
The Annals of Applied Probability
2014, Vol. 24, No. 2, 599–615
DOI: 10.1214/13-AAP930
© Institute of Mathematical Statistics, 2014

PATH PROPERTIES OF THE DISORDERED PINNING MODEL
IN THE DELOCALIZED REGIME

BY KENNETH S. ALEXANDER1,3 AND NIKOS ZYGOURAS2,3

University of Southern California and University of Warwick

We study the path properties of a random polymer attracted to a defect
line by a potential with disorder, and we prove that in the delocalized regime,
at any temperature, the number of contacts with the defect line remains in
a certain sense “tight in probability” as the polymer length varies. On the
other hand we show that at sufficiently low temperature, there exists a.s. a
subsequence where the number of contacts grows like the log of the length of
the polymer.

1. Introduction. The disordered pinning model has attracted significant at-
tention in recent years. One reason is that it is one of the very few models where
the effect of disorder on the critical properties can be identified with large pre-
cision. In particular, there exists a fairly satisfactory knowledge on whether and
how much the critical point, which separates its localized and delocalized regime,
changes under the presence of disorder [1, 10]. Furthermore, the mechanism that
defines it is present in multiple physical models, and therefore it provides a step
to understand the effect of disorder in more complicated systems—we refer to the
recent monograph [8] for related references.

Before going into detail let us define the model. We first consider a sequence of
i.i.d. variables (ωn)n∈Z, which play the role of disorder. The assumptions on this
sequence are in general mild, for example, mean zero and exponential moments.
We denote the joint distribution of this sequence by P. The model involves also a
renewal sequence (τn)n∈N on N = {0,1,2, . . .}, that is, a point process such that
the gaps (or interarrival times) σn := τn+1 − τn are independent and identically
distributed. This renewal process should be viewed physically as the set of contact
points with {0} × N of the space-time trajectory of a Markov process (Xn)n∈N
whose state space contains a designated site 0, with this trajectory representing
the spatial configuration of the polymer. Since the interaction between the Markov
process and the disorder comes only at contact times with {0}×N, the only relevant
information is the renewal sequence τ = (τn)n∈N, consisting of the contact points
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of the path (Xn)n∈N with {0} × N. Therefore we only need to define the statistics
of this renewal process, whose law we will denote by P . In particular, we define
τ0 = 0 and assume that for some α ≥ 0 and slowly varying function φ(n),

K(n) := P(τ1 = n) = φ(n)

n1+α
, n ≥ 1.

We will assume that
∑

n≥1 K(n) = 1, that is, that the renewal is recurrent. We
will also need the quantity K+(l) = ∑

n>l K(n).
The polymer measure can now be defined by

dP β,h
n,ω := 1

Z
β,h
n,ω

eH
β,u
n,ω dP,

where Hβ,u
n,ω := ∑n

i=0(βωi + h)δi and δi = 1i∈τ . The partition function Z
β,h
n,ω is

defined by

Zβ,h
n,ω = E

[
e
Hβ,h

N,ω
]
.

The polymer measure rewards paths for which the ωi values are large at the times
of renewals. It will also be useful to consider the constrained polymer measure

dP β,h,c
n,ω := 1

Z
β,h,c
n,ω

eH
β,u
n,ωδn dP,

where we restrict the polymer to have a renewal at time n. Here the constrained
partition function is

Zβ,h,c
n,ω = E

[
e
Hβ,h

N,ωδn

]
.

More generally for a collection A of trajectories we define

Zβ,h
n,ω(A) = E

[
e
Hβ,h

N,ω;A]
.

We will also need the notation

Z
β,h
[m,n],ω = Z

β,h
n−m,θmω,

where n ≥ m and θmω(i) = ω(i + m), for i = 1,2, . . . .
As already mentioned, the pinning polymer exhibits a nontrivial localiza-

tion/delocalization transition, which is often quantified via the strict positivity of
the free energy. To be more precise, let us define the quenched free energy of the
pinning polymer to be the P-a.s. limit

fq(β,h) = lim
n→∞

1

n
logZβ,h

n,ω.

We refer the reader to [8], Chapter 3, for the existence of this limit. The localized
regime is defined as

L = {
(β,h) :fq(β,h) > 0

}
,
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and the delocalized regime as

D = {
(β,h) :fq(β,h) = 0

}
.

The free energy is monotone in h so the two regimes are separated by a critical
line and we can define the quenched critical point hc(β) as

hc(β) = sup
{
h :fq(β,h) = 0

}
.

