(
V †Q + Q†V + V †V

)
R + · · ·

(5.26)
− [

R
(
V †Q + Q†V + V †V

)]9
R + O

(
N−4)

holds with extremely high probability. Thus we may write
1

N
TrS = 1

N
TrR + ∑

k≤20

yk + O
(
N−4),

where yk is the sum of the terms in (5.26), in which there are exactly k V ’s. Recall
that mk is the kth moment of

√
Mxij , which is O(1) if k = O(1). The terms yk

satisfy the bound [with K = (k1, k2, . . . , kn) and |K| :=∑
i ki ]

|yk| ≤ NCεN−k/2,

Evyk1yk2 · · ·ykn = N−|K|/2m|K|zK(Q),(5.27) ∣∣zK(Q)
∣∣ ≤ NCε

for some zK(Q) depending only on the distribution Q, and the last inequality
holds with ζ -high probability. Here Ev is the expectation value with respect to the
distribution of the entries of the matrix Xv. Then we have

EF

(
1

N
Tr

1

Hγ−1 − z

)
(5.28)

= E

4∑
n=0

1

n!F
(n)

(
1

N
TrR

)(∑
k≤20

yk

)n

+ O
(
N−5/2+Cε).

From (5.27) we obtain

EF

(
1

N
Tr

1

Hγ−1 − z

)

= E

4∑
n=0

1

n!F
(n)

(
1

N
TrR

)( ∑
k1,...,kn

N−|K|/2m|K|zK(Q)

)
+ O

(
N−5/2+Cε)

= B + O
(
N−5/2+Cε)+ A(Q,m1,m2,m3) + Ã(Q)m4,

where A(Q,m1,m2,m3) depends only on the distribution of Q and m1,m2,m3
and

B = E

4∑
n=0

1

n!F
(n)

(
1

N
TrR

)( ∑
k1,...,kn : |K|≥5,ki≤20

N−|K|/2m|K|zK(Q)

)
,

Ã(Q) = E

4∑
n=0

1

n!F
(n)

(
1

N
TrR

)( ∑
k1,...,kn : |K|=4

N−2zK(Q)

)
.
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In the above K =∑
i ki . Now it remains only to prove

|B| ≤ O
(
N−5/2+Cε), Ã(Q) ≤ O

(
N−2+Cε).

Using the estimate (5.22) for R and the derivative bounds (5.12) for the typical
values of 1

N
TrR, we see that F (n)( 1

N
TrR) (n ≤ 4) are bounded by NCε with

ζ -high probability. Similarly zK (ki ≤ 20) is also bounded by NCε for some C > 0
with ζ -high probability. Now we define �g as the good set where these quantities
are bounded by NCε . Furthermore, using (5.13) and the definition of zK , we know
that F (n)( 1

N
TrR) and zK are bounded by NC for some C > 0 in �c

g . Since �c
g

has a very small probability by (5.22), we have

Ã(Q) = E�g

4∑
n=0

1

n!F
(n)

(
1

N
TrR

)( ∑
k1,...,kn : |K|=4

N−2zK(Q)

)
+ O

(
N−5/2+Cε).

Then with the bounds on F (n) and zK in �g , we obtain Ã(Q) ≤ O(N−2+Cε).
Similarly with m|K| ≤ O(1), we have B̃ ≤ O(N−5/2+Cε) completing the proof of
Lemma 5.4 and thereby also finishing the proof of Theorem 5.3. �

6. A priori bound for the strong local Marcenko–Pastur law. Our goal in
this section is to prove the following weaker form of Theorem 3.1, and in Section 8
we will use this a priori bound to obtain the stronger form as claimed in Theo-
rem 3.1. Throughout this section, we will assume that limN→∞ dN ∈ (0,∞) \ {1}.

THEOREM 6.1. Let X = [xij ] with the entries xij satisfying (1.1) and (1.2).
For any ζ > 0 there exists a constant Cζ such that the following event holds with
ζ -high probability: ⋂

z∈S(Cζ )

{
�d(z) + �o(z) ≤ ϕCζ

1

(Nη)1/4

}
.(6.1)

6.1. A roadmap for the reader. For conveying the key ideas of the com-
putations involved in this section, we first give a brief outline of the proof of
Theorem 6.1. For the reader’s convenience, we also indicate the corresponding
theorems/lemmas in which the estimates mentioned below are proved.

The proof of Theorem 6.1 proceeds via “self-consistent equations” explained
below. Let us fix ζ > 0. By definition it follows that

m(z) = 1

N

∑
i

Gii(z) = 1

N

∑
i

1

−z − z(1/M)TrG(i) − Zi

,

where

Zi := z
〈
xi ,G(i)xi

〉− z

M
TrG(i).(6.2)
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We will first establish Theorem 6.1 for �z = η ∼ 1. For η ∼ 1, the empirical Stielt-
jes transform satisfies

m(z) = 1

N

∑
i

1

1 − z − d − zdm(z) + Yi

, max
i

|Yi | ≤ ϕCζ �

with ζ -high probability (see Lemma 6.10) where

� :=
√

�mc + �

Nη
.(6.3)

REMARK 6.2. Notice that when mc + � ≤ O(1), we have

� ≤ O(Nη)−1/2.(6.4)

Consequently, we deduce that for η ∼ 1, the function m(z) satisfies the “self-
consistent” equation

m(z) = 1

1 − z − d − zdm(z)
+ O

(
ϕCζ �

)
(6.5)

with ζ -high probability. Notice that the above equation satisfied by m(z) is nearly
identical to the fixed point equation satisfied by the Stieltjes transform of the
MP-law, namely

mc(z) + 1

z − (1 − d) + zdmc(z)
= 0(6.6)

with �mc > 0 when �z > 0. From (6.5) and (6.6), we immediately deduce that
(Lemma 6.10) for η ∼ 1, with ζ -high probability,

|m − mc| = �(z) ≤ ϕCζ
1

(Nη)1/4 .(6.7)

We now use (6.7) to establish Theorem 6.1 for η ∼ 1. To this end, we identify
the following “bad sets” (improbable events). For z ∈ S(0), define

�(z,K) :=
{
max

{
�o(z),max

i

∣∣Gii(z) − m(z)
∣∣,max

i
|Zi |

}
≥ K�(z)

}
.(6.8)

Then the event (Lemma 6.9) ⋂
z∈S(0),η∼1

�
(
z,ϕCζ

)c(6.9)

holds with ζ -high probability. Here Ac denotes the complement of the set A. The
estimate (6.9) coupled with (6.7) immediately establishes Theorem 6.1 for η ∼ 1.
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Before proceeding, we notice the following important point. When η is not as-
sumed to be ∼ 1, a statement analogous to (6.9) holds with a different assumption.
Set

B(z) := {
�o(z) + �d(z) > (logN)−1},(6.10)

�(z,K) := �(z,K)c ∪ B(z).(6.11)

In Lemma 6.8 we show that ⋂
z∈S(Cζ )

�
(
z,ϕCζ

)
(6.12)

holds with ζ -high probability. It can also be shown that for η ∼ 1, the event Bc(z)

holds with ζ -high probability.
For proving the result for all z ∈ S(Cζ ) (i.e., for all η ≥ ϕζN−1) we proceed as

follows. For a function u(z), define its “deviance” to be

D(u)(z) := (
u−1(z) + zdu(z)

)− (
mc

−1(z) + zdmc(z)
)
.(6.13)

Clearly, D(mc) = 0. The plan is to show that |D(m)| ≈ 0 and, therefore,
|mc − m| ≈ 0.

More precisely, suppose that for two numbers L,K satisfying ϕL ≥ K2(logN)4

and for some A ⊂ ⋂
z∈S(L) �(z,K)

⋂
η∼1 Bc(z) (i.e., A is not in the bad sets of z

such that �z ∼ 1) one has the bound∣∣D(m)(z)
∣∣≤ δ(z) + ∞1B(z) ∀z ∈ S(L),(6.14)

where δ :C �→ R+ is a continuous function, decreasing in �z and |δ(z)| ≤
(logN)−8. Then, via a continuity argument, we show in Lemma 6.12 that
from (6.14) one indeed has the following stronger conclusion:

� ≤ C(logN)
δ(z)√

κ + η + δ
∀z ∈ S(L)(6.15)

and A ⊂ ⋂
z∈S(L) Bc(z) [i.e., A is contained in the bad sets of z for all z ∈ S(L)].

This estimate with a brief additional argument will yield that for large enough C

and z ∈ S(ϕC), we have � = o(1) and �(z,ϕCζ )c holds with ζ -high probability.
These two conclusions immediately yield Theorem 6.1.

6.2. Preliminary estimates. We start with the following elementary lemma
whose proof is standard:

LEMMA 6.3. For any rectangular matrix M , and partition matrices A,B and
D of M given by M = (A B

B† D

)
, we have the following identity:

M−1 =
(

U−1 −U−1BD−1

−D−1B†U−1 D−1 + D−1B†U−1BD−1

)
, U = A − BD−1B†.
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LEMMA 6.4. For any z not in the spectrum of X†X, we have

X
(
X†X − z

)−1
X† = I + z

(
XX† − z

)−1
.

PROOF. Indeed from the SVD decomposition given in (2.14), we have

X
(
X†X − z

)−1
X† =∑

α

λα

λα − z
uαu†

α

=∑
α

(
1 + z

λα − z

)
uαu†

α = I + z
(
XX† − z

)−1

and the lemma is proved. �

We record the following properties of mc without proof.

