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LONG-RANGE LAST-PASSAGE PERCOLATION ON THE LINE

BY SERGEY FOSS1, JAMES B. MARTIN1 AND PHILIPP SCHMIDT2

Heriot-Watt University, University of Oxford and University of Oxford

We consider directed last-passage percolation on the random graph G =
(V,E) where V = Z and each edge (i, j), for i < j ∈ Z, is present in E in-
dependently with some probability p ∈ (0,1]. To every (i, j) ∈ E we attach
i.i.d. random weights vi,j > 0. We are interested in the behaviour of w0,n,
which is the maximum weight of all directed paths from 0 to n, as n → ∞. We
see two very different types of behaviour, depending on whether E[v2

i,j ] < ∞
or E[v2

i,j ] = ∞. In the case where E[v2
i,j ] < ∞ we show that the process

has a certain regenerative structure, and prove a strong law of large numbers
and, under an extra assumption, a functional central limit theorem. In the
situation where E[v2

i,j ] = ∞ we obtain scaling laws and asymptotic distri-
butions expressed in terms of a “continuous last-passage percolation” model
on [0,1]; these are related to corresponding results for two-dimensional last-
passage percolation with heavy-tailed weights obtained in Hambly and Mar-
tin [Probab. Theory Related Fields 137 (2007) 227–275].

1. Introduction. We study a model of directed last-passage percolation on
the integer line Z. Consider the random directed graph G = (Z,E), where every
directed edge (i, j) from vertex i to vertex j > i is present independently with
probability p ∈ (0,1]. Random structures of this kind have been used to study
community food webs or task graphs for parallel processing in computer science.
In the first case a link between i and j means that species j preys upon species i.
The computational interpretation would be that task i must be completed before
task j can start. Such models have been studied in [6, 10, 12], and [14], for exam-
ple.

We consider a model in which weights vi,j are attached to all edges (i, j) ∈ E.
We are interested in the asymptotic behaviour of the random variable w0,n that
is defined as follows. For any increasing path π = ((i0, i1), (i1, i2), . . . , (il−1, il))

from i = i0 to j = il (for some l ≥ 0) the weight of the path is the sum of the edge
weights

∑l
k=1 vik−1,ik . We define the weight wi,j to be the maximal weight of a

path from i to j . A maximizing path between two points is called a geodesic. If
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we let �i,j be the set of all paths from i to j , then

wi,j = max
π∈�i,j

∑
e∈π

ve.

If there is no path between i and j (which is possible if p < 1), then w0,n will be
−∞. We will analyze the behaviour of w0,n as n tends to infinity. In the parallel
processing model, vi,j represents a delay required between the start of task i and
the start of task j , and w0,n represents the overall constraint on the time between
the start of task 0 and the start of task n. We will write v for a generic random vari-
able whose distribution is that of vi,j , and we write F for the distribution function
of v.

In this paper we study this one-dimensional random graph model with gen-
eral weight distributions. The equivalent model with constant weights was studied
in [9] and [8]. Many features of the model with constant weights remain if the ran-
dom weights have a sufficiently light tail. In the case where the weights have finite
variance, we prove a strong law of large numbers for the passage time w0,n, and
under the stronger assumption of a finite third moment we give a functional cen-
tral limit theorem. The strategy of the proof is similar to that of [8]; we construct
a renewal process with the property that no geodesic uses an edge which crosses a
renewal point. In this way much of the analysis can be carried out by considering
the behaviour of the length and weight of individual renewal intervals. In [8], the
definition of renewal points could be made rather simply in terms of the connec-
tivity properties of the graph, but here the disorder induced by the random weights
requires a rather more intricate construction. We then define a set of auxiliary ran-
dom variables to construct an upper bound for �0, the first renewal point to the
right of the origin, and use them to conclude that E[�0] < ∞ if E[v3] < ∞. This
provides a bound on the second moment of the length of a typical renewal interval,
and we can deduce that the variance that appears in the central limit theorem is
finite.

This regenerative structure means that the problem retains an essentially one-
dimensional nature. Most of the edges used in an optimal path are short, and the
behaviour is qualitatively the same as one would see in a model with edges of
bounded length. We find an entirely different behaviour when E[v2] = ∞. Now
the passage time w0,n grows super-linearly in n, and the dominant contribution
to the passage time is given by the weights of edges whose length is on the or-
der of n. The appropriate comparison with a bounded-length model is now with a
two-dimensional last-passage percolation problem. Under the assumption of a reg-
ularly varying tail, we prove scaling laws and asymptotic distributions in terms of a
“continuum long-range last-passage percolation” model on the interval [0,1]. The
construction is closely related to that used by Hambly and Martin [11], who studied
(nearest-neighbour) last-passage percolation in two dimensions with heavy-tailed
weights. There are interesting relationships between such models and the theory
of random matrices with heavy-tailed entries; see, for example, [3, 4].
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The difference between the behaviour of the model in the cases E[v2] < ∞ and
E[v2] = ∞ can be seen in the simulations in Figure 1 in Section 2.2.3.

The paper is organised in the following way: in Section 2 we will present the
main results. We will split the results up into two main sections: one for the case
where the weights have a second moment (Section 2.1) and one where they do
not (Section 2.2). The main results in Section 2.1 are the strong law of large num-
bers and a functional central limit theorem for the random variable w0,n giving
the weight of the heaviest path from 0 to n. Another main result (Theorem 2.5)
describes scaling laws for the length of the longest edge and the weight of the
heaviest edge used on the maximizing path from 0 to n, and we can use these re-
sults to conclude that in certain situations where E[v3] = ∞ a central limit theorem
cannot hold.

The main results for the case E[v2] = ∞ are then given in Section 2.2, along
with simulations illustrating the scaling limit and the difference in behaviour from
the case of weights with finite variance.

The proofs for the model with finite second moments can then be found in
Section 3. There we will also briefly discuss a variant of the model where the edge
probabilities are not constant, but depend on the lengths of the edges (Section 3.5).
This model was studied in [8] but without random weights. The proofs for the
model with infinite second moments will be given in Section 4; the structure is
closely related to that of the corresponding results in [11].

2. Main results. In this section we introduce the main results. Like the rest of
the paper, the results will be split up into two parts: results about the model with
finite second moments and results about the model with infinite second moment.

2.1. Weights with finite second moment. Here we present the results for the
model where the weights vi,j have a finite second moment, that is, E[v2] < ∞.
The aim is to prove a strong law of large numbers and a functional central limit
theorem for w0,n.

THEOREM 2.1. If E[v2] < ∞, then there exists a constant C ∈ (0,∞) such
that

w0,n

n
→

n→∞ C a.s.

and

w+
0,n

n
→

n→∞ C in L1.

In order to state the central limit theorem we will need some more notation. This
will also give an idea of how we want to prove the SLLN and CLT. We define so-
called renewal points which will give the model a regenerative structure. In order
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to do this we need the following three events, which depend on a constant c to
be chosen later. The constant c will have to be sufficiently small but still satisfy
P[v < c] > 0. We define the random variables αi,j , i < j ∈ Z to be 1 if the edge
(i, j) is present and −∞ otherwise. For x ∈ Z, define

A++
x =

∞⋂
l=1

{wx,x+l ≥ cl},(2.1)

A−+
x =

∞⋂
j,l=1

{
αx−j,x+lvx−j,x+l < c(l + j)

}
(2.2)

and

A−−
x =

∞⋂
l=1

{wx−l,x ≥ cl}.(2.3)

We say that x is a renewal point if A++
x ∩ A−+

x ∩ A−−
x holds. Write Ax for this

combined event, and write R for the set of points such that Ax holds.
Let us explain in words the meaning of the three events used in the definition

of the set R. The event A++
x occurs if for every y > x, the optimal path from x to

y has weight at least c times its length. The event A−−
x says the equivalent thing

about paths from y to x for y < x. Finally, the event A−+
x says that every edge that

contains x in its interior has weight less than c times its length.
We immediately obtain the following property:

LEMMA 2.2. If x ∈ R and i < x < j , then the optimal path from i to j passes
through the point x. In particular,

wi,j = wi,x + wx,j .(2.4)

This is because if a path includes an edge (u, y), then we can increase the weight
of the path by replacing that edge by the union of the optimal paths from u to x

and from x to y.
A priori the set R might be empty, finite, or infinite, but the following result

will be proved in Sections 3.1 (for p = 1) and 3.2 (for p < 1):

LEMMA 2.3. Suppose that E[v2] < ∞. There exists c > 0 such that the set R
is infinite with probability 1.

The result is stated explicitly with a sufficient condition on c in Lemma 3.6.
We can then denote the points in R by (�n)n∈Z where �0 is the smallest non-

negative element of R.

REMARK 2.1. If E[v2] = ∞, then the set R is almost surely the empty set.
This will follow from the proof of Lemma 2.3; see Remark 3.1.
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The final consequence of the definition is that, as suggested by the name, the set
of points R forms a renewal process. Furthermore, conditional on the points of R,
the weights of edges contained within different renewal intervals are independent.
These properties are proved in Lemma 3.8, and will be central to the structure of
the argument that follows.

We now have the necessary notation to state the functional central limit theo-
rem for w0,n. To ensure that the variance is finite, we need the stronger condition
E[v3] < ∞; see Proposition 3.14 below.

THEOREM 2.4. Suppose E[v3] < ∞. Then there exists c > 0 such that the
following holds. Let σ 2 = Var(w�0,�1 − C(�1 − �0)) and λ = P[A0] = P(0 ∈ R).
Then σ 2 < ∞, and (

ln(t) = w0,[nt] − Cnt

λ1/2σ
√

n
, t ≥ 0

)
converges weakly as n → ∞ to a standard Brownian motion.

REMARK 2.2. Note that the c corresponds to the c in the definition of (�n)n∈Z

and C is the constant from Theorem 2.1. A sufficient condition for finiteness of
E�0 in terms of c is given in (3.9). It is not obvious from the definitions, but it
follows from Theorem 2.4 that, as long as (3.9) holds, the quantity λ1/2σ does not
depend on c.