Let M(β) = E[eβω1] be the moment generating function of ω1. For the corre-
sponding annealed model, with partition function EZ

β,h
n,ω and free energy

fa(β,h) = lim
n→∞

1

n
logEZβ,h

n,ω,

the corresponding critical point is

hann
c (β) = − logM(β).(1.1)

The question of the path behavior of the quenched model for h < hc(β) is of
particular interest when hann

c (β) < hc(β), so we summarize what has been proved
about such an inequality. It is known from [1, 16] (for Gaussian disorder) and
from [13] (for general disorder) that for small β , hc(β) = hann

c (β), for α < 1/2 as
well as for α = 1/2 and

∑
n≥1(nφ(n)2)−1 < ∞. On the other hand, from [1–3, 7],

for Gaussian disorder, for 1/2 < α < 1, there exists a constant c and a slowly
varying function ψ related to φ and α such that for all small β ,

c−1β2α/(2α−1)ψ

(
1

β

)
< hc(β) − hann

c (β) < cβ2α/(2α−1)ψ

(
1

β

)
,

while for α = 1,

c−1β2ψ

(
1

β

)
< hc(β) − hann

c (β).

A matching upper bound is also expected to hold but has not been proved. For
α > 1,

c−1β2 < hc(β) − hann
c (β) < cβ2.

The case α = 1/2 is marginal and not fully understood. It is believed that hc(β) >

hann
c (β) for every β , as long as

∑
n 1/(nφ(n)2) = ∞. This inequality has been

confirmed under some stronger hypotheses in [3, 9], for Gaussian disorder, and
(most nearly optimally, for general disorder) in [10]. For all α > 0, for large β the
critical points are shown in [15] to be distinct provided the disorder is unbounded,
but for α = 0 they are equal for all β > 0 [4]. Theorem 1.5 of [6] shows that for
α > 1/2 the critical points are different for all values of β > 0.

The use of the terms localization/delocalization can be understood better by
relating the quenched free energy to the portion of time the polymer spends on
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the defect line {0} × N. In particular, from [12], fq(β, ·) is differentiable for all
h �= hc(β) with

d

dh
fq(β,h) = lim

n→∞EP
β,h
n,ω

[
1

n

n∑
i=1

δi

]
,

and therefore we can interpret the localized regime as the regime where the poly-
mer spends a positive fraction of time on the defect line, while in the delocalized
regime it spends a zero fraction of time on the defect line. While this is quite satis-
factory in the localized regime, and further detailed studies on the path properties
in the localized regime have been made in [12], it provides a rather incomplete
picture in the delocalized one—it only allows one to conclude that the number
of contacts is o(n). It was proven in [11] that the number of contacts is at most
of order logn in the delocalized regime. This was actually done for the related
copolymer model, but its extension to the pinning model is straightforward [8].
More precisely, for every h < hc(β), there exists a constant Cβ,h such that

lim sup
n→∞

EP β,h
n,ω

(∣∣τ ∩ [1, n]∣∣ > Cβ,h logn
) = 0.

This result was further extended to an a.s. statement in [14]: for h < hc(β) and for
every C > (1 + α)/(hc(β) − h), we have

lim sup
n→∞

P β,h
n,ω

(∣∣τ ∩ [1, n]∣∣ > C logn
) = 0, P-a.s.

By analogy to the homogeneous pinning model (see [8], Chapter 8), one might
expect that the number of contacts with the defect line should remain bounded in
the whole delocalized regime. Nevertheless, the picture has been unclear in the
disordered case, since stretches of unusual disorder values could typically attract
the polymer back to the defect line a number of times growing to infinity with n.
The open questions are discussed in [8], Section 8.5. In this work we clarify and
complete the picture for behavior in probability. In fact, we will prove a stronger
result, namely, that the last contact of the polymer happens at distance O(1) from
the origin. In particular, let

τlast = max{j ≤ n : δj = 1}.
We then have the following theorem.

THEOREM 1.1. Suppose α > 0,
∑

n K(n) = 1 and that ω1 has exponential
moments of all orders. For all β , ε > 0 and for all h < hc(β) we have that

lim sup
N→∞

lim sup
n→∞

P
(
P β,h

n,ω (τlast > N) > ε
) = 0.
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One may ask whether this can be made an almost-sure result for h < hc(β), of
the form

lim sup
N→∞

lim sup
n→∞

P β,h
n,ω (τlast > N) = 0, P-a.s.,

or if the number of contacts is a.s. finite, that is,

lim sup
N→∞

lim sup
n→∞

P β,h
n,ω

(∣∣τ ∩ [0, n]∣∣ > N
) = 0, P-a.s.