LEMMA 6.5 (Properties of mc). For z = E + iη ∈ S(0) we have the following
bounds: ∣∣mc(z)

∣∣∼ 1,
∣∣1 − m2

c(z)
∣∣∼ √

κ + η,(6.16)

�mc(z) ∼
⎧⎪⎨⎪⎩

η√
κ + η

, if κ ≥ η and |E| /∈ [λ−, λ+],
√

κ + η, if κ ≤ η or |E| ∈ [λ−, λ+].
(6.17)

Furthermore
�mc(z)

Nη
≥ O

(
1

N

)
and ∂η

�mc(z)

η
≤ 0.(6.18)

Recall B(z) from (6.10).

LEMMA 6.6 (Rough bounds of �
(T)
o and �

(T)
d ). Fix T ⊂ {1,2, . . . ,N} such

that |T| = O(1). For z ∈ S(0), there exists a constant C = C|T| such that the fol-
lowing estimates hold in Bc(z):

max
k /∈T

∣∣G(T)
kk − Gkk

∣∣≤ C�2
o,(6.19)

1

C
≤ ∣∣G(T)

kk

∣∣≤ C,(6.20)

�(T)
o ≤ C�o.(6.21)

PROOF. For T = ∅, (6.19) and (6.21) follow from definition, and (6.20) fol-
lows from the definition of B(z) and (6.16). For nonempty T, one can prove the
lemma using an induction on |T|. For example, for |T| = 1, using (2.21) we can
show that ∣∣Gkk(z) − G

(T)
kk (z)

∣∣≤ C�2
o,(6.22)
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which implies bound (6.19). A similar argument will yield (6.20) and (6.21). �

On the other hand, when η ∼ 1, a bound similar to (6.20) holds without the
assumption of Bc.

LEMMA 6.7 (Rough bounds for Gkk for η ∼ 1). Fix T ⊂ {1,2, . . . ,N} such
that |T| = O(1). For any z ∈ S(0) and η ∼ 1, we have the bound

max
i

∣∣G(T)
ii (z)

∣∣≤ C

for some C > 0 and 1 ≤ i ≤ N .

PROOF. Let us show the result first for |T| = ∅. By definition,

|Gii | =
∣∣∣∣∑

α

uα(i)�uα(i)

λα − z

∣∣∣∣≤ 1

η

∑
α

uα(i)�uα(i) ≤ 1

η
≤ C,

where in the second inequality we have used |λα − z| ≥ �z = η. The claim for
a general T follows similarly. �

Recall from (6.8) and (6.11), the event

�
(
z,ϕCζ

)= �
(
z,ϕCζ

)c ∪ B(z).

Define the events

�o(z,K) := {
�0 ≥ K�(z)

}
,

�d(z,K) :=
{
max

i

∣∣Gii(z) − m(z)
∣∣≥ K�(z)

}
,(6.23)

�Z(z,K) :=
{
max

i
|Zi | ≥ K�(z)

}
.

Note: �d(z,K) is defined with m, not mc. Set

�(z,K) = �o(z,K) ∪ �d(z,K) ∪ �Z(z,K).

LEMMA 6.8. For any ζ > 0 there exists a constant Cζ such that⋂
z∈S(Cζ )

�
(
z,ϕCζ

)
(6.24)

holds with ζ -high probability.

PROOF. We need to prove only that there exists a uniform constant Cζ such
that for any z ∈ S(Cζ ) the event

�
(
z,ϕCζ

)
(6.25)
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holds with ζ -high probability. It is clear that (6.24) follows from (6.25) and the
fact that

|∂zGij | ≤ NC, η > N−1.(6.26)

Note �(z,K) = (�c
o ∪ B) ∩ (�c

d ∪ B) ∩ (�c
Z ∪ B). First we shall prove that the

�c
o∪B holds with ζ -high probability. Using formula (2.20) and the fact that |G|2 =

G∗G, we infer that there exists a constant Cζ such that with ζ -high probability,

�o(z) ≤ C|z|max
i �=j

∣∣〈xi ,G(ij)xj

〉∣∣≤ ϕCζ
|z|
N

(∑
k,l

∣∣G(ij)
kl

∣∣2)1/2

≤ ϕCζ
|z|
N

(
Tr
∣∣G(ij)

∣∣2)1/2(6.27)

≤ ϕCζ |z|
√

�TrG(ij)

N2η
in Bc(z),

where in the last step we used the identity η−1�TrG(ij) = Tr |G(ij)|2. Using the
identity

TrG(T)(z) − TrG(T)(z) = M − N + |T|
z

,(6.28)

formula (6.19) and �(z−1) = η|z|−2, we deduce that with ζ -high probability

�o(z) ≤ ϕCζ

√
�mc + � + �2

o

Nη
+ 1

N
in Bc(z).

For the above choice of Cζ , for z ∈ S(3Cζ ), with �mc ≤ O(1), the bound

�o(z) ≤ ϕCζ

√
�mc + �

Nη
+ 1

N
+ o(�o) in Bc(z)(6.29)

holds with ζ -high probability. From (6.29) and (6.18) it follows that �c
o ∪ B holds

with ζ -high probability.
A similar argument using the large deviation lemma will give

|Zi | = |z|
∣∣∣∣〈xi ,G(i)xi

〉− 1

M
TrG(i)

∣∣∣∣≤ |z|ϕCζ

√
�TrG(i)

N2η
≤ ϕCζ �

(6.30)
in Bc(z)

holds with ζ -high probability implying that

max
i

|Zi | ≤ ϕCζ �

and therefore �c
Z ∪ B holds with ζ -high probability.
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Finally notice that maxi |Gii −m| ≤ maxi �=j |Gii −Gjj |. From (2.19) we obtain
that

|Gii − Gjj | ≤
∣∣∣∣ 1

−z − z〈xi ,G(i)(z)xi〉 − 1

−z − z〈xj ,G(j)(z)xj 〉
∣∣∣∣

≤ |GiiGjj |
(
|Zi − Zj | + |z|

M

∣∣TrG(i) − TrG(j)
∣∣)

≤ C
(
ϕCζ � + �2

o + N−1) in Bc(z)

holds with ζ -high probability, where the last inequality follows from (6.30), (2.2),
(6.19) and (6.20). Thus we have shown that �c

d ∪ B holds with ζ -high probability,
and the lemma is proved. �

On the other hand, in the case of η ∼ 1, a result similar to Lemma 6.8 holds
without the assumption of Bc.

LEMMA 6.9. For any ζ > 0, there exists a constant Cζ such that the event⋂
z∈S(0),η∼1

�
(
z,ϕCζ

)c(6.31)

holds with ζ -high probability.

PROOF. From (6.26) we see that we need only to prove (6.31) for fixed z. First
we note in this case, that is, η ∼ 1, we have �mc ∼ 1 and from Lemma 6.7 we have
� = O(1) and therefore

� ∼ N−1/2.(6.32)

As in (6.27) and Lemma 6.7 we obtain that

�o ≤ ϕCζ

√
�TrG(ij)

N2 ≤ ϕCζ N−1/2 ≤ ϕCζ �

with ζ -high probability. The estimate for Zi can be proved as in (6.30) using
Lemma 6.7. The estimate for �d [see (6.23)] can also be proved similarly using
the identity

TrG(i) − TrG(j) = TrG(i) − TrG(j) = O(η)−1,

which follows from Cauchy’s interlacing theorem of eigenvalues, that is,∣∣m − m(i)
∣∣≤ (Nη)−1(6.33)

and the proof is finished. �
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6.3. Self-consistent equations. In Section 2, we have bounded �o and
maxi (Gii − m) in terms of mc, η and � in Bc (we do not need the event Bc

when η ∼ 1). In this subsection, we will give the desired bound for � and show
that the event Bc holds with ζ -high probability.

First we give the bound for � in the case of η ∼ 1.

LEMMA 6.10. For any ζ > 0, there exists a constant Cζ such that⋂
z∈S(0),η=10(1+d)

�(z) ≤ ϕCζ N−1/4(6.34)

holds with ζ -high probability.

PROOF. By the definition of Zi given in formulas (6.2) and (2.19),(
Gii(z)

)−1 = −z − z
1

M
TrG(i) − Zi.(6.35)

Using (6.28) and (6.33), we obtain that if η ∼ 1,∣∣∣∣z 1

M
TrG(i) − zdm(z) + 1 − d

∣∣∣∣≤ CN−1.(6.36)

Together with |Zi | ≤ ϕCζ � [see (6.31)], estimate (6.36) implies that

m(z) = 1

N

∑
i

1

1 − z − d − zdm(z) + Yi

, max
i

|Yi | ≤ ϕCζ � ≤ O
(
ϕCζ N−1/2).

It thus follows that |m(z)| ∼ 1 for η ∼ 1 with ζ -high probability. Then using the
fact that

∑
i (Gii − m) = 0 we obtain that∑

i

(
Gii(z)

)−1 = m−1(z) + O
(
max

i
|Gii − m|

)2
.

Recall D in (6.13). Using (6.35), (6.32) and the bound |Zi | + |Gii − m| ≤ ϕCζ �

[see (6.31)], and we have

D(m) = δ(z),
∣∣δ(z)∣∣≤ ϕC� ≤ O

(
ϕCN−1/2).

The two solutions m1,m2 of the equation D(m) = δ(z) for a given δ(·) are given
by

m1,2 = δ(z) + 1 − d − z ± i
√

(z − λ−,δ)(λ+,δ − z)

2dz
,

(6.37)
λ±,δ = 1 + d ± 2

√
d − δ(z) − δ(z), |λ±,δ − λ±| = O(δ).