The main idea for the proofs of both the SLLN and the CLT is to use the regen-
erative structure induced by the renewal points to represent w0,n as a random sum
of i.i.d. random variables in the following way:

w0,n = w0,�0 +
r(n)∑
i=1

w�i−1,�i
+ w�r(n),n,(2.5)

where r(n) is such that �r(n) is the largest renewal point to the left of n. We will
show in Proposition 3.8 that the random variables w�i−1,�i

form an i.i.d. sequence,
for i ≥ 1.

Let �n be the length of the longest edge and hn the weight of the heaviest edge
used on the geodesic from 0 to n. The final result of this section concerns the
asymptotic behaviour of �n and hn, under the assumption that the tail of the distri-
bution is regularly varying with index s > 2. When 2 < s < 3, we can deduce that
the fluctuations of the passage time are of order larger than

√
n, and so the central

limit theorem cannot be extended to this case.

THEOREM 2.5. Suppose that the tail of v is regularly varying with index
s > 2, in the sense that

1 − F(tx)

1 − F(x)
→ t−s as x → ∞, for every t > 0.(2.6)
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Then we have

log�n

logn
→ 1

s − 1
in probability as n → ∞,(2.7)

and the same holds with �n replaced by hn.
Furthermore, the fluctuations of w0,n are of larger order than nβ for any β <

1/(s − 1), in the sense that for any sequence yn,

P
(
w0,n ∈ [

yn, yn + nβ]) → 0 as n → ∞.

In particular, if 2 < s < 3, then

Var(w0,n)

n
→ ∞,

and a central limit theorem such as that in Theorem 2.4 cannot hold, even for
individual values of t .

We prove this theorem in Section 3.4 and also give some examples that show
how the behaviour of �n depends on the tail of the distribution.

2.2. Weights with infinite second moment. Here we look at weight distribu-
tions that do not have a finite second moment, that is, E[v2] = ∞. Under this
condition, w0,n grows faster than linearly. This can be seen by considering the
contribution of the single heaviest edge in [0, n], and noting that the expectation of
the maximum of n2 i.i.d. random variables with infinite variance has expectation
that grows faster than n. Since w0,n is at least as large as the weight of this single
edge, we have that Ew0,n/n → ∞ as n → ∞, and from Kingman’s subadditive
ergodic theorem we can conclude that in fact w0,n

n
→ ∞ a.s.

We will describe the asymptotic behaviour of w0,n, under the assumption that
the tail of the weight distribution is regularly varying with index s ∈ (0,2), in the
sense of (2.6). We introduce two useful ways to construct our model in discrete
space and explain how the second construction can be used to define a correspond-
ing model in continuous space on [0,1]. We show that the passage time w for
the continuous model is finite and show convergence of an appropriately rescaled
version of w0,n to w.

2.2.1. Discrete model. We start with the case p = 1. Since w0,n depends only
on vi,j for 0 ≤ i, j ≤ n it suffices to consider only the interval [0, n]. We can then
rescale and consider the set {0, 1

n
, . . . , n−1

n
,1} instead of the interval [0, n]. For

each n ∈ N and 0 ≤ i < j ≤ n, let v
(n)
i,j be i.i.d. with distribution F . The weight of

the edge between i
n

and j
n

is now given by v
(n)
i,j . We introduce some new notation:

for two edges x = (i, j), y = (i ′, j ′) we write x ∼ y and say x and y are compatible
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if j ≤ i ′ or j ′ ≤ i. The edges x and y being compatible means that they do not
overlap and that they can both be used on a path from 0 to 1. As before we define

w0,n = max
π∈�n

∑
e∈π

v(n)
e ,(2.8)

where �n is the set of all paths from 0 to 1 in {0, 1
n
, . . . , n−1

n
,1}.

We can think of the same model in the following alternative way: let M
(n)
1 ≥

M
(n)
2 ≥ · · · ≥ M

(n)

(
n+1

2 )
be the order statistics in decreasing order of the v

(n)
i,j . Let

Y
(n)
1 , Y

(n)
2 , . . . , Y

(n)

(
n+1

2 )
be a random ordering of those edges, chosen uniformly from

all the
(n+1

2

)! possibilities. Y
(n)
i is the location of the ith largest weight M

(n)
i . Now

C0,n =
{
A ⊂

{
1, . . . ,

(
n + 1

2

)}
:Y (n)

i ∼ Y
(n)
j for all i, j ∈ A

}
(2.9)

is the random set of admissible paths. Then we have

w0,n = max
A∈C0,n

∑
i∈A

M
(n)
i ,(2.10)

which is equivalent to the previous definition of w0,n in (2.8).

2.2.2. Continuous model. Following the second approach above, we can
define a corresponding continuous model. Let W1,W2, . . . be a sequence of
i.i.d. exponential random variables with mean 1 and define, for k = 1,2, . . . ,

Mk = (W1 + · · · + Wk)
−1/s . Let U1,U2, . . . and V1,V2, . . . be two sequences

of i.i.d. uniform random variables on [0,1] (independent of the Wk). Put Yi =
(min(Ui,Vi),max(Ui,Vi)) for i = 1,2, . . . . The ith largest weight Mi will be at-
tached to the ith edge Yi . Similarly to (2.9) we define

C = {
A ⊂ {1,2, . . .} :Yi ∼ Yj for all i, j ∈ A

}
.

Then we can define a last-passage time for this continuous model analogously
to (2.10) by

w = sup
A∈C

∑
i∈A

Mi.(2.11)

A priori the random variable w could be infinite, but we will see in Theorem 2.6
below that it is almost surely finite.

2.2.3. Convergence results. The intuition behind the approximation of the dis-
crete model by the continuous one is the following pair of convergence results.
First, for any finite k ∈ N we have(

Y
(n)
1 , Y

(n)
2 , . . . , Y

(n)
k

) d→ (Y1, Y2, . . . , Yk)(2.12)
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as n → ∞, where we use the product topology on ([0,1]2)k .
Following [11], let an = F (−1)(1 − 1

n
), and further let bn = a

(
n+1

2 )
= F (−1)(1 −

1
(
n+1

2 )
), and put M̃

(n)
i = M

(n)
i

bn
. [As an example, if the weight distribution F is

Pareto(s), with F(x) = 1 − x−s for x ≥ 1, then bn grows like n2/s . More gen-
erally under assumption (2.6), limn→∞ logbn

logn
= 2/s.] Then from classical results

in extreme value theory (see, e.g., Section 9.4 of [7]) we have for any k ∈ N that(
M̃

(n)
1 , M̃

(n)
2 , . . . , M̃

(n)
k

) d→ (M1,M2, . . . ,Mk) as n → ∞.(2.13)

In this way both the locations and weights of the heaviest edges in the dis-
crete model (after appropriate rescaling) are approximated by their equivalents in
the continuous model. We will show that it is the heaviest edges which make the
dominant contribution to the passage time, and obtain the following convergence
result:

THEOREM 2.6. The random variable w in (2.11) is almost surely finite. If
p = 1 and (2.6) holds, then w0,n

bn
→ w in distribution as n → ∞.

These heavy edges have length on the order of n. This is in strong contrast to the
behaviour in the case E[v2] < ∞, where the important contribution to the passage
time is given by edges of order 1. See Figure 1 for an illustration of the two types
of behaviour.

This scaling limit extends in a simple way to the case p < 1, after taking account
of the fact that the total number of edges available in the interval [0, n] is now on
the order of pn2/2 rather than on the order of n2:

THEOREM 2.7. Let p ∈ (0,1], and suppose that (2.6) holds. Then

p−1/sw0,n

bn

→ w

in distribution as n → ∞.

REMARK 2.3. Although we do not pursue it in detail here, one can also prove
convergence of the optimal path itself in the discrete model to that of the continu-
ous model, using an approach similar to that in [11]. For convenience, assume that
F is continuous. Then with probability 1, there exists a unique path A(n)∗ ∈ C0,n

which realises the maximal passage time in (2.10). One can show that in the con-
tinuous model there exists a unique set A∗ ∈ C achieving the supremum in (2.11)
(which is therefore in fact a maximum), and((

Y
(n)
i

)
i∈N

,A(n)∗) d→
n→∞

(
(Yi)i∈N,A∗)

,
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FIG. 1. Simulations for n = 100,1000, and 10,000 for two weight distributions with
P(v > x) = x−s , x ≥ 1; on the left s = 1.5 and on the right s = 2.5. On the left we are in the set-
ting of Section 2.2. The scaling limit is clearly visible; visually one can hardly distinguish the cases
n = 100 and n = 10,000; see Remark 2.3 about convergence of the path distribution. The heaviest
edges make an important contribution to the total weight of the geodesic; their length is on the order
of n, and their weight is on the order of n2/s which is also the order of the total weight of the path.
On the right, the variance of the weight distribution is finite; the heaviest edges have both length and
weight approximately on the order of n1/(s−1), while the total weight of the path is on the order of
n and obeys a law of large numbers. (Paths can be generated by a simple dynamic programming
algorithm.)

where we consider the Euclidean distance on R
2 and the product topology for

the convergence of (Y
(n)
i )i∈N, and say that a sequence (Ak)k∈N of subsets of N

converges to a set A ⊂ N if for every m ∈ N there exists a K ∈ N such that Ak ∩
{1, . . . ,m} = A ∩ {1, . . . ,m} for all k ≥ K .

See Theorem 4.2 of [11] for an analogous result in the two-dimensional last-
passage case. One can then proceed to show that in fact the set of endpoints of
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edges used in the optimal path from 0 to n (rescaled by n) converges in distribu-
tion under the Hausdorff metric to the equivalent object in the continuous model;
compare Theorem 4.4 of [11].

REMARK 2.4. Our results do not cover the case where s = 2 and Ev2 = ∞.
Since the variance is infinite, it must be the case that w0,n grows faster than lin-
early, as noted at the beginning of this section. On the other hand, by comparison
with the scalings obtained for s < 2, the growth must be slower than n1+ε for any
ε > 0. It would certainly be interesting to look for appropriate scalings and limiting
distributions in this critical regime.