The next theorem shows that the answer is no, at least for large β . Instead, for h

between hann
c (β) and hc(β), infinitely often as n → ∞, there will be an exception-

ally rich segment of ω near n, which will (with high P
β,h
n,ω -probability) induce the

polymer to come to 0 and then make a number of returns of order logn. For t > 0
let

ht (β) := −(1 + tα) logM

(
β

1 + tα

)
.(1.2)

Since logM is nondecreasing and convex on [0,∞) with logM(0) = 0, it is easy to
see that ht (β) is nondecreasing in t for fixed β . Recall (1.1); by [5], equation (3.7),
for all β > 0 we have

− logM(β) = hann
c (β) = h0(β) ≤ hc(β) ≤ h1(β).(1.3)

By [15], Theorem 3.1, given 0 < ε < 1, for large β we have

hc(β) > h1−ε(β).(1.4)

We are now ready to state our second main result.

THEOREM 1.2. Suppose ω is unbounded with all exponential moments finite.
Given ε > 0, there exists β0(ε) and ν(β,h) > 0 such that for

β > β0 and h > hε(β),

we have

lim sup
n→∞

P β,h
n,ω

(∣∣τ ∩ [0, n]∣∣ > ν logn
) = 1, P-a.s.

By (1.4), Theorem 1.2 with ε < 1/2 includes at least the interval of val-
ues h ∈ [hε(β), hc(β)] below hc(β), which in turn (for large β) includes h ∈
[hε(β), h1−ε(β)]. The path behavior in the regime of Theorem 1.2 is therefore in
contrast with that for h < hann

c (β), where, in fact, the number of contacts remains
tight for the measures averaged over the disorder; see [11], Remark 1.5.

The next two sections are devoted to the proofs of each theorem, respectively.



604 K. S. ALEXANDER AND N. ZYGOURAS

2. Proof of Theorem 1.1. It will be convenient to introduce generic constants.
Specifically, C will denote a generic constant whose value might be different in dif-
ferent appearances. If we want to distinguish between constants we will enumerate
them, for example, C1, C2, etc. When we want to emphasize the dependence of a
generic constant on some parameters, we will include the symbols of these param-
eters as a subscript. In particular, we use the notation Cα for a generic constant
which will depend on the parameter α and the slowly varying function φ of the
renewal process. To simplify the notation we will also defer from using the integer
part [x] and simply write x, which should not lead to any confusion in the contexts
where we use it. Let us define the events

En,N = {∣∣τ ∩ [0, n]∣∣ > N
}
, E[m,n],N = {∣∣τ ∩ [m,n]∣∣ > N

}
.

In proving Theorem 1.1 we will make use of the following theorem, which was
proved in [14].

THEOREM 2.1 ([14]). Let β ≥ 0 and h < hc(β). Then:

(i) For P-a.e. environment ω, we have
∞∑

n=0

Zβ,h,c
n,ω < +∞.

(ii) For every ε > 0 and for P-a.e. environment ω, there exists Nε(ω) > 0 such
that for all N ≥ Nε , we have that

∞∑
n=0

Zβ,h,c
n,ω (En,N) ≤

∞∑
k=N

e−k(hc(β)−h−ε).

(iii) For every constant C > 1+α
hc(β)−h

and for P-a.e. environment ω, we have

P β,h,c
n,ω (En,C logn) −→ 0, as n → ∞.

The quantity Z(ω) = ∑∞
n=0 Z

β,h,c
n,ω , which is a.s. finite, will play an important

role, as will the reversed process Zn(ω) = ∑n
m=−∞ Z

β,h,c
[m,n],ω, which for any fixed

n has the same distribution as Z(ω). Note that we think here of the polymer path
starting at point n and going backwards in time, which is why we have defined the
disorder on the whole of Z.

Here is a sketch of the proof. The event {τlast > N} is contained in the union of
the following events, where C1, b > 0 are constants, with b small:

(a) there are more than C1 logn returns by time n;
(b) there are fewer than C1 logn returns, and no gap between returns ex-

ceeds bn;
(c) τlast > N , there are fewer than C1 logn returns, and some gap between re-

turns inside [0, n] exceeds bn;
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(d) τlast > N , there are fewer than C1 logn returns, and the incomplete gap
[τlast, n] exceeds bn.