Therefore, we obtain m = m1 or m2. It is easy to see that |m1 −m2| ≥ O(1), since
η ∼ 1. Since m(z) is continuous with respect to E (for fixed η), m = m1 (say) for
E = 0 implies that m = m1 for all E = O(1). Using this fact and �m > 0, we
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obtain that m(z) = δ(z)+1−d−z+i
√

(z−λ−,δ)(λ+,δ−z)

2dz
, and thus we obtain (6.34) and

the proof of the lemma is complete. �

Now combining (6.31) with (6.34), we have proved that for any ζ > 0, there
exists a constant Cζ such that, for η = 10(1 + d), formula (6.1) holds with ζ -high
probability. It immediately follows that the event⋂

z∈S(0),η=10(1+d)

Bc(z)(6.38)

holds with ζ -high probability for any ζ > 0.
Now we prove (6.1) for general η > 0. Recall the deviance function from (6.13),

Zi from (6.2) and set

[Z] = 1

N

N∑
i=1

Zi.(6.39)

Recall the set B(z) from (6.10) and �(z,K) from Lemma 6.8.

LEMMA 6.11. Fix 1 ≤ K ≤ (logN)−1(Nη)1/2. Then, on the set �(z,K), we
have the bound ∣∣D(m)

∣∣≤ ∣∣[Z]∣∣+ O
(
K2�2)+ ∞1B(z).

PROOF. Using (2.19), (6.19), (6.28) and the definition of mc, on the set
�(z,K), we obtain a more precise version of (6.35),

Gii(z)
−1 = mc(z)

−1 + zd
[
mc(z) − m(z)

]− Zi + O
(
K2�2)+ O

(
N−1)
in Bc ∩ �c,

where � := �(z,K). Then

G−1
ii − m−1 = D(m) − Zi + O

(
K2�2)+ O

(
N−1) in Bc ∩ �c(6.40)

and averaging over i yields

1

N

N∑
i=1

(
G−1

ii − m−1)=D(m) − [Z] + O
(
K2�2)+ O

(
N−1) in Bc ∩ �c.

It follows from the assumptions K � (Nη)1/2≤O(�−1) that Gii − m = o(1).
Expanding the left-hand side and using the facts that

∑
i (Gii − m) = 0,

N∑
i=1

(
G−1

ii − m−1)=
N∑

i=1

Gii − m

Giim
= 1

m3

N∑
i=1

(Gii − m)2 +
N∑

i=1

O

(
(Gii − m)3

m4

)
in Bc ∩ �c.
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Together with (6.20) and (6.8), it follows that

1

N

N∑
i=1

(
G−1

ii − m−1)≤ C(K�)2 in Bc ∩ �c.(6.41)

Now the lemma follows from (6.40) and (6.41). �

LEMMA 6.12. Let K,L > 0 be two numbers such that ϕL ≥ K2(logN)4, and
let A be an event given by

A ⊂ ⋂
z∈S(L)

�(z,K) ∩ ⋂
z∈S(L),η=10(1+d)

Bc(z).(6.42)

Suppose that, in A, we have the bound∣∣D(m)(z)
∣∣≤ δ(z) + ∞1B(z) ∀z ∈ S(L),

where δ :C �→ R+ is a continuous function, decreasing in �z and |δ(z)| ≤
(logN)−8. Then for some constant C > 0, the bound

∣∣m(z) − mc(z)
∣∣= �(z) ≤ C(logN)

δ(z)√
κ + η + δ

∀z ∈ S(L)(6.43)

holds in A and

A ⊂ ⋂
z∈S(L)

Bc(z).(6.44)

REMARK 6.13. Formula (6.42) says that if �z = 10(1 + d), then A ⊂
�(z,K)c; that is, A is not in the bad sets of such z, and (6.44) implies that A is
not in the bad sets of all z ∈ S(L). The difficulty in the proof is that our hypothesis
yields the bound D(m) ≤ δ(z) only in the set Bc, but we need to prove (6.43) for
both B and Bc.

PROOF OF LEMMA 6.12. Let us first fix E and define the set

IE =
{
η :�o(E + iη̂) + �d(E + iη̂) ≤ 1

logN
∀η̂ ≥ η,E + iη̂ ∈ S(L)

}
.

We first prove (6.43) for all z = E + iη with η ∈ IE . Define

η1 = sup
η∈IE

{
η : δ(E + iη) ≥ (logN)−1(κ + η)

}
.

Since δ is a continuous decreasing function of η by assumption, δ(E + iη) ≤
(logN)−1(κ + η1) for η ≥ η1. Let m1 and m2 be the two solutions of the equation
D(m) = δ(z) as given in (6.37). Note by assumption we do have |D(m)| ≤ δ(z)
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for z = E + ηi and η ∈ IE , since we are in Bc(z). Then it can be easily verified
that

|m1 − m2| ≥ C
√

κ + η, η ≥ η1
(6.45)

≤ C(logN)
√

δ(z), η ≤ η1.

The difficulty here is that we do not know which of the two solutions m1,m2 is
equal to m. However for η = O(1), we claim that m = m1. For η = O(1), |m −
mc| = � ≤ �d � 1. Also, a direct calculation using (6.37) gives

|m1 − mc| = C
δ(z)√
κ + η

� 1

logN
.(6.46)

Since |m1 − m2| ≥ C
√

κ + η for η = O(1) [see (6.45)], it immediately follows
that m = m1 for η = O(1). Furthermore, since the functions m1,m2 and m are
continuous and since m1 �= m2 for η > η1, it follows that m = m1 for η ≥ η1. Thus
for η ≥ η1,∣∣m(z) − mc(z)

∣∣= ∣∣m1(z) − mc(z)
∣∣≤ C

δ(z)√
κ + η

≤ C
δ(z)√

κ + η + δ
,

where in the last step we have used δ ≤ κ + η.
For η ≤ η1, we take advantage of the fact that the difference |m1 − m2| is the

same order as the middle term of (6.46). Indeed, for η ≤ η1, if m = m2 (say), then
using (6.45),

|m − mc| ≤ |m2 − m1| + |m1 − mc| ≤ (logN)
√

δ(z) ≤ C(logN)
δ(z)√

κ + η + δ

verifying (6.43) for η ∈ IE .
From the above computations for η ∼ 1, we know IE �= ∅. Now we prove that

IE is exactly the desired region, that is, [ϕLN−1,10(1 + d)], and this will ver-
ify (6.44). We argue by contradiction. Indeed, assume that IE �= [ϕLN−1,10(1 +
d)]. Let η0 = inf IE . Then the continuity assumption yields that

�o(z0) + �d(z0) = (logN)−1, z0 = E + iη0(6.47)

and thus �(z0) ≤ �d(z0) ≤ (logN)−1. On the other hand, from the calculations
done above we deduce that (6.43) holds for η ∈ IE and thus

�(z0) ≤ (logN)−3.(6.48)

By definition,{
�o(z0) + �d(z0) = (logN)−1}∩ �(z0) ⊂ (

�o(z0) ∪ �d(z0)
)c

and therefore

�o(z0) + max
k

∣∣Gkk(z0) − m(z0)
∣∣≤ CK�(z0).
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From the assumption ϕL ≥ K2(logN)4, we have �(z0) ≤
√�mc

Nη
+ �(z0)

Nη
�

K−1(logN)−2 which immediately implies that �o(z0) + maxk |Gkk(z0) −
m(z0)| � (logN)−1. Using this estimate and (6.48) we deduce that

�o(z0) + �d(z0) ≤ �o(z0) + max
k

∣∣Gkk(z0) − m(z0)
∣∣+ � � logN−1,

which contradicts (6.47), and therefore (6.44) is verified. This completes the proof
of the lemma. �

Now we complete the proof of Theorem 6.1.

PROOF OF THEOREM 6.1. From (6.30), Lemmas 6.8 and 6.11, it follows that
for any ζ > 0, there exist constants Cζ , Dζ and C̃ζ that∣∣D(m)(z)

∣∣≤ ϕC̃ζ � + ∞1B(z) ∀z ∈ S(Cζ )

holds on the event Aζ given by

Aζ = ⋂
z∈S(Cζ )

�
(
z,ϕDζ

)
.(6.49)

Choosing a larger Cζ , applying Lemma 6.12 with

A = Aζ ∩ ⋂
z∈S(0),η=10(1+d)

Bc(z)

and δ(z) = ϕCζ (Nη)−1/2, we obtain that

�(z) ≤ ϕCζ (Nη)−1/4 ∀z ∈ S(Cζ )(6.50)

holds in A. Furthermore, (6.44) implies that

A ⊂ ⋂
z∈S(Cζ )

Bc(z).(6.51)

This observation gives that �(z) ≤ �d(z) = o(1) in A and � ≤ C(Nη)−1/2 in A.
Now since both Aζ and

⋂
z∈S(0),η=10(1+d) Bc(z) hold with ζ -high probability

[proved, resp., in Lemma 6.8 and (6.38)] it follows that the event A holds with
ζ -high probability. Now from the observation (6.51) we see that �(z,ϕCζ )c holds
with ζ -high probability. Together with � ≤ C(Nη)−1/2 in A, we obtain (6.1). This
completes the proof of Theorem 6.1. �

7. Strong bound on [Z]. For proving Theorems 3.1 and 3.3, the key input is
the following lemma which gives a much stronger bound on [Z]. Throughout this
section, we will assume that limN→∞ dN ∈ (0,∞)\ {1}. The following is the main
result of this section:
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LEMMA 7.1. Let K,L > 0 be such that ϕL ≥ K2(logN)4. Suppose for some
event

� ⊂ ⋂
z∈S(L)

(
�(z,K) ∩ Bc(z)

)
,

we have

�(z) ≤ �̃(z) ∀z ∈ S(L),

where �̃(z) is some deterministic number and P(�c) ≤ e−p(logN)2
with

1 � p � (
log(NK)

)−1
ϕL/2.(7.1)

Then there exists �′ such that P(�′) ≥ 1 − 1
2e−p , and for any z ∈ S(L),

∣∣[Z]∣∣≤ Cp5K2�̃2, �̃ :=
√

�mc + �̃

Nη
in �′.(7.2)

REMARK 7.2. In the application of the above lemma in Section 8, we will
set pN and K = O(ϕO(1)). This lemma is analogous to Lemma 5.2 in [16] [with
p = O(1)], Corollary 4.2 in [18] and Lemma 4.1 in [10], which are used in the
contexts of Wigner matrices and sparse matrices. The basic idea is to utilize the
fact that the entries of Green’s function are weakly correlated. But in our work, we
give a simple, general lemma (Lemma 7.3) on the cancellation of weakly coupled
random variables, which may not have the special structure of Green function, and
is thus useful in more general contexts. For instance, our lemma is used for proving
universality in non-Hermitian matrices in [5].