3. Proofs for the model with E[v2] < ∞. In this section we consider the
case where the weights vi,j have a finite second moment, that is, E[v2] < ∞. To
avoid degeneracies we assume throughout that v is not a.s. constant. Our main
aim is to prove Theorems 2.1, 2.4, and 2.5. We start with the model where p = 1;
that is, all edges are present. First, we show that the set R of renewal points is
almost surely infinite. Then we generalise this result to the case where p ≤ 1. In
the following subsection we will use this result to prove the strong law of large
numbers (Theorem 2.1) and the central limit theorem (Theorem 2.4) for w0,n for
general p ∈ (0,1]. The next subsection will look at the behaviour of the random
variables �n, giving the lengths of the longest edge, and hn, giving the weight of the
heaviest edge, used on the geodesic from 0 to n; see Theorem 2.5. We will use these
results to comment on the behaviour of the model if E[v2] < ∞, but E[v3] = ∞.
In the last subsection we briefly discuss the case where the edge probabilities are
not constant, but depend on the length of the edges.

3.1. Proof of Lemma 2.3 for p = 1. When p = 1, we have αi,j = 1 for all
i, j ; that is, all edges (i, j), i, j ∈ Z, are present, and in particular there is a path
between any two points.

Let Ax = A++
x ∩A−+

x ∩A−−
x be the event that x is a renewal point. We start with

the following lemma which is simply Lemma 2.3 with the additional condition that
P[A0] > 0. After this lemma we will prove in Propositions 3.2, 3.3, and 3.4 that
P[A0] > 0.

LEMMA 3.1. If P[A0] > 0, then R is almost surely an infinite set.

PROOF. Let λ = P[A0], which is strictly positive by assumption. We can ap-
proximate the event A0 by an event A′

0 that depends only on finitely many of the
vi,j . In particular, for every ε > 0 there exists m ∈ N such that A′

0 depends only
on vi,j for −m ≤ i < j ≤ m and P[A0�A′

0] < ε. By translation invariance of our
model we get that the same is true for any event Ax , where A′

x is defined as the
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translation of A′
0 in the natural way. We can, for example, choose

A′
x =

(
m⋂

l=1

{wx,x+l ≥ cl}
)

∩
(

m⋂
l=1

{wx−l,x ≥ cl}
)

∩
(

m⋂
j,l=1

{
αx−j,x+lvx−j,x+l < c(j + l)

})
.

Then the events A′
0, A′

2m, A′
4m, . . . are i.i.d. (since they depend on disjoint sets of

edges), and we have

P
[
A′

0 ∪ A′
2m ∪ · · · ∪ A′

2(R−1)m

] = 1 − P
[(

A′
0
)c]R

≥ 1 − (
P

[
Ac

0
] + ε

)R
= 1 − (1 − λ + ε)R.

With this we get

P[A0 ∪ A2m ∪ · · · ∪ A2(R−1)m]
= 1 − P

[
Ac

0 ∩ Ac
2m ∩ · · · ∩ Ac

2(R−1)m

]
≥ 1 − (

P
[(

A′
0
)c ∩ (

A′
2m

)c ∩ · · · ∩ (
A′

2(R−1)m

)c] + Rε
)

≥ 1 − (1 − λ + ε)R − Rε.

For any δ > 0 we can now first choose R large enough such that (1 − λ + ε)R < δ
2

for all small enough ε, and then further choose ε > 0 small enough such that also
Rε < δ

2 , to get

P[A0 ∪ A2m ∪ · · · ∪ A2(R−1)m] ≥ 1 − δ.

Since δ was arbitrary this shows that at least one of the events Ax , for x ≥ 0,
holds. In the same way we can show that with probability 1 for any fixed y ∈ Z

there exists x ≥ y such that Ax holds. This implies that with probability 1 infinitely
many of the Ax hold, and therefore R is almost surely an infinite set. �

Now it remains to show that the condition of Lemma 3.1 is satisfied, that is, that
P[A0] > 0. To be precise, we have to show that for sufficiently small c > 0 with
P[v < c] > 0, we have P[A0] > 0. We will do this in four steps: first we show that
the events A++

0 , A−+
0 and A−−

0 are independent and then we will show for each of
them that they hold with positive probability for a suitable c > 0.

PROPOSITION 3.2. For any fixed x ∈ Z the events A++
x , A−+

x and A−−
x are

independent.
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PROOF. As already mentioned above, the event A++
x depends only on edges

whose left endpoint is at least x, A−+
x depends only on edges with their left end-

point to the left of x and their right endpoint to the right of x, and A−−
x depends

only on edges whose right endpoint is at most x. Since all the weights are i.i.d. this
implies the required independence of the events A++

x , A−+
x , and A−−

x . �

PROPOSITION 3.3. If E[v] < ∞, then for any c < E[v] we have that
P[A++

x ] > 0 and P[A−−
x ] > 0.

PROOF. Since all the nearest neighbour edges are present we can bound
wx,x+l for any l ∈ N from below by

∑l−1
j=0 vx+j,x+j+1, and the vx+j,x+j+1 are

i.i.d. By the strong law of large numbers we have that

P

[ ∞⋂
l=L

l−1∑
j=0

vx+j,x+j+1 ≥ cl

]
≥ 1

2

for large enough L. Since only finitely many of the vx+j,x+j+1 are involved in
the events

∑l−1
j=0 vx+j,x+j+1 ≥ cl for l < L and the vx+j,x+j+1 are i.i.d., there is

positive probability that all events
∑l−1

j=0 vx+j,x+j+1 ≥ cl hold for l < L as well.
So P[A++

x ] > 0. The proof for A−−
x is exactly the same. �

PROPOSITION 3.4. Assume that v is not a constant. If E[v2] < ∞, then for
every c such that

ess inf[v] < c < E[v],
we have P[A−+

x ] > 0.

PROOF. Note that ess inf[v] < E[v] since we assume that v is not a.s. constant.
We have

P
[
A−+

x

] =
∞∏

j,l=1

P
[
vx−j,x+l < c(l + j)

]

=
∞∏
i=2

P[v < ci]i−1

= e
∑∞

i=2(i−1) ln(1−P[v≥ci]).

The exponent is negative, and the RHS is positive if and only the sum converges
to a finite quantity rather than to −∞. Since P(v < ci) > 0 for all i (because
c > ess inf[v]), and since log(1 − x) ∼ −x as x → 0, this holds if and only if∑

iP(v ≥ ci) is finite, which in turn holds if and only if the variance of v is finite.
�
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REMARK 3.1. If, on the other hand, E[v2] = ∞, then P[A−+
x ] = 0, and there-

fore R is empty almost surely.

PROOF OF LEMMA 2.3. This follows directly from Lemma 3.1 and Proposi-
tions 3.2, 3.3, and 3.4. �

3.2. Proof of Lemma 2.3 for p < 1. Let us now consider the case where p < 1.
We say that a point x ∈ Z is a strongly connected point if x is connected to every
other point by a path. Here we do not consider the weights of the edges, so the
paths do not have to be optimal. We denote the set of strongly connected points
by S . In the previous section every point was a strongly connected point since
p = 1. The first three from the following four results about the strongly connected
points have all been shown in Lemmas 5 and 7 in [8], and the latter one is an
exponential analogue of Lemma 6, with a very similar proof:

• the probability that 0 is a strongly connected point is strictly positive for any
p > 0;

• there are almost surely infinitely many strongly connected points;
• the sequence of strongly connected points forms a stationary renewal process;
• if we let . . . , τ−1, τ0, τ1, τ2, . . . be the sequence of strongly connected points,

where τ0 is the smallest nonnegative element of S , then for some α > 0,

E
[
eατ0

]
< ∞ and E

[
eα(τi+1−τi )

]
< ∞ for all i.(3.1)

By wk,l we denote again the weight of the geodesic from k to l. This might now
be −∞ if there exists no path between k and l, and we are therefore taking the
supremum over an empty set. However, if x is a strongly connected point, then
wx−j,x+l > 0 for all j, l ∈ N since we know that there exists a path from any x − j

to x and from x to any x + l. For x ∈ Z, let m(x) be the index of the largest strongly
connected point such that τm(x) < x.

The definition of the renewal points is the same as before; see (2.1), (2.2)
and (2.3) [now αi,j = −∞ if the edge (i, j) is not present]. By definition we have
that if x is not a strongly connected point, then wx,x+l = −∞ for some l ≥ 1
or wx−j,x = −∞ for some j ≥ 1. So x can only be a renewal point if it is a
strongly connected point. An equivalent of Lemma 3.1 still holds in the case where
p < 1, and we want to prove again that the condition for Lemma 3.1 (P[A0] > 0)
holds. This will give us Lemma 2.3. Again it will be enough to show that the three
events A++

x , A−+
x , and A−−

x are independent and that all of them happen with
positive probability. The independence follows directly from the same argument
as in Proposition 3.2. Let γ > 0 be the density of strongly connected points and
δ = E[wτ0,τ1].

PROPOSITION 3.5. If 0 < c < γ δ, then P[A++
x ] > 0, P[A−+

x ] > 0 and
P[A−−

x ] > 0.
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PROOF. First look at the events A++
x and A−−

x . Now not all the nearest neigh-
bour edges are present, but we can use the strongly connected points to get a similar
bound to the one in the proof of Proposition 3.3. Without loss of generality assume
that x = 0, and note that m(0) = −1 from the definition. For any l > τ0 we can
write

w0,l ≥ w0,τ0 +
m(l)∑
j=1

wτj−1,τj
+ wτm(l),l .(3.2)

Fix a c < γ δ. Since the strongly connected points form a stationary renewal pro-
cess, independent of the weights, and the density γ of strongly connected points is
strictly positive, the terms in the sum are i.i.d., and we have both m(l)

l
→ γ almost

surely as l → ∞, and 1
M

∑M
j=1 wτj−1,τj

→ δ as M → ∞. So in fact

1

l

m(l)∑
j=1

wτj−1,τj
→ γ δ a.s. as l → ∞.