The Gibbs probability of (a) can be controlled by a variant of Theorem 2.1(iii),
(b) can be controlled using the small probability of the event under the free measure
and (d) is relatively straightforward, so the main work is (c). The segment to the
left of the size-bn gap corresponds to a term in the sum Z(ω), and (after we “tie
down” the right end of the polymer by adding a visit at time n) the segment to
the right corresponds to a term in Zn(ω), so we make use of Theorem 2.1(i) and a
bound for the probability of a big gap under the free measure.

Let us make note here of the trivial lower bound

Zβ,h
n,ω ≥ K+(n)eβω0+h,(2.1)

which comes from the trajectory having no renewals after time 0.
We will need the following analog of Theorem 2.1(iii), for the free polymer

measure.

LEMMA 2.2. Let β ≥ 0 and h < hc(β). Then for all C1 > α
hc(β)−h

and for
P-a.e. environment ω, we have

P β,h
n,ω (En,C1 logn) −→ 0, as n → ∞.

PROOF. Let ε > 0 satisfy C1 > α+ε
hc(β)−h−ε

. Using Theorem 2.1(ii) and (2.1),
for some C2 = C2(β,h, ε,α), we have for large n

Zβ,h
n,ω(En,C1 logn) =

n∑
j=1

Z
β,h,c
j,ω (Ej,C1 logn)K

+(n − j)

≤
∞∑

k=C1 logn

e−k(hc(β)−h−ε)

≤ C2n
−(α+ε)(2.2)

≤ C2K
+(n)eβω0+hn−ε/2

≤ C2n
−ε/2Zβ,h

n,ω,

and the lemma follows. �

Proposition 2.4 below will show that the probability is small for having fewer
than C1 logn renewals without some gap σ exceeding bn, when b is chosen suffi-
ciently small. Let us denote this gap event by Ab,n; more precisely, let

A′
b,n = {

τ : there exist i, j ∈ [0, n], j − i ≥ bn,

such that τ ∩ [i, j ] = {i, j}}(2.3)
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A′′
b,n = {τ : τlast ≤ n − bn}

Ab,n = A′
b,n ∪ A′′

b,n.

We first prove an analogous statement for the free renewal process.

LEMMA 2.3. Given C1 as in Lemma 2.2 and b ∈ (0,1/2), for sufficiently
large n, we have

P
(
Ec

n,C1 logn ∩ Ac
b,n

) ≤ n−α/9b.

PROOF. When the event Ec
n,C1 logn ∩ Ac

b,n occurs, there exists l ≤ C1 logn

such that

σ1 + · · · + σl = τlast ∈ (n − bn,n] and max
i≤l

σi < bn.

Among these first l jumps, the total length of all jumps having individual length
σi ≤ n/4C1 logn is at most n/4, so the total length of all jumps with individual
length σi ∈ [n/4C1 logn,bn) is at least n/4. This means there must be at least
1/4b values σi ≥ n/4C1 logn among σ1, . . . , σC1 logn. Presuming n is large, we
have

pn := P

(
σ1 ≥ n

4C1 logn

)
≤ n−α/2.

Let kn be the integer part of C1 logn, and let r be the least integer greater than or
equal to 1/4b. Then for large n,

P
(
Ec

n,C1 logn ∩ Ac
b,n

) ≤ P

(∣∣∣∣
{
i ≤ kn :σi ≥ n

4C1 logn

}∣∣∣∣ ≥ r

)

≤
(

kn

r

)
pr

n ≤ (knpn)
r ≤ n−α/9b. �

PROPOSITION 2.4. Given C1 > 0 as in Lemma 2.2 and given β,h, for b > 0
sufficiently small,

P β,h
n,ω

(
Ec

n,C1 logn ∩ Ac
b,n

) → 0 a.s. as n → ∞.

PROOF. We have from Lemma 2.3 that if b is sufficiently small, then for
large n,

1

K+(n)
E

[
Zβ,h(

Ec
n,C1 logn ∩ Ac

b,n

)]

≤ Cαnα

φ(n)
e(logM(β)+h)C1 lognP

(
Ec

n,C1 logn ∩ Ac
b,n

)
(2.4)

≤ 1

n3 .
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Therefore for all η > 0,

P
(
P β,h

n,ω

(
Ec

n,C1 logn ∩ Ac
b,n

)
> η i.o.

)
≤ P

(
Zβ,h

n,ω

(
Ec

n,C1 logn ∩ Ac
b,n

)
> ηK+(n)eβω0+h i.o.