7.1. Abstract decoupling lemma. First, we are going to introduce the follow-
ing abstract decoupling lemma5 which is similar to Theorem 5.6 of [11] and
Lemma 4.1 of [18]. However, our lemma as stated here is more general and fo-
cuses on weakly coupled random variables and thus is independent of the structure
of the matrix ensemble. Due to this generality, it has been useful in other contexts;
for instance in [5] where the authors used it in the context of local circular law.

Let I be a finite set which may depend on N and

Ii ⊂ I, 1 ≤ i ≤ N.

Let {xα,α ∈ I} be a collection of independent random variables and Z1, . . . ,ZN

be random variables which are functions of {xα,α ∈ I}. Let Ei denote the expecta-
tion value operator with respect to {xα,α ∈ Ii}. Define the commuting projection
operators

Qi = 1 −Ei , Pi = Ei , P 2
i = Pi,

Q2
i = Qi, [Qi,Pj ] = [Pi,Pj ] = [Qi,Qj ] = 0

5This lemma is joint work with Prof. H. T. Yau, and we thank him for kindly allowing us to include
it here.
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and, for A ⊂ {1,2, . . . ,N},
QA := ∏

i∈A

Qi, PA := ∏
i∈A

Pi.

We use the notation

[QZ] = 1

N

N∑
i=1

QiZi .

LEMMA 7.3 (Abstract decoupling lemma). Let � be an event and p an even
integer, which may depend on N . Suppose the following assumptions hold with
some constants C0, c0 > 0:

(i) (Bound on QAZi in �). There exist deterministic positive numbers X < 1
and Y such that for any set A ⊂ {1,2, . . . ,N} with i ∈ A and |A| ≤ p, QAZi in �

can be written as the sum of two new random variables

1(�)(QAZi ) = Zi,A + 1(�)QA1
(
�c)Z̃i,A(7.3)

and

|Zi,A| ≤ Y
(
C0X |A|)|A|

, |Z̃i,A| ≤ YNC0|A|.(7.4)

(ii) (Rough bound on Zi ).

max
i

|Zi | ≤ YNC0 .(7.5)

(iii) (� is a high probability event).

P
[
�c]≤ e−c0(logN)3/2p.(7.6)

Then, under assumptions (i), (ii) and (iii) above, we have

E[QZ]p ≤ (Cp)4p[X 2 + N−1]pYp(7.7)

for some C > 0 and any sufficiently large N .

The intuition behind Lemma 7.3 is the following. If Zi are totally independent,
that is, QAZi = 0 if ∃j ∈ A and i �= j , we see that

∑
Zi is less than

∑ |Zi | by
a factor N−1/2. In this case Zi depends only on {xα,α ∈ Ii}. For the general case
considered in Theorem 7.3, Zi also weakly depends on sets {xα,α ∈ Ij } for i �= j .
Here QjZi can be considered as the set {xα,α ∈ Ij } “acting” on Xi , and QkQjZi

the action of {xα,α ∈ Ik} on the action of {xα,α ∈ Ij } on Xi , so on and so forth.
This lemma shows that if the “action” is hierarchical, then indeed

∑
Zi is much

less than
∑ |Zi | in the sense of (7.7).

Before we give a proof of Lemma 7.3, we introduce a trivial but useful identity

n∏
i=1

(xi + yi) =
n+1∑
s=1

[(
s−1∏
i=1

xi

)
ys

(
n∏

i=s+1

(xi + yi)

)]
(7.8)
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with the convention that
∏

i∈∅ = 1. It implies that∣∣∣∣∣
n∏

i=1

(xi + yi) −
n∏

i=1

(xi)

∣∣∣∣∣≤ nmax
i

|yi |
(
max

i
|xi + yi | + max

i
|xi |

)
.

For any 1 ≤ k ≤ n, it follows from
∏n

i=1(xi + yi) = (xk + yk)
∏

i �=k(xi + yi) and
formula (7.8) that

n∏
i=1

(xi + yi) =
n∑

s �=k,s=1

(xk + yk)

[(
s−1∏

i �=k,i=1

xi

)
ys

(
n∏

i �=k,i=s+1

(xi + yi)

)]
.(7.9)

PROOF OF LEMMA 7.3. First, by definition, we have

E[QZ]p = 1

Np

∑
j1,...,jp

E

p∏
α=1

QjαZjα .

For fixed j1, . . . , jp , let Tα = QjαZjα . Now choosing k = 1, xi = Pj1Ti and yi =
Qj1Ti in (7.9) (noting that xi + yi = Ti ), we have

p∏
α=1

Tα =
p+1∑
s=2

T1

[( ∏
α<s,α �=1

Pj1Tα

)
(Qj1Ts)

( ∏
α>s,α �=1

Tα

)]
.

We define Aα,s := 1{α<s,α �=1}{j1} and Bα,s := 1α=s{j1}; thus Bα,s = {j1} if α = s,
otherwise Aα,s = ∅. It is clear that A1,s = B1,s = ∅. Then

p∏
α=1

Tα =
p+1∑
s=2

∏
α

PAα,sQBα,s Tα.

Generalizing, we replace s with s1 to obtain

p∏
α=1

Tα =
p+1∑
s1=1

1(s1 �= 1)
∏
α

PAα,s1
QBα,s1

Tα

and

Aα,s1 = {j1 :α < s1, α �= 1}, Bα,s1 = {j1 : s1 = α}.(7.10)

Iterating for 1 ≤ j1, j2, . . . , jp ≤ N , we have

p∏
α=1

Tα =
p+1∑

s1,s2,...,sp=1

∏
i

1(si �= i)
∏
α

PAα,sQBα,sTα,

where s denotes s1, s2, . . . , sp and Aα,s, and Bα,s are defined as

Aα,s = {ji :α < si, α �= i}, Bα,s = {ji : si = α}.
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Then it follows that∣∣∣∣∣E
p∏

α=1

QjαZjα

∣∣∣∣∣≤ (2p)p max
s

∏
i

1(si �= i)

∣∣∣∣E∏
α

PAα,sQBα,sTα

∣∣∣∣.
Now to prove (7.7), it remains only to show that for any {j1, . . . , jp} and s =
{s1, s2, . . . , sp} such that si �= i, we have∣∣∣∣E∏

α

PAα,sQBα,sTα

∣∣∣∣≤ (Cp)2pYpX 2t , t := ∣∣{j1, . . . , jp}∣∣.(7.11)

For simplicity, we denote Aα,s and Bα,s by Aα and Bα and denote the characteristic
function 1(�) by �. Thus we need to show that∣∣∣∣E∏

α

PAαQBαTα

∣∣∣∣≤ (Cp)2pYpX 2t , t := ∣∣{j1, . . . , jp}∣∣.(7.12)

Since T1 = Qj1T1 and the operators PAα and QBα commute, we have

E
∏
α

PAαQBαTα = E(Qj1PA1QB1T1)

( p∏
α=2

(PAαQBα)Tα

)
.(7.13)

Hence we can assume that j1 /∈ ⋂
α �=1 Aα , and so 1 < s1 ≤ p [see (7.10)], j1 ∈⋃

α �=1 Bα . Similarly for ji , we have ji ∈ ⋃
α �=i Bα where i = 2, . . . , p. Recall that

jα /∈ Bα . With these two constraints, Bα satisfies the inequality

p + t ≥∑
α

∣∣Bα ∪ {jα}∣∣≥ 2t, t := ∣∣{j1, . . . , jp}∣∣.(7.14)

Now it remains only to prove (7.12) under condition (7.14). First, we write

E
∏
α

PAαQBαTα = E

p∏
α=1

(PAαQB̃α
Zjα ), B̃α := Bα ∪ {jα}.

Using (7.8) with x = P�QZ and y = P�cQZ (x + y = PQZ ), we have

E

p∏
α=1

(PAαQB̃α
Zjα )

(7.15)

=
p+1∑
s=1

(
E

s−1∏
i=1

(
PAi

(�)QB̃i
Zji

)(
PAs

(
�c)QB̃s

Zjs

) p∏
i=s+1

(PAi
QB̃i

Zji
)

)
.

First for s ≤ p, we use the following formula. For any bounded functions f and h,

E
∣∣h(P�cQf

)∣∣≤ ‖h‖∞
∥∥(�cQf

)∥∥
2 ≤

√
P
(
�c

)‖f ‖∞‖h‖∞.(7.16)

Let

h =
s−1∏
i=1

(
PAi

(�)QB̃i
Zji

) p∏
i=s+1

(PAi
QB̃i

Zji
), f = Zjs ,P = PAs ,Q = QB̃s

.
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By (7.5) and p ≥ 1, we have

|h| ≤ Yp−1NCp, |f | ≤ YNC.

Then with (7.6), we have proved that [see (7.15)]

p∑
s=1

(
E

s−1∏
i=1

(
PAi

(�)QB̃i
Zji

)(
PAs

(
�c)QB̃s

Zjs

) p∏
i=s+1

(PAi
QB̃i

Zji
)

)

≤ YpNCp exp
[−c(logN)3/2p

]
.