Then since c < γ δ by assumption, we have that for some L, the event

w0,l ≥ cl for all l ≥ L

has positive probability. But if this event occurs, then we can obtain a realisation
for which

w0,l ≥ cl for all l ≥ 1

occurs by altering the values of only finitely many edges. Hence that event also
has positive probability, and so P(A++

x ) > 0 as desired. In exactly the same way,
also P(A−−

x ) > 0.
Now look at the event A−+

x . With the same arguments as in the previous section
we get that for large L,

P

[ ∞⋂
j,l=L

{
αx−j,x+lvx−j,x+l ≤ c(l + j)

}]
> 0.

Since there is a probability of 1 − p for each edge not to be present, that is, αi,j =
−∞, we get

P

[
L−1⋂
j,l=1

{
αx−j,x+lvx−j,x+l ≤ c(l + j)

}] ≥ (1 − p)(L−1)2
.

Hence P[A−+
x ] = P[⋂∞

j,l=1{αx−j,x+lvx−j,x+l ≤ c(l + j)}] > 0 also. �

So we have shown that the condition in Lemma 3.1 is still satisfied in the case
where p < 1, and therefore Lemma 2.3 holds for p < 1 as well.

To unify the conditions on c for the cases p = 1 and p < 1, note that if p = 1,
then γ = 1, and that E[v] ≤ δ. Then we can put together the results of the last two
sections to give the following:
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LEMMA 3.6. Let p ∈ (0,1]. If

γ ess inf[v] < c < γ E[v],(3.3)

then λ = P(A0) > 0 and the set R is infinite with probability 1.

3.3. Proofs of the SLLN and CLT for general p ∈ (0,1]. In the previous two
sections we have shown that under the condition (3.3) on c, the set R of renewal
points is infinite. Now we want to prove a strong law of large numbers and a
central limit theorem for the random variable w0,n; see Theorems 2.1 and 2.4. As
before we denote the points in R by . . . ,�−1,�0,�1, . . . , where �0 is the smallest
nonnegative element of R. Evaluating the function w at the renewal points �n

gives the following equation, related to (2.5):

PROPOSITION 3.7. For all m < n we have

w�m,�n = w�m,�m+1 + · · · + w�n−1,�n.

PROOF. This follows directly from the definition of the renewal points
and (2.4). �

We now want to use the fact stated in this proposition to prove a strong law
of large numbers and a central limit theorem for the random variable w0,n. If
w�m,�m+1 , m ≥ 0 are independent, then for n ≥ �0 we can write

w0,n = w0,�0 +
r(n)∑
i=1

w�i−1,�i
+ w�r(n),n,(3.4)

where r(n) = max{m :�m < n}, and since w�i−1,�i
, i ≥ 1 are i.i.d., use then the

standard strong law of large numbers and central limit theorem (under moment
conditions for the variance of w�i−1,�i

) applied to the sum in (3.4) to get corre-
sponding results for w0,n. Note that since the density of renewal points λ = P[A0]
is strictly positive we have that r(n) ∼ λn for large n. So first we want to show that
w�i−1,�i

, i ≥ 1 are indeed independent.
Define

Ck = (�k − �k−1, v�k−1+n,�k−1+i , α�k−1+n,�k−1+i : 0 ≤ n < i ≤ �k − �k−1)

for k ∈ Z. Then these cycles have a regenerative structure in the following sense:

LEMMA 3.8. The cycles (Ck, k ∈ Z) are independent, and (Ck, k ∈ Z − {0})
are identically distributed. The process (�n)n∈Z forms a stationary renewal pro-
cess.
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PROOF. We start with the following observation about the effect the presence
of a renewal point at site x ∈ Z has on the weights to the left and to the right of x.
Let F +

x be the sigma-algebra generated by the (vi,j , αi,j :x ≤ i < j), and let F −
x

be the sigma-algebra generated by the (vi,j , αi,j : i < j ≤ x). These two sigma-
algebras are independent as all our weights are independent. But this is still true
even if we know that there is a renewal point at x. For any B− ∈ F −

x , B+ ∈ F +
x ,

we have

P
[
B− ∩ B+|A−−

x ∩ A−+
x ∩ A++

x

]
= P[B− ∩ B+ ∩ A−−

x ∩ A−+
x ∩ A++

x ]
P[A−−

x ∩ A−+
x ∩ A++

x ]
= P[B− ∩ A−−

x ]P[A−+
x ]P[B+ ∩ A++

x ]
P[A−−

x ]P[A−+
x ]P[A++

x ]
= P

[
B−|A−−

x

]
P

[
B+|A++

x

]
= P

[
B−|A−−

x ∩ A−+
x ∩ A++

x

]
P

[
B+|A−−

x ∩ A−+
x ∩ A++

x

]
.

This shows that having a renewal point at x does not introduce any dependence
between the weights to the left and the weights to the right of x. Now we want
to show that if Ax holds we can determine where all the renewal points to the
right of x are only by looking at edges with both endpoints to the right of x.
So assume again that Ax holds. For y > x (and fixed x) define the event Ãy =
A++

y ∩ Ã−+
y ∩ Ã−−

y with

Ã−+
y = ⋂

l≥1,1≤j≤y−x

{
αy−j,y+lvy−j,y+l ≤ c(l + j)

}
and

Ã−−
y = ⋂

1≤j≤y−x

{wy−j,y ≥ cj}.

The events A++
y , Ã−+

y , and Ã−−
y all depend only on edges to the right of x. Now

we want to show that conditioned on Ax the event Ay holds if and only if the event
Ãy holds. On Ax we have

wx−j,x ≥ cj and αx−j,x+lvx−j,x+l ≤ c(l + j) and wx,x+l ≥ cl
(3.5)

for all j, l ≥ 1.

Assume that Ãx+k holds. Then we have

wx+k−j,x+k ≥ cj and αx+k−j,x+k+lvx+k−j,x+k+l ≤ c(l + j) and
(3.6)

wx+k,x+k+l ≥ cl for all 1 ≤ j ≤ k, l ≥ 1.
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We have to show that we can conclude from this that Ax+k holds, that is,

wx+k−j,x+k ≥ cj and αx+k−j,x+k+lvx+k−j,x+k+l ≤ c(l + j) and
(3.7)

wx+k,x+k+l ≥ cl for all j, l ≥ 1.

So take j > k. Then we have

wx+k−j,x+k = wx+k−j,x + wx,x+k (since x is a renewal point)

≥ c(k − j) + kj
[
by (3.5) and (3.6)

]
= cj

and also for any l ≥ 1

αx+k−j,x+k+lvx+k−j,x+k+l = αx−(j−k),x+k+lvx−(j−k),x+k+l

≤ c(k + l + j − k)
[
by (3.5)

]
= c(l + j).

So (3.7) holds. This implies that Ax+k holds if Ãx+k holds. The other implication
is obvious.

This shows that for any m ≥ 1 the cycles Cm, Cm+1, . . . are independent of the
position of �m−1 and everything to the left of �m−1. With similar arguments to the
ones above we can also show that for any m ≥ 1 the cycles C−m, C−m−1, . . . are
independent of the position of �−m and everything to the right of �−m. Overall we
get that the cycles (Ck, k ∈ Z) are independent and, by symmetry, that the cycles
(Ck, k ∈ Z − {0}) are identically distributed.

Then �0,�1, . . . and �−1,�−2, . . . are nonstationary (delayed) renewal pro-
cesses and translation invariance implies that (�n)n∈Z is a stationary renewal pro-
cess. �

With this result we can already prove the strong law of large numbers.

PROOF OF THEOREM 2.1. As above, let r(n) be the label of the last renewal
point to the left of n, so that �r(n) < n ≤ �r(n)+1. Then if n ≥ �0,

w0,�0 +
r(n)∑
i=1

w�i−1,�i
≤ w0,n ≤ w0,�0 +

r(n)+1∑
i=1

w�i−1,�i
.(3.8)

First we find a linear upper bound for w0,n. Since the edges in the path from 0
to n cannot overlap, and the sum of their lengths is n, we have

w0,n ≤ n + ∑
0≤x<y≤n

[
vx,y − (y − x)

]
+

≤ n + ∑
0≤x<n

Zx,
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where we define Zx = ∑
y>x[vx,y − (y − x)]+. Note that Zx are i.i.d. and nonneg-

ative with

EZx = E

∑
y>0

[v0,y − y]+

≤ 1

2
Ev2

< ∞.

So lim supw0,n/n < ∞ a.s., and so from the left-hand inequality in (3.8), we also
have

lim sup
1

n

r(n)∑
i=1

w�i−1,�i
< ∞ a.s.

But r(n)/n → λ a.s. as n → ∞, and the terms w�i−1,�i
are i.i.d. and nonnega-

tive for i ≥ 1. So Ew�i−1,�i
must be finite. Then finally using again the fact that

r(n)/n → λ a.s., and the law of large numbers on both sides of (3.8), we get the
a.s. convergence w0,n/n → λ−1

Ew�i−1,�i
.

To prove the convergence in L1, we remark that in the particular case p = 1 the
required convergence (both a.s. and L1) follows directly from Kingman’s subad-
ditive ergodic theorem, since w0,n is superadditive. Then, for p < 1, we may use
the following monotonicity argument.

Note that w0,n ≡ w0,n(p) is an increasing function of p and, in particular,

0 ≤ w+
0,n(p) ≤ w+

0,n(1).

Since w+1
0,n/n converges to a finite constant in L1, this sequence is uniformly in-

tegrable, and so is the sequence w+
0,n(p), for any p < 1. This and the a.s. conver-

gence imply convergence in L1. �

REMARK 3.2. One can show that for nonconstant weights there is a strict
inequality C > ĈE[v] where Ĉ is the constant corresponding to C in the case
where v ≡ 1.