)
(2.5)

≤ P
(
Zβ,h

n,ω

(
Ec

n,C1 logn ∩ Ac
b,n

)
> ηK+(n)n−1 i.o.

)

+ P

(
eβω0+h <

1

n
i.o.

)
.

Now the second probability on the right-hand side of (2.5) is 0, and by (2.4), for
the first probability on the right-hand side, we have

P
(
Zβ,h

n,ω

(
Ec

n,C1 logn ∩ Ac
b,n

)
> ηK+(n)n−1)

≤ n

ηK+(n)
E

[
Zβ,h(

Ec
n,C1 logn ∩ Ac

b,n

)]
(2.6)

≤ 1

ηn2 .

Summing over n and applying the Borel–Cantelli lemma completes the proof. �

The next proposition, together with Lemma 2.2 and Proposition 2.4, shows that
with probability tending to one, the first big gap, of length at least bn, brings the
polymer out of [0, n].

PROPOSITION 2.5. For every b, ε > 0 we have

lim
n→∞P

(
P β,h

n,ω

(
A′

b,n

)
> ε

) = 0.(2.7)

PROOF. Let 0 < θ < 1. Then, summing over possible locations [n1, n2] for
the interval of the first long jump, we have

Zβ,h
n,ω

(
A′

b,n

) ≤ ∑
n1

∑
n1+bn<n2≤n

Zβ,h,c
n1,ω

K(n2 − n1)Z
β,h
[n2,n],ω

=
n∑

n1=0

∑
max(n1+bn,n−nθ )<n2≤n

Zβ,h,c
n1,ω

K(n2 − n1)Z
β,h
[n2,n],ω(2.8)

+
n∑

n1=0

∑
n1+bn<n2≤n−nθ

Zβ,h,c
n1,ω

K(n2 − n1)Z
β,h
[n2,n],ω.
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Using (2.1), we can bound the first term on the right-hand side of (2.8) by∑
n1

∑
max(n1+bn,n−nθ )<n2≤n

∑
l≤n−n2

Zβ,h,c
n1,ω

K(n2 − n1)Z
β,h,c
[n2,n−l],ω K+(l)

≤ CK(bn)
∑
n1

∑
max(n1+bn,n−nθ )<n2≤n

∑
l≤n−n2

Zβ,h,c
n1,ω

Z
β,h,c
[n2,n−l],ω K+(l)

≤ C

b1+α
K(n)nθ

∑
n1

∑
max(n1+bn,n−nθ )<n2≤n

∑
l≤n−n2

Zβ,h,c
n1,ω

Z
β,h,c
[n2,n−l],ω K(l)(2.9)

≤ C

b1+α
K+(n)nθ−1e−(βωn+h)

∑
n1

∑
max(n1+bn,n−nθ )<n2≤n

Zβ,h,c
n1,ω

Z
β,h,c
[n2,n],ω

≤ C

b1+α
Zβ,h

n,ωnθ−1e−(βω0+h)e−(βωn+h)Z(ω)Zn(ω).

The second term on the right-hand side of (2.8) is bounded by∑
n1

∑
n1+bn<n2<n−nθ

∑
l≤n−n2

Zβ,h,c
n1,ω

K(n2 − n1)Z
β,h,c
[n2,n−l],ω K+(l)

≤ CK(bn)
∑
n1

∑
n1+bn<n2≤n−nθ

∑
l≤n−n2

Zβ,h,c
n1,ω

Z
β,h,c
[n2,n−l],ω K+(l)

≤ C

b1+α
K(n)n

∑
n1

∑
n1+bn<n2≤n−nθ

∑
l≤n−n2

Zβ,h,c
n1,ω

Z
β,h,c
[n2,n−l],ω K(l)

(2.10)

≤ C

b1+α
K+(n)e−(βωn+h)

∑
n1

∑
n1+bn<n2≤n−nθ

Zβ,h,c
n1,ω

Z
β,h,c
[n2,n],ω

≤ C

b1+α
Zβ,h

n,ωe−(βω0+h)e−(βωn+h)
∞∑

n1=0

Zβ,h,c
n1,ω

n−nθ∑
n2=−∞

Z
β,h,c
[n2,n],ω

≤ C

b1+α
Zβ,h

n,ωe−(βω0+h)e−(βωn+h)Z(ω)

n−nθ∑
n2=−∞

Z
β,h,c
[n2,n],ω.