Thus the contribution from the above term can be neglected in proving (7.12). It
remains only to bound the RHS of (7.15) in the case s = p + 1; that is, we need to
show that∣∣∣∣∣E

p∏
α=1

(PAα�QB̃α
Zjα )

∣∣∣∣∣≤ (Cp)2pYpX 2t , t := ∣∣{j1, . . . , jp}∣∣(7.17)

under assumption (7.14). Using (7.3) and (7.8), with x = P�Z and y =
P�Q�cZ̃ we can write the LHS of (7.17) as

E

p∏
α=1

(PAα�QB̃α
Zjα )

=
p+1∑
s=1

(
E

s−1∏
i=1

(
PAi

(�)Zji ,B̃i

)(
PAs (�)QB̃s

(
�c)Z̃js ,B̃s

)
(7.18)

×
p∏

i=s+1

(PAi
�QB̃i

Zji
)

)
.

Now we repeat the argument for (7.15). For s ≤ p, one can use the following
formula which is similar to (7.16). For any bounded function f and h

E
∣∣h(P�Q�cf

)∣∣≤ ‖h‖∞
∥∥(�cf

)∥∥
2 ≤

√
P
(
�c

)‖f ‖∞‖h‖∞.

Let

h =
s−1∏
i=1

(
PAi

(�)Zji ,B̃i

) p∏
i=s+1

(PAi
�QB̃i

Zji
),

f = Z̃js ,B̃s
, P = PAs ,Q = QB̃s

.

With the assumptions in (7.4) and (7.14), we know the sum over 1 ≤ s ≤ p of RHS
of (7.18) is bounded above by

YpNCp exp
[−c(logN)3/2p

]
,
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which can be neglected in proving (7.17). For the main term, with s = p + 1 on
the RHS of (7.18), using (7.4) and (7.14), we have

E

p∏
α=1

(PAα�Zjα,B̃α
) ≤ (CY)p(C0Xp)2t ≤ (

CYp2)pX 2t

and this completes the proof of Lemma 7.3. �

7.2. A stronger bound on [Z]. In this section we are going to apply Lemma 7.3
to prove a stronger bound on [Z]. We note that using (2.19) and (6.2), Z can be
written as

Zi = Qi

[−1

Gii

]
, Qi := 1 − Pi, Pi := Exi

.(7.19)

LEMMA 7.4. Let Zi = (Gii)
−1, Pi and Qi defined as in (7.19). We assume

that η = �z ≥ N−C for some C > 0. Suppose there exists an even integer p and
an event �, such that P(�c) ≤ e−p(logN)3/2

, and in �,

max
i

|QiZi | ≤ CYX ,
�o(z)

mini |Gii(z)| ≤ CX � 1,

(7.20)

min
i

∣∣Gii(z)
∣∣≥ Y−1, p ≤ C

(logN)X ,

where X � 1 and Y are deterministic numbers. Then there exists �′ with
P((�′)c) ≤ e−p and in �′,∣∣∣∣ 1

N

∑
i

QiZi

∣∣∣∣≤ Cp5(X 2 + N−1)Y.(7.21)

PROOF. We are going to apply Lemma 7.3. The claim given in (7.21) will
follow from (7.7) and Markov’s inequality. Using the hypothesis, one can easily
verify (7.5) and (7.6) in the hypotheses of Lemma 7.3. It remains only to show that
for i ∈ A ⊂ {1,2, . . . ,N} and |A| ≤ p, there exist Zi,A and Z̃i,A such that

1(�)(QAZi ) = Zi,A + 1(�)QA

(
�c)Z̃i,A,

(7.22)
Zi,A ≤ Y

(
CX |A|)|A|

, Z̃i,A ≤ YNC|A|

for some C > 0. By assumption, formula (7.22) holds when A = {i}. Thus we as-
sume that |A| ≥ 2. As in Lemma 5.1 in [11], let A = A(H) = A(X†X) be a func-
tion of X†X, and define

(A)S,U := ∑
S\U⊂V ⊂S

(−1)|V |A(V ), A(V ) := A
((

X(V ))†(X(V )))
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for any S,U ⊂ {1,2, . . . ,N}. Then we have

A= ∑
U⊂S

(A)S,U .

By definition, (A)S,U is independent of the j th column of X if j ∈ S \ U . There-
fore,

QSA = QS(A)S,S.

In our case,

QAZi = QiQA\{i}Zi = QA

(
1

Gii

)A\{i},A\{i}
.

Now we choose

Zi,A := 1(�)QA�

(
1

Gii

)A\{i},A\{i}
, Z̃i,A :=

(
1

Gii

)A\{i},A\{i}
.

It is easy to prove the bound for Z̃i,A in (7.22) using its definition. For bound-
ing Zi,A, it remains only to prove that, for 2 ≤ |A| ≤ pN ,∣∣∣∣1(�)

(
1

Gii

)A/{i},A/{i}∣∣∣∣≤ Y
(
CX |A|)|A|

.(7.23)

To prove this, we first show that for |T| ≤ p,

max
i,j /∈T

∣∣G(T)
ij

∣∣≤ C max
i,j

|Gij |, min
i /∈T

∣∣G(T)
ii

∣∣≥ c min
i

|Gii |(7.24)

with the constants C,c independent of N, i, j . We start from |T| = 1, that is,
T= {k}. First using (2.21) and the hypotheses of this lemma, we have

(Gii)
−1 = −GijGji

GiiGjjG
(j)
ii

+ (
G

(j)
ii

)−1 = (
1 + O

(
X 2))(G(j)

ii

)−1
,

∣∣G(k)
ij

∣∣= ∣∣∣∣Gij − GikGkj

Gkk

∣∣∣∣≤ �o

(
1 + O(X )

)
.

It follows that

max
i,j �=k

∣∣G(k)
ij

∣∣≤ (
1 + O(X )

)
max
i,j

|Gij |, min
i �=k

∣∣G(k)
ii

∣∣≥ (
1 − O(X )

)
min

i
|Gii |.

Then using induction on |T| and the assumption Xp � 1, we obtain the desired
result (7.24).

Now we return to prove (7.23) for the case |A| = 2. If i �= j , using (2.21), (7.24)
and (7.20), we have(

1

Gii

)j,j

= (Gii)
−1 − (

G
(j)
ii

)−1 = −GijGji

GiiGjjG
(j)
ii

≤ O
(
YX 2).
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The general case has been proved in Lemma 5.11 of [11] (also see below), which
gives that (

1

Gii

)A/{i},A/{i}
≤ (

C|A|)|A| (maxi,j /∈T,T⊂A/{i} |G(T)
ij |)|A|

(minj /∈T,T⊂A/{i} |G(T)
jj |)|A|+1

.

Together with (7.24) and (7.20), we obtain (7.23) for |A| = 2.
Finally we need to point out that the definition of G

(V )
ij (ij /∈ V ) in [11] is

different from the definition in our paper, although they are equivalent. We have

G(V ) = ((
X(V ))†(X(V ))− z

)−1

and [11] has

G(V ) = (
H(V ) − z

)−1
,

where H(V ) is the minor of H obtained by removing all ith rows and columns of H

indexed by i ∈ V . But one can see that if H = X†X, then H(V ) = (X(V ))†(X(V )).
Thus we finish the proof of Lemma 7.4. �

Finally we give the proof of the main result of this section.

PROOF OF LEMMA 7.1. It is a special case of Lemma 7.4 with X = K�̃

and Y = C for a constant C (possibly large, but independent of N ). First,
the bound maxi |QiZi | ≤ CYX is proved in (6.30). By assumption, if � ⊂⋂

z∈S(L)(�(z,K) ∩ Bc(z)), then

�o,�d ≤ K� ≤ K�̃ = X ≤ CK(Nη)−1/2 � 1

in �. Thus we obtain
�o(z)

mini |Gii(z)| ≤ CX � 1, min
i

∣∣Gii(z)
∣∣≥ Y−1.

Furthermore formula (7.1) and η ≥ N−1ϕL [since z ∈ S(L)] imply that p ≤
C((logN)X )−1, and the proof of Theorem 7.1 is finished. �

8. Strong Marcenko–Pastur law and rigidity of eigenvalues. In this sec-
tion, our goal is to prove Theorems 3.1 and 3.3. Throughout this section, we will
assume that limN→∞ dN ∈ (0,∞) \ {1}.

Let us first give a brief sketch of the proof strategy for the main technical esti-
mate (3.2). We will prove, by an induction on the exponent τ , that �(z) ≤ (Nη)−τ

holds modulo logarithmic factors with high probability. Notice that we have al-
ready proved this statement for τ = 1/4 in Theorem 6.1. Lemma 6.12 asserts that
if this statement is true for some τ , then it also holds for 1+τ

2 assuming a bound
on [Z]. Now, an application of Lemma 7.1 will yield that the required bound
for [Z] holds with high probability. Repeating the induction step for O(log logN)

times, we will obtain that τ is essentially one, implying Theorem 3.1. However, we
must keep track of the increasing logarithmic factors and the deteriorating proba-
bility estimates of the exceptional sets.
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8.1. Proof of Theorem 3.1. We start by establishing (3.2) and (3.3).

PROOF OF (3.2) AND (3.3). Without loss of generality, we assume ζ ≥ 1.
Using Lemma 6.8 and Theorem 6.1, for any ζ > 0, there exists Cζ such that

�1 ⊂ ⋂
z∈S(Cζ )

Bc(z) ∩ �(z,Cζ )(8.1)

holds with (ζ + 4)-high probability. Then from Lemma 6.11, we see that for z ∈
S(3Cζ ), ∣∣D(m)(z)

∣∣≤ ϕ2Cζ �2 + ∣∣[Z]∣∣ in �1.(8.2)

Let �1 = 1, so that � ≤ �1 in �1. Therefore, we can apply Lemma 7.1 with

p = p1 = − log
[
1 − P(�1)

]
/(logN)2.