In order to prove the central limit theorem, we will need to establish that
�1 − �0, the length of a typical renewal interval, has finite variance. By general
results about renewal processes (see, e.g., Chapter 1, Section 4 in [1], in particular,
Remark 4.2.1), this is equivalent to the property that the “residual renewal time”
�0 has finite expectation. In order to obtain that E[�0] is finite, an additional con-
dition on the distribution of v is required; instead of just a second moment, we
need that the third moment of v is finite.
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LEMMA 3.9. Suppose E[v3] < ∞. If

γ ess inf[v] < c < γ E

[
min

τ0≤i<j≤τ1
vi,j

]
,(3.9)

then E[�0] < ∞.

PROOF. Recall that the τr are the points of the renewal process of strongly
connected points, defined at the beginning of Section 3.2, with · · · < τ−1 < 0 ≤
τ0 < τ1 < · · · . So (τ0, τ1) is a typical renewal interval. γ is the density of strongly
connected points. Since the process of strongly connected points is independent of
the weights vi,j , and the weight distribution is not a.s. constant, the RHS of (3.9)
is strictly greater than the LHS, so the set of “good” values of c is nonempty. Also
note that (3.9) implies (3.3), so the conclusion of Lemma 3.6 applies.

We will use an algorithmic construction of �0 similar to the construction in [8]
to prove that the expectation E[�0] is finite. Here we will not construct �0 itself,
but an upper bound for it. We will use the following events, A++

x,d , A−+
x,d , and A−−

x,d ,
that are similar to A++

x , A−+
x , and A−−

x , but restricted to certain regions:

A++
x,d =

d⋂
l=1

{wx,x+l ≥ cl},

A−+
x,d = ⋂

1≤l≤d,j≥1

{
αx−j,x+lvx−j,x+l < c(l + j)

}
and

A−−
x,d =

d⋂
j=1

{wx−j,x ≥ cj}.

We now introduce another process U related to the renewal process R. Define

U = {
x ∈ Z :A−−

x holds
}
.(3.10)

A point in U clearly has to be connected to every point to its left. In [8] the authors
refer to points that are connected to every point to their left as silver points. We
immediately have R ⊆ U .

We will write · · · < ρ−2 < ρ−1 < 0 ≤ ρ0 < ρ1 < · · · for the sequence of points
in U , where ρ0 is the smallest nonnegative element of U .

The following result about U is analogous to Lemma 3.8 about R, but is much
more straightforward to prove. For k ∈ Z, define

Dk = (ρk − ρk−1, vρk−1+n,ρk−1+i , αρk−1+n,ρk−1+i : 0 ≤ n < i ≤ ρk − ρk−1).

LEMMA 3.10. The cycles (Dk, k ∈ Z) are independent, and (Dk, k ∈ Z−{0})
are identically distributed. The process U = (ρn)n∈Z forms a stationary renewal
process.
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PROOF. Note that if A−−
x holds, and y > x, then A−−

y holds if and only if
A−−

y,y−x holds. Hence given x ∈ U , we can find the next y > x such that y ∈ U by
finding the smallest y > x such that A−−

y,y−x holds, and to determine whether the
event A−−

y,y−x holds, we only have to consider edges with both endpoints in the
interval [x, y]. The regenerative structure described in the lemma follows immedi-
ately. �

Next we define

μ = inf{d > 0 :1A−+
0,d ∩A++

0,d
= 0}.

The random variable μ is the smallest distance d > 0 such that at least one of A−+
0,d

and A++
0,d fails. Note that μ may be infinite; this is the case precisely if A−+

0 and
A++

0 hold, so that

β
def= P[μ = ∞] = P

[
A−+

0 ∩ A++
0

]
> 0.

The idea of the proof can best be explained using Figure 2 below.
We define σ0 = ρ0. Now recursively, for each k ≥ 0 we define

μk = θσk
μ = inf{d > 0 :1A−+

σk,d∩A++
σk,d

= 0}
and

σk+1 = inf{x ∈ U :x ≥ σk + μk}.
The set {σ0, σ1, . . .} is a subset of {ρ0, ρ1, . . .}. We continue until we reach a K

such that μK is infinite. Then the corresponding σK must be a point of R. For
certainly σK ∈ U , so the event A−−

σK
holds. But also μK = ∞, which by definition

of μk implies also that A−+
σK

and A++
σK

hold.
In particular �0 ≤ σK , which will serve as the upper bound we require.
Now it also follows from the regenerative properties in Lemma 3.10 above that

the random variables μk are i.i.d., and their common distribution is the same as that
of μ. So K = inf{k :μk = ∞} is a geometric random variable with parameter β .
Also, given K , the random variables μk,0 ≤ k < K are i.i.d. and their common

FIG. 2. Construction of the process (σn)n∈Z. In this case K = 3; the point σ3 = ρ4 is a renewal
point and provides an upper bound for �0.
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distribution is that of μ conditioned on μ < ∞ (in particular this does not depend
on K).

Since each renewal interval (ρj−1, ρj ) has length at least one, we also have that
σk ≤ ρL where L = ∑K−1

j=0 μj .
We can write ρL in the following way:

ρL = ρ0 +
L∑

j=1

ρj − ρj−1(3.11)

with i.i.d. ρj − ρj−1, j = 1,2, . . . . We will use the following proposition to show
that the expectation of ρL is finite.

PROPOSITION 3.11. Let X1,X2,X3, . . . be an i.i.d. sequence of nonnegative
random variables with finite variance, and let N be a nonnegative integer valued
random variable with finite mean. Then the expectation of SN = X1 + · · · + XN is
finite.

PROOF. For a > E[X1], the expectation of

Ra = sup
n∈N

(Sn − an)

is finite whenever X1 has finite variance. This result is familiar in the context of
queueing theory, saying that the expected waiting time in a single-server queue
is finite if the service time distribution has finite variance; see, for example, Sec-
tion 2.2 in [1]. Therefore,

E[SN ] ≤ E[Ra] + aE[N ]
is finite. �

It is therefore enough to show that E[L] < ∞ and E[(ρ1 − ρ0)
2] < ∞ (note

that E[ρ0] < ∞ if E[(ρ1 − ρ0)
2] < ∞; this is the same renewal process result we

quoted just before Lemma 3.9). The expecation of L is finite if E[μ|μ < ∞] < ∞,
and this will be proved in Proposition 3.13. In order to show that E[(ρ1 − ρ0)

2] <

∞, we will show that the following random variable ν, which satisfies ν
d= ρ1 −ρ0,

has exponential moments for appropriate c:

ν = inf{x > 0 :1A−−
x,x

= 1}.

PROPOSITION 3.12. If c satisfies (3.9), then

E
[
eαν]

< ∞ for some α > 0.
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PROOF. As above, the τk are the strongly connected points with τ−1 < 0 ≤ τ0,
and m(x) satisfies τm(x) < x ≤ τm(x)+1. We immediately have

P[ν > x] ≤ P[ν > τm(x)]
(3.12)

≤ P
[(

A−−
τ0,τ0

)c ∩ · · · ∩ (
A−−

τm(x),τm(x)

)c]
.

Now we claim that if none of the events A−−
τ0,τ0

, . . . ,A−−
τm(x),τm(x)

occur, then for
k = 0,1, . . . ,m(x),

k∑
r=0

min
τr−1≤i≤j≤τr

vi,j < c(τk − τ−1).(3.13)

For suppose (3.13) fails for some value k ≥ 0 (but is true for all smaller values).
Then by subtraction,

k∑
r=a

min
τr−1≤i≤j≤τr

vi,j ≥ c(τk − τa−1) ∀0 ≤ a ≤ k.(3.14)

In that case suppose 0 ≤ x < τk . For some a with 0 ≤ a ≤ k we have τa−1 ≤ x <

τa .
Since the τr are strongly connected points, there exists a path from x to τk

which passes through all of τa, τa+1, . . . , τk , and which therefore includes at least
one edge within each interval [τa−1, τa], [τa, τa+1], . . . , [τk−1, τk].

From (3.14), this path must have weight at least c(τk − τa−1), which is at least
c(τk − x).

Since this holds for all 0 ≤ x ≤ τk , it follows that the event A−−
τk,τk

would have
to hold.

So indeed the event on the RHS of (3.12) implies (3.13), and so in particular we
have

P(ν > x) ≤ P

(
m(x)∑
r=0

min
τr−1≤i≤j≤τr

vi,j < c(τm(x) − τ−1)

)
.(3.15)

Since the strongly connected points form a renewal process whose intervals
have exponential moments [see (3.1)], we have, for any ε > 0,

P

(
m(x)

x
< γ − ε

)
≤ c1e

−c2x,(3.16)

P

(
τm(x) − τ−1

x
> 1 + ε

)
≤ c2e

−c4x(3.17)

for some constants c1, c2, c3, c4, and all x ∈ Z.
But the quantities minτr−1≤i<j≤τr vi,j are nonnegative, and i.i.d. for r ≥ 1, and

we have assumed that c < γ E[minτ0≤i<j≤τ1 vi,j ]. Hence for sufficiently small ε
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and some c5, c6,

P

(�(γ−ε)x�∑
r=0

min
τr−1≤i<j≤τr

vi,j < c(1 + ε)x

)
≤ c5e

−c6x.

Putting all these together with (3.15), we get that P[ν > x] decays exponentially
in x, as desired. �

Next we want to prove that the expectation of μ, conditioned on {μ < ∞} is
also finite under suitable moment conditions for v.

PROPOSITION 3.13. If E[v3] < ∞ and c satisfies (3.9), then

E[μ|μ < ∞] < ∞.

PROOF. We have for d > 0

P[μ = d] = P
[(

A−+
0,d ∩ A++

0,d

)c ∩ (
A−+

0,d−1 ∩ A++
0,d−1

)]
≤ P

[(
A−+

0,d

)c ∩ A−+
0,d−1 ∩ A++

0,d−1

]
+ P

[(
A++

0,d

)c ∩ A−+
τ0,d−1 ∩ A++

τ0,d−1

]
≤ P

[(
A−+

0,d

)c ∩ A−+
0,d−1

] + P
[(

A++
0,d

)c ∩ A++
0,d−1

]
≤ P

[
sup
i≥1

(v−i,d − ci) > cd
]
+ P[w0,d < cd]

≤
∞∑
i=1

P
[
v−i,d > c(d + i)

] + P[w0,d < cd].