From (2.8), (2.9) and (2.10) we have that

P β,h
n,ω

(
A′

b,n

) ≤ C

b1+α
nθ−1e−(βω0+h)e−(βωn+h)Z(ω)Zn(ω)

(2.11)

+ C

b1+α
e−(βω0+h)e−(βωn+h)Z(ω)

n−nθ∑
n2=−∞

Z
β,h,c
[n2,n],ω.

Now Z(ω) and Zn(ω) are finite almost surely and equidistributed, so the first term
on the right in (2.11) converges to 0 in P-probability. The sum on the right-hand
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side of (2.11) has the same distribution as
∞∑

m=nθ

Zβ,h,c
m,ω ,

so by Theorem 2.1(i), it converges to 0 in probability. Hence the second term on
the right-hand side of (2.11) also converges to 0 in probability, and the proof is
complete. �

We can now complete the proof of our first theorem.

PROOF OF THEOREM 1.1. For b > 0 we have

P β,h
n,ω (τlast > N) ≤ P β,h

n,ω

(
Ec

n,C1 logn ∩ Ac
b,n

) + P β,h
n,ω (En,C1 logn)

+ P β,h
n,ω

(
A′

b,n

) + P β,h
n,ω

({τlast > N ∩ A′′
b,n

)
.

By Proposition 2.4, with the choice of sufficiently small b > 0, and Lemma 2.2,
respectively, we have that the first and second terms in the above expression con-
verge to zero P-a.s., while by Proposition 2.5, the third term converges to 0 in
P-probability. Therefore, it only remains to check that

lim sup
N→∞

lim sup
n→∞

P
(
P β,h

n,ω

({τlast > N} ∩ A′′
b,n

)
> ε

) = 0.

To this end we have

P
(
P β,h

n,ω

({τlast ≥ N} ∩ A′′
b,n

)
> ε

)
≤ P

(
Zβ,h

n,ω

({τlast ≥ N} ∩ A′′
b,n

)
> εK+(n)eβω0+h)

= P

( ∑
N≤n1<n−bn

Zβ,h,c
n1,ω

K+(n − n1) > εK+(n)eβω0+h

)

≤ P

( ∑
N≤n1<n−bn

Zβ,h,c
n1,ω

> εCα,b eβω0+h

)

≤ P

( ∑
n1≥N

Zβ,h,c
n1,ω

> εCα,b eβω0+h

)
,

and by Theorem 2.1(i), the latter tends to 0 as N → ∞. �

The analog of Theorem 1.1 also holds for the constrained case, that is,
for P

β,h,c
n,ω , in the sense that the rightmost contact point in [0, n

2 ] and the left-
most contact point in [n

2 , n] occur at distances O(1) from 0 and n, respectively.
To quantify things, let us denote

τ̂last = max
{
j ∈

[
0,

n

2

]
: δj = 1

}
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and

τ̌last = min
{
j ∈

[
n

2
, n

]
: δj = 1

}
.

Then we have the following.

THEOREM 2.6. Suppose α > 0,
∑

n K(n) = 1 and that ω1 has exponential
moments of all orders. For all β, ε, δ > 0 and for all h < hc(β) there exist n0(ε, δ),
N0(ε, δ) and M0(ε, δ), such that for all n > n0(ε, δ), N > N0(ε, δ), M > M0(ε, δ)

P
(
P β,h,c

n,ω

({τ̂last > N} ∪ {τ̌last < n − M}) > ε
)
< δ.

PROOF. Notice that in the constrained case Ab,n = A′
b,n, and we have

P β,h,c
n,ω

({τ̂last > N} ∪ {τ̌last < n − M})
≤ P β,h,c

n,ω

(
Ec

n,C1 logn ∩ Ac
b,n

) + P β,h,c
n,ω (En,C1 logn)

+ P β,h,c
n,ω

(({τ̂last > N} ∪ {τ̌last < n − M}) ∩ A′
b,n

)
.

By a straightforward modification of Proposition 2.4, Theorem 2.1(iii) and
Lemma 2.2, the first two terms converge to zero as n tends to infinity, once b

is chosen small enough. Regarding the third term, notice that by symmetry it is
sufficient to control Z

β,h,c
n,ω ({τ̂last > N} ∩ A′

b,n). We make two sums according to
whether the first big gap [n1, n2] ends before or after the midpoint n/2. Specifi-
cally, we have

Zβ,h,c
n,ω

({τ̂last > N} ∩ A′
b,n

)
≤ ∑

n1>N

∑
max(n1+bn,n/2)<n2≤n

Zβ,h,c
n1,ω

K(n2 − n1)Z
β,h,c
[n2,n],ω

+ ∑
n1

∑
n1+bn<n2≤n/2

Zβ,h,c
n1,ω

K(n2 − n1)Z
β,h,c
[n2,n],ω.