Without loss of generality, we can assume that P(�1) is not too close to 1; other-
wise, we can replace �1 by a subset of itself. It follows that

p1 = Cϕζ+4/(logN)2.

We assume that Cζ ≥ 6ζ and therefore (7.1) holds. Then (7.2) gives that, for z ∈
S(3Cζ ), there exists �2 such that

�2 ⊂ �1, P(�2) = 1 − e−p1

and ∣∣[Z]∣∣≤ ϕ2Cζ +11ζ�2
1 , �1 :=

√
�mW + �1

Nη
in �2.

Since in �2 ⊂ �1, by (8.2), � ≤ �1 and thus � ≤ �1 in �2, and consequently∣∣D(m)(z)
∣∣≤ ϕ2Cζ +11 �mW + �1

Nη
in �2.(8.3)

Then applying Lemma 6.12, (6.44) shows that, for z ∈ S(3Cζ ),

�(z) ≤ �2(z) := ϕCζ +6ζ�
1/2
1 (Nη)−1/2 in �2.

Now the proof proceeds via iterating the above process. Indeed, by choosing

p2 = − log
[
1 − P(�2)

]
/(logN)2 = Cϕζ+4/(logN)4

we deduce that there exists �3 such that

�3 ⊂ �2, P(�3) = 1 − e−p2

and, for z ∈ S(3Cζ ),

�(z) ≤ �3(z) := ϕCζ +6ζ�
1/2
2 (Nη)−1/2 ≤ ϕ2Cζ +12ζ (Nη)−3/4 in �3.
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We iterate this process K times, K := log logN/(log 1.9). For k ≤ K , we infer
that for some

�k ⊂ �k−1, P(�k) = 1 − e−pk−1,

where

pk = − log
[
1 − P(�k−1)

]
/(logN)2 = Cϕζ+4/(logN)2k ≥ ϕζ

and, for z ∈ S(3Cζ ),

�(z) ≤ �k+1(z) := ϕCζ +6ζ�
1/2
k (Nη)−1/2 ≤ ϕ2Cζ +12ζ (Nη)−1+(1/2)k

in �k+1.

Note that

N(1/2)K ≤ ϕ.

Thus for k = K and z ∈ S(3Cζ ), the bound

�(z) ≤ �k+1(z) ≤ ϕ2Cζ +12ζ (Nη)−1+(1/2)K ≤ ϕ2Cζ +12ζ+1(Nη)−1(8.4)

holds with ζ -high probability, and this completes the proof of (3.2). Furthermore,
since �K+1 ⊂ �1 with (8.1), we obtain (3.3). �

Next we assume (3.4) holds and prove (3.5) first.

PROOF OF (3.5). Using (3.3), we have for any i,

max
λ−/5≤E≤5λ+

�Gii

(
E + iϕCζ N−1)≤ C.(8.5)

By definition,

�Gii =∑
α

|vα(i)|2η
(λα − E)2 + η2 .

Then choosing E = λα and η = ϕCζ N−1, using (8.5), we deduce that for any
index α ∣∣vα(i)

∣∣2 ≤ η = ϕCζ N−1,

which implies (3.5). Here formula (3.4) guarantees that λ−/5 ≤ E ≤ 5λ+. �

Now to establish Theorem 3.1, all that remains is the proof of (3.4) which we
give below.

PROOF OF (3.4). The proof proceeds via taking the following four steps:
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• Step 1. For any ζ > 0, there exists some Dζ > 0 such that

max{λj :λj ≤ 5λ+} ≤ λ+ + N−2/3ϕ4Dζ

and

min{λj :λj ≥ 1d>1λ−/5} ≥ λ− − N−2/3ϕDζ

hold with ζ -high probability.
• Step 2. Recall n(E) and nc(E) from (2.12) and (2.13). We will show that

∣∣(n(E1) − n(E2)
)− (

nc(E1) − nc(E2)
)∣∣≤ C(logN)ϕCζ

N
,

(8.6)
E1,E2 ∈ [1d>1λ−/4,4λ+],

which implies that

#
{
j :λj /∈ [1d>1λ−/5,5λ+]}≤ ϕCζ .(8.7)

We note that though we need only (8.7) for (3.4), but (8.6) will be used later to
prove Theorem 3.3.

• Step 3. Next, using the above two steps we will show that maxj λj ≤ 5λ+, with
ζ -high probability. This step will imply (3.4) in the case d < 1.

• Step 4. Finally, we show that, for d > 1, that is, N > M , we have λM ≥ λ−/5,
with ζ -high probability.

Step 1 of proof of (3.4). By repeating the iteration in the proof of (3.4) one more
time, that is, replacing �1 in (8.3) with �k+1 in (8.4), we obtain∣∣D(m)(z)

∣∣≤ ϕCζ
�mc + (1/Nη)

Nη

for some large Cζ . From (6.43) again, we obtain that for some Dζ ≥ 1

�(z) ≤ ϕDζ
δ√

κ + η + δ
, δ :=

(�mc

Nη
+ 1

(Nη)2

)
.(8.8)

For any E such that E ≥ λ+ + N−2/3ϕ4Dζ , and

η := ϕ−Dζ N−1/2κ1/4, κ = E − λ+
(thus κ ≥ N−2/3ϕ4Dζ ), it is easy to check that

κ � ϕDζ η, Nη
√

κ � ϕDζ ,

√
κ

Nη2 � 1.(8.9)

Using (6.17) and (8.9), we have

�mc(z) = C
η√
κ

,(8.10)
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which implies

δ ≤ C

N
√

κ
+ (Nη)−2.

Therefore, κ ≥ δ. Together with (8.8) and (8.9), we have

�(z) ≤ CϕDζ

(
η

κ
+ 1

Nη
√

κ

)
1

Nη
� 1

Nη
.

Combining (8.10) and the last inequality of (8.9) yields

�mc(z) � 1

Nη

and therefore we can conclude that

�m(z) � 1

Nη
.

Note that if �m(z) < (2Nη)−1 (recall z = E + iη), then the number of the eigen-
values in the interval [E − η,E + η] is zero, which is implied by the following
observation:

�m(z) = 1

N

∑
α

η

(λα − E)2 + η2 ≥ ∑
α : |λα−E|≤η

1

2Nη
.(8.11)

Since �m(z) � 1
Nη

holds for any E ≥ λ+ + N−2/3ϕ4Dζ , we have proved that for
any ζ > 0, there exists some Dζ > 0 such that

max{λj :λj ≤ 5λ+} ≤ λ+ + N−2/3ϕ4Dζ

holds with ζ -high probability. An analogous bound for the smallest eigenvalue can
be proved similarly.

Step 2 of proof of (3.4). The proof is similar to that of Theorem 2.2 in [18].
The strategy is to translate the information on the Stieltjes transform obtained in
Theorem 3.1 to prove (8.6) on the location of the eigenvalues.

In the following lemma, A1,A2 represent two numbers with |A1 +A2| ≤ O(1).
For any E1,E2 ∈ [A1,A2], and η = N−1 we define

f (λ) := fE1,E2,η(λ)

to be the characteristic function of [E1,E2] smoothed on scale η, that is, f ≡ 1 on
[E1 + η,E2 − η], f ≡ 0 on R \ [E1,E2] and |f ′| ≤ Cη−1, |f ′′| ≤ Cη−2.

LEMMA 8.1. Let 	� be a signed measure on the real line and m� be the
Stieltjes transform of 	�. Suppose for some positive number U (which may depend
on N ) we have ∣∣m�(x + iy)

∣∣≤ CU

Ny
for y < 1, x ∈ [A1,A2].(8.12)
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Then ∣∣∣∣∫
R

fE1,E2,η(λ)	�(λ)dλ

∣∣∣∣≤ CU | logη|
N

.(8.13)

PROOF. For notational simplicity, we drop the � superscript in the proof. Let
χ(y) be a smooth cutoff function with support in [−1,1], with χ(y) = 1 for |y| ≤
1/2 and with bounded derivatives. Using Helffer–Sjostrand functional calculus,
we obtain

f (λ) = 1

2π

∫
R2

iyf ′′(x)χ(y) + i(f (x) + iyf ′(x))χ ′(y)

λ − x − iy
dx dy.

Since f and χ are real,∣∣∣∣∫ f (λ)	(λ)dλ

∣∣∣∣≤ C

∫
R2

(∣∣f (x)
∣∣+ |y|∣∣f ′(x)

∣∣)∣∣χ ′(y)
∣∣∣∣m(x + iy)

∣∣dx dy

+ C

∣∣∣∣∫|y|≤η

∫
yf ′′(x)χ(y)�m(x + iy)dx dy

∣∣∣∣(8.14)

+ C

∣∣∣∣∫|y|≥η

∫
R

yf ′′(x)χ(y)�m(x + iy)dx dy

∣∣∣∣.
Using (8.12), the first term can be estimated as∫

R2

(∣∣f (x)
∣∣+ |y|∣∣f ′(x)

∣∣)∣∣χ ′(y)
∣∣∣∣m(x + iy)

∣∣dx dy ≤ CU.(8.15)

For the second term on the RHS of (8.14), notice that from (8.12) it follows that,
for any 0 < y ≤ 1,

y
∣∣�m(x + iy)

∣∣≤ CU.(8.16)

With |f ′′| ≤ Cη−2 and

suppf ′(x) ⊂ {|x − E1| ≤ η
}∪ {|x − E2| ≤ η

}
,(8.17)

we get ∣∣∣∣∫|y|≤η

∫
yf ′′(x)χ(y)�m(x + iy)dx dy

∣∣∣∣≤ CU.