By the same arguments as in the proof of Proposition 3.12 we have that the second
probability decays exponentially in d . Looking at the first probability we get

∞∑
d=1

d

∞∑
i=1

P
[
v−i,d > c(d + i)

] =
∞∑
l=2

l−1∑
j=1

jP[v > cl]

≤
∞∑
l=2

l2

2
P[v > cl],

which is finite if E[v3] is finite. Therefore, we get that E[v3] < ∞ implies that
E[μ|μ < ∞] < ∞. �

This completes the proof that E[�0] < ∞ whenever c satisfies (3.9). �

Now we are ready to prove the central limit theorem for w0,n (Theorem 2.4).
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PROOF OF THEOREM 2.4. Take any c satisfying (3.9). Since under the condi-
tion E[v3] < ∞ we have E[�0] < ∞, we also get E[|�−1|] < ∞. This implies that
the variance of �1 −�0 is finite (since the �n form a stationary renewal process, see
Remark 4.2.1 in [1]). Now we want to show that σ 2 = Var(w�0,�1 − C(�1 − �0))

is finite. We will prove this in a separate proposition.

PROPOSITION 3.14. If E[v3] < ∞, then Var(w�0,�1 − C(�1 − �0)) < ∞.

PROOF. In order to show that the variance of w�0,�1 − C(�1 − �0) is finite, it
is enough to show that the second moment of this random variable is finite:

E
[(

w�0,�1 − C(�1 − �0)
)2]

= E
[(

w�0,�1 − C(�1 − �0)
)21{w�0,�1≥C(�1−�0)}

]
+ E

[(
w�0,�1 − C(�1 − �0)

)21{w�0,�1<C(�1−�0)}
]

≤ E

[(
max

�0=i0<j0=i1<j1=···<jm=�1

m∑
l=0

[
vil,jl

− C(jl − il)
]
+

)2]

+ E
[
C2(�1 − �0)

2]
.

Under the assumption E[v3] < ∞ we know that the second expectation is finite.
Therefore we will only consider the first expectation in the following. For the first
expectation, we get

E

[(
max

�0=i0<j0=i1<j1=···<jm=�1

m∑
l=0

[
vil,jl

− C(jl − il)
]
+

)2]
(3.18)

≤ E

[ ∑
�0≤x<y≤�1

[
vx,y − C(y − x)

]2
+

]
(3.19)

+ 2E

∑
�0≤x<y≤u<z≤�1

[
vx,y − C(y − x)

]
+

[
vu,z − C(z − u)

]
+.(3.20)

We will look at the expectations in (3.19) and (3.20) separately. For the first one,
we can use that the expected length of a typical renewal interval is λ−1 to give

E

[ ∑
�0≤x<y≤�1

[
vx,y − C(y − x)

]2
+

]
≤ E

[ ∑
�0≤x<�1

∑
y>x

[
vx,y − C(y − x)

]2
+

]

= λ−1
∑
y>0

E
[[v0,y − Cy]2+

]
≤ const · E

[
v3]

,

and so the expectation in (3.19) is finite.
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Let us now look at the second expectation, for which we have to sum over
pairs of edges that are in the same renewal interval. For i ≤ j , let Ri,j be the
event that the set {i, i + 1, . . . , j} contains at least one renewal point. Note that
P(Rc

i,j ) = P(Rc
0,j−i ) = P(�0 > j − i).

Then define

sr,n = ∑
r≤x<y≤u<z≤n

[
vx,y − C(y − x)

]
+

[
vu,z − C(z − u)

]
+I

(
Rc

x+1,z−1
)
.

Notice that the expression in (3.20) is precisely Es�0,�1 ; we need to show that
this is finite. We first aim to show that the expectation of s0,n grows only linearly
with n. To do so we make the following claim, to be proved below: for any x <

y ≤ u < z, and any s, t ≥ 0,

P(vx,y ≥ t, vu,z ≥ s) ≥ P
(
vx,y ≥ t, vu,z ≥ s|Rc

y,u

)
.(3.21)

In that case,

Es0,n = E
∑

0≤x<y≤u<z≤n

[
vx,y − C(y − x)

]
+

[
vu,z − C(z − u)

]
+I

(
Rc

x+1,z−1
)

≤ E

∑
0≤x<y≤u<z≤n

[
vx,y − C(y − x)

]
+

[
vu,z − C(z − u)

]
+I

(
Rc

y,u

)
= ∑

0≤x<y≤u<z≤n

E
([

vx,y − C(y − x)
]
+

[
vu,z − C(z − u)

]
+|Rc

y,u

)
P

(
Rc

y,u

)
≤ ∑

0≤x<y≤u<z≤n

E
([

vx,y − C(y − x)
]
+

[
vu,z − C(z − u)

]
+

)
P

(
Rc

y,u

)
≤ n

∑
0<y≤u<z

E[v0,y − Cy]+E
[
vu,z − C(z − u)

]
+P(�0 > u − y)

= nE�0

(
E

∑
y>0

[v0,y − Cy]+
)2

.

By Lemma 3.9, this gives Es0,n = O(n) whenever E(v3) < ∞.
Now note that for n ≥ �0 we have

1

n

(
s0,�0 +

r(n)∑
i=1

s�i−1,�i

)
≤ 1

n
s0,n,(3.22)

where as before, we write r(n) for the label of the last renewal point to the left
of n, so that �r(n) < n ≤ �r(n)+1.

By Lemma 3.8, the quantities s�i−1,�i
are i.i.d. for i ≥ 1. Hence, if s�0,�1 had

infinite mean, then the left-hand side of (3.22) would converge to infinity almost
surely, since r(n)/n → λ a.s. But then also s0,n/n would converge to infinity al-
most surely, which contradicts the fact that Es0,n/n is bounded. Hence s�0,�1 has
finite mean, which is to say that the expectation in (3.20) is finite.
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This completes the proof, subject to the claim (3.21) which we now justify. We
consider the dependence of the event Ry,u on the weights vx,y and vu,z.

Take r ∈ {y, y + 1, . . . , u}. From the definition of the set of renewal points R,
it is easy to see that the event {r ∈ R} is an increasing event as a function of
vx,y and vu,z; that is, if r ∈ R and we increase the values of vx,y or vu,z while
leaving all other weights the same, then it remains the case that r ∈ R. But
Ry,u = ⋃

y≤r≤u{r ∈ R}, so Ry,u is also an increasing event as a function of vx,y

and vu,z.
Since these events depend only on the weights vi,j and the indicator variables

αi,j determining which edges are present, and since these quantities are all inde-
pendent, it follows that the distribution of (vx,y, vu,z) conditioned on Ry,u domi-
nates the unconditioned distribution, which is equivalent to (3.21). �

With Proposition 3.14 established, the rest of the argument to prove the central
limit theorem in Theorem 2.4 is analogous to that in [8], proof of Theorem 2,
pages 20–22, using Donsker’s theorem and the continuous mapping theorem (and
the fact that the fraction of renewal points between 0 and [nt] converges to the
deterministic function λt). �

3.4. Length of the longest edge. In this section we analyse the asymptotic be-
haviour of �n and hn, the length of the longest edge, and the weight of the heaviest
edge used on the geodesic between 0 and n, and prove Theorem 2.5.

We are working under the assumption (2.6) that F is regularly varying with in-
dex s. Define f (x) by 1−F(x) = x−sf (x), so that f is a slowly varying function,
that is, f (tx)/f (x) → 1 as x → ∞, for any t > 0.

We start with some general results about regularly varying functions that will be
useful throughout this section. Let g(z) = z−sf (z) be a regularly varying function
with index s > 1 (i.e., f is slowly varying). Then we have∫ ∞

x
g(z) dz ∼ x−s+1

s − 1
f (x).(3.23)

See, for example, Proposition 1.5.10 in [2]. From the Representation theorem
(Theorem 1.3.1 in [2]) it follows that we can choose a function r0(x), depending
on f , that increases to infinity but does so slowly enough that

sup
x≤y≤xr0(x)

f (y)

f (x)

x→∞→ 1;

then for this r0, ∫ xr0(x)

x
g(z) dz ∼ x−s+1

s − 1
f (x).(3.24)
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From (3.23) and (3.24) we get that for any function r(x) ≤ ∞ such that r(x) → ∞
as x → ∞, the following holds:∫ xr(x)

x
g(z) dz ∼ x−s+1

s − 1
f (x).(3.25)

PROOF OF THEOREM 2.5. We start by proving the limit in (2.7). We start with
an upper bound, and aim to show that if β > 1/(s −1), the optimal path is unlikely
to use an edge as long as nβ .

Upper bound. For any edge e = (x, y), write |e| = y − x for the length of the
edge. Write w−

i,j for the maximal weight of a path from i to j not using the edge
(i, j) itself.

LEMMA 3.15. Fix β ∈ (0,1).

(i) For some c1 and M > 0,

P
(
w−

0,m ≤ mM
) ≤ e−c1m for all m.

(ii) For some c2 and M > 0, for all n,

P
(
w−

x,y ≤ M(y − x) for some 0 ≤ x < y ≤ n with y − x ≥ nβ) ≤ e−c2n
β

,

and

P
(
The geodesic from 0 to n uses an edge e

(3.26)
with |e| ≥ nβ and ve ≤ M|e|) ≤ e−c2n

β

.

PROOF. Property (i) is immediate for p = 1, since the quantity w−
0,m is

bounded from above by the sum of m i.i.d. nonnegative random variables. For
p < 1 we can do something analogous using the strongly connected points.
From (3.1), the distance between successive strongly connected points has an ex-
ponentially decaying tail, and so the probability that there exist fewer than mγ/2
strongly connected points between 0 and m decays exponentially in m, where γ is
the density of strongly connected points. If there exist at least mγ/2 such points,
then there is a path from 0 to m containing at least mγ/2 edges.

But the weights are i.i.d., bounded below and with positive mean, so for appro-
priately chosen M , the probability that their sum is less than Mm decays exponen-
tially, as required for (i).