Following the same (and actually more direct) steps as in the proof of Proposi-
tion 2.5 we can bound the above by

Cbe
−(βω0+h)e−(βωn+h)Zβ,h,c

n,ω

( ∑
n1>N

Zβ,h
n1,ω

Zn(ω) +Z(ω)
∑

n2<n/2

Z
β,h,c
[n2,n],ω

)
,

and the rest follows as in Proposition 2.5. �

3. Proof of Theorem 1.2. We begin again with a sketch. Assume for simplic-
ity that K(1) > 0. Suppose there is a “rich segment” of [0, n] of length at least
γ logn in which the average of the disorder is at least u; here γ is small and u is
large. (We show that such a rich segment exists for infinitely many n.) We consider
the contribution to the partition function from two different sets of trajectories:



PATH DELOCALIZATION 611

(a) the single trajectory which returns at every site of the rich segment, and
nowhere else;

(b) those trajectories which make at most ν logn returns, with ν small.

We show that (up to slowly varying correction factors) the contribution from (a) is
at least a certain inverse power n−α+κ , while a.s., except for finitely many n, the
contribution from (b) is bounded by the smaller inverse power n−α+κ/2. The Gibbs
probability of (b) is bounded by the ratio of the two contributions, hence by n−κ/2,
so it approaches 0.

We will need the following lemma, which is an elementary fact about convex
functions.

LEMMA 3.1. Suppose � is nondecreasing and convex on [0,∞) with �(0) =
0 and � ′(x) → ∞ as x → ∞. Then for all s > 1,

�(sx) − s�(x) → ∞ as x → ∞.

PROOF. Since � ′ is nondecreasing, for s > 1 and x > 1, we have

�(sx) − s�(x) = (s − 1)

∫ x

0

(
� ′(x + (s − 1)t

) − � ′(t)
)
dt(3.1)

≥ (s − 1)

∫ 1

0

(
� ′(x + (s − 1)t

) − � ′(t)
)
dt(3.2)

≥ (s − 1)
(
� ′(x) − � ′(1)

)
(3.3)

→ ∞ as x → ∞.(3.4)

Here the first inequality follows from the fact that the integrand in nonnegative.
�

PROOF OF THEOREM 1.2. Recall the definition of ht (β) from (1.2). Suppose
h = ht (β) with t > ε. If t ≥ 1, then h ≥ hc(β) by (1.3), so we need only consider
t < 1. Let r = min{j :K(j) > 0}, let γ,u > 0 to be specified, define

Jn = {n − ir : 0 ≤ i ≤ γ logn − 1}, ωJn = 1

|Jn|
∑
j∈Jn

ωj ,

and define the event

Du,γ
n = {ω :ωJn ≥ u}.

We can bound Z
β,h
n,ω below by the contribution from the path which makes returns

precisely at the times in Jn, obtaining that for large n, for all ω ∈ D
u,γ
n ,

Zβ,h
n,ω ≥ e(βu+h)|Jn|K(n − γ r logn)K(r)|Jn|−1

(3.5)

≥ 1

2
n−(1+α)φ(n) exp

(
γ

(
βu + h − log

1

K(r)

)
logn

)
.



612 K. S. ALEXANDER AND N. ZYGOURAS

Let � be the large deviation rate function related to ω, and let δ > 0 to be specified.
For large n we have

P
(
Du,γ

n

) ≥ e−(1+δ)�(u)γ logn.(3.6)

Since all exponential moments of ω are finite, we have �(u)/u → ∞ as u →
∞. Recalling that logM(β) = sup{βu − �(u) :u ∈ R}, we can therefore choose
u = uβ to satisfy

βu − �(u) = logM(β).

For β sufficiently large (depending on ε), since �′(u) → ∞ as u → ∞, we have
by Lemma 3.1 that

logM(β) − (1 + εα) logM

(
β

1 + εα

)
> log

1

K(r)
(3.7)

or equivalently,

βuβ + hε(β) − log
1

K(r)
> �(uβ).