Now we integrate the third term in (8.14) by parts first in x, then in y. Then we
bound it in absolute value by

C

∫
R

η
∣∣f ′(x)

∣∣∣∣�m(x + iη)
∣∣dx + C

∫
R2

y
∣∣f ′(x)χ ′(y)�m(x + iy)

∣∣dx dy

(8.18)

+ C

η

∫
η≤y≤1

∫
suppf ′

∣∣�m(x + iy)
∣∣dx dy.
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By using (8.12) and (8.17) in the first term, (8.15) in the second and (8.12) in the
third, we have

(8.18) ≤ CU + CUη−1
∫

suppf ′
dx

∫
η≤y≤1

1

yN
dy ≤ CU | logη|.

This completes the proof of Lemma 8.1. �

We will apply Lemma 8.1 with [A1,A2] ⊂ [1d>1λ−/4,4λ+] and the signed
measure 	� equal to the difference of the empirical density and the MP law,

	�(dλ) = 	(dλ) − 	c(λ)dλ, 	(dλ) := 1

N

∑
i

δ(λi − λ).

Now we prove that (8.6) holds. By Theorem 3.1, if y ≥ y0 := ϕCζ /N , the as-
sumptions of Lemma 8.1 hold for the difference m� = m − mc and U = ϕCζ . For
y ≤ y0, set z = x + iy, z0 = x + iy0 and estimate∣∣m(z) − mc(z)

∣∣
(8.19)

≤ ∣∣m(z0) − mc(z0)
∣∣+ ∫ y0

y

∣∣∂η

(
m(x + iη) − mc(x + iη)

)∣∣dη.

Note that∣∣∂ηm(x + iη)
∣∣= ∣∣∣∣ 1

N

∑
j

∂ηGjj (x + iη)

∣∣∣∣
≤ 1

N

∑
jk

∣∣Gjk(x + iη)
∣∣2 = 1

Nη

∑
j

�Gjj (x + iη) = 1

η
�m(x + iη)

and similarly∣∣∂ηmc(x + iη)
∣∣= ∣∣∣∣∫ 	c(s)

(s − x − iη)2 ds

∣∣∣∣≤ ∫
	c(s)

|s − x − iη|2 ds = 1

η
�mc(x + iη).

Now we use the fact that the functions y → y�m(x + iy) and y → y�mW(x +
iy) are monotone increasing for any y > 0 since both are Stieltjes transforms of
a positive measure. Therefore the integral in (8.19) can be bounded by∫ y0

y

dη

η

[�m(x + iη) + �mW(x + iη)
]

(8.20)

≤ y0
[�m(z0) + �mW(z0)

] ∫ y0

y

dη

η2 .

By definition, �mc(x + iy0) ≤ |mc(x + iy0)| ≤ C. By the choice of y0 and
Theorem 3.1, we have

�m(x + iy0) ≤ �mc(x + iy0) + ϕCζ

Ny0
≤ C(8.21)



UNIVERSALITY OF COVARIANCE MATRICES 993

with ζ -high probability for any ζ > 0. Together with (8.20) and (8.19), this proves
that (8.12) holds for y ≤ y0 as well if U is increased to U = CϕCζ .

The application of Lemma 8.1 shows that, for any η ≥ 1/N ,∣∣∣∣∫
R

fE1,E2,η(λ)	(λ)dλ −
∫
R

fE1,E2,η(λ)	c(λ)dλ

∣∣∣∣≤ C(logN)ϕCζ

N
.(8.22)

Using the fact y → y�m(x + iy) is monotone increasing for any y > 0, we now
use (8.21) to deduce a crude upper bound on the empirical density. Indeed, for any
interval I := [x − η, x + η], with η = 1/N , we have

n(x + η) − n(x − η) ≤ Cη�m(x + iη) ≤ Cy0�m(x + iy0) ≤ CϕCζ

N
.(8.23)

Formulas (8.22) and (8.23) yield (8.6) and we have achieved Step 2.
Step 3 of proof of (3.4): now we prove λ1 ≤ 5λ+ holds with ζ -high probability.

Note that there is nothing special about the number 5 and below we show that some
large K ,

λ1 ≤ Kλ+
with ζ -high probability. Let

z = E + iη, E ≥ Kλ+, η = EN−2/3.(8.24)

With (8.6) and choosing E1 = λ− and E2 = Kλ+, we have proved that there are
at least ϕO(1) eigenvalues larger than Kλ+. Then by definition,

�m(T) ≤ Cη

E2 + ϕCζ

Nη
,

∣∣�m(T)
∣∣≤ CE−1 + ϕCζ

Nη
≤ O

(
E−1)(8.25)

for any index set T with |T| = O(1). Now using the large deviation lemma, as in
(6.27) and (6.30), we have

|Zi | ≤ |E|
(
E−1N−1/2 + ϕCζ

Nη

)
,

〈
xi ,G(i,j)xj

〉≤ E−1N−1/2 + ϕCζ

Nη
.(8.26)

First we estimate Gii , with (2.19), (6.2) and (6.28),

|Gii | =
∣∣1 − z − d − zdm(i)(z) − Zi

∣∣−1

and

1
2E−1 ≤ |Gii | ≤ 2E−1,(8.27)

where we used (8.25), (8.26), η = EN−2/3 and the fact K is large enough. Simi-
larly for Gij , from (2.20) and (6.27) it follows that

|Gij | ≤ E−1
(

ϕCζ

Nη
+ E−1N−1/2

)
.(8.28)
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Furthermore with (2.21) and (2.20),

∣∣m(i) − m
∣∣= 1

N

∣∣∣∣∑
j

GjiGij

Gii

∣∣∣∣≤ E−1
∣∣∣∣ϕCζ

Nη
+ E−1N−1/2

∣∣∣∣2.
Using these bounds,

Gii = 1

1 − z − d − zdm
+ O

(
m(i) − m

)+ Zi

(1 − z − d − zdm)2 + E−3O
(
Z2

i

)
and

m = 1

N

∑
i

Gii

(8.29)

= 1

1 − z − d − zdm
+ O

(
E−1)(ϕCζ

Nη
+ E−1N−1/2

)2

+ O
(
E−2[Z]).

Since |�(1 − z − d − zdm)| ≥ |�(1 − z − d − zdm)|,

� 1

1 − z − d − zdm
≤ CE−2η + 1

2
�m(z).(8.30)

Together with (8.29) and (8.26), with ζ -high probability,

�m(z) ≤ CE−2η + E−1
(

ϕCζ

Nη
+ E−1N−1/2

)
(8.31)

=
(

Nη2

E2 + ηN1/2

E2 + ϕCζ

E

)
1

Nη
.

If E ≥ Nε for some ε > 0, with ζ -high probability, we have

�m � 1

Nη
.(8.32)

From the observation made in (8.11), it follows that there are no eigenvalues in
the interval [E − η,E + η] with ζ -high probability, or equivalently there are no
eigenvalues larger than Nε with ζ -high probability.

Now, it only remains to prove (8.32) for Kλ+ ≤ E ≤ Nε . Using the above result,
maxj λj ≤ Nε , with ζ -high probability we have

|Gii | ≥ N−2ε.

Therefore, applying (7.21) and (7.19) with X = Nε(N−1/2 + ϕ
Cζ

Nη
), Y = N2ε and

p = Nε and by using (8.24), (8.28), (8.26), (8.27), we have

∣∣[Z]∣∣≤ NCε

(
N−1/2 + ϕCζ

Nη

)2

.
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Inserting this in (8.29), with (8.25), (8.30), we obtain that the conclusion (8.32)
with ζ -high probability for Kλ+ ≤ E ≤ Nε . Again using (8.11), we deduce that
there are no eigenvalues located in the interval [Kλ+,Nε] with ζ -high probability.
Thus we have achieved Step 3.

Step 4 of proof of (3.4). Now we prove the last component of the proof for (3.4),
that is, in the case of d > 1 and thus N > M , we have λM ≥ λ−/5. As remarked
earlier, it remains only to prove that for some large K , the following bound holds
with ζ -high probability,

λM ≥ λ−/K.(8.33)

Recall G = (XX† − z)−1. Let

z = E + iη, 0 ≤ E ≤ λ−/K, η = N−1/2−ε(8.34)

for some small enough ε > 0. Recall we have proved that among λi , i ≤ M , there
are at least ϕO(1) eigenvalues less than λ−. Then for some C,c ≥ 0

� 1

N
TrG(z) ≤ Cη + ϕCζ

Nη
, c ≤ � 1

N
TrG(z) ≤ C.(8.35)

In the above, the term ϕ
Cζ

Nη
is contributed by these ϕO(1) eigenvalues. Using

Cauchy’s interlacing theorem of eigenvalues, it is easy to see that (8.35) also holds
for G(T) for |T| = O(1). Using the large deviation lemma, with ζ -high probability,

|Zi | ≤ |z|
(
N−1/2 + ϕCζ

Nη

)
≤ |z|N−1/2+2ε,

(8.36) 〈
xi ,G(i,j)xj

〉≤ N−1/2 + ϕCζ

Nη
≤ N−1/2+2ε.

First using (2.19), we obtain,

Gii =
(
−z − zd

1

N
TrG(i)(z) − Zi

)−1

.(8.37)

Then using (8.35) we deduce that with ζ -high probability,

c|z|−1 ≤ |Gii | ≤ C|z|−1.(8.38)

Similarly from (2.20), it follows that with ζ -high probability,

|Gij | ≤ |z|−1N−1/2+Cε.(8.39)

We have

TrG(i)(z) − TrG(i)(z) = M − N + 1

z
= TrG(z) − TrG(z) + 1

z
.
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Together with (8.37),

Gii =
(
−z − zd

1

N
TrG(z) − zd

(
m(i) − m − 1

Nz

)
− Zi

)−1

.