For the first part of (ii), simply sum (i) over all appropriate values of x and y.
This introduces an extra factor of n2, but this can be removed by replacing c1 with
sufficiently small c2 < c1 (using the fact that for all n the probability concerned is
strictly less than 1). The second part of (ii) also follows, since an edge (x, y) with
vx,y < w−

x,y will never be used in an optimal path. �
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Choose M according to Lemma 3.15. Now let Nβ be the number of edges e

in the interval [0, n] such that |e| ≥ nβ and ve > M|e|. From the last part of the
lemma,

P
(
Nβ = 0 and �n ≥ nβ) ≤ e−c2n

β

.(3.27)

But also

E(Nβ) ≤
n∑

k=nβ

nP(v > Mk),

since there are at most n edges of any given length k in the interval [0, n]. Since
P(v > Mk) ∼ k−sf (k) by assumption, we can use (3.25) with x = nβ and r(x) =
x1/β to get

E(Nβ) ≤ const · n1−β(s−1)f
(
nβ)

.

Since f is slowly varying, this tends to 0 as n → ∞ whenever β > 1/(s − 1).
Hence for all such β , P(Nβ > 0) → 0 as n → ∞; combining with (3.27) we have

P

(
log�n

logn
≥ β

)
→ 0 as n → ∞ for all β >

1

s − 1

as required for the upper bound.
Lower bound. Fix K > 0 (to be chosen later), and let Rβ be the number of edges

within the interval (�2n
5 �, �3n

5 �) which satisfy ve ≥ K|e| and |e| ≥ nβ . Then

E(Rβ) ≥
n/12∑
k=nβ

n

12
P(α0,1v ≥ Kk)

(3.28)
≥ const · n1−β(s−1)f

(
nβ)

.

The first inequality holds since for any k with nβ ≤ k ≤ n/12, there are at
least n/12 edges of length k within (�2n

5 �, �3n
5 �), and the second follows again

from (3.25).
The RHS of (3.28) tends to infinity as n → ∞ if β < 1/(s − 1). Since the

corresponding events for different edges e are independent, we obtain that P(Rβ ≥
1) → 1, that is, with high probability, at least one such edge exists.

If so, let e∗ = (x∗, y∗) be the longest such edge. Then define the interval I ∗ =
(x∗ − 2|e∗|, y∗ + 2|e∗|), which is centred on e but is five times as long. Note that
I ∗ is still contained in [0, n]. Finally, let w∗ be the maximal weight of a path
contained in the interval I ∗ which uses only edges shorter than e∗.

We claim that, if Rβ ≥ 1, then at least one of the following events must hold:

(a) some edge at least as long as e∗ (maybe e∗ itself) is used in the optimal path
from 0 to n;

(b) w∗ ≥ K|e∗|;
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(c) there is either no strongly connected point in (x∗ − |e∗|, x∗), or there is no
strongly connected point in (y∗, y∗ + |e∗|).
For if (b) does not hold, then using the edge e∗ is preferable to any combination of
edges in I ∗ which are shorter than e∗. If in addition (c) fails, then using appropriate
strongly connected points one can include the edge e∗ simultaneously with any
edge set of compatible edges which are wholly to the left of x∗ − |e∗| or wholly
to the right of y∗ + |e∗|. Then the only reason not to use e∗ is if the optimal path
contains an edge (r, s) where either r < x∗ − 2|e∗|, s > x∗ − |e∗| or r < y∗ + |e∗|,
s > y∗ + 2|e∗|. But such an edge has length at least e∗. So indeed, (a) then holds.

We already have P(Rβ ≥ 1) → 1 as n → ∞. Since the strongly connected
points form a renewal process with positive density, and the renewal intervals have
exponential tails [see (3.1)], and |e∗| ≥ nβ , event (c) has probability tending to 0
as n → ∞.

If we can show that the probability of event (b) also goes to 0, then with proba-
bility tending to 1, event (a) occurs. Then indeed �n ≥ nβ , and we will have shown
that for any β < 1/(s − 1), P(�n ≥ nβ) → 1 as n → ∞ as required.

So, we need to prove the following:

CLAIM. For appropriate K , P(Rβ ≥ 1,w∗ ≥ K|e∗|) → 0 as n → ∞.

Suppose Rβ ≥ 1, and condition on the identity of the edge e∗. Let m = |e∗|.
From the definition of e∗, knowing the identity of e∗ has given us no information
about the weights of edges shorter than m. Then since I ∗ has length 5m, the dis-
tribution of w∗ is dominated by the distribution of w0,5m in the case p = 1. But
the SLLN in that case gives 1

5m
w0,5m → C(p=1) in probability, for some constant

C(p=1). Hence the claim holds for any K > C(p=1).
This completes the argument for the longest edge �n, and we can use those

results to give the corresponding statements for the heaviest weight hn.
The lower bound follows immediately from the bound for �n and prop-

erty (3.26). For the upper bound, suppose β > 1/(s − 1). Take β ′ ∈ (1/(s − 1), β).
We know that as n → ∞, the probability that the optimal path uses an edge as long
as nβ ′

tends to 0. But also the probability that there exists an edge of length less
than nβ ′

with weight as high as nβ is bounded above by

nβ′∑
k=1

nP
(
v ≥ nβ) ≤ const · n1+β ′

n−βsf
(
nβ)

,

which converges to 0 as n → ∞. So indeed the probability that an edge as heavy
as nβ is used goes to 0, as required.

Now we turn to the fluctuations of w0,n when 2 < s < 3. Suppose β < 1/(s−1),
and choose β ′ ∈ (β,1/(s − 1)). Let ē be the heaviest edge used in the optimal path
from 0 to n. We know from above that with high probability, vē > nβ ′

.
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Condition on the identity of ē and the weight of all the other edges in [0, n], but
not the weight of ē itself. Write A for the collection of all this information.

Given A, we have a lower bound, Vmin say, for the weight of ē (since given the
weights of all other edges, ē will be the heaviest weight in the optimal path if and
only if its weight exceeds some threshold). Now the conditional distribution of vē

given A is the distribution of a typical weight v conditioned on v > Vmin. Given A,
the value of w0.n − vē is constant.

Certainly we will have Vmin > nβ ′
/2 with high probability. For if Vmin ≤ nβ ′

/2,
then P(vē ≤ nβ ′ |A) ≥ P(v ≤ nβ ′ |v ≥ nβ ′

/2), which does not go to 0 as n → ∞
[since the tail of the distribution of v is regularly varying, so that P(v ≤ 2x|v ≥ x)

converges to a nonzero limit as x → ∞].
But again since v has a regularly varying tail, we have that P(v ∈ [xn, xn +

nβ]|v ≥ vmin) goes to 0 as n → ∞ uniformly in xn and in vmin > nβ ′
/2, since

nβ = o(nβ ′
).

Hence for some function ε(n) tending to 0 as n → ∞, we have that with high
probability as n → ∞,

P
(
vē ∈ [

xn, xn + nβ]|A
)
< ε(n) for all xn,

and hence also with high probability,

P
(
w0,n ∈ [

yn, yn + nβ]|A
)
< ε(n) for all yn.

Now we can average over A, to give that for any sequence yn, the unconditional
distribution of w0,n satisfies

P
(
w0,n ∈ [

yn, yn + nβ]) → 0 as n → ∞
as required. In particular, with s < 3 this implies that Var(w0,n) grows faster
than n, and that no central limit theorem such as that in Theorem 2.4 can hold
(even for single values of t). �

Now we want to present two examples that show that for s = 3, both critical
cases are possible: it might happen that the longest edge is o(

√
n), and it is possible

that the longest edge satisfies �n√
n

→ ∞ in probability as n → ∞. Let us first look

at the case where f (x) = 1
logx

. Then we have E[v3] = ∞.

EXAMPLE 3.1. With P[v > k] = 1
k3 log k

, we have E[v3] = ∞ since∫ ∞
2

1
x logx

dx = ∞, but on the other hand [again using (3.25)],

E[N1/2] ≤ n

n∑
k=√

n

1

(Mk)3 logMk

≤ const · 1

log(
√

n)

→
n→∞ 0.
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So in this case we have that although E[v3] = ∞, we will not see edges of
length

√
n.

However, if f is increasing and such that E[N1/2] →n→∞ ∞, then we have
�n√
n

→ ∞ in probability by the same arguments as in the proof of (2.7) in
Lemma 2.5. An example is the case where and f (x) = logx:

EXAMPLE 3.2. Let P[v > k] = log k

k3 . Then the expected number of edges of at
least length

√
n log logn and weight at least M times their length is bounded from

below by

n/2∑
k=√

n log logn

n

2
P[v > Mk] ≥ const · n(

√
n log logn)−2 · log(

√
n log logn)

= const · (1/2) logn + log log logn

(log logn)2

→
n→∞ ∞.

By the same arguments as for the lower bound in the proof of (2.7) in Lemma 2.5
we have that with positive probability we will use an edge of length

√
n log logn,

so �n√
n

→ ∞ in probability.

3.5. Nonconstant edge probabilities. In this section we want to discuss briefly
the situation in which the probabilities that edges are present are not given by a
constant p ∈ (0,1], but by a sequence (pi)i≥1 where pi is the probability that an
edge of length i is present. In the case with constant edge weights, this situation
was analysed in [8], and it can be extended to our case as follows. As in [8] we
need the following two conditions:

[C1] 0 < p1 < 1;

[C2]
∞∑

k=1

(1 − p1) · · · (1 − pk) < ∞.

Under these conditions the set of strongly connected points is almost surely infi-
nite, and the set of strongly connected points forms a stationary renewal process.
Since this is all we needed to establish that the set of renewal points is almost
surely infinite, conditions [C1] and [C2] are sufficient to get that

R is almost surely an infinite set.