We now choose δ to satisfy

βuβ + hε(β) − log
1

K(r)
> (1 + δ)�(uβ)

and then γ to satisfy

βuβ + hε(β) − log
1

K(r)
>

1

γ
> (1 + δ)�(uβ).(3.8)

Define κ > 0 by

γ

(
βuβ + hε(β) − log

1

K(r)

)
= 1 + κ,(3.9)

so that by (3.5), for all ω ∈ D
u,γ
n ,

Zβ,h
n,ω ≥ 1

2n−α+κφ(n).(3.10)

We select a subsequence of the events {Du,γ
n } that are independent, as follows. Fix

n0 and given n0, . . . , nj define nj+1 = nj + 2rγ lognj . Then nj ∼ 2rγj log j as
j → ∞, and it is easily checked that, provided n0 is sufficiently large, the events
{Du,γ

nj , j ≥ 0} are independent. With (3.6) and (3.8) this shows that∑
j

P
(
Du,γ

nj

) = ∞ so P
(
Du,γ

n i.o.
) = 1.(3.11)

Let us now choose

m >
4

κ
, λ = 2

(
1

m
logM(mβ) + h

)
, ν = κ

2λ
,(3.12)
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with m an integer. We claim that

P
(
Zβ,h

n,ω

(
Ec

n,ν logn

)
> n−α+λνφ(n) i.o.

) = 0.(3.13)

This is plausible because for appropriate λ, ν logn visits should not likely yield
more than λν logn energy above the “immediate escape” value, which is approx-
imately the log of K+(n), that is, approximately −α logn. Assuming this claim,
we use (3.11) to conclude that

P
(
Dn ∩ {

Zβ,h
n,ω

(
Ec

n,ν logn

)
< n−α+λνφ(n)

}
i.o.

) = 1,

which with (3.10) shows that

P
(
P β,h

n,ω

(
Ec

n,ν logn

)
< 2n−κ/2 i.o.

) = 1,

which proves the theorem.
It remains to prove (3.13). Observe that by Chebyshev’s inequality we have

P
(
Zβ,h

n,ω

(
Ec

n,ν logn

)
> n−α+λνφ(n)

)
(3.14)

≤ (
n−αφ(n)

)−m
n−mλν

E
[(

Zβ,h
n,ω

(
Ec

n,ν logn

))m]
.

Denoting by E⊗m the expectation over m independent copies of the renewal τ , we
see that the expectation on the right-hand side of (3.14) can be written as

E⊗m[
e

∑n
i=1(logM(β(δ

(1)
i +···+δ

(m)
i ))+h(δ

(1)
i +···+δ

(m)
i )); (

Ec
n,ν logn

)⊗m]
,

where (Ec
n,ν logn)

⊗m is the m-fold product of Ec
n,ν logn. Using the convexity of

logM(β) we have

logM(βk) ≤ k

m
logM(βm) for all k ≤ m,

so we can bound the above expectation by

E⊗m[
e

∑n
i=1((1/m) logM(mβ)+h)(δ

(1)
i +···+δ

(m)
i ); (

Ec
n,ν logn

)⊗m]
(3.15)

< e((1/m) logM(mβ)+h)mν lognP
(
Ec

n,ν logn

)m
.

We use Ab,n from (2.3). By Lemma 2.3 we have for b sufficiently small and then
n sufficiently large,

P
(
Ec

n,ν logn

) ≤ P
(
Ec

n,ν logn ∩ Ac
b,n

) +
ν logn∑
j=1

P(σj > bn)

≤ n−2α + νK+(bn) logn

≤ Cbν logn
φ(n)

nα
.
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Inserting this into (3.15) and the result into (3.14), and considering our choice of
λ,m,ν, we obtain that

P
(
Zβ,h

n,ω

(
Ec

n,ν logn

)
> n−α+λνφ(n)

) ≤ (Cbν logn)mn−mκ/4,

which, by the choice of m in (3.12) and the Borel–Cantelli lemma, completes the
proof. �

If we do not assume β large in Theorem 1.2, then in the proof, the entropy
cost log 1/K(r) per visit to Jn will not be exceeded by the energy gain; in more
concrete terms, (3.7) will fail. The entropy cost can be reduced by visiting only
a small fraction of the sites in an interval of form [n − γ logn,n], but then the
interval length γ logn (where the disorder average exceeds uβ ) must be much
larger than in the large-β proof, reducing the probability of such an interval. It is
not clear whether there is a strategy (in place of the present “visit all sites of Jn”)
of sufficiently low entropy cost so that the interval of large average disorder values
can be exploited, and therefore it seems unclear whether a variant of Theorem 1.2
should be true for small β .
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