Using the bound [see (8.35)],

c|z| ≤
∣∣∣∣−z − zd

1

N
TrG(z)

∣∣∣∣≤ C|z|,

equation (8.36) and |m(i) − m| ≤ (Nη)−1, we take the average of Gii and use
Taylor expansion to obtain [similar to (8.29)]

m = 1

1 − z − d − zdm(z)
+ δ,

δ := |z|−1O

(
1

N

∑
i

(
m(i) − m

)− (Nz)−1
)

(8.40)

+ |z|−2O
([Z])+ |z|−1O

(
N−1+Cε)

with ζ -high probability. Similarly, by estimating the difference Gii −Gjj , we have

|Gii − m| ≤ |z|−1N−1/2+Cε(8.41)

with ζ -high probability. First for the term m(i) − m in (8.40), using (2.21), (8.38)
and (8.41), we have

m(i) − m = −1

N

∑
j

GjiGij

Gii

= −1

N

G2
ii

Gii

= −1

N

G2
ii

m
+ O

(|z|N−3/2+Cε)∣∣(G2)
ii

∣∣.
Averaging m(i) − m, we obtain that

1

N

∑
i

(
m(i) − m

)= −1

N2

Tr[G2]
m

+ O
(|z|N−5/2+Cε)∑

i

∣∣(G2)
ii

∣∣.(8.42)

Since we have proved that there are at least ϕO(1) nonzero eigenvalues less than
0.9λ−, then under (8.34), with ζ -high probability

Tr
[
G2]=∑

α

1

(λα − z)2 = N − M

z2 + O
(
ϕCζ

)
η−2 + O(N).(8.43)

These three terms come from zero eigenvalues, small eigenvalues (which are less
than 0.9λ−) and the eigenvalues in the interval [λ−, λ+], respectively. We denote
the three terms appearing on the RHS of (8.43) as T0, Ts and Tn, respectively.
Similarly, we have [note that here z ≤ O(1) is small enough]

Nm = Tr[G] = N − M

−z
+ O

(
ϕCζ

)
η−1 + O(N) = N − M

−z

(
1 + O(z)

)
(8.44)
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with ζ -high probability and

∣∣(G2)
ii

∣∣≤ ∣∣∣∣∑
α

|uα(i)|2
(λα − z)2

∣∣∣∣≤ C
∑
α∈T0

|uα(i)|2
|z2| + C

∑
α∈Ts

|uα(i)|2
η2 + C

∑
α∈Tn

∣∣uα(i)
∣∣2.

The last bound implies that∑
i

∣∣(G2)
ii

∣∣≤ C
N

|z|2 + O
(
ϕCζ

)
η−2 + O(N).

Together with (8.42), we have

1

N

∑
i

(
m(i) − m

)= −1

N2

Tr(G2)

m
+ O

(|z|−1N−3/2+Cε).(8.45)

Dividing (8.43) by Nm [see (8.44)], for |z| small enough, we have

Tr(G2)

Nm
= −1

z
+ O

(
zN2ε)+ O(1).(8.46)

Recall δ from (8.40). Now combining (8.45) and (8.46) with (8.40), we obtain

δ ≤ O
(∣∣z−2∣∣N−3/2+Cε + ∣∣z−1∣∣N−1+Cε)+ |z|−2O

([Z]).(8.47)

Now we apply Lemma 7.4 (with X = N−1/2+Cε , Y = C|z| and p = Nε) to esti-
mate [Z]. Using Lemma 7.4, (8.36), (8.38) and (8.39), we get

|z|−2∣∣[Z]∣∣≤ |z|−1N−1+Cε.

Combining the above with (8.47) gives

δ ≤ O
(∣∣z−2∣∣N−3/2+Cε + ∣∣z−1∣∣N−1+Cε).(8.48)

Using (8.40) and the definition of mc,

m − mc = 1

1 − z − d − zdm(z)
− 1

1 − z − d − zdmc(z)
+ δ,

which implies that(
zd

(1 − z − d − zdm(z))(1 − z − d − zdmc(z))
− 1

)
(m − mc) = δ.

As above, we have c|z| ≤ |1 − z − d − zdm(z)|, |1 − z − d − zdmc(z)| ≤ C|z| for
all |z| ≤ ε0 for a constant ε0 independent of N . Therefore, we have

|m − mc| ≤ |zδ|.
Using (8.48), we have

|m − mc| ≤ O
(∣∣z−1∣∣N−3/2+Cε + N−1+Cε)� (Nη)−1.
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Furthermore, it is easy to prove that

�
(
mc − 1 − d−1

−z

)
= O(η) � (Nη)−1.

Together with TrG = TrG − z−1(N − M), we obtain

�TrG(z) � 1

η

with ζ -high probability. As in (8.11), we have λα /∈ [E − η,E + η] for E ∈
[0, λ−/K] with large enough K = O(1) obtaining (8.33). This completes step 4
and we have thus proved (3.4). �

Thus we have verified (3.2), (3.3), (3.4) and (3.5) and have finished the proof of
Theorem 3.1.

8.2. Proof of Theorem 3.3. We confirm formulas (3.7) and (3.6) separately.

PROOF OF (3.7). Recall (8.6) and the fact that there is no eigenvalue in
(0, λ−/4] ∪ [4λ+,+∞]. We deduce that

max
E∈R

∣∣n(E) − nc(E)
∣∣≤ C(logN)ϕCζ

N
(8.49)

holds with ζ -high probability. The supremum over E is a standard argument for
extremely small events and we omit the details. �

Now we give the proof of (3.6).

PROOF OF (3.6). The proof is very similar to the one for generalized Wigner
matrix obtained in formula (2.25) of [18]. For the reader’s sake, we reproduce
that argument below. By symmetry, we assume that 1 ≤ j ≤ N/2 and set E = γj ,
E′ = λj . Also tN = (logN)ϕCζ for compactness of notation. From (8.49) we have

nc(E) = n
(
E′)= nc

(
E′)+ O(tN/N).(8.50)

Clearly E ≥ λC := (λ+ +3λ−)/4, and using (8.49) we see that E′ ≥ λC also holds
with ζ -high probability. First, using (3.4) and

nc(x) ∼ (λ+ − x)3/2 for λC ≤ x ≤ λ+,(8.51)

or equivalently,

nc(E) = nc(γj ) = j

N
∼ (λ+ − E)3/2,

we know that (3.6) holds (possibly with a larger constant) if

E,E′ ≥ λ+ − tNN−2/3.
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Hence, we can assume that one of E and E′ is in the interval [λC,λ+ −
tNN−2/3]. With (8.51), this assumption implies that at least one of nc(E) and
nc(E

′) is larger than t
3/2
N /N . Inserting this information into (8.50), we obtain that

both nc(E) and nc(E
′) are positive and

nc(E) = nc

(
E′)[1 + O

(
t
−1/2
N

)]
and in particular, λ+ − E ∼ λ+ − E′. Using the fact that n′

c(x) ∼ (λ+ − x)1/2

for λC ≤ x ≤ λ+, we obtain that n′
c(E) ∼ n′

c(E
′), and in fact n′

c(E) is comparable
with n′

c(E
′′) for any E′′ between E and E′. Then with Taylor’s expansion, we have∣∣nc

(
E′)− nc(E)

∣∣≤ C
∣∣n′

c(E)
∣∣∣∣E′ − E

∣∣.(8.52)

Since n′
c(E) = 	c(E) ∼ √

κ and nc(E) ∼ κ3/2, moreover, by E = γj we also have
nc(E) = j/N , we obtain from (8.50) and (8.52) that∣∣E′ − E

∣∣≤ C|nc(E
′) − nc(E)|

n′
c(E)

≤ CtN

Nn′
c(E)

≤ CtN

N(nc(E))1/3 ≤ CtN

N2/3j1/3 ,

which proves (3.6), again with a larger constant. �

We have proved (3.6) and (3.7) and the proof of Theorem 3.3 is complete.
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graphs II: Eigenvalue spacing and the extreme eigenvalues. Comm. Math. Phys. 314 587–
640. MR2964770
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[18] ERDŐS, L., YAU, H.-T. and YIN, J. (2012). Rigidity of eigenvalues of generalized Wigner
matrices. Adv. Math. 229 1435–1515. MR2871147

[19] FELDHEIM, O. N. and SODIN, S. (2010). A universality result for the smallest eigenvalues of
certain sample covariance matrices. Geom. Funct. Anal. 20 88–123. MR2647136

[20] GÖTZE, F. and TIKHOMIROV, A. (2004). Rate of convergence in probability to the
Marchenko–Pastur law. Bernoulli 10 503–548. MR2061442

[21] HARDING, M. C. (2008). Explaining the single factor bias of arbitrage pricing models in finite
samples. Econom. Lett. 99 85–88. MR2401243

[22] JOHNSTONE, I. M. (2001). On the distribution of the largest eigenvalue in principal compo-
nents analysis. Ann. Statist. 29 295–327. MR1863961

[23] JOHNSTONE, I. M. (2007). High dimensional statistical inference and random matrices. In In-
ternational Congress of Mathematicians 307–333. Eur. Math. Soc., Zürich. MR2334195

[24] JOHNSTONE, I. M. (2008). Multivariate analysis and Jacobi ensembles: Largest eigenvalue,
Tracy–Widom limits and rates of convergence. Ann. Statist. 36 2638–2716. MR2485010

[25] KNOWLES, A. and YIN, J. (2013). The isotropic semicircle law and deformation of Wigner
matrices. Comm. Pure Appl. Math. 66 1663–1749.

[26] KNOWLES, A. and YIN, J. (2013). Eigenvector distribution of Wigner matrices. Probab. The-
ory Related Fields 155 543–582. MR3034787
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