However, in the proof of the strong law of large numbers and the central limit
theorem above, we used that the strongly connected points τi have exponential
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moments. This is, in general, no longer the case if we replace the constant p by a
sequence (pi)i∈N. In [8] it was proven that E[τ0] < ∞ if the condition

[C3]
∞∑

k=1

k(1 − p1) · · · (1 − pk) < ∞

holds. In the proofs of Propositions 3.12 and 3.13 we used that certain errors
[see (3.16) and (3.17)] decay exponentially because the τi had exponential mo-
ments. If we are, however, only interested in showing that �0 has a finite first
moment, then it is enough if these errors decay fast enough to give us finite first
moments of ν and μ conditioned on μ < ∞. For these errors to decay fast enough
it is sufficient to have two moments of τ1 − τ0, and for this it is enough to have
E[τ0] < ∞. So under [C1], [C2], [C3], and the condition E[v3] < ∞ for the
weights, we still get a SLLN and a CLT for the weight w0,n. This agrees with
the results in [8]: if the weights are constant, then conditions [C1], [C2], and [C3]
give us a SLLN and CLT.

4. Proofs for the model with E[v2] = ∞. In this section the weights have a
distribution which does not have a second moment, that is, E[v2] = ∞. We want
to prove Theorems 2.6 and 2.7. Again, we start with the case p = 1 (Theorem 2.6)
and then look at the case p < 1 (Theorem 2.7). The proofs follow closely those
in [11] where analogous results for directed last-passage percolation in two di-
mensions were established.

4.1. Proof of Theorem 2.6.

PROOF OF THEOREM 2.6. To prove Theorem 2.6 we use approximations of
w0,n and w that use only the k largest weights. We define

Ck = {
A ⊂ {1,2, . . . , k} :Yi ∼ Yj for all i, j ∈ A

}
and

Ck
0,n =

{
A ⊂

{
1,2, . . . , k ∧

(
n + 1

2

)}
:Y (n)

i ∼ Y
(n)
j for all i, j ∈ A

}
and put

wk = sup
A∈C

∑
i∈A,i≤k

Mi,

wk
0,n = sup

A∈C0,n

∑
i∈A,i≤k

M
(n)
i .

We also define appropriately rescaled versions

w̃k
0,n = wk

0,n

bn

,

w̃0,n = w0,n

bn

.
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The tails of w and w0,n are bounded by

Sk = sup
A∈C

∑
i∈A,i>k

Mi and Sk
0,n = sup

A∈C0,n

∑
i∈A,i>k

M
(n)
i .

The following lemma implies that w is almost surely finite and that wk → w for
k → ∞.

LEMMA 4.1. With probability 1 we have Sk < ∞ for all k ≥ 0 and Sk → 0
for k → ∞.

PROOF. Define �i = supA∈C |A∩{1, . . . , i}|. This is the largest number of the
edges Y1, . . . , Yi that can be included simultaneously in an admissible path. This
is independent of the weights (Mi)i∈N. In the two-dimensional case in [11] the
corresponding random variable Li had the distribution of the length of the longest
increasing subsequence of a random permutation of the set {1, . . . , i}. In our case
the distribution is slightly different, but we get the same asymptotic behaviour and
the same bounds that we need to prove the lemma. In the two-dimensional case
two points, (i, j), (i′, j ′), are compatible if

• i ≤ i′ and j ≤ j ′ or i ′ ≤ i and j ′ ≤ j .

In our case two edges (represented by two points in [0,1]2) are compatible if

• i ≤ min(i ′, j ′) and j ≤ min(i ′, j ′) or i ′ ≤ min(i, j) and j ′ ≤ min(i, j) (under
the condition i < j and i ′ < j ′, this is equivalent to j ≤ i′ or j ′ ≤ i).

We can see that the second condition is more restrictive. Therefore, any path that
is admissible in our model is also admissible in the two-dimensional model. If we
therefore look at the largest number of points Y1, . . . , Yi that we can include in an
admissible path in the two models, we get that

Li ≥ �i a.s.(4.1)

Since we have E[Li] ≤ c
√

i, E[L2
i ] ≤ ci, and Li

i1/s →d 0, for i → ∞ and s ∈ (0,2),
we get the same results for the corresponding variable �i ,

E[�i] ≤ c
√

i, E
[
�2

i

] ≤ ci,
�i

i1/s

d→0 for i → ∞ and s ∈ (0,2).

Indeed, �i has been studied in its own right as the “independence number of a
random interval graph”; see, for example, [13] and [5], where, among other things,
a central limit theorem and large deviations principle are obtained.

The difference between Li and �i is the main difference between our model
and the two-dimensional nearest-neighbour last-passage percolation model. Since
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we have the bound (4.1), we can follow the proof of Lemma 3.1 in [11]: put Uk =∑∞
i=k+1 �i(Mi − Mi+1) and for fixed A ∈ C define Ri = |A ∩ {1, . . . , i}|. Then∑

i∈A,i>k

Mi = lim
n→∞

∑
i∈A,k<i≤n

Mi

= lim
n→∞

n∑
i=k+1

Mi1{i∈A}

= lim
n→∞

n∑
i=k+1

Mi(Ri − Ri−1)

= lim
n→∞

[
−Mk+1Rk +

n−1∑
i=k+1

Ri(Mi − Mi+1) + MnRn

]

≤ lim
n→∞

n−1∑
i=k+1

Ri(Mi − Mi+1) + lim inf
n→∞ MnRn

≤ lim
n→∞

n−1∑
i=k+1

�i(Mi − Mi+1) + lim inf
n→∞ Mn�n

= Uk + lim inf
n→∞ Mn�n

= Uk.

Therefore, we have Sk ≤ Uk for all k, and it suffices to show that Uk → 0 as
k → ∞. Since Uk is the remainder of an infinite sum, it is actually enough to show
that Uk < ∞ almost surely. By the independence of (�i) and (Mi), we get that

E[Uk] =
∞∑

i=k+1

E[�i](E[Mi] − E[Mi+1])

≤
∞∑

i=k+1

c
√

i
(
E[Mi] − E[Mi+1]).

Now we can use the known distribution of the Mi [Mi has the distribution of
(Vi)

−1/s where Vi ∼ Gamma(i,1)] to get

E[Uk] ≤ c

s

∞∑
i=k+1

√
i

(
i − 1

s
− 1

)−1/s

;

see Lemma 3.1 of [11] for details. The last sum is finite for all k > 1
s
, and it follows

that Uk < ∞ almost surely for all k. �



232 S. FOSS, J. MARTIN AND P. SCHMIDT

Theorem 2.6 then follows from the next two propositions which were proved
in [11] (Propositions 3.2 and 3.3). The proofs are almost identical and rely on the
two following facts:

• the distribution of the weights Mi in [11] and in our paper is exactly the same;
• the definition of compatible points/edges is slightly different, but such that �i ≤

Li .

PROPOSITION 4.2. Let ε > 0 and k be fixed. Then for all sufficiently large n

there exists a coupling of the continuous and the discrete model indexed by n such
that

P

[
k∑

i=1

∣∣Mi − M̃
(n)
i

∣∣ > ε

]
≤ ε,

P

[
k∑

i=1

∥∥Yi − Y
(n)
i

∥∥ > ε

]
≤ ε,(4.2)

P
[

Ck
0,n �= Ck] ≤ ε.

Here we use the Euclidean distance in Z
2 as distance between two edges Y1 =

(a, b) and Y2 = (a′, b′) in (4.2).

SKETCH OF THE PROOF. The first two statements follow straightforwardly
from the convergence stated in (2.12) and (2.13). The last statement follows from
the fact that with high probability, a small perturbation of the Yi does not affect the
ordering of the points. �

PROPOSITION 4.3. Let ε > 0. Then for sufficiently large k and S̃k
0,n = Sk

0,n

bn
,

P
[
S̃k

0,n > ε
] ≤ ε

for all n.

REMARK 4.1. A detailed proof of Proposition 4.3 can be found in Section 3.2
of [11]. The transfer of the proof to our situation follows again from the two facts
stated before Proposition 4.2.

We can then write

|w − w̃0,n| = ∣∣(w − wkn
) + (

wkn − w̃
kn

0,n

) + (
w̃

kn

0,n − w̃0,n

)∣∣
≤ Skn + ∣∣wkn − w̃

kn

0,n

∣∣ + S̃
kn

0,n,
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and for some suitable sequence kn, we have that the first and last term tend to 0 in
probability. We also have that on Ckn

0,n = Ckn ,

∣∣wkn − w̃
kn

0,n

∣∣ ≤
kn∑

i=1

∣∣Mi − M̃
(n)
i

∣∣
holds. Since P[Ck

0,n �= Ck] → 0 and
∑kn

i=1 |Mi − M̃
(n)
i | → 0 in probability, we have

that w̃0,n → w as required for Theorem 2.6. �

4.2. Proof of Theorem 2.7. The proof in the case p < 1 goes through in an
essentially identical way, after making a couple of appropriate observations.

First, the number of edges in the interval [0, n] is no longer
(n+1

2

)
, but is now a

Binomial
((n+1

2

)
,p

)
random variable. Since under (2.6) we have that

a
(
n+1

2 )
/a

p(
n+1

2 )
→ p−1/s as n → ∞,

it is easy to obtain that equation (2.13) generalises for p ∈ (0,1] to

p−1/s(M̃(n)
1 , M̃

(n)
2 , . . . , M̃

(n)
k

) d→ (M1,M2, . . . ,Mk)(4.3)

as n → ∞, so that the asymptotics of the heaviest edges change simply by a con-
stant factor.

The second issue concerns the set of feasible paths. Since not all edges are
present, it is no longer the case that if x = (i, j) and y = (i′, j ′) are two edges with
i < j ≤ i′ < j ′, then x and y can necessarily be used in the same path (there may
be no feasible path between j and i′).

However, if k is fixed and n → ∞, then with high probability, any subset of the
k heaviest edges which are compatible with each other in this sense can be used
together in a path (since the minimal distance between the endpoints of two such
edges goes to infinity in probability). Then, since the argument above shows that
we can obtain an arbitrarily close approximation to w by considering only the k

heaviest edges, the result of Theorem 2.7 for p < 1 can be obtained just as before.
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